xref: /openbmc/linux/arch/x86/kernel/cpu/amd.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6 
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/spec-ctrl.h>
17 #include <asm/smp.h>
18 #include <asm/numa.h>
19 #include <asm/pci-direct.h>
20 #include <asm/delay.h>
21 #include <asm/debugreg.h>
22 #include <asm/resctrl.h>
23 
24 #ifdef CONFIG_X86_64
25 # include <asm/mmconfig.h>
26 #endif
27 
28 #include "cpu.h"
29 
30 /*
31  * nodes_per_socket: Stores the number of nodes per socket.
32  * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
33  * Node Identifiers[10:8]
34  */
35 static u32 nodes_per_socket = 1;
36 
37 /*
38  * AMD errata checking
39  *
40  * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
41  * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
42  * have an OSVW id assigned, which it takes as first argument. Both take a
43  * variable number of family-specific model-stepping ranges created by
44  * AMD_MODEL_RANGE().
45  *
46  * Example:
47  *
48  * const int amd_erratum_319[] =
49  *	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
50  *			   AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
51  *			   AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
52  */
53 
54 #define AMD_LEGACY_ERRATUM(...)		{ -1, __VA_ARGS__, 0 }
55 #define AMD_OSVW_ERRATUM(osvw_id, ...)	{ osvw_id, __VA_ARGS__, 0 }
56 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
57 	((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
58 #define AMD_MODEL_RANGE_FAMILY(range)	(((range) >> 24) & 0xff)
59 #define AMD_MODEL_RANGE_START(range)	(((range) >> 12) & 0xfff)
60 #define AMD_MODEL_RANGE_END(range)	((range) & 0xfff)
61 
62 static const int amd_erratum_400[] =
63 	AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
64 			    AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
65 
66 static const int amd_erratum_383[] =
67 	AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
68 
69 /* #1054: Instructions Retired Performance Counter May Be Inaccurate */
70 static const int amd_erratum_1054[] =
71 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0, 0, 0x2f, 0xf));
72 
73 static const int amd_zenbleed[] =
74 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x30, 0x0, 0x4f, 0xf),
75 			   AMD_MODEL_RANGE(0x17, 0x60, 0x0, 0x7f, 0xf),
76 			   AMD_MODEL_RANGE(0x17, 0xa0, 0x0, 0xaf, 0xf));
77 
78 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
79 {
80 	int osvw_id = *erratum++;
81 	u32 range;
82 	u32 ms;
83 
84 	if (osvw_id >= 0 && osvw_id < 65536 &&
85 	    cpu_has(cpu, X86_FEATURE_OSVW)) {
86 		u64 osvw_len;
87 
88 		rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
89 		if (osvw_id < osvw_len) {
90 			u64 osvw_bits;
91 
92 			rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
93 			    osvw_bits);
94 			return osvw_bits & (1ULL << (osvw_id & 0x3f));
95 		}
96 	}
97 
98 	/* OSVW unavailable or ID unknown, match family-model-stepping range */
99 	ms = (cpu->x86_model << 4) | cpu->x86_stepping;
100 	while ((range = *erratum++))
101 		if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
102 		    (ms >= AMD_MODEL_RANGE_START(range)) &&
103 		    (ms <= AMD_MODEL_RANGE_END(range)))
104 			return true;
105 
106 	return false;
107 }
108 
109 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
110 {
111 	u32 gprs[8] = { 0 };
112 	int err;
113 
114 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
115 		  "%s should only be used on K8!\n", __func__);
116 
117 	gprs[1] = msr;
118 	gprs[7] = 0x9c5a203a;
119 
120 	err = rdmsr_safe_regs(gprs);
121 
122 	*p = gprs[0] | ((u64)gprs[2] << 32);
123 
124 	return err;
125 }
126 
127 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
128 {
129 	u32 gprs[8] = { 0 };
130 
131 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
132 		  "%s should only be used on K8!\n", __func__);
133 
134 	gprs[0] = (u32)val;
135 	gprs[1] = msr;
136 	gprs[2] = val >> 32;
137 	gprs[7] = 0x9c5a203a;
138 
139 	return wrmsr_safe_regs(gprs);
140 }
141 
142 /*
143  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
144  *	misexecution of code under Linux. Owners of such processors should
145  *	contact AMD for precise details and a CPU swap.
146  *
147  *	See	http://www.multimania.com/poulot/k6bug.html
148  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
149  *		(Publication # 21266  Issue Date: August 1998)
150  *
151  *	The following test is erm.. interesting. AMD neglected to up
152  *	the chip setting when fixing the bug but they also tweaked some
153  *	performance at the same time..
154  */
155 
156 #ifdef CONFIG_X86_32
157 extern __visible void vide(void);
158 __asm__(".text\n"
159 	".globl vide\n"
160 	".type vide, @function\n"
161 	".align 4\n"
162 	"vide: ret\n");
163 #endif
164 
165 static void init_amd_k5(struct cpuinfo_x86 *c)
166 {
167 #ifdef CONFIG_X86_32
168 /*
169  * General Systems BIOSen alias the cpu frequency registers
170  * of the Elan at 0x000df000. Unfortunately, one of the Linux
171  * drivers subsequently pokes it, and changes the CPU speed.
172  * Workaround : Remove the unneeded alias.
173  */
174 #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
175 #define CBAR_ENB	(0x80000000)
176 #define CBAR_KEY	(0X000000CB)
177 	if (c->x86_model == 9 || c->x86_model == 10) {
178 		if (inl(CBAR) & CBAR_ENB)
179 			outl(0 | CBAR_KEY, CBAR);
180 	}
181 #endif
182 }
183 
184 static void init_amd_k6(struct cpuinfo_x86 *c)
185 {
186 #ifdef CONFIG_X86_32
187 	u32 l, h;
188 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
189 
190 	if (c->x86_model < 6) {
191 		/* Based on AMD doc 20734R - June 2000 */
192 		if (c->x86_model == 0) {
193 			clear_cpu_cap(c, X86_FEATURE_APIC);
194 			set_cpu_cap(c, X86_FEATURE_PGE);
195 		}
196 		return;
197 	}
198 
199 	if (c->x86_model == 6 && c->x86_stepping == 1) {
200 		const int K6_BUG_LOOP = 1000000;
201 		int n;
202 		void (*f_vide)(void);
203 		u64 d, d2;
204 
205 		pr_info("AMD K6 stepping B detected - ");
206 
207 		/*
208 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
209 		 * calls at the same time.
210 		 */
211 
212 		n = K6_BUG_LOOP;
213 		f_vide = vide;
214 		OPTIMIZER_HIDE_VAR(f_vide);
215 		d = rdtsc();
216 		while (n--)
217 			f_vide();
218 		d2 = rdtsc();
219 		d = d2-d;
220 
221 		if (d > 20*K6_BUG_LOOP)
222 			pr_cont("system stability may be impaired when more than 32 MB are used.\n");
223 		else
224 			pr_cont("probably OK (after B9730xxxx).\n");
225 	}
226 
227 	/* K6 with old style WHCR */
228 	if (c->x86_model < 8 ||
229 	   (c->x86_model == 8 && c->x86_stepping < 8)) {
230 		/* We can only write allocate on the low 508Mb */
231 		if (mbytes > 508)
232 			mbytes = 508;
233 
234 		rdmsr(MSR_K6_WHCR, l, h);
235 		if ((l&0x0000FFFF) == 0) {
236 			unsigned long flags;
237 			l = (1<<0)|((mbytes/4)<<1);
238 			local_irq_save(flags);
239 			wbinvd();
240 			wrmsr(MSR_K6_WHCR, l, h);
241 			local_irq_restore(flags);
242 			pr_info("Enabling old style K6 write allocation for %d Mb\n",
243 				mbytes);
244 		}
245 		return;
246 	}
247 
248 	if ((c->x86_model == 8 && c->x86_stepping > 7) ||
249 	     c->x86_model == 9 || c->x86_model == 13) {
250 		/* The more serious chips .. */
251 
252 		if (mbytes > 4092)
253 			mbytes = 4092;
254 
255 		rdmsr(MSR_K6_WHCR, l, h);
256 		if ((l&0xFFFF0000) == 0) {
257 			unsigned long flags;
258 			l = ((mbytes>>2)<<22)|(1<<16);
259 			local_irq_save(flags);
260 			wbinvd();
261 			wrmsr(MSR_K6_WHCR, l, h);
262 			local_irq_restore(flags);
263 			pr_info("Enabling new style K6 write allocation for %d Mb\n",
264 				mbytes);
265 		}
266 
267 		return;
268 	}
269 
270 	if (c->x86_model == 10) {
271 		/* AMD Geode LX is model 10 */
272 		/* placeholder for any needed mods */
273 		return;
274 	}
275 #endif
276 }
277 
278 static void init_amd_k7(struct cpuinfo_x86 *c)
279 {
280 #ifdef CONFIG_X86_32
281 	u32 l, h;
282 
283 	/*
284 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
285 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
286 	 * If the BIOS didn't enable it already, enable it here.
287 	 */
288 	if (c->x86_model >= 6 && c->x86_model <= 10) {
289 		if (!cpu_has(c, X86_FEATURE_XMM)) {
290 			pr_info("Enabling disabled K7/SSE Support.\n");
291 			msr_clear_bit(MSR_K7_HWCR, 15);
292 			set_cpu_cap(c, X86_FEATURE_XMM);
293 		}
294 	}
295 
296 	/*
297 	 * It's been determined by AMD that Athlons since model 8 stepping 1
298 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
299 	 * As per AMD technical note 27212 0.2
300 	 */
301 	if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
302 		rdmsr(MSR_K7_CLK_CTL, l, h);
303 		if ((l & 0xfff00000) != 0x20000000) {
304 			pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
305 				l, ((l & 0x000fffff)|0x20000000));
306 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
307 		}
308 	}
309 
310 	/* calling is from identify_secondary_cpu() ? */
311 	if (!c->cpu_index)
312 		return;
313 
314 	/*
315 	 * Certain Athlons might work (for various values of 'work') in SMP
316 	 * but they are not certified as MP capable.
317 	 */
318 	/* Athlon 660/661 is valid. */
319 	if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
320 	    (c->x86_stepping == 1)))
321 		return;
322 
323 	/* Duron 670 is valid */
324 	if ((c->x86_model == 7) && (c->x86_stepping == 0))
325 		return;
326 
327 	/*
328 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
329 	 * bit. It's worth noting that the A5 stepping (662) of some
330 	 * Athlon XP's have the MP bit set.
331 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
332 	 * more.
333 	 */
334 	if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
335 	    ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
336 	     (c->x86_model > 7))
337 		if (cpu_has(c, X86_FEATURE_MP))
338 			return;
339 
340 	/* If we get here, not a certified SMP capable AMD system. */
341 
342 	/*
343 	 * Don't taint if we are running SMP kernel on a single non-MP
344 	 * approved Athlon
345 	 */
346 	WARN_ONCE(1, "WARNING: This combination of AMD"
347 		" processors is not suitable for SMP.\n");
348 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
349 #endif
350 }
351 
352 #ifdef CONFIG_NUMA
353 /*
354  * To workaround broken NUMA config.  Read the comment in
355  * srat_detect_node().
356  */
357 static int nearby_node(int apicid)
358 {
359 	int i, node;
360 
361 	for (i = apicid - 1; i >= 0; i--) {
362 		node = __apicid_to_node[i];
363 		if (node != NUMA_NO_NODE && node_online(node))
364 			return node;
365 	}
366 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
367 		node = __apicid_to_node[i];
368 		if (node != NUMA_NO_NODE && node_online(node))
369 			return node;
370 	}
371 	return first_node(node_online_map); /* Shouldn't happen */
372 }
373 #endif
374 
375 /*
376  * Fix up cpu_core_id for pre-F17h systems to be in the
377  * [0 .. cores_per_node - 1] range. Not really needed but
378  * kept so as not to break existing setups.
379  */
380 static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
381 {
382 	u32 cus_per_node;
383 
384 	if (c->x86 >= 0x17)
385 		return;
386 
387 	cus_per_node = c->x86_max_cores / nodes_per_socket;
388 	c->cpu_core_id %= cus_per_node;
389 }
390 
391 /*
392  * Fixup core topology information for
393  * (1) AMD multi-node processors
394  *     Assumption: Number of cores in each internal node is the same.
395  * (2) AMD processors supporting compute units
396  */
397 static void amd_get_topology(struct cpuinfo_x86 *c)
398 {
399 	int cpu = smp_processor_id();
400 
401 	/* get information required for multi-node processors */
402 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
403 		int err;
404 		u32 eax, ebx, ecx, edx;
405 
406 		cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
407 
408 		c->cpu_die_id  = ecx & 0xff;
409 
410 		if (c->x86 == 0x15)
411 			c->cu_id = ebx & 0xff;
412 
413 		if (c->x86 >= 0x17) {
414 			c->cpu_core_id = ebx & 0xff;
415 
416 			if (smp_num_siblings > 1)
417 				c->x86_max_cores /= smp_num_siblings;
418 		}
419 
420 		/*
421 		 * In case leaf B is available, use it to derive
422 		 * topology information.
423 		 */
424 		err = detect_extended_topology(c);
425 		if (!err)
426 			c->x86_coreid_bits = get_count_order(c->x86_max_cores);
427 
428 		cacheinfo_amd_init_llc_id(c, cpu);
429 
430 	} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
431 		u64 value;
432 
433 		rdmsrl(MSR_FAM10H_NODE_ID, value);
434 		c->cpu_die_id = value & 7;
435 
436 		per_cpu(cpu_llc_id, cpu) = c->cpu_die_id;
437 	} else
438 		return;
439 
440 	if (nodes_per_socket > 1) {
441 		set_cpu_cap(c, X86_FEATURE_AMD_DCM);
442 		legacy_fixup_core_id(c);
443 	}
444 }
445 
446 /*
447  * On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
448  * Assumes number of cores is a power of two.
449  */
450 static void amd_detect_cmp(struct cpuinfo_x86 *c)
451 {
452 	unsigned bits;
453 	int cpu = smp_processor_id();
454 
455 	bits = c->x86_coreid_bits;
456 	/* Low order bits define the core id (index of core in socket) */
457 	c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
458 	/* Convert the initial APIC ID into the socket ID */
459 	c->phys_proc_id = c->initial_apicid >> bits;
460 	/* use socket ID also for last level cache */
461 	per_cpu(cpu_llc_id, cpu) = c->cpu_die_id = c->phys_proc_id;
462 }
463 
464 u32 amd_get_nodes_per_socket(void)
465 {
466 	return nodes_per_socket;
467 }
468 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
469 
470 static void srat_detect_node(struct cpuinfo_x86 *c)
471 {
472 #ifdef CONFIG_NUMA
473 	int cpu = smp_processor_id();
474 	int node;
475 	unsigned apicid = c->apicid;
476 
477 	node = numa_cpu_node(cpu);
478 	if (node == NUMA_NO_NODE)
479 		node = get_llc_id(cpu);
480 
481 	/*
482 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
483 	 * platform-specific handler needs to be called to fixup some
484 	 * IDs of the CPU.
485 	 */
486 	if (x86_cpuinit.fixup_cpu_id)
487 		x86_cpuinit.fixup_cpu_id(c, node);
488 
489 	if (!node_online(node)) {
490 		/*
491 		 * Two possibilities here:
492 		 *
493 		 * - The CPU is missing memory and no node was created.  In
494 		 *   that case try picking one from a nearby CPU.
495 		 *
496 		 * - The APIC IDs differ from the HyperTransport node IDs
497 		 *   which the K8 northbridge parsing fills in.  Assume
498 		 *   they are all increased by a constant offset, but in
499 		 *   the same order as the HT nodeids.  If that doesn't
500 		 *   result in a usable node fall back to the path for the
501 		 *   previous case.
502 		 *
503 		 * This workaround operates directly on the mapping between
504 		 * APIC ID and NUMA node, assuming certain relationship
505 		 * between APIC ID, HT node ID and NUMA topology.  As going
506 		 * through CPU mapping may alter the outcome, directly
507 		 * access __apicid_to_node[].
508 		 */
509 		int ht_nodeid = c->initial_apicid;
510 
511 		if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
512 			node = __apicid_to_node[ht_nodeid];
513 		/* Pick a nearby node */
514 		if (!node_online(node))
515 			node = nearby_node(apicid);
516 	}
517 	numa_set_node(cpu, node);
518 #endif
519 }
520 
521 static void early_init_amd_mc(struct cpuinfo_x86 *c)
522 {
523 #ifdef CONFIG_SMP
524 	unsigned bits, ecx;
525 
526 	/* Multi core CPU? */
527 	if (c->extended_cpuid_level < 0x80000008)
528 		return;
529 
530 	ecx = cpuid_ecx(0x80000008);
531 
532 	c->x86_max_cores = (ecx & 0xff) + 1;
533 
534 	/* CPU telling us the core id bits shift? */
535 	bits = (ecx >> 12) & 0xF;
536 
537 	/* Otherwise recompute */
538 	if (bits == 0) {
539 		while ((1 << bits) < c->x86_max_cores)
540 			bits++;
541 	}
542 
543 	c->x86_coreid_bits = bits;
544 #endif
545 }
546 
547 static void bsp_init_amd(struct cpuinfo_x86 *c)
548 {
549 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
550 
551 		if (c->x86 > 0x10 ||
552 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
553 			u64 val;
554 
555 			rdmsrl(MSR_K7_HWCR, val);
556 			if (!(val & BIT(24)))
557 				pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
558 		}
559 	}
560 
561 	if (c->x86 == 0x15) {
562 		unsigned long upperbit;
563 		u32 cpuid, assoc;
564 
565 		cpuid	 = cpuid_edx(0x80000005);
566 		assoc	 = cpuid >> 16 & 0xff;
567 		upperbit = ((cpuid >> 24) << 10) / assoc;
568 
569 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
570 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
571 
572 		/* A random value per boot for bit slice [12:upper_bit) */
573 		va_align.bits = get_random_u32() & va_align.mask;
574 	}
575 
576 	if (cpu_has(c, X86_FEATURE_MWAITX))
577 		use_mwaitx_delay();
578 
579 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
580 		u32 ecx;
581 
582 		ecx = cpuid_ecx(0x8000001e);
583 		__max_die_per_package = nodes_per_socket = ((ecx >> 8) & 7) + 1;
584 	} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
585 		u64 value;
586 
587 		rdmsrl(MSR_FAM10H_NODE_ID, value);
588 		__max_die_per_package = nodes_per_socket = ((value >> 3) & 7) + 1;
589 	}
590 
591 	if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
592 	    !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
593 	    c->x86 >= 0x15 && c->x86 <= 0x17) {
594 		unsigned int bit;
595 
596 		switch (c->x86) {
597 		case 0x15: bit = 54; break;
598 		case 0x16: bit = 33; break;
599 		case 0x17: bit = 10; break;
600 		default: return;
601 		}
602 		/*
603 		 * Try to cache the base value so further operations can
604 		 * avoid RMW. If that faults, do not enable SSBD.
605 		 */
606 		if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
607 			setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
608 			setup_force_cpu_cap(X86_FEATURE_SSBD);
609 			x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
610 		}
611 	}
612 
613 	resctrl_cpu_detect(c);
614 }
615 
616 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
617 {
618 	u64 msr;
619 
620 	/*
621 	 * BIOS support is required for SME and SEV.
622 	 *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by
623 	 *	      the SME physical address space reduction value.
624 	 *	      If BIOS has not enabled SME then don't advertise the
625 	 *	      SME feature (set in scattered.c).
626 	 *	      If the kernel has not enabled SME via any means then
627 	 *	      don't advertise the SME feature.
628 	 *   For SEV: If BIOS has not enabled SEV then don't advertise the
629 	 *            SEV and SEV_ES feature (set in scattered.c).
630 	 *
631 	 *   In all cases, since support for SME and SEV requires long mode,
632 	 *   don't advertise the feature under CONFIG_X86_32.
633 	 */
634 	if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
635 		/* Check if memory encryption is enabled */
636 		rdmsrl(MSR_AMD64_SYSCFG, msr);
637 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
638 			goto clear_all;
639 
640 		/*
641 		 * Always adjust physical address bits. Even though this
642 		 * will be a value above 32-bits this is still done for
643 		 * CONFIG_X86_32 so that accurate values are reported.
644 		 */
645 		c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
646 
647 		if (IS_ENABLED(CONFIG_X86_32))
648 			goto clear_all;
649 
650 		if (!sme_me_mask)
651 			setup_clear_cpu_cap(X86_FEATURE_SME);
652 
653 		rdmsrl(MSR_K7_HWCR, msr);
654 		if (!(msr & MSR_K7_HWCR_SMMLOCK))
655 			goto clear_sev;
656 
657 		return;
658 
659 clear_all:
660 		setup_clear_cpu_cap(X86_FEATURE_SME);
661 clear_sev:
662 		setup_clear_cpu_cap(X86_FEATURE_SEV);
663 		setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
664 	}
665 }
666 
667 static void early_init_amd(struct cpuinfo_x86 *c)
668 {
669 	u64 value;
670 	u32 dummy;
671 
672 	early_init_amd_mc(c);
673 
674 	if (c->x86 >= 0xf)
675 		set_cpu_cap(c, X86_FEATURE_K8);
676 
677 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
678 
679 	/*
680 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
681 	 * with P/T states and does not stop in deep C-states
682 	 */
683 	if (c->x86_power & (1 << 8)) {
684 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
685 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
686 	}
687 
688 	/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
689 	if (c->x86_power & BIT(12))
690 		set_cpu_cap(c, X86_FEATURE_ACC_POWER);
691 
692 	/* Bit 14 indicates the Runtime Average Power Limit interface. */
693 	if (c->x86_power & BIT(14))
694 		set_cpu_cap(c, X86_FEATURE_RAPL);
695 
696 #ifdef CONFIG_X86_64
697 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
698 #else
699 	/*  Set MTRR capability flag if appropriate */
700 	if (c->x86 == 5)
701 		if (c->x86_model == 13 || c->x86_model == 9 ||
702 		    (c->x86_model == 8 && c->x86_stepping >= 8))
703 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
704 #endif
705 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
706 	/*
707 	 * ApicID can always be treated as an 8-bit value for AMD APIC versions
708 	 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
709 	 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
710 	 * after 16h.
711 	 */
712 	if (boot_cpu_has(X86_FEATURE_APIC)) {
713 		if (c->x86 > 0x16)
714 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
715 		else if (c->x86 >= 0xf) {
716 			/* check CPU config space for extended APIC ID */
717 			unsigned int val;
718 
719 			val = read_pci_config(0, 24, 0, 0x68);
720 			if ((val >> 17 & 0x3) == 0x3)
721 				set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
722 		}
723 	}
724 #endif
725 
726 	/*
727 	 * This is only needed to tell the kernel whether to use VMCALL
728 	 * and VMMCALL.  VMMCALL is never executed except under virt, so
729 	 * we can set it unconditionally.
730 	 */
731 	set_cpu_cap(c, X86_FEATURE_VMMCALL);
732 
733 	/* F16h erratum 793, CVE-2013-6885 */
734 	if (c->x86 == 0x16 && c->x86_model <= 0xf)
735 		msr_set_bit(MSR_AMD64_LS_CFG, 15);
736 
737 	/*
738 	 * Check whether the machine is affected by erratum 400. This is
739 	 * used to select the proper idle routine and to enable the check
740 	 * whether the machine is affected in arch_post_acpi_init(), which
741 	 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
742 	 */
743 	if (cpu_has_amd_erratum(c, amd_erratum_400))
744 		set_cpu_bug(c, X86_BUG_AMD_E400);
745 
746 	early_detect_mem_encrypt(c);
747 
748 	/* Re-enable TopologyExtensions if switched off by BIOS */
749 	if (c->x86 == 0x15 &&
750 	    (c->x86_model >= 0x10 && c->x86_model <= 0x6f) &&
751 	    !cpu_has(c, X86_FEATURE_TOPOEXT)) {
752 
753 		if (msr_set_bit(0xc0011005, 54) > 0) {
754 			rdmsrl(0xc0011005, value);
755 			if (value & BIT_64(54)) {
756 				set_cpu_cap(c, X86_FEATURE_TOPOEXT);
757 				pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
758 			}
759 		}
760 	}
761 
762 	if (cpu_has(c, X86_FEATURE_TOPOEXT))
763 		smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1;
764 }
765 
766 static void init_amd_k8(struct cpuinfo_x86 *c)
767 {
768 	u32 level;
769 	u64 value;
770 
771 	/* On C+ stepping K8 rep microcode works well for copy/memset */
772 	level = cpuid_eax(1);
773 	if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
774 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
775 
776 	/*
777 	 * Some BIOSes incorrectly force this feature, but only K8 revision D
778 	 * (model = 0x14) and later actually support it.
779 	 * (AMD Erratum #110, docId: 25759).
780 	 */
781 	if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
782 		clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
783 		if (!rdmsrl_amd_safe(0xc001100d, &value)) {
784 			value &= ~BIT_64(32);
785 			wrmsrl_amd_safe(0xc001100d, value);
786 		}
787 	}
788 
789 	if (!c->x86_model_id[0])
790 		strcpy(c->x86_model_id, "Hammer");
791 
792 #ifdef CONFIG_SMP
793 	/*
794 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
795 	 * bit 6 of msr C001_0015
796 	 *
797 	 * Errata 63 for SH-B3 steppings
798 	 * Errata 122 for all steppings (F+ have it disabled by default)
799 	 */
800 	msr_set_bit(MSR_K7_HWCR, 6);
801 #endif
802 	set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
803 }
804 
805 static void init_amd_gh(struct cpuinfo_x86 *c)
806 {
807 #ifdef CONFIG_MMCONF_FAM10H
808 	/* do this for boot cpu */
809 	if (c == &boot_cpu_data)
810 		check_enable_amd_mmconf_dmi();
811 
812 	fam10h_check_enable_mmcfg();
813 #endif
814 
815 	/*
816 	 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
817 	 * is always needed when GART is enabled, even in a kernel which has no
818 	 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
819 	 * If it doesn't, we do it here as suggested by the BKDG.
820 	 *
821 	 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
822 	 */
823 	msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
824 
825 	/*
826 	 * On family 10h BIOS may not have properly enabled WC+ support, causing
827 	 * it to be converted to CD memtype. This may result in performance
828 	 * degradation for certain nested-paging guests. Prevent this conversion
829 	 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
830 	 *
831 	 * NOTE: we want to use the _safe accessors so as not to #GP kvm
832 	 * guests on older kvm hosts.
833 	 */
834 	msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
835 
836 	if (cpu_has_amd_erratum(c, amd_erratum_383))
837 		set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
838 }
839 
840 static void init_amd_ln(struct cpuinfo_x86 *c)
841 {
842 	/*
843 	 * Apply erratum 665 fix unconditionally so machines without a BIOS
844 	 * fix work.
845 	 */
846 	msr_set_bit(MSR_AMD64_DE_CFG, 31);
847 }
848 
849 static bool rdrand_force;
850 
851 static int __init rdrand_cmdline(char *str)
852 {
853 	if (!str)
854 		return -EINVAL;
855 
856 	if (!strcmp(str, "force"))
857 		rdrand_force = true;
858 	else
859 		return -EINVAL;
860 
861 	return 0;
862 }
863 early_param("rdrand", rdrand_cmdline);
864 
865 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
866 {
867 	/*
868 	 * Saving of the MSR used to hide the RDRAND support during
869 	 * suspend/resume is done by arch/x86/power/cpu.c, which is
870 	 * dependent on CONFIG_PM_SLEEP.
871 	 */
872 	if (!IS_ENABLED(CONFIG_PM_SLEEP))
873 		return;
874 
875 	/*
876 	 * The self-test can clear X86_FEATURE_RDRAND, so check for
877 	 * RDRAND support using the CPUID function directly.
878 	 */
879 	if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
880 		return;
881 
882 	msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
883 
884 	/*
885 	 * Verify that the CPUID change has occurred in case the kernel is
886 	 * running virtualized and the hypervisor doesn't support the MSR.
887 	 */
888 	if (cpuid_ecx(1) & BIT(30)) {
889 		pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
890 		return;
891 	}
892 
893 	clear_cpu_cap(c, X86_FEATURE_RDRAND);
894 	pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
895 }
896 
897 static void init_amd_jg(struct cpuinfo_x86 *c)
898 {
899 	/*
900 	 * Some BIOS implementations do not restore proper RDRAND support
901 	 * across suspend and resume. Check on whether to hide the RDRAND
902 	 * instruction support via CPUID.
903 	 */
904 	clear_rdrand_cpuid_bit(c);
905 }
906 
907 static void init_amd_bd(struct cpuinfo_x86 *c)
908 {
909 	u64 value;
910 
911 	/*
912 	 * The way access filter has a performance penalty on some workloads.
913 	 * Disable it on the affected CPUs.
914 	 */
915 	if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
916 		if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
917 			value |= 0x1E;
918 			wrmsrl_safe(MSR_F15H_IC_CFG, value);
919 		}
920 	}
921 
922 	/*
923 	 * Some BIOS implementations do not restore proper RDRAND support
924 	 * across suspend and resume. Check on whether to hide the RDRAND
925 	 * instruction support via CPUID.
926 	 */
927 	clear_rdrand_cpuid_bit(c);
928 }
929 
930 void init_spectral_chicken(struct cpuinfo_x86 *c)
931 {
932 #ifdef CONFIG_CPU_UNRET_ENTRY
933 	u64 value;
934 
935 	/*
936 	 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
937 	 *
938 	 * This suppresses speculation from the middle of a basic block, i.e. it
939 	 * suppresses non-branch predictions.
940 	 *
941 	 * We use STIBP as a heuristic to filter out Zen2 from the rest of F17H
942 	 */
943 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_AMD_STIBP)) {
944 		if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
945 			value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
946 			wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
947 		}
948 	}
949 #endif
950 	/*
951 	 * Work around Erratum 1386.  The XSAVES instruction malfunctions in
952 	 * certain circumstances on Zen1/2 uarch, and not all parts have had
953 	 * updated microcode at the time of writing (March 2023).
954 	 *
955 	 * Affected parts all have no supervisor XSAVE states, meaning that
956 	 * the XSAVEC instruction (which works fine) is equivalent.
957 	 */
958 	clear_cpu_cap(c, X86_FEATURE_XSAVES);
959 }
960 
961 static void init_amd_zn(struct cpuinfo_x86 *c)
962 {
963 	set_cpu_cap(c, X86_FEATURE_ZEN);
964 
965 #ifdef CONFIG_NUMA
966 	node_reclaim_distance = 32;
967 #endif
968 
969 	/* Fix up CPUID bits, but only if not virtualised. */
970 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
971 
972 		/* Erratum 1076: CPB feature bit not being set in CPUID. */
973 		if (!cpu_has(c, X86_FEATURE_CPB))
974 			set_cpu_cap(c, X86_FEATURE_CPB);
975 
976 		/*
977 		 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
978 		 * Branch Type Confusion, but predate the allocation of the
979 		 * BTC_NO bit.
980 		 */
981 		if (c->x86 == 0x19 && !cpu_has(c, X86_FEATURE_BTC_NO))
982 			set_cpu_cap(c, X86_FEATURE_BTC_NO);
983 	}
984 }
985 
986 static bool cpu_has_zenbleed_microcode(void)
987 {
988 	u32 good_rev = 0;
989 
990 	switch (boot_cpu_data.x86_model) {
991 	case 0x30 ... 0x3f: good_rev = 0x0830107a; break;
992 	case 0x60 ... 0x67: good_rev = 0x0860010b; break;
993 	case 0x68 ... 0x6f: good_rev = 0x08608105; break;
994 	case 0x70 ... 0x7f: good_rev = 0x08701032; break;
995 	case 0xa0 ... 0xaf: good_rev = 0x08a00008; break;
996 
997 	default:
998 		return false;
999 		break;
1000 	}
1001 
1002 	if (boot_cpu_data.microcode < good_rev)
1003 		return false;
1004 
1005 	return true;
1006 }
1007 
1008 static void zenbleed_check(struct cpuinfo_x86 *c)
1009 {
1010 	if (!cpu_has_amd_erratum(c, amd_zenbleed))
1011 		return;
1012 
1013 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
1014 		return;
1015 
1016 	if (!cpu_has(c, X86_FEATURE_AVX))
1017 		return;
1018 
1019 	if (!cpu_has_zenbleed_microcode()) {
1020 		pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
1021 		msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
1022 	} else {
1023 		msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
1024 	}
1025 }
1026 
1027 static void init_amd(struct cpuinfo_x86 *c)
1028 {
1029 	early_init_amd(c);
1030 
1031 	/*
1032 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
1033 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
1034 	 */
1035 	clear_cpu_cap(c, 0*32+31);
1036 
1037 	if (c->x86 >= 0x10)
1038 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
1039 
1040 	/* AMD FSRM also implies FSRS */
1041 	if (cpu_has(c, X86_FEATURE_FSRM))
1042 		set_cpu_cap(c, X86_FEATURE_FSRS);
1043 
1044 	/* get apicid instead of initial apic id from cpuid */
1045 	c->apicid = hard_smp_processor_id();
1046 
1047 	/* K6s reports MCEs but don't actually have all the MSRs */
1048 	if (c->x86 < 6)
1049 		clear_cpu_cap(c, X86_FEATURE_MCE);
1050 
1051 	switch (c->x86) {
1052 	case 4:    init_amd_k5(c); break;
1053 	case 5:    init_amd_k6(c); break;
1054 	case 6:	   init_amd_k7(c); break;
1055 	case 0xf:  init_amd_k8(c); break;
1056 	case 0x10: init_amd_gh(c); break;
1057 	case 0x12: init_amd_ln(c); break;
1058 	case 0x15: init_amd_bd(c); break;
1059 	case 0x16: init_amd_jg(c); break;
1060 	case 0x17: init_spectral_chicken(c);
1061 		   fallthrough;
1062 	case 0x19: init_amd_zn(c); break;
1063 	}
1064 
1065 	/*
1066 	 * Enable workaround for FXSAVE leak on CPUs
1067 	 * without a XSaveErPtr feature
1068 	 */
1069 	if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1070 		set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1071 
1072 	cpu_detect_cache_sizes(c);
1073 
1074 	amd_detect_cmp(c);
1075 	amd_get_topology(c);
1076 	srat_detect_node(c);
1077 
1078 	init_amd_cacheinfo(c);
1079 
1080 	if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1081 		/*
1082 		 * Use LFENCE for execution serialization.  On families which
1083 		 * don't have that MSR, LFENCE is already serializing.
1084 		 * msr_set_bit() uses the safe accessors, too, even if the MSR
1085 		 * is not present.
1086 		 */
1087 		msr_set_bit(MSR_AMD64_DE_CFG,
1088 			    MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1089 
1090 		/* A serializing LFENCE stops RDTSC speculation */
1091 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1092 	}
1093 
1094 	/*
1095 	 * Family 0x12 and above processors have APIC timer
1096 	 * running in deep C states.
1097 	 */
1098 	if (c->x86 > 0x11)
1099 		set_cpu_cap(c, X86_FEATURE_ARAT);
1100 
1101 	/* 3DNow or LM implies PREFETCHW */
1102 	if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1103 		if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1104 			set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1105 
1106 	/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1107 	if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1108 		set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1109 
1110 	/*
1111 	 * Turn on the Instructions Retired free counter on machines not
1112 	 * susceptible to erratum #1054 "Instructions Retired Performance
1113 	 * Counter May Be Inaccurate".
1114 	 */
1115 	if (cpu_has(c, X86_FEATURE_IRPERF) &&
1116 	    !cpu_has_amd_erratum(c, amd_erratum_1054))
1117 		msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1118 
1119 	check_null_seg_clears_base(c);
1120 
1121 	/*
1122 	 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1123 	 * using the trampoline code and as part of it, MSR_EFER gets prepared there in
1124 	 * order to be replicated onto them. Regardless, set it here again, if not set,
1125 	 * to protect against any future refactoring/code reorganization which might
1126 	 * miss setting this important bit.
1127 	 */
1128 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1129 	    cpu_has(c, X86_FEATURE_AUTOIBRS))
1130 		WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS));
1131 
1132 	zenbleed_check(c);
1133 }
1134 
1135 #ifdef CONFIG_X86_32
1136 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1137 {
1138 	/* AMD errata T13 (order #21922) */
1139 	if (c->x86 == 6) {
1140 		/* Duron Rev A0 */
1141 		if (c->x86_model == 3 && c->x86_stepping == 0)
1142 			size = 64;
1143 		/* Tbird rev A1/A2 */
1144 		if (c->x86_model == 4 &&
1145 			(c->x86_stepping == 0 || c->x86_stepping == 1))
1146 			size = 256;
1147 	}
1148 	return size;
1149 }
1150 #endif
1151 
1152 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1153 {
1154 	u32 ebx, eax, ecx, edx;
1155 	u16 mask = 0xfff;
1156 
1157 	if (c->x86 < 0xf)
1158 		return;
1159 
1160 	if (c->extended_cpuid_level < 0x80000006)
1161 		return;
1162 
1163 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1164 
1165 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1166 	tlb_lli_4k[ENTRIES] = ebx & mask;
1167 
1168 	/*
1169 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1170 	 * characteristics from the CPUID function 0x80000005 instead.
1171 	 */
1172 	if (c->x86 == 0xf) {
1173 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1174 		mask = 0xff;
1175 	}
1176 
1177 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1178 	if (!((eax >> 16) & mask))
1179 		tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1180 	else
1181 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1182 
1183 	/* a 4M entry uses two 2M entries */
1184 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1185 
1186 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1187 	if (!(eax & mask)) {
1188 		/* Erratum 658 */
1189 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1190 			tlb_lli_2m[ENTRIES] = 1024;
1191 		} else {
1192 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1193 			tlb_lli_2m[ENTRIES] = eax & 0xff;
1194 		}
1195 	} else
1196 		tlb_lli_2m[ENTRIES] = eax & mask;
1197 
1198 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1199 }
1200 
1201 static const struct cpu_dev amd_cpu_dev = {
1202 	.c_vendor	= "AMD",
1203 	.c_ident	= { "AuthenticAMD" },
1204 #ifdef CONFIG_X86_32
1205 	.legacy_models = {
1206 		{ .family = 4, .model_names =
1207 		  {
1208 			  [3] = "486 DX/2",
1209 			  [7] = "486 DX/2-WB",
1210 			  [8] = "486 DX/4",
1211 			  [9] = "486 DX/4-WB",
1212 			  [14] = "Am5x86-WT",
1213 			  [15] = "Am5x86-WB"
1214 		  }
1215 		},
1216 	},
1217 	.legacy_cache_size = amd_size_cache,
1218 #endif
1219 	.c_early_init   = early_init_amd,
1220 	.c_detect_tlb	= cpu_detect_tlb_amd,
1221 	.c_bsp_init	= bsp_init_amd,
1222 	.c_init		= init_amd,
1223 	.c_x86_vendor	= X86_VENDOR_AMD,
1224 };
1225 
1226 cpu_dev_register(amd_cpu_dev);
1227 
1228 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1229 
1230 static unsigned int amd_msr_dr_addr_masks[] = {
1231 	MSR_F16H_DR0_ADDR_MASK,
1232 	MSR_F16H_DR1_ADDR_MASK,
1233 	MSR_F16H_DR1_ADDR_MASK + 1,
1234 	MSR_F16H_DR1_ADDR_MASK + 2
1235 };
1236 
1237 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1238 {
1239 	int cpu = smp_processor_id();
1240 
1241 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1242 		return;
1243 
1244 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1245 		return;
1246 
1247 	if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1248 		return;
1249 
1250 	wrmsr(amd_msr_dr_addr_masks[dr], mask, 0);
1251 	per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1252 }
1253 
1254 unsigned long amd_get_dr_addr_mask(unsigned int dr)
1255 {
1256 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1257 		return 0;
1258 
1259 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1260 		return 0;
1261 
1262 	return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1263 }
1264 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1265 
1266 u32 amd_get_highest_perf(void)
1267 {
1268 	struct cpuinfo_x86 *c = &boot_cpu_data;
1269 
1270 	if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) ||
1271 			       (c->x86_model >= 0x70 && c->x86_model < 0x80)))
1272 		return 166;
1273 
1274 	if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) ||
1275 			       (c->x86_model >= 0x40 && c->x86_model < 0x70)))
1276 		return 166;
1277 
1278 	return 255;
1279 }
1280 EXPORT_SYMBOL_GPL(amd_get_highest_perf);
1281 
1282 static void zenbleed_check_cpu(void *unused)
1283 {
1284 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1285 
1286 	zenbleed_check(c);
1287 }
1288 
1289 void amd_check_microcode(void)
1290 {
1291 	on_each_cpu(zenbleed_check_cpu, NULL, 1);
1292 }
1293