xref: /openbmc/linux/arch/x86/kernel/cpu/amd.c (revision 2e554390)
1 #include <linux/export.h>
2 #include <linux/bitops.h>
3 #include <linux/elf.h>
4 #include <linux/mm.h>
5 
6 #include <linux/io.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/random.h>
10 #include <asm/processor.h>
11 #include <asm/apic.h>
12 #include <asm/cpu.h>
13 #include <asm/smp.h>
14 #include <asm/pci-direct.h>
15 #include <asm/delay.h>
16 
17 #ifdef CONFIG_X86_64
18 # include <asm/mmconfig.h>
19 # include <asm/set_memory.h>
20 #endif
21 
22 #include "cpu.h"
23 
24 static const int amd_erratum_383[];
25 static const int amd_erratum_400[];
26 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum);
27 
28 /*
29  * nodes_per_socket: Stores the number of nodes per socket.
30  * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
31  * Node Identifiers[10:8]
32  */
33 static u32 nodes_per_socket = 1;
34 
35 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
36 {
37 	u32 gprs[8] = { 0 };
38 	int err;
39 
40 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
41 		  "%s should only be used on K8!\n", __func__);
42 
43 	gprs[1] = msr;
44 	gprs[7] = 0x9c5a203a;
45 
46 	err = rdmsr_safe_regs(gprs);
47 
48 	*p = gprs[0] | ((u64)gprs[2] << 32);
49 
50 	return err;
51 }
52 
53 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
54 {
55 	u32 gprs[8] = { 0 };
56 
57 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
58 		  "%s should only be used on K8!\n", __func__);
59 
60 	gprs[0] = (u32)val;
61 	gprs[1] = msr;
62 	gprs[2] = val >> 32;
63 	gprs[7] = 0x9c5a203a;
64 
65 	return wrmsr_safe_regs(gprs);
66 }
67 
68 /*
69  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
70  *	misexecution of code under Linux. Owners of such processors should
71  *	contact AMD for precise details and a CPU swap.
72  *
73  *	See	http://www.multimania.com/poulot/k6bug.html
74  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
75  *		(Publication # 21266  Issue Date: August 1998)
76  *
77  *	The following test is erm.. interesting. AMD neglected to up
78  *	the chip setting when fixing the bug but they also tweaked some
79  *	performance at the same time..
80  */
81 
82 extern __visible void vide(void);
83 __asm__(".globl vide\n"
84 	".type vide, @function\n"
85 	".align 4\n"
86 	"vide: ret\n");
87 
88 static void init_amd_k5(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_32
91 /*
92  * General Systems BIOSen alias the cpu frequency registers
93  * of the Elan at 0x000df000. Unfortunately, one of the Linux
94  * drivers subsequently pokes it, and changes the CPU speed.
95  * Workaround : Remove the unneeded alias.
96  */
97 #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
98 #define CBAR_ENB	(0x80000000)
99 #define CBAR_KEY	(0X000000CB)
100 	if (c->x86_model == 9 || c->x86_model == 10) {
101 		if (inl(CBAR) & CBAR_ENB)
102 			outl(0 | CBAR_KEY, CBAR);
103 	}
104 #endif
105 }
106 
107 static void init_amd_k6(struct cpuinfo_x86 *c)
108 {
109 #ifdef CONFIG_X86_32
110 	u32 l, h;
111 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
112 
113 	if (c->x86_model < 6) {
114 		/* Based on AMD doc 20734R - June 2000 */
115 		if (c->x86_model == 0) {
116 			clear_cpu_cap(c, X86_FEATURE_APIC);
117 			set_cpu_cap(c, X86_FEATURE_PGE);
118 		}
119 		return;
120 	}
121 
122 	if (c->x86_model == 6 && c->x86_stepping == 1) {
123 		const int K6_BUG_LOOP = 1000000;
124 		int n;
125 		void (*f_vide)(void);
126 		u64 d, d2;
127 
128 		pr_info("AMD K6 stepping B detected - ");
129 
130 		/*
131 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
132 		 * calls at the same time.
133 		 */
134 
135 		n = K6_BUG_LOOP;
136 		f_vide = vide;
137 		OPTIMIZER_HIDE_VAR(f_vide);
138 		d = rdtsc();
139 		while (n--)
140 			f_vide();
141 		d2 = rdtsc();
142 		d = d2-d;
143 
144 		if (d > 20*K6_BUG_LOOP)
145 			pr_cont("system stability may be impaired when more than 32 MB are used.\n");
146 		else
147 			pr_cont("probably OK (after B9730xxxx).\n");
148 	}
149 
150 	/* K6 with old style WHCR */
151 	if (c->x86_model < 8 ||
152 	   (c->x86_model == 8 && c->x86_stepping < 8)) {
153 		/* We can only write allocate on the low 508Mb */
154 		if (mbytes > 508)
155 			mbytes = 508;
156 
157 		rdmsr(MSR_K6_WHCR, l, h);
158 		if ((l&0x0000FFFF) == 0) {
159 			unsigned long flags;
160 			l = (1<<0)|((mbytes/4)<<1);
161 			local_irq_save(flags);
162 			wbinvd();
163 			wrmsr(MSR_K6_WHCR, l, h);
164 			local_irq_restore(flags);
165 			pr_info("Enabling old style K6 write allocation for %d Mb\n",
166 				mbytes);
167 		}
168 		return;
169 	}
170 
171 	if ((c->x86_model == 8 && c->x86_stepping > 7) ||
172 	     c->x86_model == 9 || c->x86_model == 13) {
173 		/* The more serious chips .. */
174 
175 		if (mbytes > 4092)
176 			mbytes = 4092;
177 
178 		rdmsr(MSR_K6_WHCR, l, h);
179 		if ((l&0xFFFF0000) == 0) {
180 			unsigned long flags;
181 			l = ((mbytes>>2)<<22)|(1<<16);
182 			local_irq_save(flags);
183 			wbinvd();
184 			wrmsr(MSR_K6_WHCR, l, h);
185 			local_irq_restore(flags);
186 			pr_info("Enabling new style K6 write allocation for %d Mb\n",
187 				mbytes);
188 		}
189 
190 		return;
191 	}
192 
193 	if (c->x86_model == 10) {
194 		/* AMD Geode LX is model 10 */
195 		/* placeholder for any needed mods */
196 		return;
197 	}
198 #endif
199 }
200 
201 static void init_amd_k7(struct cpuinfo_x86 *c)
202 {
203 #ifdef CONFIG_X86_32
204 	u32 l, h;
205 
206 	/*
207 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
208 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
209 	 * If the BIOS didn't enable it already, enable it here.
210 	 */
211 	if (c->x86_model >= 6 && c->x86_model <= 10) {
212 		if (!cpu_has(c, X86_FEATURE_XMM)) {
213 			pr_info("Enabling disabled K7/SSE Support.\n");
214 			msr_clear_bit(MSR_K7_HWCR, 15);
215 			set_cpu_cap(c, X86_FEATURE_XMM);
216 		}
217 	}
218 
219 	/*
220 	 * It's been determined by AMD that Athlons since model 8 stepping 1
221 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
222 	 * As per AMD technical note 27212 0.2
223 	 */
224 	if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
225 		rdmsr(MSR_K7_CLK_CTL, l, h);
226 		if ((l & 0xfff00000) != 0x20000000) {
227 			pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
228 				l, ((l & 0x000fffff)|0x20000000));
229 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
230 		}
231 	}
232 
233 	set_cpu_cap(c, X86_FEATURE_K7);
234 
235 	/* calling is from identify_secondary_cpu() ? */
236 	if (!c->cpu_index)
237 		return;
238 
239 	/*
240 	 * Certain Athlons might work (for various values of 'work') in SMP
241 	 * but they are not certified as MP capable.
242 	 */
243 	/* Athlon 660/661 is valid. */
244 	if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
245 	    (c->x86_stepping == 1)))
246 		return;
247 
248 	/* Duron 670 is valid */
249 	if ((c->x86_model == 7) && (c->x86_stepping == 0))
250 		return;
251 
252 	/*
253 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
254 	 * bit. It's worth noting that the A5 stepping (662) of some
255 	 * Athlon XP's have the MP bit set.
256 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
257 	 * more.
258 	 */
259 	if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
260 	    ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
261 	     (c->x86_model > 7))
262 		if (cpu_has(c, X86_FEATURE_MP))
263 			return;
264 
265 	/* If we get here, not a certified SMP capable AMD system. */
266 
267 	/*
268 	 * Don't taint if we are running SMP kernel on a single non-MP
269 	 * approved Athlon
270 	 */
271 	WARN_ONCE(1, "WARNING: This combination of AMD"
272 		" processors is not suitable for SMP.\n");
273 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
274 #endif
275 }
276 
277 #ifdef CONFIG_NUMA
278 /*
279  * To workaround broken NUMA config.  Read the comment in
280  * srat_detect_node().
281  */
282 static int nearby_node(int apicid)
283 {
284 	int i, node;
285 
286 	for (i = apicid - 1; i >= 0; i--) {
287 		node = __apicid_to_node[i];
288 		if (node != NUMA_NO_NODE && node_online(node))
289 			return node;
290 	}
291 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
292 		node = __apicid_to_node[i];
293 		if (node != NUMA_NO_NODE && node_online(node))
294 			return node;
295 	}
296 	return first_node(node_online_map); /* Shouldn't happen */
297 }
298 #endif
299 
300 #ifdef CONFIG_SMP
301 /*
302  * Fix up cpu_core_id for pre-F17h systems to be in the
303  * [0 .. cores_per_node - 1] range. Not really needed but
304  * kept so as not to break existing setups.
305  */
306 static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
307 {
308 	u32 cus_per_node;
309 
310 	if (c->x86 >= 0x17)
311 		return;
312 
313 	cus_per_node = c->x86_max_cores / nodes_per_socket;
314 	c->cpu_core_id %= cus_per_node;
315 }
316 
317 /*
318  * Fixup core topology information for
319  * (1) AMD multi-node processors
320  *     Assumption: Number of cores in each internal node is the same.
321  * (2) AMD processors supporting compute units
322  */
323 static void amd_get_topology(struct cpuinfo_x86 *c)
324 {
325 	u8 node_id;
326 	int cpu = smp_processor_id();
327 
328 	/* get information required for multi-node processors */
329 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
330 		u32 eax, ebx, ecx, edx;
331 
332 		cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
333 
334 		node_id  = ecx & 0xff;
335 		smp_num_siblings = ((ebx >> 8) & 0xff) + 1;
336 
337 		if (c->x86 == 0x15)
338 			c->cu_id = ebx & 0xff;
339 
340 		if (c->x86 >= 0x17) {
341 			c->cpu_core_id = ebx & 0xff;
342 
343 			if (smp_num_siblings > 1)
344 				c->x86_max_cores /= smp_num_siblings;
345 		}
346 
347 		/*
348 		 * We may have multiple LLCs if L3 caches exist, so check if we
349 		 * have an L3 cache by looking at the L3 cache CPUID leaf.
350 		 */
351 		if (cpuid_edx(0x80000006)) {
352 			if (c->x86 == 0x17) {
353 				/*
354 				 * LLC is at the core complex level.
355 				 * Core complex id is ApicId[3].
356 				 */
357 				per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
358 			} else {
359 				/* LLC is at the node level. */
360 				per_cpu(cpu_llc_id, cpu) = node_id;
361 			}
362 		}
363 	} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
364 		u64 value;
365 
366 		rdmsrl(MSR_FAM10H_NODE_ID, value);
367 		node_id = value & 7;
368 
369 		per_cpu(cpu_llc_id, cpu) = node_id;
370 	} else
371 		return;
372 
373 	if (nodes_per_socket > 1) {
374 		set_cpu_cap(c, X86_FEATURE_AMD_DCM);
375 		legacy_fixup_core_id(c);
376 	}
377 }
378 #endif
379 
380 /*
381  * On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
382  * Assumes number of cores is a power of two.
383  */
384 static void amd_detect_cmp(struct cpuinfo_x86 *c)
385 {
386 #ifdef CONFIG_SMP
387 	unsigned bits;
388 	int cpu = smp_processor_id();
389 
390 	bits = c->x86_coreid_bits;
391 	/* Low order bits define the core id (index of core in socket) */
392 	c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
393 	/* Convert the initial APIC ID into the socket ID */
394 	c->phys_proc_id = c->initial_apicid >> bits;
395 	/* use socket ID also for last level cache */
396 	per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
397 	amd_get_topology(c);
398 #endif
399 }
400 
401 u16 amd_get_nb_id(int cpu)
402 {
403 	u16 id = 0;
404 #ifdef CONFIG_SMP
405 	id = per_cpu(cpu_llc_id, cpu);
406 #endif
407 	return id;
408 }
409 EXPORT_SYMBOL_GPL(amd_get_nb_id);
410 
411 u32 amd_get_nodes_per_socket(void)
412 {
413 	return nodes_per_socket;
414 }
415 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
416 
417 static void srat_detect_node(struct cpuinfo_x86 *c)
418 {
419 #ifdef CONFIG_NUMA
420 	int cpu = smp_processor_id();
421 	int node;
422 	unsigned apicid = c->apicid;
423 
424 	node = numa_cpu_node(cpu);
425 	if (node == NUMA_NO_NODE)
426 		node = per_cpu(cpu_llc_id, cpu);
427 
428 	/*
429 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
430 	 * platform-specific handler needs to be called to fixup some
431 	 * IDs of the CPU.
432 	 */
433 	if (x86_cpuinit.fixup_cpu_id)
434 		x86_cpuinit.fixup_cpu_id(c, node);
435 
436 	if (!node_online(node)) {
437 		/*
438 		 * Two possibilities here:
439 		 *
440 		 * - The CPU is missing memory and no node was created.  In
441 		 *   that case try picking one from a nearby CPU.
442 		 *
443 		 * - The APIC IDs differ from the HyperTransport node IDs
444 		 *   which the K8 northbridge parsing fills in.  Assume
445 		 *   they are all increased by a constant offset, but in
446 		 *   the same order as the HT nodeids.  If that doesn't
447 		 *   result in a usable node fall back to the path for the
448 		 *   previous case.
449 		 *
450 		 * This workaround operates directly on the mapping between
451 		 * APIC ID and NUMA node, assuming certain relationship
452 		 * between APIC ID, HT node ID and NUMA topology.  As going
453 		 * through CPU mapping may alter the outcome, directly
454 		 * access __apicid_to_node[].
455 		 */
456 		int ht_nodeid = c->initial_apicid;
457 
458 		if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
459 			node = __apicid_to_node[ht_nodeid];
460 		/* Pick a nearby node */
461 		if (!node_online(node))
462 			node = nearby_node(apicid);
463 	}
464 	numa_set_node(cpu, node);
465 #endif
466 }
467 
468 static void early_init_amd_mc(struct cpuinfo_x86 *c)
469 {
470 #ifdef CONFIG_SMP
471 	unsigned bits, ecx;
472 
473 	/* Multi core CPU? */
474 	if (c->extended_cpuid_level < 0x80000008)
475 		return;
476 
477 	ecx = cpuid_ecx(0x80000008);
478 
479 	c->x86_max_cores = (ecx & 0xff) + 1;
480 
481 	/* CPU telling us the core id bits shift? */
482 	bits = (ecx >> 12) & 0xF;
483 
484 	/* Otherwise recompute */
485 	if (bits == 0) {
486 		while ((1 << bits) < c->x86_max_cores)
487 			bits++;
488 	}
489 
490 	c->x86_coreid_bits = bits;
491 #endif
492 }
493 
494 static void bsp_init_amd(struct cpuinfo_x86 *c)
495 {
496 
497 #ifdef CONFIG_X86_64
498 	if (c->x86 >= 0xf) {
499 		unsigned long long tseg;
500 
501 		/*
502 		 * Split up direct mapping around the TSEG SMM area.
503 		 * Don't do it for gbpages because there seems very little
504 		 * benefit in doing so.
505 		 */
506 		if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
507 			unsigned long pfn = tseg >> PAGE_SHIFT;
508 
509 			pr_debug("tseg: %010llx\n", tseg);
510 			if (pfn_range_is_mapped(pfn, pfn + 1))
511 				set_memory_4k((unsigned long)__va(tseg), 1);
512 		}
513 	}
514 #endif
515 
516 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
517 
518 		if (c->x86 > 0x10 ||
519 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
520 			u64 val;
521 
522 			rdmsrl(MSR_K7_HWCR, val);
523 			if (!(val & BIT(24)))
524 				pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
525 		}
526 	}
527 
528 	if (c->x86 == 0x15) {
529 		unsigned long upperbit;
530 		u32 cpuid, assoc;
531 
532 		cpuid	 = cpuid_edx(0x80000005);
533 		assoc	 = cpuid >> 16 & 0xff;
534 		upperbit = ((cpuid >> 24) << 10) / assoc;
535 
536 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
537 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
538 
539 		/* A random value per boot for bit slice [12:upper_bit) */
540 		va_align.bits = get_random_int() & va_align.mask;
541 	}
542 
543 	if (cpu_has(c, X86_FEATURE_MWAITX))
544 		use_mwaitx_delay();
545 
546 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
547 		u32 ecx;
548 
549 		ecx = cpuid_ecx(0x8000001e);
550 		nodes_per_socket = ((ecx >> 8) & 7) + 1;
551 	} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
552 		u64 value;
553 
554 		rdmsrl(MSR_FAM10H_NODE_ID, value);
555 		nodes_per_socket = ((value >> 3) & 7) + 1;
556 	}
557 }
558 
559 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
560 {
561 	u64 msr;
562 
563 	/*
564 	 * BIOS support is required for SME and SEV.
565 	 *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by
566 	 *	      the SME physical address space reduction value.
567 	 *	      If BIOS has not enabled SME then don't advertise the
568 	 *	      SME feature (set in scattered.c).
569 	 *   For SEV: If BIOS has not enabled SEV then don't advertise the
570 	 *            SEV feature (set in scattered.c).
571 	 *
572 	 *   In all cases, since support for SME and SEV requires long mode,
573 	 *   don't advertise the feature under CONFIG_X86_32.
574 	 */
575 	if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
576 		/* Check if memory encryption is enabled */
577 		rdmsrl(MSR_K8_SYSCFG, msr);
578 		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
579 			goto clear_all;
580 
581 		/*
582 		 * Always adjust physical address bits. Even though this
583 		 * will be a value above 32-bits this is still done for
584 		 * CONFIG_X86_32 so that accurate values are reported.
585 		 */
586 		c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
587 
588 		if (IS_ENABLED(CONFIG_X86_32))
589 			goto clear_all;
590 
591 		rdmsrl(MSR_K7_HWCR, msr);
592 		if (!(msr & MSR_K7_HWCR_SMMLOCK))
593 			goto clear_sev;
594 
595 		return;
596 
597 clear_all:
598 		clear_cpu_cap(c, X86_FEATURE_SME);
599 clear_sev:
600 		clear_cpu_cap(c, X86_FEATURE_SEV);
601 	}
602 }
603 
604 static void early_init_amd(struct cpuinfo_x86 *c)
605 {
606 	u32 dummy;
607 
608 	early_init_amd_mc(c);
609 
610 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
611 
612 	/*
613 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
614 	 * with P/T states and does not stop in deep C-states
615 	 */
616 	if (c->x86_power & (1 << 8)) {
617 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
618 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
619 	}
620 
621 	/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
622 	if (c->x86_power & BIT(12))
623 		set_cpu_cap(c, X86_FEATURE_ACC_POWER);
624 
625 #ifdef CONFIG_X86_64
626 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
627 #else
628 	/*  Set MTRR capability flag if appropriate */
629 	if (c->x86 == 5)
630 		if (c->x86_model == 13 || c->x86_model == 9 ||
631 		    (c->x86_model == 8 && c->x86_stepping >= 8))
632 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
633 #endif
634 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
635 	/*
636 	 * ApicID can always be treated as an 8-bit value for AMD APIC versions
637 	 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
638 	 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
639 	 * after 16h.
640 	 */
641 	if (boot_cpu_has(X86_FEATURE_APIC)) {
642 		if (c->x86 > 0x16)
643 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
644 		else if (c->x86 >= 0xf) {
645 			/* check CPU config space for extended APIC ID */
646 			unsigned int val;
647 
648 			val = read_pci_config(0, 24, 0, 0x68);
649 			if ((val >> 17 & 0x3) == 0x3)
650 				set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
651 		}
652 	}
653 #endif
654 
655 	/*
656 	 * This is only needed to tell the kernel whether to use VMCALL
657 	 * and VMMCALL.  VMMCALL is never executed except under virt, so
658 	 * we can set it unconditionally.
659 	 */
660 	set_cpu_cap(c, X86_FEATURE_VMMCALL);
661 
662 	/* F16h erratum 793, CVE-2013-6885 */
663 	if (c->x86 == 0x16 && c->x86_model <= 0xf)
664 		msr_set_bit(MSR_AMD64_LS_CFG, 15);
665 
666 	/*
667 	 * Check whether the machine is affected by erratum 400. This is
668 	 * used to select the proper idle routine and to enable the check
669 	 * whether the machine is affected in arch_post_acpi_init(), which
670 	 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
671 	 */
672 	if (cpu_has_amd_erratum(c, amd_erratum_400))
673 		set_cpu_bug(c, X86_BUG_AMD_E400);
674 
675 	early_detect_mem_encrypt(c);
676 }
677 
678 static void init_amd_k8(struct cpuinfo_x86 *c)
679 {
680 	u32 level;
681 	u64 value;
682 
683 	/* On C+ stepping K8 rep microcode works well for copy/memset */
684 	level = cpuid_eax(1);
685 	if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
686 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
687 
688 	/*
689 	 * Some BIOSes incorrectly force this feature, but only K8 revision D
690 	 * (model = 0x14) and later actually support it.
691 	 * (AMD Erratum #110, docId: 25759).
692 	 */
693 	if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
694 		clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
695 		if (!rdmsrl_amd_safe(0xc001100d, &value)) {
696 			value &= ~BIT_64(32);
697 			wrmsrl_amd_safe(0xc001100d, value);
698 		}
699 	}
700 
701 	if (!c->x86_model_id[0])
702 		strcpy(c->x86_model_id, "Hammer");
703 
704 #ifdef CONFIG_SMP
705 	/*
706 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
707 	 * bit 6 of msr C001_0015
708 	 *
709 	 * Errata 63 for SH-B3 steppings
710 	 * Errata 122 for all steppings (F+ have it disabled by default)
711 	 */
712 	msr_set_bit(MSR_K7_HWCR, 6);
713 #endif
714 	set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
715 }
716 
717 static void init_amd_gh(struct cpuinfo_x86 *c)
718 {
719 #ifdef CONFIG_MMCONF_FAM10H
720 	/* do this for boot cpu */
721 	if (c == &boot_cpu_data)
722 		check_enable_amd_mmconf_dmi();
723 
724 	fam10h_check_enable_mmcfg();
725 #endif
726 
727 	/*
728 	 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
729 	 * is always needed when GART is enabled, even in a kernel which has no
730 	 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
731 	 * If it doesn't, we do it here as suggested by the BKDG.
732 	 *
733 	 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
734 	 */
735 	msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
736 
737 	/*
738 	 * On family 10h BIOS may not have properly enabled WC+ support, causing
739 	 * it to be converted to CD memtype. This may result in performance
740 	 * degradation for certain nested-paging guests. Prevent this conversion
741 	 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
742 	 *
743 	 * NOTE: we want to use the _safe accessors so as not to #GP kvm
744 	 * guests on older kvm hosts.
745 	 */
746 	msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
747 
748 	if (cpu_has_amd_erratum(c, amd_erratum_383))
749 		set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
750 }
751 
752 #define MSR_AMD64_DE_CFG	0xC0011029
753 
754 static void init_amd_ln(struct cpuinfo_x86 *c)
755 {
756 	/*
757 	 * Apply erratum 665 fix unconditionally so machines without a BIOS
758 	 * fix work.
759 	 */
760 	msr_set_bit(MSR_AMD64_DE_CFG, 31);
761 }
762 
763 static void init_amd_bd(struct cpuinfo_x86 *c)
764 {
765 	u64 value;
766 
767 	/* re-enable TopologyExtensions if switched off by BIOS */
768 	if ((c->x86_model >= 0x10) && (c->x86_model <= 0x6f) &&
769 	    !cpu_has(c, X86_FEATURE_TOPOEXT)) {
770 
771 		if (msr_set_bit(0xc0011005, 54) > 0) {
772 			rdmsrl(0xc0011005, value);
773 			if (value & BIT_64(54)) {
774 				set_cpu_cap(c, X86_FEATURE_TOPOEXT);
775 				pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
776 			}
777 		}
778 	}
779 
780 	/*
781 	 * The way access filter has a performance penalty on some workloads.
782 	 * Disable it on the affected CPUs.
783 	 */
784 	if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
785 		if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
786 			value |= 0x1E;
787 			wrmsrl_safe(MSR_F15H_IC_CFG, value);
788 		}
789 	}
790 }
791 
792 static void init_amd_zn(struct cpuinfo_x86 *c)
793 {
794 	/*
795 	 * Fix erratum 1076: CPB feature bit not being set in CPUID. It affects
796 	 * all up to and including B1.
797 	 */
798 	if (c->x86_model <= 1 && c->x86_stepping <= 1)
799 		set_cpu_cap(c, X86_FEATURE_CPB);
800 }
801 
802 static void init_amd(struct cpuinfo_x86 *c)
803 {
804 	early_init_amd(c);
805 
806 	/*
807 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
808 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
809 	 */
810 	clear_cpu_cap(c, 0*32+31);
811 
812 	if (c->x86 >= 0x10)
813 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
814 
815 	/* get apicid instead of initial apic id from cpuid */
816 	c->apicid = hard_smp_processor_id();
817 
818 	/* K6s reports MCEs but don't actually have all the MSRs */
819 	if (c->x86 < 6)
820 		clear_cpu_cap(c, X86_FEATURE_MCE);
821 
822 	switch (c->x86) {
823 	case 4:    init_amd_k5(c); break;
824 	case 5:    init_amd_k6(c); break;
825 	case 6:	   init_amd_k7(c); break;
826 	case 0xf:  init_amd_k8(c); break;
827 	case 0x10: init_amd_gh(c); break;
828 	case 0x12: init_amd_ln(c); break;
829 	case 0x15: init_amd_bd(c); break;
830 	case 0x17: init_amd_zn(c); break;
831 	}
832 
833 	/*
834 	 * Enable workaround for FXSAVE leak on CPUs
835 	 * without a XSaveErPtr feature
836 	 */
837 	if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
838 		set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
839 
840 	cpu_detect_cache_sizes(c);
841 
842 	/* Multi core CPU? */
843 	if (c->extended_cpuid_level >= 0x80000008) {
844 		amd_detect_cmp(c);
845 		srat_detect_node(c);
846 	}
847 
848 #ifdef CONFIG_X86_32
849 	detect_ht(c);
850 #endif
851 
852 	init_amd_cacheinfo(c);
853 
854 	if (c->x86 >= 0xf)
855 		set_cpu_cap(c, X86_FEATURE_K8);
856 
857 	if (cpu_has(c, X86_FEATURE_XMM2)) {
858 		unsigned long long val;
859 		int ret;
860 
861 		/*
862 		 * A serializing LFENCE has less overhead than MFENCE, so
863 		 * use it for execution serialization.  On families which
864 		 * don't have that MSR, LFENCE is already serializing.
865 		 * msr_set_bit() uses the safe accessors, too, even if the MSR
866 		 * is not present.
867 		 */
868 		msr_set_bit(MSR_F10H_DECFG,
869 			    MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT);
870 
871 		/*
872 		 * Verify that the MSR write was successful (could be running
873 		 * under a hypervisor) and only then assume that LFENCE is
874 		 * serializing.
875 		 */
876 		ret = rdmsrl_safe(MSR_F10H_DECFG, &val);
877 		if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) {
878 			/* A serializing LFENCE stops RDTSC speculation */
879 			set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
880 		} else {
881 			/* MFENCE stops RDTSC speculation */
882 			set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
883 		}
884 	}
885 
886 	/*
887 	 * Family 0x12 and above processors have APIC timer
888 	 * running in deep C states.
889 	 */
890 	if (c->x86 > 0x11)
891 		set_cpu_cap(c, X86_FEATURE_ARAT);
892 
893 	/* 3DNow or LM implies PREFETCHW */
894 	if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
895 		if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
896 			set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
897 
898 	/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
899 	if (!cpu_has(c, X86_FEATURE_XENPV))
900 		set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
901 }
902 
903 #ifdef CONFIG_X86_32
904 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
905 {
906 	/* AMD errata T13 (order #21922) */
907 	if ((c->x86 == 6)) {
908 		/* Duron Rev A0 */
909 		if (c->x86_model == 3 && c->x86_stepping == 0)
910 			size = 64;
911 		/* Tbird rev A1/A2 */
912 		if (c->x86_model == 4 &&
913 			(c->x86_stepping == 0 || c->x86_stepping == 1))
914 			size = 256;
915 	}
916 	return size;
917 }
918 #endif
919 
920 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
921 {
922 	u32 ebx, eax, ecx, edx;
923 	u16 mask = 0xfff;
924 
925 	if (c->x86 < 0xf)
926 		return;
927 
928 	if (c->extended_cpuid_level < 0x80000006)
929 		return;
930 
931 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
932 
933 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
934 	tlb_lli_4k[ENTRIES] = ebx & mask;
935 
936 	/*
937 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
938 	 * characteristics from the CPUID function 0x80000005 instead.
939 	 */
940 	if (c->x86 == 0xf) {
941 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
942 		mask = 0xff;
943 	}
944 
945 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
946 	if (!((eax >> 16) & mask))
947 		tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
948 	else
949 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
950 
951 	/* a 4M entry uses two 2M entries */
952 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
953 
954 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
955 	if (!(eax & mask)) {
956 		/* Erratum 658 */
957 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
958 			tlb_lli_2m[ENTRIES] = 1024;
959 		} else {
960 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
961 			tlb_lli_2m[ENTRIES] = eax & 0xff;
962 		}
963 	} else
964 		tlb_lli_2m[ENTRIES] = eax & mask;
965 
966 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
967 }
968 
969 static const struct cpu_dev amd_cpu_dev = {
970 	.c_vendor	= "AMD",
971 	.c_ident	= { "AuthenticAMD" },
972 #ifdef CONFIG_X86_32
973 	.legacy_models = {
974 		{ .family = 4, .model_names =
975 		  {
976 			  [3] = "486 DX/2",
977 			  [7] = "486 DX/2-WB",
978 			  [8] = "486 DX/4",
979 			  [9] = "486 DX/4-WB",
980 			  [14] = "Am5x86-WT",
981 			  [15] = "Am5x86-WB"
982 		  }
983 		},
984 	},
985 	.legacy_cache_size = amd_size_cache,
986 #endif
987 	.c_early_init   = early_init_amd,
988 	.c_detect_tlb	= cpu_detect_tlb_amd,
989 	.c_bsp_init	= bsp_init_amd,
990 	.c_init		= init_amd,
991 	.c_x86_vendor	= X86_VENDOR_AMD,
992 };
993 
994 cpu_dev_register(amd_cpu_dev);
995 
996 /*
997  * AMD errata checking
998  *
999  * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
1000  * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
1001  * have an OSVW id assigned, which it takes as first argument. Both take a
1002  * variable number of family-specific model-stepping ranges created by
1003  * AMD_MODEL_RANGE().
1004  *
1005  * Example:
1006  *
1007  * const int amd_erratum_319[] =
1008  *	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
1009  *			   AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
1010  *			   AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
1011  */
1012 
1013 #define AMD_LEGACY_ERRATUM(...)		{ -1, __VA_ARGS__, 0 }
1014 #define AMD_OSVW_ERRATUM(osvw_id, ...)	{ osvw_id, __VA_ARGS__, 0 }
1015 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
1016 	((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
1017 #define AMD_MODEL_RANGE_FAMILY(range)	(((range) >> 24) & 0xff)
1018 #define AMD_MODEL_RANGE_START(range)	(((range) >> 12) & 0xfff)
1019 #define AMD_MODEL_RANGE_END(range)	((range) & 0xfff)
1020 
1021 static const int amd_erratum_400[] =
1022 	AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
1023 			    AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
1024 
1025 static const int amd_erratum_383[] =
1026 	AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
1027 
1028 
1029 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
1030 {
1031 	int osvw_id = *erratum++;
1032 	u32 range;
1033 	u32 ms;
1034 
1035 	if (osvw_id >= 0 && osvw_id < 65536 &&
1036 	    cpu_has(cpu, X86_FEATURE_OSVW)) {
1037 		u64 osvw_len;
1038 
1039 		rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
1040 		if (osvw_id < osvw_len) {
1041 			u64 osvw_bits;
1042 
1043 			rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
1044 			    osvw_bits);
1045 			return osvw_bits & (1ULL << (osvw_id & 0x3f));
1046 		}
1047 	}
1048 
1049 	/* OSVW unavailable or ID unknown, match family-model-stepping range */
1050 	ms = (cpu->x86_model << 4) | cpu->x86_stepping;
1051 	while ((range = *erratum++))
1052 		if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
1053 		    (ms >= AMD_MODEL_RANGE_START(range)) &&
1054 		    (ms <= AMD_MODEL_RANGE_END(range)))
1055 			return true;
1056 
1057 	return false;
1058 }
1059 
1060 void set_dr_addr_mask(unsigned long mask, int dr)
1061 {
1062 	if (!boot_cpu_has(X86_FEATURE_BPEXT))
1063 		return;
1064 
1065 	switch (dr) {
1066 	case 0:
1067 		wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
1068 		break;
1069 	case 1:
1070 	case 2:
1071 	case 3:
1072 		wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
1073 		break;
1074 	default:
1075 		break;
1076 	}
1077 }
1078