1 #include <linux/export.h> 2 #include <linux/bitops.h> 3 #include <linux/elf.h> 4 #include <linux/mm.h> 5 6 #include <linux/io.h> 7 #include <linux/sched.h> 8 #include <linux/sched/clock.h> 9 #include <linux/random.h> 10 #include <asm/processor.h> 11 #include <asm/apic.h> 12 #include <asm/cpu.h> 13 #include <asm/smp.h> 14 #include <asm/pci-direct.h> 15 #include <asm/delay.h> 16 17 #ifdef CONFIG_X86_64 18 # include <asm/mmconfig.h> 19 # include <asm/set_memory.h> 20 #endif 21 22 #include "cpu.h" 23 24 static const int amd_erratum_383[]; 25 static const int amd_erratum_400[]; 26 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum); 27 28 /* 29 * nodes_per_socket: Stores the number of nodes per socket. 30 * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX 31 * Node Identifiers[10:8] 32 */ 33 static u32 nodes_per_socket = 1; 34 35 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) 36 { 37 u32 gprs[8] = { 0 }; 38 int err; 39 40 WARN_ONCE((boot_cpu_data.x86 != 0xf), 41 "%s should only be used on K8!\n", __func__); 42 43 gprs[1] = msr; 44 gprs[7] = 0x9c5a203a; 45 46 err = rdmsr_safe_regs(gprs); 47 48 *p = gprs[0] | ((u64)gprs[2] << 32); 49 50 return err; 51 } 52 53 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) 54 { 55 u32 gprs[8] = { 0 }; 56 57 WARN_ONCE((boot_cpu_data.x86 != 0xf), 58 "%s should only be used on K8!\n", __func__); 59 60 gprs[0] = (u32)val; 61 gprs[1] = msr; 62 gprs[2] = val >> 32; 63 gprs[7] = 0x9c5a203a; 64 65 return wrmsr_safe_regs(gprs); 66 } 67 68 /* 69 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause 70 * misexecution of code under Linux. Owners of such processors should 71 * contact AMD for precise details and a CPU swap. 72 * 73 * See http://www.multimania.com/poulot/k6bug.html 74 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" 75 * (Publication # 21266 Issue Date: August 1998) 76 * 77 * The following test is erm.. interesting. AMD neglected to up 78 * the chip setting when fixing the bug but they also tweaked some 79 * performance at the same time.. 80 */ 81 82 extern __visible void vide(void); 83 __asm__(".globl vide\n" 84 ".type vide, @function\n" 85 ".align 4\n" 86 "vide: ret\n"); 87 88 static void init_amd_k5(struct cpuinfo_x86 *c) 89 { 90 #ifdef CONFIG_X86_32 91 /* 92 * General Systems BIOSen alias the cpu frequency registers 93 * of the Elan at 0x000df000. Unfortunately, one of the Linux 94 * drivers subsequently pokes it, and changes the CPU speed. 95 * Workaround : Remove the unneeded alias. 96 */ 97 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ 98 #define CBAR_ENB (0x80000000) 99 #define CBAR_KEY (0X000000CB) 100 if (c->x86_model == 9 || c->x86_model == 10) { 101 if (inl(CBAR) & CBAR_ENB) 102 outl(0 | CBAR_KEY, CBAR); 103 } 104 #endif 105 } 106 107 static void init_amd_k6(struct cpuinfo_x86 *c) 108 { 109 #ifdef CONFIG_X86_32 110 u32 l, h; 111 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); 112 113 if (c->x86_model < 6) { 114 /* Based on AMD doc 20734R - June 2000 */ 115 if (c->x86_model == 0) { 116 clear_cpu_cap(c, X86_FEATURE_APIC); 117 set_cpu_cap(c, X86_FEATURE_PGE); 118 } 119 return; 120 } 121 122 if (c->x86_model == 6 && c->x86_stepping == 1) { 123 const int K6_BUG_LOOP = 1000000; 124 int n; 125 void (*f_vide)(void); 126 u64 d, d2; 127 128 pr_info("AMD K6 stepping B detected - "); 129 130 /* 131 * It looks like AMD fixed the 2.6.2 bug and improved indirect 132 * calls at the same time. 133 */ 134 135 n = K6_BUG_LOOP; 136 f_vide = vide; 137 OPTIMIZER_HIDE_VAR(f_vide); 138 d = rdtsc(); 139 while (n--) 140 f_vide(); 141 d2 = rdtsc(); 142 d = d2-d; 143 144 if (d > 20*K6_BUG_LOOP) 145 pr_cont("system stability may be impaired when more than 32 MB are used.\n"); 146 else 147 pr_cont("probably OK (after B9730xxxx).\n"); 148 } 149 150 /* K6 with old style WHCR */ 151 if (c->x86_model < 8 || 152 (c->x86_model == 8 && c->x86_stepping < 8)) { 153 /* We can only write allocate on the low 508Mb */ 154 if (mbytes > 508) 155 mbytes = 508; 156 157 rdmsr(MSR_K6_WHCR, l, h); 158 if ((l&0x0000FFFF) == 0) { 159 unsigned long flags; 160 l = (1<<0)|((mbytes/4)<<1); 161 local_irq_save(flags); 162 wbinvd(); 163 wrmsr(MSR_K6_WHCR, l, h); 164 local_irq_restore(flags); 165 pr_info("Enabling old style K6 write allocation for %d Mb\n", 166 mbytes); 167 } 168 return; 169 } 170 171 if ((c->x86_model == 8 && c->x86_stepping > 7) || 172 c->x86_model == 9 || c->x86_model == 13) { 173 /* The more serious chips .. */ 174 175 if (mbytes > 4092) 176 mbytes = 4092; 177 178 rdmsr(MSR_K6_WHCR, l, h); 179 if ((l&0xFFFF0000) == 0) { 180 unsigned long flags; 181 l = ((mbytes>>2)<<22)|(1<<16); 182 local_irq_save(flags); 183 wbinvd(); 184 wrmsr(MSR_K6_WHCR, l, h); 185 local_irq_restore(flags); 186 pr_info("Enabling new style K6 write allocation for %d Mb\n", 187 mbytes); 188 } 189 190 return; 191 } 192 193 if (c->x86_model == 10) { 194 /* AMD Geode LX is model 10 */ 195 /* placeholder for any needed mods */ 196 return; 197 } 198 #endif 199 } 200 201 static void init_amd_k7(struct cpuinfo_x86 *c) 202 { 203 #ifdef CONFIG_X86_32 204 u32 l, h; 205 206 /* 207 * Bit 15 of Athlon specific MSR 15, needs to be 0 208 * to enable SSE on Palomino/Morgan/Barton CPU's. 209 * If the BIOS didn't enable it already, enable it here. 210 */ 211 if (c->x86_model >= 6 && c->x86_model <= 10) { 212 if (!cpu_has(c, X86_FEATURE_XMM)) { 213 pr_info("Enabling disabled K7/SSE Support.\n"); 214 msr_clear_bit(MSR_K7_HWCR, 15); 215 set_cpu_cap(c, X86_FEATURE_XMM); 216 } 217 } 218 219 /* 220 * It's been determined by AMD that Athlons since model 8 stepping 1 221 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx 222 * As per AMD technical note 27212 0.2 223 */ 224 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { 225 rdmsr(MSR_K7_CLK_CTL, l, h); 226 if ((l & 0xfff00000) != 0x20000000) { 227 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", 228 l, ((l & 0x000fffff)|0x20000000)); 229 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); 230 } 231 } 232 233 set_cpu_cap(c, X86_FEATURE_K7); 234 235 /* calling is from identify_secondary_cpu() ? */ 236 if (!c->cpu_index) 237 return; 238 239 /* 240 * Certain Athlons might work (for various values of 'work') in SMP 241 * but they are not certified as MP capable. 242 */ 243 /* Athlon 660/661 is valid. */ 244 if ((c->x86_model == 6) && ((c->x86_stepping == 0) || 245 (c->x86_stepping == 1))) 246 return; 247 248 /* Duron 670 is valid */ 249 if ((c->x86_model == 7) && (c->x86_stepping == 0)) 250 return; 251 252 /* 253 * Athlon 662, Duron 671, and Athlon >model 7 have capability 254 * bit. It's worth noting that the A5 stepping (662) of some 255 * Athlon XP's have the MP bit set. 256 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 257 * more. 258 */ 259 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || 260 ((c->x86_model == 7) && (c->x86_stepping >= 1)) || 261 (c->x86_model > 7)) 262 if (cpu_has(c, X86_FEATURE_MP)) 263 return; 264 265 /* If we get here, not a certified SMP capable AMD system. */ 266 267 /* 268 * Don't taint if we are running SMP kernel on a single non-MP 269 * approved Athlon 270 */ 271 WARN_ONCE(1, "WARNING: This combination of AMD" 272 " processors is not suitable for SMP.\n"); 273 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 274 #endif 275 } 276 277 #ifdef CONFIG_NUMA 278 /* 279 * To workaround broken NUMA config. Read the comment in 280 * srat_detect_node(). 281 */ 282 static int nearby_node(int apicid) 283 { 284 int i, node; 285 286 for (i = apicid - 1; i >= 0; i--) { 287 node = __apicid_to_node[i]; 288 if (node != NUMA_NO_NODE && node_online(node)) 289 return node; 290 } 291 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { 292 node = __apicid_to_node[i]; 293 if (node != NUMA_NO_NODE && node_online(node)) 294 return node; 295 } 296 return first_node(node_online_map); /* Shouldn't happen */ 297 } 298 #endif 299 300 #ifdef CONFIG_SMP 301 /* 302 * Fix up cpu_core_id for pre-F17h systems to be in the 303 * [0 .. cores_per_node - 1] range. Not really needed but 304 * kept so as not to break existing setups. 305 */ 306 static void legacy_fixup_core_id(struct cpuinfo_x86 *c) 307 { 308 u32 cus_per_node; 309 310 if (c->x86 >= 0x17) 311 return; 312 313 cus_per_node = c->x86_max_cores / nodes_per_socket; 314 c->cpu_core_id %= cus_per_node; 315 } 316 317 /* 318 * Fixup core topology information for 319 * (1) AMD multi-node processors 320 * Assumption: Number of cores in each internal node is the same. 321 * (2) AMD processors supporting compute units 322 */ 323 static void amd_get_topology(struct cpuinfo_x86 *c) 324 { 325 u8 node_id; 326 int cpu = smp_processor_id(); 327 328 /* get information required for multi-node processors */ 329 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 330 u32 eax, ebx, ecx, edx; 331 332 cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); 333 334 node_id = ecx & 0xff; 335 smp_num_siblings = ((ebx >> 8) & 0xff) + 1; 336 337 if (c->x86 == 0x15) 338 c->cu_id = ebx & 0xff; 339 340 if (c->x86 >= 0x17) { 341 c->cpu_core_id = ebx & 0xff; 342 343 if (smp_num_siblings > 1) 344 c->x86_max_cores /= smp_num_siblings; 345 } 346 347 /* 348 * We may have multiple LLCs if L3 caches exist, so check if we 349 * have an L3 cache by looking at the L3 cache CPUID leaf. 350 */ 351 if (cpuid_edx(0x80000006)) { 352 if (c->x86 == 0x17) { 353 /* 354 * LLC is at the core complex level. 355 * Core complex id is ApicId[3]. 356 */ 357 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; 358 } else { 359 /* LLC is at the node level. */ 360 per_cpu(cpu_llc_id, cpu) = node_id; 361 } 362 } 363 } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) { 364 u64 value; 365 366 rdmsrl(MSR_FAM10H_NODE_ID, value); 367 node_id = value & 7; 368 369 per_cpu(cpu_llc_id, cpu) = node_id; 370 } else 371 return; 372 373 if (nodes_per_socket > 1) { 374 set_cpu_cap(c, X86_FEATURE_AMD_DCM); 375 legacy_fixup_core_id(c); 376 } 377 } 378 #endif 379 380 /* 381 * On a AMD dual core setup the lower bits of the APIC id distinguish the cores. 382 * Assumes number of cores is a power of two. 383 */ 384 static void amd_detect_cmp(struct cpuinfo_x86 *c) 385 { 386 #ifdef CONFIG_SMP 387 unsigned bits; 388 int cpu = smp_processor_id(); 389 390 bits = c->x86_coreid_bits; 391 /* Low order bits define the core id (index of core in socket) */ 392 c->cpu_core_id = c->initial_apicid & ((1 << bits)-1); 393 /* Convert the initial APIC ID into the socket ID */ 394 c->phys_proc_id = c->initial_apicid >> bits; 395 /* use socket ID also for last level cache */ 396 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; 397 amd_get_topology(c); 398 #endif 399 } 400 401 u16 amd_get_nb_id(int cpu) 402 { 403 u16 id = 0; 404 #ifdef CONFIG_SMP 405 id = per_cpu(cpu_llc_id, cpu); 406 #endif 407 return id; 408 } 409 EXPORT_SYMBOL_GPL(amd_get_nb_id); 410 411 u32 amd_get_nodes_per_socket(void) 412 { 413 return nodes_per_socket; 414 } 415 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket); 416 417 static void srat_detect_node(struct cpuinfo_x86 *c) 418 { 419 #ifdef CONFIG_NUMA 420 int cpu = smp_processor_id(); 421 int node; 422 unsigned apicid = c->apicid; 423 424 node = numa_cpu_node(cpu); 425 if (node == NUMA_NO_NODE) 426 node = per_cpu(cpu_llc_id, cpu); 427 428 /* 429 * On multi-fabric platform (e.g. Numascale NumaChip) a 430 * platform-specific handler needs to be called to fixup some 431 * IDs of the CPU. 432 */ 433 if (x86_cpuinit.fixup_cpu_id) 434 x86_cpuinit.fixup_cpu_id(c, node); 435 436 if (!node_online(node)) { 437 /* 438 * Two possibilities here: 439 * 440 * - The CPU is missing memory and no node was created. In 441 * that case try picking one from a nearby CPU. 442 * 443 * - The APIC IDs differ from the HyperTransport node IDs 444 * which the K8 northbridge parsing fills in. Assume 445 * they are all increased by a constant offset, but in 446 * the same order as the HT nodeids. If that doesn't 447 * result in a usable node fall back to the path for the 448 * previous case. 449 * 450 * This workaround operates directly on the mapping between 451 * APIC ID and NUMA node, assuming certain relationship 452 * between APIC ID, HT node ID and NUMA topology. As going 453 * through CPU mapping may alter the outcome, directly 454 * access __apicid_to_node[]. 455 */ 456 int ht_nodeid = c->initial_apicid; 457 458 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) 459 node = __apicid_to_node[ht_nodeid]; 460 /* Pick a nearby node */ 461 if (!node_online(node)) 462 node = nearby_node(apicid); 463 } 464 numa_set_node(cpu, node); 465 #endif 466 } 467 468 static void early_init_amd_mc(struct cpuinfo_x86 *c) 469 { 470 #ifdef CONFIG_SMP 471 unsigned bits, ecx; 472 473 /* Multi core CPU? */ 474 if (c->extended_cpuid_level < 0x80000008) 475 return; 476 477 ecx = cpuid_ecx(0x80000008); 478 479 c->x86_max_cores = (ecx & 0xff) + 1; 480 481 /* CPU telling us the core id bits shift? */ 482 bits = (ecx >> 12) & 0xF; 483 484 /* Otherwise recompute */ 485 if (bits == 0) { 486 while ((1 << bits) < c->x86_max_cores) 487 bits++; 488 } 489 490 c->x86_coreid_bits = bits; 491 #endif 492 } 493 494 static void bsp_init_amd(struct cpuinfo_x86 *c) 495 { 496 497 #ifdef CONFIG_X86_64 498 if (c->x86 >= 0xf) { 499 unsigned long long tseg; 500 501 /* 502 * Split up direct mapping around the TSEG SMM area. 503 * Don't do it for gbpages because there seems very little 504 * benefit in doing so. 505 */ 506 if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) { 507 unsigned long pfn = tseg >> PAGE_SHIFT; 508 509 pr_debug("tseg: %010llx\n", tseg); 510 if (pfn_range_is_mapped(pfn, pfn + 1)) 511 set_memory_4k((unsigned long)__va(tseg), 1); 512 } 513 } 514 #endif 515 516 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 517 518 if (c->x86 > 0x10 || 519 (c->x86 == 0x10 && c->x86_model >= 0x2)) { 520 u64 val; 521 522 rdmsrl(MSR_K7_HWCR, val); 523 if (!(val & BIT(24))) 524 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); 525 } 526 } 527 528 if (c->x86 == 0x15) { 529 unsigned long upperbit; 530 u32 cpuid, assoc; 531 532 cpuid = cpuid_edx(0x80000005); 533 assoc = cpuid >> 16 & 0xff; 534 upperbit = ((cpuid >> 24) << 10) / assoc; 535 536 va_align.mask = (upperbit - 1) & PAGE_MASK; 537 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; 538 539 /* A random value per boot for bit slice [12:upper_bit) */ 540 va_align.bits = get_random_int() & va_align.mask; 541 } 542 543 if (cpu_has(c, X86_FEATURE_MWAITX)) 544 use_mwaitx_delay(); 545 546 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 547 u32 ecx; 548 549 ecx = cpuid_ecx(0x8000001e); 550 nodes_per_socket = ((ecx >> 8) & 7) + 1; 551 } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) { 552 u64 value; 553 554 rdmsrl(MSR_FAM10H_NODE_ID, value); 555 nodes_per_socket = ((value >> 3) & 7) + 1; 556 } 557 } 558 559 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) 560 { 561 u64 msr; 562 563 /* 564 * BIOS support is required for SME and SEV. 565 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by 566 * the SME physical address space reduction value. 567 * If BIOS has not enabled SME then don't advertise the 568 * SME feature (set in scattered.c). 569 * For SEV: If BIOS has not enabled SEV then don't advertise the 570 * SEV feature (set in scattered.c). 571 * 572 * In all cases, since support for SME and SEV requires long mode, 573 * don't advertise the feature under CONFIG_X86_32. 574 */ 575 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { 576 /* Check if memory encryption is enabled */ 577 rdmsrl(MSR_K8_SYSCFG, msr); 578 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 579 goto clear_all; 580 581 /* 582 * Always adjust physical address bits. Even though this 583 * will be a value above 32-bits this is still done for 584 * CONFIG_X86_32 so that accurate values are reported. 585 */ 586 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; 587 588 if (IS_ENABLED(CONFIG_X86_32)) 589 goto clear_all; 590 591 rdmsrl(MSR_K7_HWCR, msr); 592 if (!(msr & MSR_K7_HWCR_SMMLOCK)) 593 goto clear_sev; 594 595 return; 596 597 clear_all: 598 clear_cpu_cap(c, X86_FEATURE_SME); 599 clear_sev: 600 clear_cpu_cap(c, X86_FEATURE_SEV); 601 } 602 } 603 604 static void early_init_amd(struct cpuinfo_x86 *c) 605 { 606 u32 dummy; 607 608 early_init_amd_mc(c); 609 610 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); 611 612 /* 613 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 614 * with P/T states and does not stop in deep C-states 615 */ 616 if (c->x86_power & (1 << 8)) { 617 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 618 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 619 } 620 621 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ 622 if (c->x86_power & BIT(12)) 623 set_cpu_cap(c, X86_FEATURE_ACC_POWER); 624 625 #ifdef CONFIG_X86_64 626 set_cpu_cap(c, X86_FEATURE_SYSCALL32); 627 #else 628 /* Set MTRR capability flag if appropriate */ 629 if (c->x86 == 5) 630 if (c->x86_model == 13 || c->x86_model == 9 || 631 (c->x86_model == 8 && c->x86_stepping >= 8)) 632 set_cpu_cap(c, X86_FEATURE_K6_MTRR); 633 #endif 634 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) 635 /* 636 * ApicID can always be treated as an 8-bit value for AMD APIC versions 637 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we 638 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families 639 * after 16h. 640 */ 641 if (boot_cpu_has(X86_FEATURE_APIC)) { 642 if (c->x86 > 0x16) 643 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 644 else if (c->x86 >= 0xf) { 645 /* check CPU config space for extended APIC ID */ 646 unsigned int val; 647 648 val = read_pci_config(0, 24, 0, 0x68); 649 if ((val >> 17 & 0x3) == 0x3) 650 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 651 } 652 } 653 #endif 654 655 /* 656 * This is only needed to tell the kernel whether to use VMCALL 657 * and VMMCALL. VMMCALL is never executed except under virt, so 658 * we can set it unconditionally. 659 */ 660 set_cpu_cap(c, X86_FEATURE_VMMCALL); 661 662 /* F16h erratum 793, CVE-2013-6885 */ 663 if (c->x86 == 0x16 && c->x86_model <= 0xf) 664 msr_set_bit(MSR_AMD64_LS_CFG, 15); 665 666 /* 667 * Check whether the machine is affected by erratum 400. This is 668 * used to select the proper idle routine and to enable the check 669 * whether the machine is affected in arch_post_acpi_init(), which 670 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 671 */ 672 if (cpu_has_amd_erratum(c, amd_erratum_400)) 673 set_cpu_bug(c, X86_BUG_AMD_E400); 674 675 early_detect_mem_encrypt(c); 676 } 677 678 static void init_amd_k8(struct cpuinfo_x86 *c) 679 { 680 u32 level; 681 u64 value; 682 683 /* On C+ stepping K8 rep microcode works well for copy/memset */ 684 level = cpuid_eax(1); 685 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) 686 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 687 688 /* 689 * Some BIOSes incorrectly force this feature, but only K8 revision D 690 * (model = 0x14) and later actually support it. 691 * (AMD Erratum #110, docId: 25759). 692 */ 693 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { 694 clear_cpu_cap(c, X86_FEATURE_LAHF_LM); 695 if (!rdmsrl_amd_safe(0xc001100d, &value)) { 696 value &= ~BIT_64(32); 697 wrmsrl_amd_safe(0xc001100d, value); 698 } 699 } 700 701 if (!c->x86_model_id[0]) 702 strcpy(c->x86_model_id, "Hammer"); 703 704 #ifdef CONFIG_SMP 705 /* 706 * Disable TLB flush filter by setting HWCR.FFDIS on K8 707 * bit 6 of msr C001_0015 708 * 709 * Errata 63 for SH-B3 steppings 710 * Errata 122 for all steppings (F+ have it disabled by default) 711 */ 712 msr_set_bit(MSR_K7_HWCR, 6); 713 #endif 714 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); 715 } 716 717 static void init_amd_gh(struct cpuinfo_x86 *c) 718 { 719 #ifdef CONFIG_X86_64 720 /* do this for boot cpu */ 721 if (c == &boot_cpu_data) 722 check_enable_amd_mmconf_dmi(); 723 724 fam10h_check_enable_mmcfg(); 725 #endif 726 727 /* 728 * Disable GART TLB Walk Errors on Fam10h. We do this here because this 729 * is always needed when GART is enabled, even in a kernel which has no 730 * MCE support built in. BIOS should disable GartTlbWlk Errors already. 731 * If it doesn't, we do it here as suggested by the BKDG. 732 * 733 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 734 */ 735 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); 736 737 /* 738 * On family 10h BIOS may not have properly enabled WC+ support, causing 739 * it to be converted to CD memtype. This may result in performance 740 * degradation for certain nested-paging guests. Prevent this conversion 741 * by clearing bit 24 in MSR_AMD64_BU_CFG2. 742 * 743 * NOTE: we want to use the _safe accessors so as not to #GP kvm 744 * guests on older kvm hosts. 745 */ 746 msr_clear_bit(MSR_AMD64_BU_CFG2, 24); 747 748 if (cpu_has_amd_erratum(c, amd_erratum_383)) 749 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); 750 } 751 752 #define MSR_AMD64_DE_CFG 0xC0011029 753 754 static void init_amd_ln(struct cpuinfo_x86 *c) 755 { 756 /* 757 * Apply erratum 665 fix unconditionally so machines without a BIOS 758 * fix work. 759 */ 760 msr_set_bit(MSR_AMD64_DE_CFG, 31); 761 } 762 763 static void init_amd_bd(struct cpuinfo_x86 *c) 764 { 765 u64 value; 766 767 /* re-enable TopologyExtensions if switched off by BIOS */ 768 if ((c->x86_model >= 0x10) && (c->x86_model <= 0x6f) && 769 !cpu_has(c, X86_FEATURE_TOPOEXT)) { 770 771 if (msr_set_bit(0xc0011005, 54) > 0) { 772 rdmsrl(0xc0011005, value); 773 if (value & BIT_64(54)) { 774 set_cpu_cap(c, X86_FEATURE_TOPOEXT); 775 pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); 776 } 777 } 778 } 779 780 /* 781 * The way access filter has a performance penalty on some workloads. 782 * Disable it on the affected CPUs. 783 */ 784 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { 785 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { 786 value |= 0x1E; 787 wrmsrl_safe(MSR_F15H_IC_CFG, value); 788 } 789 } 790 } 791 792 static void init_amd_zn(struct cpuinfo_x86 *c) 793 { 794 /* 795 * Fix erratum 1076: CPB feature bit not being set in CPUID. It affects 796 * all up to and including B1. 797 */ 798 if (c->x86_model <= 1 && c->x86_stepping <= 1) 799 set_cpu_cap(c, X86_FEATURE_CPB); 800 } 801 802 static void init_amd(struct cpuinfo_x86 *c) 803 { 804 early_init_amd(c); 805 806 /* 807 * Bit 31 in normal CPUID used for nonstandard 3DNow ID; 808 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway 809 */ 810 clear_cpu_cap(c, 0*32+31); 811 812 if (c->x86 >= 0x10) 813 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 814 815 /* get apicid instead of initial apic id from cpuid */ 816 c->apicid = hard_smp_processor_id(); 817 818 /* K6s reports MCEs but don't actually have all the MSRs */ 819 if (c->x86 < 6) 820 clear_cpu_cap(c, X86_FEATURE_MCE); 821 822 switch (c->x86) { 823 case 4: init_amd_k5(c); break; 824 case 5: init_amd_k6(c); break; 825 case 6: init_amd_k7(c); break; 826 case 0xf: init_amd_k8(c); break; 827 case 0x10: init_amd_gh(c); break; 828 case 0x12: init_amd_ln(c); break; 829 case 0x15: init_amd_bd(c); break; 830 case 0x17: init_amd_zn(c); break; 831 } 832 833 /* 834 * Enable workaround for FXSAVE leak on CPUs 835 * without a XSaveErPtr feature 836 */ 837 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) 838 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); 839 840 cpu_detect_cache_sizes(c); 841 842 /* Multi core CPU? */ 843 if (c->extended_cpuid_level >= 0x80000008) { 844 amd_detect_cmp(c); 845 srat_detect_node(c); 846 } 847 848 #ifdef CONFIG_X86_32 849 detect_ht(c); 850 #endif 851 852 init_amd_cacheinfo(c); 853 854 if (c->x86 >= 0xf) 855 set_cpu_cap(c, X86_FEATURE_K8); 856 857 if (cpu_has(c, X86_FEATURE_XMM2)) { 858 unsigned long long val; 859 int ret; 860 861 /* 862 * A serializing LFENCE has less overhead than MFENCE, so 863 * use it for execution serialization. On families which 864 * don't have that MSR, LFENCE is already serializing. 865 * msr_set_bit() uses the safe accessors, too, even if the MSR 866 * is not present. 867 */ 868 msr_set_bit(MSR_F10H_DECFG, 869 MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT); 870 871 /* 872 * Verify that the MSR write was successful (could be running 873 * under a hypervisor) and only then assume that LFENCE is 874 * serializing. 875 */ 876 ret = rdmsrl_safe(MSR_F10H_DECFG, &val); 877 if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) { 878 /* A serializing LFENCE stops RDTSC speculation */ 879 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 880 } else { 881 /* MFENCE stops RDTSC speculation */ 882 set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC); 883 } 884 } 885 886 /* 887 * Family 0x12 and above processors have APIC timer 888 * running in deep C states. 889 */ 890 if (c->x86 > 0x11) 891 set_cpu_cap(c, X86_FEATURE_ARAT); 892 893 /* 3DNow or LM implies PREFETCHW */ 894 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) 895 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) 896 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); 897 898 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ 899 if (!cpu_has(c, X86_FEATURE_XENPV)) 900 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 901 } 902 903 #ifdef CONFIG_X86_32 904 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) 905 { 906 /* AMD errata T13 (order #21922) */ 907 if ((c->x86 == 6)) { 908 /* Duron Rev A0 */ 909 if (c->x86_model == 3 && c->x86_stepping == 0) 910 size = 64; 911 /* Tbird rev A1/A2 */ 912 if (c->x86_model == 4 && 913 (c->x86_stepping == 0 || c->x86_stepping == 1)) 914 size = 256; 915 } 916 return size; 917 } 918 #endif 919 920 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) 921 { 922 u32 ebx, eax, ecx, edx; 923 u16 mask = 0xfff; 924 925 if (c->x86 < 0xf) 926 return; 927 928 if (c->extended_cpuid_level < 0x80000006) 929 return; 930 931 cpuid(0x80000006, &eax, &ebx, &ecx, &edx); 932 933 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; 934 tlb_lli_4k[ENTRIES] = ebx & mask; 935 936 /* 937 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB 938 * characteristics from the CPUID function 0x80000005 instead. 939 */ 940 if (c->x86 == 0xf) { 941 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 942 mask = 0xff; 943 } 944 945 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 946 if (!((eax >> 16) & mask)) 947 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; 948 else 949 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; 950 951 /* a 4M entry uses two 2M entries */ 952 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; 953 954 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 955 if (!(eax & mask)) { 956 /* Erratum 658 */ 957 if (c->x86 == 0x15 && c->x86_model <= 0x1f) { 958 tlb_lli_2m[ENTRIES] = 1024; 959 } else { 960 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 961 tlb_lli_2m[ENTRIES] = eax & 0xff; 962 } 963 } else 964 tlb_lli_2m[ENTRIES] = eax & mask; 965 966 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; 967 } 968 969 static const struct cpu_dev amd_cpu_dev = { 970 .c_vendor = "AMD", 971 .c_ident = { "AuthenticAMD" }, 972 #ifdef CONFIG_X86_32 973 .legacy_models = { 974 { .family = 4, .model_names = 975 { 976 [3] = "486 DX/2", 977 [7] = "486 DX/2-WB", 978 [8] = "486 DX/4", 979 [9] = "486 DX/4-WB", 980 [14] = "Am5x86-WT", 981 [15] = "Am5x86-WB" 982 } 983 }, 984 }, 985 .legacy_cache_size = amd_size_cache, 986 #endif 987 .c_early_init = early_init_amd, 988 .c_detect_tlb = cpu_detect_tlb_amd, 989 .c_bsp_init = bsp_init_amd, 990 .c_init = init_amd, 991 .c_x86_vendor = X86_VENDOR_AMD, 992 }; 993 994 cpu_dev_register(amd_cpu_dev); 995 996 /* 997 * AMD errata checking 998 * 999 * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or 1000 * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that 1001 * have an OSVW id assigned, which it takes as first argument. Both take a 1002 * variable number of family-specific model-stepping ranges created by 1003 * AMD_MODEL_RANGE(). 1004 * 1005 * Example: 1006 * 1007 * const int amd_erratum_319[] = 1008 * AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2), 1009 * AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0), 1010 * AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0)); 1011 */ 1012 1013 #define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 } 1014 #define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 } 1015 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \ 1016 ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end)) 1017 #define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff) 1018 #define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff) 1019 #define AMD_MODEL_RANGE_END(range) ((range) & 0xfff) 1020 1021 static const int amd_erratum_400[] = 1022 AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf), 1023 AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf)); 1024 1025 static const int amd_erratum_383[] = 1026 AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf)); 1027 1028 1029 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum) 1030 { 1031 int osvw_id = *erratum++; 1032 u32 range; 1033 u32 ms; 1034 1035 if (osvw_id >= 0 && osvw_id < 65536 && 1036 cpu_has(cpu, X86_FEATURE_OSVW)) { 1037 u64 osvw_len; 1038 1039 rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len); 1040 if (osvw_id < osvw_len) { 1041 u64 osvw_bits; 1042 1043 rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6), 1044 osvw_bits); 1045 return osvw_bits & (1ULL << (osvw_id & 0x3f)); 1046 } 1047 } 1048 1049 /* OSVW unavailable or ID unknown, match family-model-stepping range */ 1050 ms = (cpu->x86_model << 4) | cpu->x86_stepping; 1051 while ((range = *erratum++)) 1052 if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) && 1053 (ms >= AMD_MODEL_RANGE_START(range)) && 1054 (ms <= AMD_MODEL_RANGE_END(range))) 1055 return true; 1056 1057 return false; 1058 } 1059 1060 void set_dr_addr_mask(unsigned long mask, int dr) 1061 { 1062 if (!boot_cpu_has(X86_FEATURE_BPEXT)) 1063 return; 1064 1065 switch (dr) { 1066 case 0: 1067 wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0); 1068 break; 1069 case 1: 1070 case 2: 1071 case 3: 1072 wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0); 1073 break; 1074 default: 1075 break; 1076 } 1077 } 1078