1 /* 2 * Local APIC related interfaces to support IOAPIC, MSI, etc. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * Moved from arch/x86/kernel/apic/io_apic.c. 6 * Jiang Liu <jiang.liu@linux.intel.com> 7 * Enable support of hierarchical irqdomains 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/interrupt.h> 14 #include <linux/seq_file.h> 15 #include <linux/init.h> 16 #include <linux/compiler.h> 17 #include <linux/slab.h> 18 #include <asm/irqdomain.h> 19 #include <asm/hw_irq.h> 20 #include <asm/apic.h> 21 #include <asm/i8259.h> 22 #include <asm/desc.h> 23 #include <asm/irq_remapping.h> 24 25 #include <asm/trace/irq_vectors.h> 26 27 struct apic_chip_data { 28 struct irq_cfg hw_irq_cfg; 29 unsigned int vector; 30 unsigned int prev_vector; 31 unsigned int cpu; 32 unsigned int prev_cpu; 33 unsigned int irq; 34 struct hlist_node clist; 35 unsigned int move_in_progress : 1, 36 is_managed : 1, 37 can_reserve : 1, 38 has_reserved : 1; 39 }; 40 41 struct irq_domain *x86_vector_domain; 42 EXPORT_SYMBOL_GPL(x86_vector_domain); 43 static DEFINE_RAW_SPINLOCK(vector_lock); 44 static cpumask_var_t vector_searchmask; 45 static struct irq_chip lapic_controller; 46 static struct irq_matrix *vector_matrix; 47 #ifdef CONFIG_SMP 48 static DEFINE_PER_CPU(struct hlist_head, cleanup_list); 49 #endif 50 51 void lock_vector_lock(void) 52 { 53 /* Used to the online set of cpus does not change 54 * during assign_irq_vector. 55 */ 56 raw_spin_lock(&vector_lock); 57 } 58 59 void unlock_vector_lock(void) 60 { 61 raw_spin_unlock(&vector_lock); 62 } 63 64 void init_irq_alloc_info(struct irq_alloc_info *info, 65 const struct cpumask *mask) 66 { 67 memset(info, 0, sizeof(*info)); 68 info->mask = mask; 69 } 70 71 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 72 { 73 if (src) 74 *dst = *src; 75 else 76 memset(dst, 0, sizeof(*dst)); 77 } 78 79 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 80 { 81 if (!irqd) 82 return NULL; 83 84 while (irqd->parent_data) 85 irqd = irqd->parent_data; 86 87 return irqd->chip_data; 88 } 89 90 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 91 { 92 struct apic_chip_data *apicd = apic_chip_data(irqd); 93 94 return apicd ? &apicd->hw_irq_cfg : NULL; 95 } 96 EXPORT_SYMBOL_GPL(irqd_cfg); 97 98 struct irq_cfg *irq_cfg(unsigned int irq) 99 { 100 return irqd_cfg(irq_get_irq_data(irq)); 101 } 102 103 static struct apic_chip_data *alloc_apic_chip_data(int node) 104 { 105 struct apic_chip_data *apicd; 106 107 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 108 if (apicd) 109 INIT_HLIST_NODE(&apicd->clist); 110 return apicd; 111 } 112 113 static void free_apic_chip_data(struct apic_chip_data *apicd) 114 { 115 kfree(apicd); 116 } 117 118 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 119 unsigned int cpu) 120 { 121 struct apic_chip_data *apicd = apic_chip_data(irqd); 122 123 lockdep_assert_held(&vector_lock); 124 125 apicd->hw_irq_cfg.vector = vector; 126 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 127 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 128 trace_vector_config(irqd->irq, vector, cpu, 129 apicd->hw_irq_cfg.dest_apicid); 130 } 131 132 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, 133 unsigned int newcpu) 134 { 135 struct apic_chip_data *apicd = apic_chip_data(irqd); 136 struct irq_desc *desc = irq_data_to_desc(irqd); 137 138 lockdep_assert_held(&vector_lock); 139 140 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 141 apicd->cpu); 142 143 /* Setup the vector move, if required */ 144 if (apicd->vector && cpu_online(apicd->cpu)) { 145 apicd->move_in_progress = true; 146 apicd->prev_vector = apicd->vector; 147 apicd->prev_cpu = apicd->cpu; 148 } else { 149 apicd->prev_vector = 0; 150 } 151 152 apicd->vector = newvec; 153 apicd->cpu = newcpu; 154 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 155 per_cpu(vector_irq, newcpu)[newvec] = desc; 156 } 157 158 static void vector_assign_managed_shutdown(struct irq_data *irqd) 159 { 160 unsigned int cpu = cpumask_first(cpu_online_mask); 161 162 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 163 } 164 165 static int reserve_managed_vector(struct irq_data *irqd) 166 { 167 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 168 struct apic_chip_data *apicd = apic_chip_data(irqd); 169 unsigned long flags; 170 int ret; 171 172 raw_spin_lock_irqsave(&vector_lock, flags); 173 apicd->is_managed = true; 174 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 175 raw_spin_unlock_irqrestore(&vector_lock, flags); 176 trace_vector_reserve_managed(irqd->irq, ret); 177 return ret; 178 } 179 180 static void reserve_irq_vector_locked(struct irq_data *irqd) 181 { 182 struct apic_chip_data *apicd = apic_chip_data(irqd); 183 184 irq_matrix_reserve(vector_matrix); 185 apicd->can_reserve = true; 186 apicd->has_reserved = true; 187 irqd_set_can_reserve(irqd); 188 trace_vector_reserve(irqd->irq, 0); 189 vector_assign_managed_shutdown(irqd); 190 } 191 192 static int reserve_irq_vector(struct irq_data *irqd) 193 { 194 unsigned long flags; 195 196 raw_spin_lock_irqsave(&vector_lock, flags); 197 reserve_irq_vector_locked(irqd); 198 raw_spin_unlock_irqrestore(&vector_lock, flags); 199 return 0; 200 } 201 202 static int allocate_vector(struct irq_data *irqd, const struct cpumask *dest) 203 { 204 struct apic_chip_data *apicd = apic_chip_data(irqd); 205 bool resvd = apicd->has_reserved; 206 unsigned int cpu = apicd->cpu; 207 int vector = apicd->vector; 208 209 lockdep_assert_held(&vector_lock); 210 211 /* 212 * If the current target CPU is online and in the new requested 213 * affinity mask, there is no point in moving the interrupt from 214 * one CPU to another. 215 */ 216 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 217 return 0; 218 219 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 220 if (vector > 0) 221 apic_update_vector(irqd, vector, cpu); 222 trace_vector_alloc(irqd->irq, vector, resvd, vector); 223 return vector; 224 } 225 226 static int assign_vector_locked(struct irq_data *irqd, 227 const struct cpumask *dest) 228 { 229 struct apic_chip_data *apicd = apic_chip_data(irqd); 230 int vector = allocate_vector(irqd, dest); 231 232 if (vector < 0) 233 return vector; 234 235 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 236 return 0; 237 } 238 239 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 240 { 241 unsigned long flags; 242 int ret; 243 244 raw_spin_lock_irqsave(&vector_lock, flags); 245 cpumask_and(vector_searchmask, dest, cpu_online_mask); 246 ret = assign_vector_locked(irqd, vector_searchmask); 247 raw_spin_unlock_irqrestore(&vector_lock, flags); 248 return ret; 249 } 250 251 static int assign_irq_vector_any_locked(struct irq_data *irqd) 252 { 253 /* Get the affinity mask - either irq_default_affinity or (user) set */ 254 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 255 int node = irq_data_get_node(irqd); 256 257 if (node == NUMA_NO_NODE) 258 goto all; 259 /* Try the intersection of @affmsk and node mask */ 260 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 261 if (!assign_vector_locked(irqd, vector_searchmask)) 262 return 0; 263 /* Try the node mask */ 264 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 265 return 0; 266 all: 267 /* Try the full affinity mask */ 268 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 269 if (!assign_vector_locked(irqd, vector_searchmask)) 270 return 0; 271 /* Try the full online mask */ 272 return assign_vector_locked(irqd, cpu_online_mask); 273 } 274 275 static int 276 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 277 { 278 if (irqd_affinity_is_managed(irqd)) 279 return reserve_managed_vector(irqd); 280 if (info->mask) 281 return assign_irq_vector(irqd, info->mask); 282 /* 283 * Make only a global reservation with no guarantee. A real vector 284 * is associated at activation time. 285 */ 286 return reserve_irq_vector(irqd); 287 } 288 289 static int 290 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 291 { 292 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 293 struct apic_chip_data *apicd = apic_chip_data(irqd); 294 int vector, cpu; 295 296 cpumask_and(vector_searchmask, vector_searchmask, affmsk); 297 cpu = cpumask_first(vector_searchmask); 298 if (cpu >= nr_cpu_ids) 299 return -EINVAL; 300 /* set_affinity might call here for nothing */ 301 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 302 return 0; 303 vector = irq_matrix_alloc_managed(vector_matrix, cpu); 304 trace_vector_alloc_managed(irqd->irq, vector, vector); 305 if (vector < 0) 306 return vector; 307 apic_update_vector(irqd, vector, cpu); 308 apic_update_irq_cfg(irqd, vector, cpu); 309 return 0; 310 } 311 312 static void clear_irq_vector(struct irq_data *irqd) 313 { 314 struct apic_chip_data *apicd = apic_chip_data(irqd); 315 bool managed = irqd_affinity_is_managed(irqd); 316 unsigned int vector = apicd->vector; 317 318 lockdep_assert_held(&vector_lock); 319 320 if (!vector) 321 return; 322 323 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 324 apicd->prev_cpu); 325 326 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED; 327 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); 328 apicd->vector = 0; 329 330 /* Clean up move in progress */ 331 vector = apicd->prev_vector; 332 if (!vector) 333 return; 334 335 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED; 336 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); 337 apicd->prev_vector = 0; 338 apicd->move_in_progress = 0; 339 hlist_del_init(&apicd->clist); 340 } 341 342 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 343 { 344 struct apic_chip_data *apicd = apic_chip_data(irqd); 345 unsigned long flags; 346 347 trace_vector_deactivate(irqd->irq, apicd->is_managed, 348 apicd->can_reserve, false); 349 350 /* Regular fixed assigned interrupt */ 351 if (!apicd->is_managed && !apicd->can_reserve) 352 return; 353 /* If the interrupt has a global reservation, nothing to do */ 354 if (apicd->has_reserved) 355 return; 356 357 raw_spin_lock_irqsave(&vector_lock, flags); 358 clear_irq_vector(irqd); 359 if (apicd->can_reserve) 360 reserve_irq_vector_locked(irqd); 361 else 362 vector_assign_managed_shutdown(irqd); 363 raw_spin_unlock_irqrestore(&vector_lock, flags); 364 } 365 366 static int activate_reserved(struct irq_data *irqd) 367 { 368 struct apic_chip_data *apicd = apic_chip_data(irqd); 369 int ret; 370 371 ret = assign_irq_vector_any_locked(irqd); 372 if (!ret) { 373 apicd->has_reserved = false; 374 /* 375 * Core might have disabled reservation mode after 376 * allocating the irq descriptor. Ideally this should 377 * happen before allocation time, but that would require 378 * completely convoluted ways of transporting that 379 * information. 380 */ 381 if (!irqd_can_reserve(irqd)) 382 apicd->can_reserve = false; 383 } 384 return ret; 385 } 386 387 static int activate_managed(struct irq_data *irqd) 388 { 389 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 390 int ret; 391 392 cpumask_and(vector_searchmask, dest, cpu_online_mask); 393 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 394 /* Something in the core code broke! Survive gracefully */ 395 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 396 return EINVAL; 397 } 398 399 ret = assign_managed_vector(irqd, vector_searchmask); 400 /* 401 * This should not happen. The vector reservation got buggered. Handle 402 * it gracefully. 403 */ 404 if (WARN_ON_ONCE(ret < 0)) { 405 pr_err("Managed startup irq %u, no vector available\n", 406 irqd->irq); 407 } 408 return ret; 409 } 410 411 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 412 bool reserve) 413 { 414 struct apic_chip_data *apicd = apic_chip_data(irqd); 415 unsigned long flags; 416 int ret = 0; 417 418 trace_vector_activate(irqd->irq, apicd->is_managed, 419 apicd->can_reserve, reserve); 420 421 /* Nothing to do for fixed assigned vectors */ 422 if (!apicd->can_reserve && !apicd->is_managed) 423 return 0; 424 425 raw_spin_lock_irqsave(&vector_lock, flags); 426 if (reserve || irqd_is_managed_and_shutdown(irqd)) 427 vector_assign_managed_shutdown(irqd); 428 else if (apicd->is_managed) 429 ret = activate_managed(irqd); 430 else if (apicd->has_reserved) 431 ret = activate_reserved(irqd); 432 raw_spin_unlock_irqrestore(&vector_lock, flags); 433 return ret; 434 } 435 436 static void vector_free_reserved_and_managed(struct irq_data *irqd) 437 { 438 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 439 struct apic_chip_data *apicd = apic_chip_data(irqd); 440 441 trace_vector_teardown(irqd->irq, apicd->is_managed, 442 apicd->has_reserved); 443 444 if (apicd->has_reserved) 445 irq_matrix_remove_reserved(vector_matrix); 446 if (apicd->is_managed) 447 irq_matrix_remove_managed(vector_matrix, dest); 448 } 449 450 static void x86_vector_free_irqs(struct irq_domain *domain, 451 unsigned int virq, unsigned int nr_irqs) 452 { 453 struct apic_chip_data *apicd; 454 struct irq_data *irqd; 455 unsigned long flags; 456 int i; 457 458 for (i = 0; i < nr_irqs; i++) { 459 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 460 if (irqd && irqd->chip_data) { 461 raw_spin_lock_irqsave(&vector_lock, flags); 462 clear_irq_vector(irqd); 463 vector_free_reserved_and_managed(irqd); 464 apicd = irqd->chip_data; 465 irq_domain_reset_irq_data(irqd); 466 raw_spin_unlock_irqrestore(&vector_lock, flags); 467 free_apic_chip_data(apicd); 468 } 469 } 470 } 471 472 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 473 struct apic_chip_data *apicd) 474 { 475 unsigned long flags; 476 bool realloc = false; 477 478 apicd->vector = ISA_IRQ_VECTOR(virq); 479 apicd->cpu = 0; 480 481 raw_spin_lock_irqsave(&vector_lock, flags); 482 /* 483 * If the interrupt is activated, then it must stay at this vector 484 * position. That's usually the timer interrupt (0). 485 */ 486 if (irqd_is_activated(irqd)) { 487 trace_vector_setup(virq, true, 0); 488 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 489 } else { 490 /* Release the vector */ 491 apicd->can_reserve = true; 492 irqd_set_can_reserve(irqd); 493 clear_irq_vector(irqd); 494 realloc = true; 495 } 496 raw_spin_unlock_irqrestore(&vector_lock, flags); 497 return realloc; 498 } 499 500 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 501 unsigned int nr_irqs, void *arg) 502 { 503 struct irq_alloc_info *info = arg; 504 struct apic_chip_data *apicd; 505 struct irq_data *irqd; 506 int i, err, node; 507 508 if (disable_apic) 509 return -ENXIO; 510 511 /* Currently vector allocator can't guarantee contiguous allocations */ 512 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 513 return -ENOSYS; 514 515 for (i = 0; i < nr_irqs; i++) { 516 irqd = irq_domain_get_irq_data(domain, virq + i); 517 BUG_ON(!irqd); 518 node = irq_data_get_node(irqd); 519 WARN_ON_ONCE(irqd->chip_data); 520 apicd = alloc_apic_chip_data(node); 521 if (!apicd) { 522 err = -ENOMEM; 523 goto error; 524 } 525 526 apicd->irq = virq + i; 527 irqd->chip = &lapic_controller; 528 irqd->chip_data = apicd; 529 irqd->hwirq = virq + i; 530 irqd_set_single_target(irqd); 531 /* 532 * Legacy vectors are already assigned when the IOAPIC 533 * takes them over. They stay on the same vector. This is 534 * required for check_timer() to work correctly as it might 535 * switch back to legacy mode. Only update the hardware 536 * config. 537 */ 538 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 539 if (!vector_configure_legacy(virq + i, irqd, apicd)) 540 continue; 541 } 542 543 err = assign_irq_vector_policy(irqd, info); 544 trace_vector_setup(virq + i, false, err); 545 if (err) 546 goto error; 547 } 548 549 return 0; 550 551 error: 552 x86_vector_free_irqs(domain, virq, i + 1); 553 return err; 554 } 555 556 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 557 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 558 struct irq_data *irqd, int ind) 559 { 560 unsigned int cpu, vector, prev_cpu, prev_vector; 561 struct apic_chip_data *apicd; 562 unsigned long flags; 563 int irq; 564 565 if (!irqd) { 566 irq_matrix_debug_show(m, vector_matrix, ind); 567 return; 568 } 569 570 irq = irqd->irq; 571 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 572 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 573 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 574 return; 575 } 576 577 apicd = irqd->chip_data; 578 if (!apicd) { 579 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 580 return; 581 } 582 583 raw_spin_lock_irqsave(&vector_lock, flags); 584 cpu = apicd->cpu; 585 vector = apicd->vector; 586 prev_cpu = apicd->prev_cpu; 587 prev_vector = apicd->prev_vector; 588 raw_spin_unlock_irqrestore(&vector_lock, flags); 589 seq_printf(m, "%*sVector: %5u\n", ind, "", vector); 590 seq_printf(m, "%*sTarget: %5u\n", ind, "", cpu); 591 if (prev_vector) { 592 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", prev_vector); 593 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", prev_cpu); 594 } 595 } 596 #endif 597 598 static const struct irq_domain_ops x86_vector_domain_ops = { 599 .alloc = x86_vector_alloc_irqs, 600 .free = x86_vector_free_irqs, 601 .activate = x86_vector_activate, 602 .deactivate = x86_vector_deactivate, 603 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 604 .debug_show = x86_vector_debug_show, 605 #endif 606 }; 607 608 int __init arch_probe_nr_irqs(void) 609 { 610 int nr; 611 612 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 613 nr_irqs = NR_VECTORS * nr_cpu_ids; 614 615 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 616 #if defined(CONFIG_PCI_MSI) 617 /* 618 * for MSI and HT dyn irq 619 */ 620 if (gsi_top <= NR_IRQS_LEGACY) 621 nr += 8 * nr_cpu_ids; 622 else 623 nr += gsi_top * 16; 624 #endif 625 if (nr < nr_irqs) 626 nr_irqs = nr; 627 628 /* 629 * We don't know if PIC is present at this point so we need to do 630 * probe() to get the right number of legacy IRQs. 631 */ 632 return legacy_pic->probe(); 633 } 634 635 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 636 { 637 /* 638 * Use assign system here so it wont get accounted as allocated 639 * and moveable in the cpu hotplug check and it prevents managed 640 * irq reservation from touching it. 641 */ 642 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 643 } 644 645 void __init lapic_assign_system_vectors(void) 646 { 647 unsigned int i, vector = 0; 648 649 for_each_set_bit_from(vector, system_vectors, NR_VECTORS) 650 irq_matrix_assign_system(vector_matrix, vector, false); 651 652 if (nr_legacy_irqs() > 1) 653 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 654 655 /* System vectors are reserved, online it */ 656 irq_matrix_online(vector_matrix); 657 658 /* Mark the preallocated legacy interrupts */ 659 for (i = 0; i < nr_legacy_irqs(); i++) { 660 if (i != PIC_CASCADE_IR) 661 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 662 } 663 } 664 665 int __init arch_early_irq_init(void) 666 { 667 struct fwnode_handle *fn; 668 669 fn = irq_domain_alloc_named_fwnode("VECTOR"); 670 BUG_ON(!fn); 671 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 672 NULL); 673 BUG_ON(x86_vector_domain == NULL); 674 irq_domain_free_fwnode(fn); 675 irq_set_default_host(x86_vector_domain); 676 677 arch_init_msi_domain(x86_vector_domain); 678 679 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 680 681 /* 682 * Allocate the vector matrix allocator data structure and limit the 683 * search area. 684 */ 685 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 686 FIRST_SYSTEM_VECTOR); 687 BUG_ON(!vector_matrix); 688 689 return arch_early_ioapic_init(); 690 } 691 692 #ifdef CONFIG_SMP 693 694 static struct irq_desc *__setup_vector_irq(int vector) 695 { 696 int isairq = vector - ISA_IRQ_VECTOR(0); 697 698 /* Check whether the irq is in the legacy space */ 699 if (isairq < 0 || isairq >= nr_legacy_irqs()) 700 return VECTOR_UNUSED; 701 /* Check whether the irq is handled by the IOAPIC */ 702 if (test_bit(isairq, &io_apic_irqs)) 703 return VECTOR_UNUSED; 704 return irq_to_desc(isairq); 705 } 706 707 /* Online the local APIC infrastructure and initialize the vectors */ 708 void lapic_online(void) 709 { 710 unsigned int vector; 711 712 lockdep_assert_held(&vector_lock); 713 714 /* Online the vector matrix array for this CPU */ 715 irq_matrix_online(vector_matrix); 716 717 /* 718 * The interrupt affinity logic never targets interrupts to offline 719 * CPUs. The exception are the legacy PIC interrupts. In general 720 * they are only targeted to CPU0, but depending on the platform 721 * they can be distributed to any online CPU in hardware. The 722 * kernel has no influence on that. So all active legacy vectors 723 * must be installed on all CPUs. All non legacy interrupts can be 724 * cleared. 725 */ 726 for (vector = 0; vector < NR_VECTORS; vector++) 727 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 728 } 729 730 void lapic_offline(void) 731 { 732 lock_vector_lock(); 733 irq_matrix_offline(vector_matrix); 734 unlock_vector_lock(); 735 } 736 737 static int apic_set_affinity(struct irq_data *irqd, 738 const struct cpumask *dest, bool force) 739 { 740 struct apic_chip_data *apicd = apic_chip_data(irqd); 741 int err; 742 743 /* 744 * Core code can call here for inactive interrupts. For inactive 745 * interrupts which use managed or reservation mode there is no 746 * point in going through the vector assignment right now as the 747 * activation will assign a vector which fits the destination 748 * cpumask. Let the core code store the destination mask and be 749 * done with it. 750 */ 751 if (!irqd_is_activated(irqd) && 752 (apicd->is_managed || apicd->can_reserve)) 753 return IRQ_SET_MASK_OK; 754 755 raw_spin_lock(&vector_lock); 756 cpumask_and(vector_searchmask, dest, cpu_online_mask); 757 if (irqd_affinity_is_managed(irqd)) 758 err = assign_managed_vector(irqd, vector_searchmask); 759 else 760 err = assign_vector_locked(irqd, vector_searchmask); 761 raw_spin_unlock(&vector_lock); 762 return err ? err : IRQ_SET_MASK_OK; 763 } 764 765 #else 766 # define apic_set_affinity NULL 767 #endif 768 769 static int apic_retrigger_irq(struct irq_data *irqd) 770 { 771 struct apic_chip_data *apicd = apic_chip_data(irqd); 772 unsigned long flags; 773 774 raw_spin_lock_irqsave(&vector_lock, flags); 775 apic->send_IPI(apicd->cpu, apicd->vector); 776 raw_spin_unlock_irqrestore(&vector_lock, flags); 777 778 return 1; 779 } 780 781 void apic_ack_edge(struct irq_data *irqd) 782 { 783 irq_complete_move(irqd_cfg(irqd)); 784 irq_move_irq(irqd); 785 ack_APIC_irq(); 786 } 787 788 static struct irq_chip lapic_controller = { 789 .name = "APIC", 790 .irq_ack = apic_ack_edge, 791 .irq_set_affinity = apic_set_affinity, 792 .irq_retrigger = apic_retrigger_irq, 793 }; 794 795 #ifdef CONFIG_SMP 796 797 static void free_moved_vector(struct apic_chip_data *apicd) 798 { 799 unsigned int vector = apicd->prev_vector; 800 unsigned int cpu = apicd->prev_cpu; 801 bool managed = apicd->is_managed; 802 803 /* 804 * This should never happen. Managed interrupts are not 805 * migrated except on CPU down, which does not involve the 806 * cleanup vector. But try to keep the accounting correct 807 * nevertheless. 808 */ 809 WARN_ON_ONCE(managed); 810 811 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 812 irq_matrix_free(vector_matrix, cpu, vector, managed); 813 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 814 hlist_del_init(&apicd->clist); 815 apicd->prev_vector = 0; 816 apicd->move_in_progress = 0; 817 } 818 819 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void) 820 { 821 struct hlist_head *clhead = this_cpu_ptr(&cleanup_list); 822 struct apic_chip_data *apicd; 823 struct hlist_node *tmp; 824 825 entering_ack_irq(); 826 /* Prevent vectors vanishing under us */ 827 raw_spin_lock(&vector_lock); 828 829 hlist_for_each_entry_safe(apicd, tmp, clhead, clist) { 830 unsigned int irr, vector = apicd->prev_vector; 831 832 /* 833 * Paranoia: Check if the vector that needs to be cleaned 834 * up is registered at the APICs IRR. If so, then this is 835 * not the best time to clean it up. Clean it up in the 836 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 837 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest 838 * priority external vector, so on return from this 839 * interrupt the device interrupt will happen first. 840 */ 841 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 842 if (irr & (1U << (vector % 32))) { 843 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 844 continue; 845 } 846 free_moved_vector(apicd); 847 } 848 849 raw_spin_unlock(&vector_lock); 850 exiting_irq(); 851 } 852 853 static void __send_cleanup_vector(struct apic_chip_data *apicd) 854 { 855 unsigned int cpu; 856 857 raw_spin_lock(&vector_lock); 858 apicd->move_in_progress = 0; 859 cpu = apicd->prev_cpu; 860 if (cpu_online(cpu)) { 861 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu)); 862 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR); 863 } else { 864 apicd->prev_vector = 0; 865 } 866 raw_spin_unlock(&vector_lock); 867 } 868 869 void send_cleanup_vector(struct irq_cfg *cfg) 870 { 871 struct apic_chip_data *apicd; 872 873 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 874 if (apicd->move_in_progress) 875 __send_cleanup_vector(apicd); 876 } 877 878 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) 879 { 880 struct apic_chip_data *apicd; 881 882 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 883 if (likely(!apicd->move_in_progress)) 884 return; 885 886 if (vector == apicd->vector && apicd->cpu == smp_processor_id()) 887 __send_cleanup_vector(apicd); 888 } 889 890 void irq_complete_move(struct irq_cfg *cfg) 891 { 892 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); 893 } 894 895 /* 896 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 897 */ 898 void irq_force_complete_move(struct irq_desc *desc) 899 { 900 struct apic_chip_data *apicd; 901 struct irq_data *irqd; 902 unsigned int vector; 903 904 /* 905 * The function is called for all descriptors regardless of which 906 * irqdomain they belong to. For example if an IRQ is provided by 907 * an irq_chip as part of a GPIO driver, the chip data for that 908 * descriptor is specific to the irq_chip in question. 909 * 910 * Check first that the chip_data is what we expect 911 * (apic_chip_data) before touching it any further. 912 */ 913 irqd = irq_domain_get_irq_data(x86_vector_domain, 914 irq_desc_get_irq(desc)); 915 if (!irqd) 916 return; 917 918 raw_spin_lock(&vector_lock); 919 apicd = apic_chip_data(irqd); 920 if (!apicd) 921 goto unlock; 922 923 /* 924 * If prev_vector is empty, no action required. 925 */ 926 vector = apicd->prev_vector; 927 if (!vector) 928 goto unlock; 929 930 /* 931 * This is tricky. If the cleanup of the old vector has not been 932 * done yet, then the following setaffinity call will fail with 933 * -EBUSY. This can leave the interrupt in a stale state. 934 * 935 * All CPUs are stuck in stop machine with interrupts disabled so 936 * calling __irq_complete_move() would be completely pointless. 937 * 938 * 1) The interrupt is in move_in_progress state. That means that we 939 * have not seen an interrupt since the io_apic was reprogrammed to 940 * the new vector. 941 * 942 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 943 * have not been processed yet. 944 */ 945 if (apicd->move_in_progress) { 946 /* 947 * In theory there is a race: 948 * 949 * set_ioapic(new_vector) <-- Interrupt is raised before update 950 * is effective, i.e. it's raised on 951 * the old vector. 952 * 953 * So if the target cpu cannot handle that interrupt before 954 * the old vector is cleaned up, we get a spurious interrupt 955 * and in the worst case the ioapic irq line becomes stale. 956 * 957 * But in case of cpu hotplug this should be a non issue 958 * because if the affinity update happens right before all 959 * cpus rendevouz in stop machine, there is no way that the 960 * interrupt can be blocked on the target cpu because all cpus 961 * loops first with interrupts enabled in stop machine, so the 962 * old vector is not yet cleaned up when the interrupt fires. 963 * 964 * So the only way to run into this issue is if the delivery 965 * of the interrupt on the apic/system bus would be delayed 966 * beyond the point where the target cpu disables interrupts 967 * in stop machine. I doubt that it can happen, but at least 968 * there is a theroretical chance. Virtualization might be 969 * able to expose this, but AFAICT the IOAPIC emulation is not 970 * as stupid as the real hardware. 971 * 972 * Anyway, there is nothing we can do about that at this point 973 * w/o refactoring the whole fixup_irq() business completely. 974 * We print at least the irq number and the old vector number, 975 * so we have the necessary information when a problem in that 976 * area arises. 977 */ 978 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 979 irqd->irq, vector); 980 } 981 free_moved_vector(apicd); 982 unlock: 983 raw_spin_unlock(&vector_lock); 984 } 985 986 #ifdef CONFIG_HOTPLUG_CPU 987 /* 988 * Note, this is not accurate accounting, but at least good enough to 989 * prevent that the actual interrupt move will run out of vectors. 990 */ 991 int lapic_can_unplug_cpu(void) 992 { 993 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 994 int ret = 0; 995 996 raw_spin_lock(&vector_lock); 997 tomove = irq_matrix_allocated(vector_matrix); 998 avl = irq_matrix_available(vector_matrix, true); 999 if (avl < tomove) { 1000 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1001 cpu, tomove, avl); 1002 ret = -ENOSPC; 1003 goto out; 1004 } 1005 rsvd = irq_matrix_reserved(vector_matrix); 1006 if (avl < rsvd) { 1007 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1008 rsvd, avl); 1009 } 1010 out: 1011 raw_spin_unlock(&vector_lock); 1012 return ret; 1013 } 1014 #endif /* HOTPLUG_CPU */ 1015 #endif /* SMP */ 1016 1017 static void __init print_APIC_field(int base) 1018 { 1019 int i; 1020 1021 printk(KERN_DEBUG); 1022 1023 for (i = 0; i < 8; i++) 1024 pr_cont("%08x", apic_read(base + i*0x10)); 1025 1026 pr_cont("\n"); 1027 } 1028 1029 static void __init print_local_APIC(void *dummy) 1030 { 1031 unsigned int i, v, ver, maxlvt; 1032 u64 icr; 1033 1034 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1035 smp_processor_id(), hard_smp_processor_id()); 1036 v = apic_read(APIC_ID); 1037 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1038 v = apic_read(APIC_LVR); 1039 pr_info("... APIC VERSION: %08x\n", v); 1040 ver = GET_APIC_VERSION(v); 1041 maxlvt = lapic_get_maxlvt(); 1042 1043 v = apic_read(APIC_TASKPRI); 1044 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1045 1046 /* !82489DX */ 1047 if (APIC_INTEGRATED(ver)) { 1048 if (!APIC_XAPIC(ver)) { 1049 v = apic_read(APIC_ARBPRI); 1050 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1051 v, v & APIC_ARBPRI_MASK); 1052 } 1053 v = apic_read(APIC_PROCPRI); 1054 pr_debug("... APIC PROCPRI: %08x\n", v); 1055 } 1056 1057 /* 1058 * Remote read supported only in the 82489DX and local APIC for 1059 * Pentium processors. 1060 */ 1061 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1062 v = apic_read(APIC_RRR); 1063 pr_debug("... APIC RRR: %08x\n", v); 1064 } 1065 1066 v = apic_read(APIC_LDR); 1067 pr_debug("... APIC LDR: %08x\n", v); 1068 if (!x2apic_enabled()) { 1069 v = apic_read(APIC_DFR); 1070 pr_debug("... APIC DFR: %08x\n", v); 1071 } 1072 v = apic_read(APIC_SPIV); 1073 pr_debug("... APIC SPIV: %08x\n", v); 1074 1075 pr_debug("... APIC ISR field:\n"); 1076 print_APIC_field(APIC_ISR); 1077 pr_debug("... APIC TMR field:\n"); 1078 print_APIC_field(APIC_TMR); 1079 pr_debug("... APIC IRR field:\n"); 1080 print_APIC_field(APIC_IRR); 1081 1082 /* !82489DX */ 1083 if (APIC_INTEGRATED(ver)) { 1084 /* Due to the Pentium erratum 3AP. */ 1085 if (maxlvt > 3) 1086 apic_write(APIC_ESR, 0); 1087 1088 v = apic_read(APIC_ESR); 1089 pr_debug("... APIC ESR: %08x\n", v); 1090 } 1091 1092 icr = apic_icr_read(); 1093 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1094 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1095 1096 v = apic_read(APIC_LVTT); 1097 pr_debug("... APIC LVTT: %08x\n", v); 1098 1099 if (maxlvt > 3) { 1100 /* PC is LVT#4. */ 1101 v = apic_read(APIC_LVTPC); 1102 pr_debug("... APIC LVTPC: %08x\n", v); 1103 } 1104 v = apic_read(APIC_LVT0); 1105 pr_debug("... APIC LVT0: %08x\n", v); 1106 v = apic_read(APIC_LVT1); 1107 pr_debug("... APIC LVT1: %08x\n", v); 1108 1109 if (maxlvt > 2) { 1110 /* ERR is LVT#3. */ 1111 v = apic_read(APIC_LVTERR); 1112 pr_debug("... APIC LVTERR: %08x\n", v); 1113 } 1114 1115 v = apic_read(APIC_TMICT); 1116 pr_debug("... APIC TMICT: %08x\n", v); 1117 v = apic_read(APIC_TMCCT); 1118 pr_debug("... APIC TMCCT: %08x\n", v); 1119 v = apic_read(APIC_TDCR); 1120 pr_debug("... APIC TDCR: %08x\n", v); 1121 1122 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1123 v = apic_read(APIC_EFEAT); 1124 maxlvt = (v >> 16) & 0xff; 1125 pr_debug("... APIC EFEAT: %08x\n", v); 1126 v = apic_read(APIC_ECTRL); 1127 pr_debug("... APIC ECTRL: %08x\n", v); 1128 for (i = 0; i < maxlvt; i++) { 1129 v = apic_read(APIC_EILVTn(i)); 1130 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1131 } 1132 } 1133 pr_cont("\n"); 1134 } 1135 1136 static void __init print_local_APICs(int maxcpu) 1137 { 1138 int cpu; 1139 1140 if (!maxcpu) 1141 return; 1142 1143 preempt_disable(); 1144 for_each_online_cpu(cpu) { 1145 if (cpu >= maxcpu) 1146 break; 1147 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1148 } 1149 preempt_enable(); 1150 } 1151 1152 static void __init print_PIC(void) 1153 { 1154 unsigned int v; 1155 unsigned long flags; 1156 1157 if (!nr_legacy_irqs()) 1158 return; 1159 1160 pr_debug("\nprinting PIC contents\n"); 1161 1162 raw_spin_lock_irqsave(&i8259A_lock, flags); 1163 1164 v = inb(0xa1) << 8 | inb(0x21); 1165 pr_debug("... PIC IMR: %04x\n", v); 1166 1167 v = inb(0xa0) << 8 | inb(0x20); 1168 pr_debug("... PIC IRR: %04x\n", v); 1169 1170 outb(0x0b, 0xa0); 1171 outb(0x0b, 0x20); 1172 v = inb(0xa0) << 8 | inb(0x20); 1173 outb(0x0a, 0xa0); 1174 outb(0x0a, 0x20); 1175 1176 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1177 1178 pr_debug("... PIC ISR: %04x\n", v); 1179 1180 v = inb(0x4d1) << 8 | inb(0x4d0); 1181 pr_debug("... PIC ELCR: %04x\n", v); 1182 } 1183 1184 static int show_lapic __initdata = 1; 1185 static __init int setup_show_lapic(char *arg) 1186 { 1187 int num = -1; 1188 1189 if (strcmp(arg, "all") == 0) { 1190 show_lapic = CONFIG_NR_CPUS; 1191 } else { 1192 get_option(&arg, &num); 1193 if (num >= 0) 1194 show_lapic = num; 1195 } 1196 1197 return 1; 1198 } 1199 __setup("show_lapic=", setup_show_lapic); 1200 1201 static int __init print_ICs(void) 1202 { 1203 if (apic_verbosity == APIC_QUIET) 1204 return 0; 1205 1206 print_PIC(); 1207 1208 /* don't print out if apic is not there */ 1209 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1210 return 0; 1211 1212 print_local_APICs(show_lapic); 1213 print_IO_APICs(); 1214 1215 return 0; 1216 } 1217 1218 late_initcall(print_ICs); 1219