1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC related interfaces to support IOAPIC, MSI, etc. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Enable support of hierarchical irqdomains 9 */ 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/seq_file.h> 13 #include <linux/init.h> 14 #include <linux/compiler.h> 15 #include <linux/slab.h> 16 #include <asm/irqdomain.h> 17 #include <asm/hw_irq.h> 18 #include <asm/traps.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 #include <asm/trace/irq_vectors.h> 25 26 struct apic_chip_data { 27 struct irq_cfg hw_irq_cfg; 28 unsigned int vector; 29 unsigned int prev_vector; 30 unsigned int cpu; 31 unsigned int prev_cpu; 32 unsigned int irq; 33 struct hlist_node clist; 34 unsigned int move_in_progress : 1, 35 is_managed : 1, 36 can_reserve : 1, 37 has_reserved : 1; 38 }; 39 40 struct irq_domain *x86_vector_domain; 41 EXPORT_SYMBOL_GPL(x86_vector_domain); 42 static DEFINE_RAW_SPINLOCK(vector_lock); 43 static cpumask_var_t vector_searchmask; 44 static struct irq_chip lapic_controller; 45 static struct irq_matrix *vector_matrix; 46 #ifdef CONFIG_SMP 47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list); 48 #endif 49 50 void lock_vector_lock(void) 51 { 52 /* Used to the online set of cpus does not change 53 * during assign_irq_vector. 54 */ 55 raw_spin_lock(&vector_lock); 56 } 57 58 void unlock_vector_lock(void) 59 { 60 raw_spin_unlock(&vector_lock); 61 } 62 63 void init_irq_alloc_info(struct irq_alloc_info *info, 64 const struct cpumask *mask) 65 { 66 memset(info, 0, sizeof(*info)); 67 info->mask = mask; 68 } 69 70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 71 { 72 if (src) 73 *dst = *src; 74 else 75 memset(dst, 0, sizeof(*dst)); 76 } 77 78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 79 { 80 if (!irqd) 81 return NULL; 82 83 while (irqd->parent_data) 84 irqd = irqd->parent_data; 85 86 return irqd->chip_data; 87 } 88 89 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 90 { 91 struct apic_chip_data *apicd = apic_chip_data(irqd); 92 93 return apicd ? &apicd->hw_irq_cfg : NULL; 94 } 95 EXPORT_SYMBOL_GPL(irqd_cfg); 96 97 struct irq_cfg *irq_cfg(unsigned int irq) 98 { 99 return irqd_cfg(irq_get_irq_data(irq)); 100 } 101 102 static struct apic_chip_data *alloc_apic_chip_data(int node) 103 { 104 struct apic_chip_data *apicd; 105 106 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 107 if (apicd) 108 INIT_HLIST_NODE(&apicd->clist); 109 return apicd; 110 } 111 112 static void free_apic_chip_data(struct apic_chip_data *apicd) 113 { 114 kfree(apicd); 115 } 116 117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 118 unsigned int cpu) 119 { 120 struct apic_chip_data *apicd = apic_chip_data(irqd); 121 122 lockdep_assert_held(&vector_lock); 123 124 apicd->hw_irq_cfg.vector = vector; 125 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 126 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 127 trace_vector_config(irqd->irq, vector, cpu, 128 apicd->hw_irq_cfg.dest_apicid); 129 } 130 131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, 132 unsigned int newcpu) 133 { 134 struct apic_chip_data *apicd = apic_chip_data(irqd); 135 struct irq_desc *desc = irq_data_to_desc(irqd); 136 bool managed = irqd_affinity_is_managed(irqd); 137 138 lockdep_assert_held(&vector_lock); 139 140 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 141 apicd->cpu); 142 143 /* 144 * If there is no vector associated or if the associated vector is 145 * the shutdown vector, which is associated to make PCI/MSI 146 * shutdown mode work, then there is nothing to release. Clear out 147 * prev_vector for this and the offlined target case. 148 */ 149 apicd->prev_vector = 0; 150 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) 151 goto setnew; 152 /* 153 * If the target CPU of the previous vector is online, then mark 154 * the vector as move in progress and store it for cleanup when the 155 * first interrupt on the new vector arrives. If the target CPU is 156 * offline then the regular release mechanism via the cleanup 157 * vector is not possible and the vector can be immediately freed 158 * in the underlying matrix allocator. 159 */ 160 if (cpu_online(apicd->cpu)) { 161 apicd->move_in_progress = true; 162 apicd->prev_vector = apicd->vector; 163 apicd->prev_cpu = apicd->cpu; 164 } else { 165 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector, 166 managed); 167 } 168 169 setnew: 170 apicd->vector = newvec; 171 apicd->cpu = newcpu; 172 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 173 per_cpu(vector_irq, newcpu)[newvec] = desc; 174 } 175 176 static void vector_assign_managed_shutdown(struct irq_data *irqd) 177 { 178 unsigned int cpu = cpumask_first(cpu_online_mask); 179 180 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 181 } 182 183 static int reserve_managed_vector(struct irq_data *irqd) 184 { 185 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 186 struct apic_chip_data *apicd = apic_chip_data(irqd); 187 unsigned long flags; 188 int ret; 189 190 raw_spin_lock_irqsave(&vector_lock, flags); 191 apicd->is_managed = true; 192 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 193 raw_spin_unlock_irqrestore(&vector_lock, flags); 194 trace_vector_reserve_managed(irqd->irq, ret); 195 return ret; 196 } 197 198 static void reserve_irq_vector_locked(struct irq_data *irqd) 199 { 200 struct apic_chip_data *apicd = apic_chip_data(irqd); 201 202 irq_matrix_reserve(vector_matrix); 203 apicd->can_reserve = true; 204 apicd->has_reserved = true; 205 irqd_set_can_reserve(irqd); 206 trace_vector_reserve(irqd->irq, 0); 207 vector_assign_managed_shutdown(irqd); 208 } 209 210 static int reserve_irq_vector(struct irq_data *irqd) 211 { 212 unsigned long flags; 213 214 raw_spin_lock_irqsave(&vector_lock, flags); 215 reserve_irq_vector_locked(irqd); 216 raw_spin_unlock_irqrestore(&vector_lock, flags); 217 return 0; 218 } 219 220 static int 221 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) 222 { 223 struct apic_chip_data *apicd = apic_chip_data(irqd); 224 bool resvd = apicd->has_reserved; 225 unsigned int cpu = apicd->cpu; 226 int vector = apicd->vector; 227 228 lockdep_assert_held(&vector_lock); 229 230 /* 231 * If the current target CPU is online and in the new requested 232 * affinity mask, there is no point in moving the interrupt from 233 * one CPU to another. 234 */ 235 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 236 return 0; 237 238 /* 239 * Careful here. @apicd might either have move_in_progress set or 240 * be enqueued for cleanup. Assigning a new vector would either 241 * leave a stale vector on some CPU around or in case of a pending 242 * cleanup corrupt the hlist. 243 */ 244 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) 245 return -EBUSY; 246 247 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 248 trace_vector_alloc(irqd->irq, vector, resvd, vector); 249 if (vector < 0) 250 return vector; 251 apic_update_vector(irqd, vector, cpu); 252 apic_update_irq_cfg(irqd, vector, cpu); 253 254 return 0; 255 } 256 257 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 258 { 259 unsigned long flags; 260 int ret; 261 262 raw_spin_lock_irqsave(&vector_lock, flags); 263 cpumask_and(vector_searchmask, dest, cpu_online_mask); 264 ret = assign_vector_locked(irqd, vector_searchmask); 265 raw_spin_unlock_irqrestore(&vector_lock, flags); 266 return ret; 267 } 268 269 static int assign_irq_vector_any_locked(struct irq_data *irqd) 270 { 271 /* Get the affinity mask - either irq_default_affinity or (user) set */ 272 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 273 int node = irq_data_get_node(irqd); 274 275 if (node == NUMA_NO_NODE) 276 goto all; 277 /* Try the intersection of @affmsk and node mask */ 278 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 279 if (!assign_vector_locked(irqd, vector_searchmask)) 280 return 0; 281 /* Try the node mask */ 282 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 283 return 0; 284 all: 285 /* Try the full affinity mask */ 286 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 287 if (!assign_vector_locked(irqd, vector_searchmask)) 288 return 0; 289 /* Try the full online mask */ 290 return assign_vector_locked(irqd, cpu_online_mask); 291 } 292 293 static int 294 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 295 { 296 if (irqd_affinity_is_managed(irqd)) 297 return reserve_managed_vector(irqd); 298 if (info->mask) 299 return assign_irq_vector(irqd, info->mask); 300 /* 301 * Make only a global reservation with no guarantee. A real vector 302 * is associated at activation time. 303 */ 304 return reserve_irq_vector(irqd); 305 } 306 307 static int 308 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 309 { 310 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 311 struct apic_chip_data *apicd = apic_chip_data(irqd); 312 int vector, cpu; 313 314 cpumask_and(vector_searchmask, dest, affmsk); 315 316 /* set_affinity might call here for nothing */ 317 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 318 return 0; 319 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, 320 &cpu); 321 trace_vector_alloc_managed(irqd->irq, vector, vector); 322 if (vector < 0) 323 return vector; 324 apic_update_vector(irqd, vector, cpu); 325 apic_update_irq_cfg(irqd, vector, cpu); 326 return 0; 327 } 328 329 static void clear_irq_vector(struct irq_data *irqd) 330 { 331 struct apic_chip_data *apicd = apic_chip_data(irqd); 332 bool managed = irqd_affinity_is_managed(irqd); 333 unsigned int vector = apicd->vector; 334 335 lockdep_assert_held(&vector_lock); 336 337 if (!vector) 338 return; 339 340 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 341 apicd->prev_cpu); 342 343 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN; 344 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); 345 apicd->vector = 0; 346 347 /* Clean up move in progress */ 348 vector = apicd->prev_vector; 349 if (!vector) 350 return; 351 352 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN; 353 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); 354 apicd->prev_vector = 0; 355 apicd->move_in_progress = 0; 356 hlist_del_init(&apicd->clist); 357 } 358 359 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 360 { 361 struct apic_chip_data *apicd = apic_chip_data(irqd); 362 unsigned long flags; 363 364 trace_vector_deactivate(irqd->irq, apicd->is_managed, 365 apicd->can_reserve, false); 366 367 /* Regular fixed assigned interrupt */ 368 if (!apicd->is_managed && !apicd->can_reserve) 369 return; 370 /* If the interrupt has a global reservation, nothing to do */ 371 if (apicd->has_reserved) 372 return; 373 374 raw_spin_lock_irqsave(&vector_lock, flags); 375 clear_irq_vector(irqd); 376 if (apicd->can_reserve) 377 reserve_irq_vector_locked(irqd); 378 else 379 vector_assign_managed_shutdown(irqd); 380 raw_spin_unlock_irqrestore(&vector_lock, flags); 381 } 382 383 static int activate_reserved(struct irq_data *irqd) 384 { 385 struct apic_chip_data *apicd = apic_chip_data(irqd); 386 int ret; 387 388 ret = assign_irq_vector_any_locked(irqd); 389 if (!ret) { 390 apicd->has_reserved = false; 391 /* 392 * Core might have disabled reservation mode after 393 * allocating the irq descriptor. Ideally this should 394 * happen before allocation time, but that would require 395 * completely convoluted ways of transporting that 396 * information. 397 */ 398 if (!irqd_can_reserve(irqd)) 399 apicd->can_reserve = false; 400 } 401 return ret; 402 } 403 404 static int activate_managed(struct irq_data *irqd) 405 { 406 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 407 int ret; 408 409 cpumask_and(vector_searchmask, dest, cpu_online_mask); 410 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 411 /* Something in the core code broke! Survive gracefully */ 412 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 413 return -EINVAL; 414 } 415 416 ret = assign_managed_vector(irqd, vector_searchmask); 417 /* 418 * This should not happen. The vector reservation got buggered. Handle 419 * it gracefully. 420 */ 421 if (WARN_ON_ONCE(ret < 0)) { 422 pr_err("Managed startup irq %u, no vector available\n", 423 irqd->irq); 424 } 425 return ret; 426 } 427 428 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 429 bool reserve) 430 { 431 struct apic_chip_data *apicd = apic_chip_data(irqd); 432 unsigned long flags; 433 int ret = 0; 434 435 trace_vector_activate(irqd->irq, apicd->is_managed, 436 apicd->can_reserve, reserve); 437 438 /* Nothing to do for fixed assigned vectors */ 439 if (!apicd->can_reserve && !apicd->is_managed) 440 return 0; 441 442 raw_spin_lock_irqsave(&vector_lock, flags); 443 if (reserve || irqd_is_managed_and_shutdown(irqd)) 444 vector_assign_managed_shutdown(irqd); 445 else if (apicd->is_managed) 446 ret = activate_managed(irqd); 447 else if (apicd->has_reserved) 448 ret = activate_reserved(irqd); 449 raw_spin_unlock_irqrestore(&vector_lock, flags); 450 return ret; 451 } 452 453 static void vector_free_reserved_and_managed(struct irq_data *irqd) 454 { 455 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 456 struct apic_chip_data *apicd = apic_chip_data(irqd); 457 458 trace_vector_teardown(irqd->irq, apicd->is_managed, 459 apicd->has_reserved); 460 461 if (apicd->has_reserved) 462 irq_matrix_remove_reserved(vector_matrix); 463 if (apicd->is_managed) 464 irq_matrix_remove_managed(vector_matrix, dest); 465 } 466 467 static void x86_vector_free_irqs(struct irq_domain *domain, 468 unsigned int virq, unsigned int nr_irqs) 469 { 470 struct apic_chip_data *apicd; 471 struct irq_data *irqd; 472 unsigned long flags; 473 int i; 474 475 for (i = 0; i < nr_irqs; i++) { 476 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 477 if (irqd && irqd->chip_data) { 478 raw_spin_lock_irqsave(&vector_lock, flags); 479 clear_irq_vector(irqd); 480 vector_free_reserved_and_managed(irqd); 481 apicd = irqd->chip_data; 482 irq_domain_reset_irq_data(irqd); 483 raw_spin_unlock_irqrestore(&vector_lock, flags); 484 free_apic_chip_data(apicd); 485 } 486 } 487 } 488 489 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 490 struct apic_chip_data *apicd) 491 { 492 unsigned long flags; 493 bool realloc = false; 494 495 apicd->vector = ISA_IRQ_VECTOR(virq); 496 apicd->cpu = 0; 497 498 raw_spin_lock_irqsave(&vector_lock, flags); 499 /* 500 * If the interrupt is activated, then it must stay at this vector 501 * position. That's usually the timer interrupt (0). 502 */ 503 if (irqd_is_activated(irqd)) { 504 trace_vector_setup(virq, true, 0); 505 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 506 } else { 507 /* Release the vector */ 508 apicd->can_reserve = true; 509 irqd_set_can_reserve(irqd); 510 clear_irq_vector(irqd); 511 realloc = true; 512 } 513 raw_spin_unlock_irqrestore(&vector_lock, flags); 514 return realloc; 515 } 516 517 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 518 unsigned int nr_irqs, void *arg) 519 { 520 struct irq_alloc_info *info = arg; 521 struct apic_chip_data *apicd; 522 struct irq_data *irqd; 523 int i, err, node; 524 525 if (disable_apic) 526 return -ENXIO; 527 528 /* Currently vector allocator can't guarantee contiguous allocations */ 529 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 530 return -ENOSYS; 531 532 for (i = 0; i < nr_irqs; i++) { 533 irqd = irq_domain_get_irq_data(domain, virq + i); 534 BUG_ON(!irqd); 535 node = irq_data_get_node(irqd); 536 WARN_ON_ONCE(irqd->chip_data); 537 apicd = alloc_apic_chip_data(node); 538 if (!apicd) { 539 err = -ENOMEM; 540 goto error; 541 } 542 543 apicd->irq = virq + i; 544 irqd->chip = &lapic_controller; 545 irqd->chip_data = apicd; 546 irqd->hwirq = virq + i; 547 irqd_set_single_target(irqd); 548 /* 549 * Legacy vectors are already assigned when the IOAPIC 550 * takes them over. They stay on the same vector. This is 551 * required for check_timer() to work correctly as it might 552 * switch back to legacy mode. Only update the hardware 553 * config. 554 */ 555 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 556 if (!vector_configure_legacy(virq + i, irqd, apicd)) 557 continue; 558 } 559 560 err = assign_irq_vector_policy(irqd, info); 561 trace_vector_setup(virq + i, false, err); 562 if (err) { 563 irqd->chip_data = NULL; 564 free_apic_chip_data(apicd); 565 goto error; 566 } 567 } 568 569 return 0; 570 571 error: 572 x86_vector_free_irqs(domain, virq, i); 573 return err; 574 } 575 576 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 577 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 578 struct irq_data *irqd, int ind) 579 { 580 struct apic_chip_data apicd; 581 unsigned long flags; 582 int irq; 583 584 if (!irqd) { 585 irq_matrix_debug_show(m, vector_matrix, ind); 586 return; 587 } 588 589 irq = irqd->irq; 590 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 591 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 592 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 593 return; 594 } 595 596 if (!irqd->chip_data) { 597 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 598 return; 599 } 600 601 raw_spin_lock_irqsave(&vector_lock, flags); 602 memcpy(&apicd, irqd->chip_data, sizeof(apicd)); 603 raw_spin_unlock_irqrestore(&vector_lock, flags); 604 605 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); 606 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); 607 if (apicd.prev_vector) { 608 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); 609 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); 610 } 611 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); 612 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); 613 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); 614 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); 615 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); 616 } 617 #endif 618 619 static const struct irq_domain_ops x86_vector_domain_ops = { 620 .alloc = x86_vector_alloc_irqs, 621 .free = x86_vector_free_irqs, 622 .activate = x86_vector_activate, 623 .deactivate = x86_vector_deactivate, 624 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 625 .debug_show = x86_vector_debug_show, 626 #endif 627 }; 628 629 int __init arch_probe_nr_irqs(void) 630 { 631 int nr; 632 633 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 634 nr_irqs = NR_VECTORS * nr_cpu_ids; 635 636 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 637 #if defined(CONFIG_PCI_MSI) 638 /* 639 * for MSI and HT dyn irq 640 */ 641 if (gsi_top <= NR_IRQS_LEGACY) 642 nr += 8 * nr_cpu_ids; 643 else 644 nr += gsi_top * 16; 645 #endif 646 if (nr < nr_irqs) 647 nr_irqs = nr; 648 649 /* 650 * We don't know if PIC is present at this point so we need to do 651 * probe() to get the right number of legacy IRQs. 652 */ 653 return legacy_pic->probe(); 654 } 655 656 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 657 { 658 /* 659 * Use assign system here so it wont get accounted as allocated 660 * and moveable in the cpu hotplug check and it prevents managed 661 * irq reservation from touching it. 662 */ 663 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 664 } 665 666 void __init lapic_assign_system_vectors(void) 667 { 668 unsigned int i, vector = 0; 669 670 for_each_set_bit_from(vector, system_vectors, NR_VECTORS) 671 irq_matrix_assign_system(vector_matrix, vector, false); 672 673 if (nr_legacy_irqs() > 1) 674 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 675 676 /* System vectors are reserved, online it */ 677 irq_matrix_online(vector_matrix); 678 679 /* Mark the preallocated legacy interrupts */ 680 for (i = 0; i < nr_legacy_irqs(); i++) { 681 if (i != PIC_CASCADE_IR) 682 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 683 } 684 } 685 686 int __init arch_early_irq_init(void) 687 { 688 struct fwnode_handle *fn; 689 690 fn = irq_domain_alloc_named_fwnode("VECTOR"); 691 BUG_ON(!fn); 692 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 693 NULL); 694 BUG_ON(x86_vector_domain == NULL); 695 irq_domain_free_fwnode(fn); 696 irq_set_default_host(x86_vector_domain); 697 698 arch_init_msi_domain(x86_vector_domain); 699 700 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 701 702 /* 703 * Allocate the vector matrix allocator data structure and limit the 704 * search area. 705 */ 706 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 707 FIRST_SYSTEM_VECTOR); 708 BUG_ON(!vector_matrix); 709 710 return arch_early_ioapic_init(); 711 } 712 713 #ifdef CONFIG_SMP 714 715 static struct irq_desc *__setup_vector_irq(int vector) 716 { 717 int isairq = vector - ISA_IRQ_VECTOR(0); 718 719 /* Check whether the irq is in the legacy space */ 720 if (isairq < 0 || isairq >= nr_legacy_irqs()) 721 return VECTOR_UNUSED; 722 /* Check whether the irq is handled by the IOAPIC */ 723 if (test_bit(isairq, &io_apic_irqs)) 724 return VECTOR_UNUSED; 725 return irq_to_desc(isairq); 726 } 727 728 /* Online the local APIC infrastructure and initialize the vectors */ 729 void lapic_online(void) 730 { 731 unsigned int vector; 732 733 lockdep_assert_held(&vector_lock); 734 735 /* Online the vector matrix array for this CPU */ 736 irq_matrix_online(vector_matrix); 737 738 /* 739 * The interrupt affinity logic never targets interrupts to offline 740 * CPUs. The exception are the legacy PIC interrupts. In general 741 * they are only targeted to CPU0, but depending on the platform 742 * they can be distributed to any online CPU in hardware. The 743 * kernel has no influence on that. So all active legacy vectors 744 * must be installed on all CPUs. All non legacy interrupts can be 745 * cleared. 746 */ 747 for (vector = 0; vector < NR_VECTORS; vector++) 748 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 749 } 750 751 void lapic_offline(void) 752 { 753 lock_vector_lock(); 754 irq_matrix_offline(vector_matrix); 755 unlock_vector_lock(); 756 } 757 758 static int apic_set_affinity(struct irq_data *irqd, 759 const struct cpumask *dest, bool force) 760 { 761 struct apic_chip_data *apicd = apic_chip_data(irqd); 762 int err; 763 764 /* 765 * Core code can call here for inactive interrupts. For inactive 766 * interrupts which use managed or reservation mode there is no 767 * point in going through the vector assignment right now as the 768 * activation will assign a vector which fits the destination 769 * cpumask. Let the core code store the destination mask and be 770 * done with it. 771 */ 772 if (!irqd_is_activated(irqd) && 773 (apicd->is_managed || apicd->can_reserve)) 774 return IRQ_SET_MASK_OK; 775 776 raw_spin_lock(&vector_lock); 777 cpumask_and(vector_searchmask, dest, cpu_online_mask); 778 if (irqd_affinity_is_managed(irqd)) 779 err = assign_managed_vector(irqd, vector_searchmask); 780 else 781 err = assign_vector_locked(irqd, vector_searchmask); 782 raw_spin_unlock(&vector_lock); 783 return err ? err : IRQ_SET_MASK_OK; 784 } 785 786 #else 787 # define apic_set_affinity NULL 788 #endif 789 790 static int apic_retrigger_irq(struct irq_data *irqd) 791 { 792 struct apic_chip_data *apicd = apic_chip_data(irqd); 793 unsigned long flags; 794 795 raw_spin_lock_irqsave(&vector_lock, flags); 796 apic->send_IPI(apicd->cpu, apicd->vector); 797 raw_spin_unlock_irqrestore(&vector_lock, flags); 798 799 return 1; 800 } 801 802 void apic_ack_irq(struct irq_data *irqd) 803 { 804 irq_move_irq(irqd); 805 ack_APIC_irq(); 806 } 807 808 void apic_ack_edge(struct irq_data *irqd) 809 { 810 irq_complete_move(irqd_cfg(irqd)); 811 apic_ack_irq(irqd); 812 } 813 814 static struct irq_chip lapic_controller = { 815 .name = "APIC", 816 .irq_ack = apic_ack_edge, 817 .irq_set_affinity = apic_set_affinity, 818 .irq_retrigger = apic_retrigger_irq, 819 }; 820 821 #ifdef CONFIG_SMP 822 823 static void free_moved_vector(struct apic_chip_data *apicd) 824 { 825 unsigned int vector = apicd->prev_vector; 826 unsigned int cpu = apicd->prev_cpu; 827 bool managed = apicd->is_managed; 828 829 /* 830 * This should never happen. Managed interrupts are not 831 * migrated except on CPU down, which does not involve the 832 * cleanup vector. But try to keep the accounting correct 833 * nevertheless. 834 */ 835 WARN_ON_ONCE(managed); 836 837 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 838 irq_matrix_free(vector_matrix, cpu, vector, managed); 839 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 840 hlist_del_init(&apicd->clist); 841 apicd->prev_vector = 0; 842 apicd->move_in_progress = 0; 843 } 844 845 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void) 846 { 847 struct hlist_head *clhead = this_cpu_ptr(&cleanup_list); 848 struct apic_chip_data *apicd; 849 struct hlist_node *tmp; 850 851 entering_ack_irq(); 852 /* Prevent vectors vanishing under us */ 853 raw_spin_lock(&vector_lock); 854 855 hlist_for_each_entry_safe(apicd, tmp, clhead, clist) { 856 unsigned int irr, vector = apicd->prev_vector; 857 858 /* 859 * Paranoia: Check if the vector that needs to be cleaned 860 * up is registered at the APICs IRR. If so, then this is 861 * not the best time to clean it up. Clean it up in the 862 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 863 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest 864 * priority external vector, so on return from this 865 * interrupt the device interrupt will happen first. 866 */ 867 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 868 if (irr & (1U << (vector % 32))) { 869 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 870 continue; 871 } 872 free_moved_vector(apicd); 873 } 874 875 raw_spin_unlock(&vector_lock); 876 exiting_irq(); 877 } 878 879 static void __send_cleanup_vector(struct apic_chip_data *apicd) 880 { 881 unsigned int cpu; 882 883 raw_spin_lock(&vector_lock); 884 apicd->move_in_progress = 0; 885 cpu = apicd->prev_cpu; 886 if (cpu_online(cpu)) { 887 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu)); 888 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR); 889 } else { 890 apicd->prev_vector = 0; 891 } 892 raw_spin_unlock(&vector_lock); 893 } 894 895 void send_cleanup_vector(struct irq_cfg *cfg) 896 { 897 struct apic_chip_data *apicd; 898 899 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 900 if (apicd->move_in_progress) 901 __send_cleanup_vector(apicd); 902 } 903 904 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) 905 { 906 struct apic_chip_data *apicd; 907 908 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 909 if (likely(!apicd->move_in_progress)) 910 return; 911 912 if (vector == apicd->vector && apicd->cpu == smp_processor_id()) 913 __send_cleanup_vector(apicd); 914 } 915 916 void irq_complete_move(struct irq_cfg *cfg) 917 { 918 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); 919 } 920 921 /* 922 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 923 */ 924 void irq_force_complete_move(struct irq_desc *desc) 925 { 926 struct apic_chip_data *apicd; 927 struct irq_data *irqd; 928 unsigned int vector; 929 930 /* 931 * The function is called for all descriptors regardless of which 932 * irqdomain they belong to. For example if an IRQ is provided by 933 * an irq_chip as part of a GPIO driver, the chip data for that 934 * descriptor is specific to the irq_chip in question. 935 * 936 * Check first that the chip_data is what we expect 937 * (apic_chip_data) before touching it any further. 938 */ 939 irqd = irq_domain_get_irq_data(x86_vector_domain, 940 irq_desc_get_irq(desc)); 941 if (!irqd) 942 return; 943 944 raw_spin_lock(&vector_lock); 945 apicd = apic_chip_data(irqd); 946 if (!apicd) 947 goto unlock; 948 949 /* 950 * If prev_vector is empty, no action required. 951 */ 952 vector = apicd->prev_vector; 953 if (!vector) 954 goto unlock; 955 956 /* 957 * This is tricky. If the cleanup of the old vector has not been 958 * done yet, then the following setaffinity call will fail with 959 * -EBUSY. This can leave the interrupt in a stale state. 960 * 961 * All CPUs are stuck in stop machine with interrupts disabled so 962 * calling __irq_complete_move() would be completely pointless. 963 * 964 * 1) The interrupt is in move_in_progress state. That means that we 965 * have not seen an interrupt since the io_apic was reprogrammed to 966 * the new vector. 967 * 968 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 969 * have not been processed yet. 970 */ 971 if (apicd->move_in_progress) { 972 /* 973 * In theory there is a race: 974 * 975 * set_ioapic(new_vector) <-- Interrupt is raised before update 976 * is effective, i.e. it's raised on 977 * the old vector. 978 * 979 * So if the target cpu cannot handle that interrupt before 980 * the old vector is cleaned up, we get a spurious interrupt 981 * and in the worst case the ioapic irq line becomes stale. 982 * 983 * But in case of cpu hotplug this should be a non issue 984 * because if the affinity update happens right before all 985 * cpus rendevouz in stop machine, there is no way that the 986 * interrupt can be blocked on the target cpu because all cpus 987 * loops first with interrupts enabled in stop machine, so the 988 * old vector is not yet cleaned up when the interrupt fires. 989 * 990 * So the only way to run into this issue is if the delivery 991 * of the interrupt on the apic/system bus would be delayed 992 * beyond the point where the target cpu disables interrupts 993 * in stop machine. I doubt that it can happen, but at least 994 * there is a theroretical chance. Virtualization might be 995 * able to expose this, but AFAICT the IOAPIC emulation is not 996 * as stupid as the real hardware. 997 * 998 * Anyway, there is nothing we can do about that at this point 999 * w/o refactoring the whole fixup_irq() business completely. 1000 * We print at least the irq number and the old vector number, 1001 * so we have the necessary information when a problem in that 1002 * area arises. 1003 */ 1004 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 1005 irqd->irq, vector); 1006 } 1007 free_moved_vector(apicd); 1008 unlock: 1009 raw_spin_unlock(&vector_lock); 1010 } 1011 1012 #ifdef CONFIG_HOTPLUG_CPU 1013 /* 1014 * Note, this is not accurate accounting, but at least good enough to 1015 * prevent that the actual interrupt move will run out of vectors. 1016 */ 1017 int lapic_can_unplug_cpu(void) 1018 { 1019 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 1020 int ret = 0; 1021 1022 raw_spin_lock(&vector_lock); 1023 tomove = irq_matrix_allocated(vector_matrix); 1024 avl = irq_matrix_available(vector_matrix, true); 1025 if (avl < tomove) { 1026 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1027 cpu, tomove, avl); 1028 ret = -ENOSPC; 1029 goto out; 1030 } 1031 rsvd = irq_matrix_reserved(vector_matrix); 1032 if (avl < rsvd) { 1033 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1034 rsvd, avl); 1035 } 1036 out: 1037 raw_spin_unlock(&vector_lock); 1038 return ret; 1039 } 1040 #endif /* HOTPLUG_CPU */ 1041 #endif /* SMP */ 1042 1043 static void __init print_APIC_field(int base) 1044 { 1045 int i; 1046 1047 printk(KERN_DEBUG); 1048 1049 for (i = 0; i < 8; i++) 1050 pr_cont("%08x", apic_read(base + i*0x10)); 1051 1052 pr_cont("\n"); 1053 } 1054 1055 static void __init print_local_APIC(void *dummy) 1056 { 1057 unsigned int i, v, ver, maxlvt; 1058 u64 icr; 1059 1060 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1061 smp_processor_id(), hard_smp_processor_id()); 1062 v = apic_read(APIC_ID); 1063 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1064 v = apic_read(APIC_LVR); 1065 pr_info("... APIC VERSION: %08x\n", v); 1066 ver = GET_APIC_VERSION(v); 1067 maxlvt = lapic_get_maxlvt(); 1068 1069 v = apic_read(APIC_TASKPRI); 1070 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1071 1072 /* !82489DX */ 1073 if (APIC_INTEGRATED(ver)) { 1074 if (!APIC_XAPIC(ver)) { 1075 v = apic_read(APIC_ARBPRI); 1076 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1077 v, v & APIC_ARBPRI_MASK); 1078 } 1079 v = apic_read(APIC_PROCPRI); 1080 pr_debug("... APIC PROCPRI: %08x\n", v); 1081 } 1082 1083 /* 1084 * Remote read supported only in the 82489DX and local APIC for 1085 * Pentium processors. 1086 */ 1087 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1088 v = apic_read(APIC_RRR); 1089 pr_debug("... APIC RRR: %08x\n", v); 1090 } 1091 1092 v = apic_read(APIC_LDR); 1093 pr_debug("... APIC LDR: %08x\n", v); 1094 if (!x2apic_enabled()) { 1095 v = apic_read(APIC_DFR); 1096 pr_debug("... APIC DFR: %08x\n", v); 1097 } 1098 v = apic_read(APIC_SPIV); 1099 pr_debug("... APIC SPIV: %08x\n", v); 1100 1101 pr_debug("... APIC ISR field:\n"); 1102 print_APIC_field(APIC_ISR); 1103 pr_debug("... APIC TMR field:\n"); 1104 print_APIC_field(APIC_TMR); 1105 pr_debug("... APIC IRR field:\n"); 1106 print_APIC_field(APIC_IRR); 1107 1108 /* !82489DX */ 1109 if (APIC_INTEGRATED(ver)) { 1110 /* Due to the Pentium erratum 3AP. */ 1111 if (maxlvt > 3) 1112 apic_write(APIC_ESR, 0); 1113 1114 v = apic_read(APIC_ESR); 1115 pr_debug("... APIC ESR: %08x\n", v); 1116 } 1117 1118 icr = apic_icr_read(); 1119 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1120 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1121 1122 v = apic_read(APIC_LVTT); 1123 pr_debug("... APIC LVTT: %08x\n", v); 1124 1125 if (maxlvt > 3) { 1126 /* PC is LVT#4. */ 1127 v = apic_read(APIC_LVTPC); 1128 pr_debug("... APIC LVTPC: %08x\n", v); 1129 } 1130 v = apic_read(APIC_LVT0); 1131 pr_debug("... APIC LVT0: %08x\n", v); 1132 v = apic_read(APIC_LVT1); 1133 pr_debug("... APIC LVT1: %08x\n", v); 1134 1135 if (maxlvt > 2) { 1136 /* ERR is LVT#3. */ 1137 v = apic_read(APIC_LVTERR); 1138 pr_debug("... APIC LVTERR: %08x\n", v); 1139 } 1140 1141 v = apic_read(APIC_TMICT); 1142 pr_debug("... APIC TMICT: %08x\n", v); 1143 v = apic_read(APIC_TMCCT); 1144 pr_debug("... APIC TMCCT: %08x\n", v); 1145 v = apic_read(APIC_TDCR); 1146 pr_debug("... APIC TDCR: %08x\n", v); 1147 1148 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1149 v = apic_read(APIC_EFEAT); 1150 maxlvt = (v >> 16) & 0xff; 1151 pr_debug("... APIC EFEAT: %08x\n", v); 1152 v = apic_read(APIC_ECTRL); 1153 pr_debug("... APIC ECTRL: %08x\n", v); 1154 for (i = 0; i < maxlvt; i++) { 1155 v = apic_read(APIC_EILVTn(i)); 1156 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1157 } 1158 } 1159 pr_cont("\n"); 1160 } 1161 1162 static void __init print_local_APICs(int maxcpu) 1163 { 1164 int cpu; 1165 1166 if (!maxcpu) 1167 return; 1168 1169 preempt_disable(); 1170 for_each_online_cpu(cpu) { 1171 if (cpu >= maxcpu) 1172 break; 1173 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1174 } 1175 preempt_enable(); 1176 } 1177 1178 static void __init print_PIC(void) 1179 { 1180 unsigned int v; 1181 unsigned long flags; 1182 1183 if (!nr_legacy_irqs()) 1184 return; 1185 1186 pr_debug("\nprinting PIC contents\n"); 1187 1188 raw_spin_lock_irqsave(&i8259A_lock, flags); 1189 1190 v = inb(0xa1) << 8 | inb(0x21); 1191 pr_debug("... PIC IMR: %04x\n", v); 1192 1193 v = inb(0xa0) << 8 | inb(0x20); 1194 pr_debug("... PIC IRR: %04x\n", v); 1195 1196 outb(0x0b, 0xa0); 1197 outb(0x0b, 0x20); 1198 v = inb(0xa0) << 8 | inb(0x20); 1199 outb(0x0a, 0xa0); 1200 outb(0x0a, 0x20); 1201 1202 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1203 1204 pr_debug("... PIC ISR: %04x\n", v); 1205 1206 v = inb(0x4d1) << 8 | inb(0x4d0); 1207 pr_debug("... PIC ELCR: %04x\n", v); 1208 } 1209 1210 static int show_lapic __initdata = 1; 1211 static __init int setup_show_lapic(char *arg) 1212 { 1213 int num = -1; 1214 1215 if (strcmp(arg, "all") == 0) { 1216 show_lapic = CONFIG_NR_CPUS; 1217 } else { 1218 get_option(&arg, &num); 1219 if (num >= 0) 1220 show_lapic = num; 1221 } 1222 1223 return 1; 1224 } 1225 __setup("show_lapic=", setup_show_lapic); 1226 1227 static int __init print_ICs(void) 1228 { 1229 if (apic_verbosity == APIC_QUIET) 1230 return 0; 1231 1232 print_PIC(); 1233 1234 /* don't print out if apic is not there */ 1235 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1236 return 0; 1237 1238 print_local_APICs(show_lapic); 1239 print_IO_APICs(); 1240 1241 return 0; 1242 } 1243 1244 late_initcall(print_ICs); 1245