xref: /openbmc/linux/arch/x86/kernel/apic/vector.c (revision b2765275)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 #include <asm/trace/irq_vectors.h>
25 
26 struct apic_chip_data {
27 	struct irq_cfg		hw_irq_cfg;
28 	unsigned int		vector;
29 	unsigned int		prev_vector;
30 	unsigned int		cpu;
31 	unsigned int		prev_cpu;
32 	unsigned int		irq;
33 	struct hlist_node	clist;
34 	unsigned int		move_in_progress	: 1,
35 				is_managed		: 1,
36 				can_reserve		: 1,
37 				has_reserved		: 1;
38 };
39 
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49 
50 void lock_vector_lock(void)
51 {
52 	/* Used to the online set of cpus does not change
53 	 * during assign_irq_vector.
54 	 */
55 	raw_spin_lock(&vector_lock);
56 }
57 
58 void unlock_vector_lock(void)
59 {
60 	raw_spin_unlock(&vector_lock);
61 }
62 
63 void init_irq_alloc_info(struct irq_alloc_info *info,
64 			 const struct cpumask *mask)
65 {
66 	memset(info, 0, sizeof(*info));
67 	info->mask = mask;
68 }
69 
70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72 	if (src)
73 		*dst = *src;
74 	else
75 		memset(dst, 0, sizeof(*dst));
76 }
77 
78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80 	if (!irqd)
81 		return NULL;
82 
83 	while (irqd->parent_data)
84 		irqd = irqd->parent_data;
85 
86 	return irqd->chip_data;
87 }
88 
89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91 	struct apic_chip_data *apicd = apic_chip_data(irqd);
92 
93 	return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96 
97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99 	return irqd_cfg(irq_get_irq_data(irq));
100 }
101 
102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104 	struct apic_chip_data *apicd;
105 
106 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107 	if (apicd)
108 		INIT_HLIST_NODE(&apicd->clist);
109 	return apicd;
110 }
111 
112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114 	kfree(apicd);
115 }
116 
117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118 				unsigned int cpu)
119 {
120 	struct apic_chip_data *apicd = apic_chip_data(irqd);
121 
122 	lockdep_assert_held(&vector_lock);
123 
124 	apicd->hw_irq_cfg.vector = vector;
125 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127 	trace_vector_config(irqd->irq, vector, cpu,
128 			    apicd->hw_irq_cfg.dest_apicid);
129 }
130 
131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132 			       unsigned int newcpu)
133 {
134 	struct apic_chip_data *apicd = apic_chip_data(irqd);
135 	struct irq_desc *desc = irq_data_to_desc(irqd);
136 	bool managed = irqd_affinity_is_managed(irqd);
137 
138 	lockdep_assert_held(&vector_lock);
139 
140 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141 			    apicd->cpu);
142 
143 	/*
144 	 * If there is no vector associated or if the associated vector is
145 	 * the shutdown vector, which is associated to make PCI/MSI
146 	 * shutdown mode work, then there is nothing to release. Clear out
147 	 * prev_vector for this and the offlined target case.
148 	 */
149 	apicd->prev_vector = 0;
150 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151 		goto setnew;
152 	/*
153 	 * If the target CPU of the previous vector is online, then mark
154 	 * the vector as move in progress and store it for cleanup when the
155 	 * first interrupt on the new vector arrives. If the target CPU is
156 	 * offline then the regular release mechanism via the cleanup
157 	 * vector is not possible and the vector can be immediately freed
158 	 * in the underlying matrix allocator.
159 	 */
160 	if (cpu_online(apicd->cpu)) {
161 		apicd->move_in_progress = true;
162 		apicd->prev_vector = apicd->vector;
163 		apicd->prev_cpu = apicd->cpu;
164 	} else {
165 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
166 				managed);
167 	}
168 
169 setnew:
170 	apicd->vector = newvec;
171 	apicd->cpu = newcpu;
172 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
173 	per_cpu(vector_irq, newcpu)[newvec] = desc;
174 }
175 
176 static void vector_assign_managed_shutdown(struct irq_data *irqd)
177 {
178 	unsigned int cpu = cpumask_first(cpu_online_mask);
179 
180 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
181 }
182 
183 static int reserve_managed_vector(struct irq_data *irqd)
184 {
185 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
186 	struct apic_chip_data *apicd = apic_chip_data(irqd);
187 	unsigned long flags;
188 	int ret;
189 
190 	raw_spin_lock_irqsave(&vector_lock, flags);
191 	apicd->is_managed = true;
192 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
193 	raw_spin_unlock_irqrestore(&vector_lock, flags);
194 	trace_vector_reserve_managed(irqd->irq, ret);
195 	return ret;
196 }
197 
198 static void reserve_irq_vector_locked(struct irq_data *irqd)
199 {
200 	struct apic_chip_data *apicd = apic_chip_data(irqd);
201 
202 	irq_matrix_reserve(vector_matrix);
203 	apicd->can_reserve = true;
204 	apicd->has_reserved = true;
205 	irqd_set_can_reserve(irqd);
206 	trace_vector_reserve(irqd->irq, 0);
207 	vector_assign_managed_shutdown(irqd);
208 }
209 
210 static int reserve_irq_vector(struct irq_data *irqd)
211 {
212 	unsigned long flags;
213 
214 	raw_spin_lock_irqsave(&vector_lock, flags);
215 	reserve_irq_vector_locked(irqd);
216 	raw_spin_unlock_irqrestore(&vector_lock, flags);
217 	return 0;
218 }
219 
220 static int
221 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
222 {
223 	struct apic_chip_data *apicd = apic_chip_data(irqd);
224 	bool resvd = apicd->has_reserved;
225 	unsigned int cpu = apicd->cpu;
226 	int vector = apicd->vector;
227 
228 	lockdep_assert_held(&vector_lock);
229 
230 	/*
231 	 * If the current target CPU is online and in the new requested
232 	 * affinity mask, there is no point in moving the interrupt from
233 	 * one CPU to another.
234 	 */
235 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
236 		return 0;
237 
238 	/*
239 	 * Careful here. @apicd might either have move_in_progress set or
240 	 * be enqueued for cleanup. Assigning a new vector would either
241 	 * leave a stale vector on some CPU around or in case of a pending
242 	 * cleanup corrupt the hlist.
243 	 */
244 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
245 		return -EBUSY;
246 
247 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
248 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
249 	if (vector < 0)
250 		return vector;
251 	apic_update_vector(irqd, vector, cpu);
252 	apic_update_irq_cfg(irqd, vector, cpu);
253 
254 	return 0;
255 }
256 
257 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
258 {
259 	unsigned long flags;
260 	int ret;
261 
262 	raw_spin_lock_irqsave(&vector_lock, flags);
263 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
264 	ret = assign_vector_locked(irqd, vector_searchmask);
265 	raw_spin_unlock_irqrestore(&vector_lock, flags);
266 	return ret;
267 }
268 
269 static int assign_irq_vector_any_locked(struct irq_data *irqd)
270 {
271 	/* Get the affinity mask - either irq_default_affinity or (user) set */
272 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
273 	int node = irq_data_get_node(irqd);
274 
275 	if (node == NUMA_NO_NODE)
276 		goto all;
277 	/* Try the intersection of @affmsk and node mask */
278 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
279 	if (!assign_vector_locked(irqd, vector_searchmask))
280 		return 0;
281 	/* Try the node mask */
282 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
283 		return 0;
284 all:
285 	/* Try the full affinity mask */
286 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
287 	if (!assign_vector_locked(irqd, vector_searchmask))
288 		return 0;
289 	/* Try the full online mask */
290 	return assign_vector_locked(irqd, cpu_online_mask);
291 }
292 
293 static int
294 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
295 {
296 	if (irqd_affinity_is_managed(irqd))
297 		return reserve_managed_vector(irqd);
298 	if (info->mask)
299 		return assign_irq_vector(irqd, info->mask);
300 	/*
301 	 * Make only a global reservation with no guarantee. A real vector
302 	 * is associated at activation time.
303 	 */
304 	return reserve_irq_vector(irqd);
305 }
306 
307 static int
308 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
309 {
310 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
311 	struct apic_chip_data *apicd = apic_chip_data(irqd);
312 	int vector, cpu;
313 
314 	cpumask_and(vector_searchmask, dest, affmsk);
315 
316 	/* set_affinity might call here for nothing */
317 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
318 		return 0;
319 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
320 					  &cpu);
321 	trace_vector_alloc_managed(irqd->irq, vector, vector);
322 	if (vector < 0)
323 		return vector;
324 	apic_update_vector(irqd, vector, cpu);
325 	apic_update_irq_cfg(irqd, vector, cpu);
326 	return 0;
327 }
328 
329 static void clear_irq_vector(struct irq_data *irqd)
330 {
331 	struct apic_chip_data *apicd = apic_chip_data(irqd);
332 	bool managed = irqd_affinity_is_managed(irqd);
333 	unsigned int vector = apicd->vector;
334 
335 	lockdep_assert_held(&vector_lock);
336 
337 	if (!vector)
338 		return;
339 
340 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
341 			   apicd->prev_cpu);
342 
343 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
344 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
345 	apicd->vector = 0;
346 
347 	/* Clean up move in progress */
348 	vector = apicd->prev_vector;
349 	if (!vector)
350 		return;
351 
352 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
353 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
354 	apicd->prev_vector = 0;
355 	apicd->move_in_progress = 0;
356 	hlist_del_init(&apicd->clist);
357 }
358 
359 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
360 {
361 	struct apic_chip_data *apicd = apic_chip_data(irqd);
362 	unsigned long flags;
363 
364 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
365 				apicd->can_reserve, false);
366 
367 	/* Regular fixed assigned interrupt */
368 	if (!apicd->is_managed && !apicd->can_reserve)
369 		return;
370 	/* If the interrupt has a global reservation, nothing to do */
371 	if (apicd->has_reserved)
372 		return;
373 
374 	raw_spin_lock_irqsave(&vector_lock, flags);
375 	clear_irq_vector(irqd);
376 	if (apicd->can_reserve)
377 		reserve_irq_vector_locked(irqd);
378 	else
379 		vector_assign_managed_shutdown(irqd);
380 	raw_spin_unlock_irqrestore(&vector_lock, flags);
381 }
382 
383 static int activate_reserved(struct irq_data *irqd)
384 {
385 	struct apic_chip_data *apicd = apic_chip_data(irqd);
386 	int ret;
387 
388 	ret = assign_irq_vector_any_locked(irqd);
389 	if (!ret) {
390 		apicd->has_reserved = false;
391 		/*
392 		 * Core might have disabled reservation mode after
393 		 * allocating the irq descriptor. Ideally this should
394 		 * happen before allocation time, but that would require
395 		 * completely convoluted ways of transporting that
396 		 * information.
397 		 */
398 		if (!irqd_can_reserve(irqd))
399 			apicd->can_reserve = false;
400 	}
401 
402 	/*
403 	 * Check to ensure that the effective affinity mask is a subset
404 	 * the user supplied affinity mask, and warn the user if it is not
405 	 */
406 	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
407 			    irq_data_get_affinity_mask(irqd))) {
408 		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
409 			irqd->irq);
410 	}
411 
412 	return ret;
413 }
414 
415 static int activate_managed(struct irq_data *irqd)
416 {
417 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
418 	int ret;
419 
420 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
421 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
422 		/* Something in the core code broke! Survive gracefully */
423 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
424 		return -EINVAL;
425 	}
426 
427 	ret = assign_managed_vector(irqd, vector_searchmask);
428 	/*
429 	 * This should not happen. The vector reservation got buggered.  Handle
430 	 * it gracefully.
431 	 */
432 	if (WARN_ON_ONCE(ret < 0)) {
433 		pr_err("Managed startup irq %u, no vector available\n",
434 		       irqd->irq);
435 	}
436 	return ret;
437 }
438 
439 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
440 			       bool reserve)
441 {
442 	struct apic_chip_data *apicd = apic_chip_data(irqd);
443 	unsigned long flags;
444 	int ret = 0;
445 
446 	trace_vector_activate(irqd->irq, apicd->is_managed,
447 			      apicd->can_reserve, reserve);
448 
449 	/* Nothing to do for fixed assigned vectors */
450 	if (!apicd->can_reserve && !apicd->is_managed)
451 		return 0;
452 
453 	raw_spin_lock_irqsave(&vector_lock, flags);
454 	if (reserve || irqd_is_managed_and_shutdown(irqd))
455 		vector_assign_managed_shutdown(irqd);
456 	else if (apicd->is_managed)
457 		ret = activate_managed(irqd);
458 	else if (apicd->has_reserved)
459 		ret = activate_reserved(irqd);
460 	raw_spin_unlock_irqrestore(&vector_lock, flags);
461 	return ret;
462 }
463 
464 static void vector_free_reserved_and_managed(struct irq_data *irqd)
465 {
466 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
467 	struct apic_chip_data *apicd = apic_chip_data(irqd);
468 
469 	trace_vector_teardown(irqd->irq, apicd->is_managed,
470 			      apicd->has_reserved);
471 
472 	if (apicd->has_reserved)
473 		irq_matrix_remove_reserved(vector_matrix);
474 	if (apicd->is_managed)
475 		irq_matrix_remove_managed(vector_matrix, dest);
476 }
477 
478 static void x86_vector_free_irqs(struct irq_domain *domain,
479 				 unsigned int virq, unsigned int nr_irqs)
480 {
481 	struct apic_chip_data *apicd;
482 	struct irq_data *irqd;
483 	unsigned long flags;
484 	int i;
485 
486 	for (i = 0; i < nr_irqs; i++) {
487 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
488 		if (irqd && irqd->chip_data) {
489 			raw_spin_lock_irqsave(&vector_lock, flags);
490 			clear_irq_vector(irqd);
491 			vector_free_reserved_and_managed(irqd);
492 			apicd = irqd->chip_data;
493 			irq_domain_reset_irq_data(irqd);
494 			raw_spin_unlock_irqrestore(&vector_lock, flags);
495 			free_apic_chip_data(apicd);
496 		}
497 	}
498 }
499 
500 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
501 				    struct apic_chip_data *apicd)
502 {
503 	unsigned long flags;
504 	bool realloc = false;
505 
506 	apicd->vector = ISA_IRQ_VECTOR(virq);
507 	apicd->cpu = 0;
508 
509 	raw_spin_lock_irqsave(&vector_lock, flags);
510 	/*
511 	 * If the interrupt is activated, then it must stay at this vector
512 	 * position. That's usually the timer interrupt (0).
513 	 */
514 	if (irqd_is_activated(irqd)) {
515 		trace_vector_setup(virq, true, 0);
516 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
517 	} else {
518 		/* Release the vector */
519 		apicd->can_reserve = true;
520 		irqd_set_can_reserve(irqd);
521 		clear_irq_vector(irqd);
522 		realloc = true;
523 	}
524 	raw_spin_unlock_irqrestore(&vector_lock, flags);
525 	return realloc;
526 }
527 
528 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
529 				 unsigned int nr_irqs, void *arg)
530 {
531 	struct irq_alloc_info *info = arg;
532 	struct apic_chip_data *apicd;
533 	struct irq_data *irqd;
534 	int i, err, node;
535 
536 	if (disable_apic)
537 		return -ENXIO;
538 
539 	/* Currently vector allocator can't guarantee contiguous allocations */
540 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
541 		return -ENOSYS;
542 
543 	for (i = 0; i < nr_irqs; i++) {
544 		irqd = irq_domain_get_irq_data(domain, virq + i);
545 		BUG_ON(!irqd);
546 		node = irq_data_get_node(irqd);
547 		WARN_ON_ONCE(irqd->chip_data);
548 		apicd = alloc_apic_chip_data(node);
549 		if (!apicd) {
550 			err = -ENOMEM;
551 			goto error;
552 		}
553 
554 		apicd->irq = virq + i;
555 		irqd->chip = &lapic_controller;
556 		irqd->chip_data = apicd;
557 		irqd->hwirq = virq + i;
558 		irqd_set_single_target(irqd);
559 		/*
560 		 * Legacy vectors are already assigned when the IOAPIC
561 		 * takes them over. They stay on the same vector. This is
562 		 * required for check_timer() to work correctly as it might
563 		 * switch back to legacy mode. Only update the hardware
564 		 * config.
565 		 */
566 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
567 			if (!vector_configure_legacy(virq + i, irqd, apicd))
568 				continue;
569 		}
570 
571 		err = assign_irq_vector_policy(irqd, info);
572 		trace_vector_setup(virq + i, false, err);
573 		if (err) {
574 			irqd->chip_data = NULL;
575 			free_apic_chip_data(apicd);
576 			goto error;
577 		}
578 	}
579 
580 	return 0;
581 
582 error:
583 	x86_vector_free_irqs(domain, virq, i);
584 	return err;
585 }
586 
587 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
588 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
589 				  struct irq_data *irqd, int ind)
590 {
591 	struct apic_chip_data apicd;
592 	unsigned long flags;
593 	int irq;
594 
595 	if (!irqd) {
596 		irq_matrix_debug_show(m, vector_matrix, ind);
597 		return;
598 	}
599 
600 	irq = irqd->irq;
601 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
602 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
603 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
604 		return;
605 	}
606 
607 	if (!irqd->chip_data) {
608 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
609 		return;
610 	}
611 
612 	raw_spin_lock_irqsave(&vector_lock, flags);
613 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
614 	raw_spin_unlock_irqrestore(&vector_lock, flags);
615 
616 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
617 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
618 	if (apicd.prev_vector) {
619 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
620 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
621 	}
622 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
623 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
624 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
625 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
626 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
627 }
628 #endif
629 
630 static const struct irq_domain_ops x86_vector_domain_ops = {
631 	.alloc		= x86_vector_alloc_irqs,
632 	.free		= x86_vector_free_irqs,
633 	.activate	= x86_vector_activate,
634 	.deactivate	= x86_vector_deactivate,
635 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
636 	.debug_show	= x86_vector_debug_show,
637 #endif
638 };
639 
640 int __init arch_probe_nr_irqs(void)
641 {
642 	int nr;
643 
644 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
645 		nr_irqs = NR_VECTORS * nr_cpu_ids;
646 
647 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
648 #if defined(CONFIG_PCI_MSI)
649 	/*
650 	 * for MSI and HT dyn irq
651 	 */
652 	if (gsi_top <= NR_IRQS_LEGACY)
653 		nr +=  8 * nr_cpu_ids;
654 	else
655 		nr += gsi_top * 16;
656 #endif
657 	if (nr < nr_irqs)
658 		nr_irqs = nr;
659 
660 	/*
661 	 * We don't know if PIC is present at this point so we need to do
662 	 * probe() to get the right number of legacy IRQs.
663 	 */
664 	return legacy_pic->probe();
665 }
666 
667 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
668 {
669 	/*
670 	 * Use assign system here so it wont get accounted as allocated
671 	 * and moveable in the cpu hotplug check and it prevents managed
672 	 * irq reservation from touching it.
673 	 */
674 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
675 }
676 
677 void __init lapic_assign_system_vectors(void)
678 {
679 	unsigned int i, vector = 0;
680 
681 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
682 		irq_matrix_assign_system(vector_matrix, vector, false);
683 
684 	if (nr_legacy_irqs() > 1)
685 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
686 
687 	/* System vectors are reserved, online it */
688 	irq_matrix_online(vector_matrix);
689 
690 	/* Mark the preallocated legacy interrupts */
691 	for (i = 0; i < nr_legacy_irqs(); i++) {
692 		if (i != PIC_CASCADE_IR)
693 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
694 	}
695 }
696 
697 int __init arch_early_irq_init(void)
698 {
699 	struct fwnode_handle *fn;
700 
701 	fn = irq_domain_alloc_named_fwnode("VECTOR");
702 	BUG_ON(!fn);
703 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
704 						   NULL);
705 	BUG_ON(x86_vector_domain == NULL);
706 	irq_domain_free_fwnode(fn);
707 	irq_set_default_host(x86_vector_domain);
708 
709 	arch_init_msi_domain(x86_vector_domain);
710 
711 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
712 
713 	/*
714 	 * Allocate the vector matrix allocator data structure and limit the
715 	 * search area.
716 	 */
717 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
718 					 FIRST_SYSTEM_VECTOR);
719 	BUG_ON(!vector_matrix);
720 
721 	return arch_early_ioapic_init();
722 }
723 
724 #ifdef CONFIG_SMP
725 
726 static struct irq_desc *__setup_vector_irq(int vector)
727 {
728 	int isairq = vector - ISA_IRQ_VECTOR(0);
729 
730 	/* Check whether the irq is in the legacy space */
731 	if (isairq < 0 || isairq >= nr_legacy_irqs())
732 		return VECTOR_UNUSED;
733 	/* Check whether the irq is handled by the IOAPIC */
734 	if (test_bit(isairq, &io_apic_irqs))
735 		return VECTOR_UNUSED;
736 	return irq_to_desc(isairq);
737 }
738 
739 /* Online the local APIC infrastructure and initialize the vectors */
740 void lapic_online(void)
741 {
742 	unsigned int vector;
743 
744 	lockdep_assert_held(&vector_lock);
745 
746 	/* Online the vector matrix array for this CPU */
747 	irq_matrix_online(vector_matrix);
748 
749 	/*
750 	 * The interrupt affinity logic never targets interrupts to offline
751 	 * CPUs. The exception are the legacy PIC interrupts. In general
752 	 * they are only targeted to CPU0, but depending on the platform
753 	 * they can be distributed to any online CPU in hardware. The
754 	 * kernel has no influence on that. So all active legacy vectors
755 	 * must be installed on all CPUs. All non legacy interrupts can be
756 	 * cleared.
757 	 */
758 	for (vector = 0; vector < NR_VECTORS; vector++)
759 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
760 }
761 
762 void lapic_offline(void)
763 {
764 	lock_vector_lock();
765 	irq_matrix_offline(vector_matrix);
766 	unlock_vector_lock();
767 }
768 
769 static int apic_set_affinity(struct irq_data *irqd,
770 			     const struct cpumask *dest, bool force)
771 {
772 	struct apic_chip_data *apicd = apic_chip_data(irqd);
773 	int err;
774 
775 	/*
776 	 * Core code can call here for inactive interrupts. For inactive
777 	 * interrupts which use managed or reservation mode there is no
778 	 * point in going through the vector assignment right now as the
779 	 * activation will assign a vector which fits the destination
780 	 * cpumask. Let the core code store the destination mask and be
781 	 * done with it.
782 	 */
783 	if (!irqd_is_activated(irqd) &&
784 	    (apicd->is_managed || apicd->can_reserve))
785 		return IRQ_SET_MASK_OK;
786 
787 	raw_spin_lock(&vector_lock);
788 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
789 	if (irqd_affinity_is_managed(irqd))
790 		err = assign_managed_vector(irqd, vector_searchmask);
791 	else
792 		err = assign_vector_locked(irqd, vector_searchmask);
793 	raw_spin_unlock(&vector_lock);
794 	return err ? err : IRQ_SET_MASK_OK;
795 }
796 
797 #else
798 # define apic_set_affinity	NULL
799 #endif
800 
801 static int apic_retrigger_irq(struct irq_data *irqd)
802 {
803 	struct apic_chip_data *apicd = apic_chip_data(irqd);
804 	unsigned long flags;
805 
806 	raw_spin_lock_irqsave(&vector_lock, flags);
807 	apic->send_IPI(apicd->cpu, apicd->vector);
808 	raw_spin_unlock_irqrestore(&vector_lock, flags);
809 
810 	return 1;
811 }
812 
813 void apic_ack_irq(struct irq_data *irqd)
814 {
815 	irq_move_irq(irqd);
816 	ack_APIC_irq();
817 }
818 
819 void apic_ack_edge(struct irq_data *irqd)
820 {
821 	irq_complete_move(irqd_cfg(irqd));
822 	apic_ack_irq(irqd);
823 }
824 
825 static struct irq_chip lapic_controller = {
826 	.name			= "APIC",
827 	.irq_ack		= apic_ack_edge,
828 	.irq_set_affinity	= apic_set_affinity,
829 	.irq_retrigger		= apic_retrigger_irq,
830 };
831 
832 #ifdef CONFIG_SMP
833 
834 static void free_moved_vector(struct apic_chip_data *apicd)
835 {
836 	unsigned int vector = apicd->prev_vector;
837 	unsigned int cpu = apicd->prev_cpu;
838 	bool managed = apicd->is_managed;
839 
840 	/*
841 	 * Managed interrupts are usually not migrated away
842 	 * from an online CPU, but CPU isolation 'managed_irq'
843 	 * can make that happen.
844 	 * 1) Activation does not take the isolation into account
845 	 *    to keep the code simple
846 	 * 2) Migration away from an isolated CPU can happen when
847 	 *    a non-isolated CPU which is in the calculated
848 	 *    affinity mask comes online.
849 	 */
850 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
851 	irq_matrix_free(vector_matrix, cpu, vector, managed);
852 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
853 	hlist_del_init(&apicd->clist);
854 	apicd->prev_vector = 0;
855 	apicd->move_in_progress = 0;
856 }
857 
858 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
859 {
860 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
861 	struct apic_chip_data *apicd;
862 	struct hlist_node *tmp;
863 
864 	entering_ack_irq();
865 	/* Prevent vectors vanishing under us */
866 	raw_spin_lock(&vector_lock);
867 
868 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
869 		unsigned int irr, vector = apicd->prev_vector;
870 
871 		/*
872 		 * Paranoia: Check if the vector that needs to be cleaned
873 		 * up is registered at the APICs IRR. If so, then this is
874 		 * not the best time to clean it up. Clean it up in the
875 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
876 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
877 		 * priority external vector, so on return from this
878 		 * interrupt the device interrupt will happen first.
879 		 */
880 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
881 		if (irr & (1U << (vector % 32))) {
882 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
883 			continue;
884 		}
885 		free_moved_vector(apicd);
886 	}
887 
888 	raw_spin_unlock(&vector_lock);
889 	exiting_irq();
890 }
891 
892 static void __send_cleanup_vector(struct apic_chip_data *apicd)
893 {
894 	unsigned int cpu;
895 
896 	raw_spin_lock(&vector_lock);
897 	apicd->move_in_progress = 0;
898 	cpu = apicd->prev_cpu;
899 	if (cpu_online(cpu)) {
900 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
901 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
902 	} else {
903 		apicd->prev_vector = 0;
904 	}
905 	raw_spin_unlock(&vector_lock);
906 }
907 
908 void send_cleanup_vector(struct irq_cfg *cfg)
909 {
910 	struct apic_chip_data *apicd;
911 
912 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
913 	if (apicd->move_in_progress)
914 		__send_cleanup_vector(apicd);
915 }
916 
917 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
918 {
919 	struct apic_chip_data *apicd;
920 
921 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
922 	if (likely(!apicd->move_in_progress))
923 		return;
924 
925 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
926 		__send_cleanup_vector(apicd);
927 }
928 
929 void irq_complete_move(struct irq_cfg *cfg)
930 {
931 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
932 }
933 
934 /*
935  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
936  */
937 void irq_force_complete_move(struct irq_desc *desc)
938 {
939 	struct apic_chip_data *apicd;
940 	struct irq_data *irqd;
941 	unsigned int vector;
942 
943 	/*
944 	 * The function is called for all descriptors regardless of which
945 	 * irqdomain they belong to. For example if an IRQ is provided by
946 	 * an irq_chip as part of a GPIO driver, the chip data for that
947 	 * descriptor is specific to the irq_chip in question.
948 	 *
949 	 * Check first that the chip_data is what we expect
950 	 * (apic_chip_data) before touching it any further.
951 	 */
952 	irqd = irq_domain_get_irq_data(x86_vector_domain,
953 				       irq_desc_get_irq(desc));
954 	if (!irqd)
955 		return;
956 
957 	raw_spin_lock(&vector_lock);
958 	apicd = apic_chip_data(irqd);
959 	if (!apicd)
960 		goto unlock;
961 
962 	/*
963 	 * If prev_vector is empty, no action required.
964 	 */
965 	vector = apicd->prev_vector;
966 	if (!vector)
967 		goto unlock;
968 
969 	/*
970 	 * This is tricky. If the cleanup of the old vector has not been
971 	 * done yet, then the following setaffinity call will fail with
972 	 * -EBUSY. This can leave the interrupt in a stale state.
973 	 *
974 	 * All CPUs are stuck in stop machine with interrupts disabled so
975 	 * calling __irq_complete_move() would be completely pointless.
976 	 *
977 	 * 1) The interrupt is in move_in_progress state. That means that we
978 	 *    have not seen an interrupt since the io_apic was reprogrammed to
979 	 *    the new vector.
980 	 *
981 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
982 	 *    have not been processed yet.
983 	 */
984 	if (apicd->move_in_progress) {
985 		/*
986 		 * In theory there is a race:
987 		 *
988 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
989 		 *			      is effective, i.e. it's raised on
990 		 *			      the old vector.
991 		 *
992 		 * So if the target cpu cannot handle that interrupt before
993 		 * the old vector is cleaned up, we get a spurious interrupt
994 		 * and in the worst case the ioapic irq line becomes stale.
995 		 *
996 		 * But in case of cpu hotplug this should be a non issue
997 		 * because if the affinity update happens right before all
998 		 * cpus rendevouz in stop machine, there is no way that the
999 		 * interrupt can be blocked on the target cpu because all cpus
1000 		 * loops first with interrupts enabled in stop machine, so the
1001 		 * old vector is not yet cleaned up when the interrupt fires.
1002 		 *
1003 		 * So the only way to run into this issue is if the delivery
1004 		 * of the interrupt on the apic/system bus would be delayed
1005 		 * beyond the point where the target cpu disables interrupts
1006 		 * in stop machine. I doubt that it can happen, but at least
1007 		 * there is a theroretical chance. Virtualization might be
1008 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1009 		 * as stupid as the real hardware.
1010 		 *
1011 		 * Anyway, there is nothing we can do about that at this point
1012 		 * w/o refactoring the whole fixup_irq() business completely.
1013 		 * We print at least the irq number and the old vector number,
1014 		 * so we have the necessary information when a problem in that
1015 		 * area arises.
1016 		 */
1017 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1018 			irqd->irq, vector);
1019 	}
1020 	free_moved_vector(apicd);
1021 unlock:
1022 	raw_spin_unlock(&vector_lock);
1023 }
1024 
1025 #ifdef CONFIG_HOTPLUG_CPU
1026 /*
1027  * Note, this is not accurate accounting, but at least good enough to
1028  * prevent that the actual interrupt move will run out of vectors.
1029  */
1030 int lapic_can_unplug_cpu(void)
1031 {
1032 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1033 	int ret = 0;
1034 
1035 	raw_spin_lock(&vector_lock);
1036 	tomove = irq_matrix_allocated(vector_matrix);
1037 	avl = irq_matrix_available(vector_matrix, true);
1038 	if (avl < tomove) {
1039 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1040 			cpu, tomove, avl);
1041 		ret = -ENOSPC;
1042 		goto out;
1043 	}
1044 	rsvd = irq_matrix_reserved(vector_matrix);
1045 	if (avl < rsvd) {
1046 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1047 			rsvd, avl);
1048 	}
1049 out:
1050 	raw_spin_unlock(&vector_lock);
1051 	return ret;
1052 }
1053 #endif /* HOTPLUG_CPU */
1054 #endif /* SMP */
1055 
1056 static void __init print_APIC_field(int base)
1057 {
1058 	int i;
1059 
1060 	printk(KERN_DEBUG);
1061 
1062 	for (i = 0; i < 8; i++)
1063 		pr_cont("%08x", apic_read(base + i*0x10));
1064 
1065 	pr_cont("\n");
1066 }
1067 
1068 static void __init print_local_APIC(void *dummy)
1069 {
1070 	unsigned int i, v, ver, maxlvt;
1071 	u64 icr;
1072 
1073 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1074 		 smp_processor_id(), hard_smp_processor_id());
1075 	v = apic_read(APIC_ID);
1076 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1077 	v = apic_read(APIC_LVR);
1078 	pr_info("... APIC VERSION: %08x\n", v);
1079 	ver = GET_APIC_VERSION(v);
1080 	maxlvt = lapic_get_maxlvt();
1081 
1082 	v = apic_read(APIC_TASKPRI);
1083 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1084 
1085 	/* !82489DX */
1086 	if (APIC_INTEGRATED(ver)) {
1087 		if (!APIC_XAPIC(ver)) {
1088 			v = apic_read(APIC_ARBPRI);
1089 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1090 				 v, v & APIC_ARBPRI_MASK);
1091 		}
1092 		v = apic_read(APIC_PROCPRI);
1093 		pr_debug("... APIC PROCPRI: %08x\n", v);
1094 	}
1095 
1096 	/*
1097 	 * Remote read supported only in the 82489DX and local APIC for
1098 	 * Pentium processors.
1099 	 */
1100 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1101 		v = apic_read(APIC_RRR);
1102 		pr_debug("... APIC RRR: %08x\n", v);
1103 	}
1104 
1105 	v = apic_read(APIC_LDR);
1106 	pr_debug("... APIC LDR: %08x\n", v);
1107 	if (!x2apic_enabled()) {
1108 		v = apic_read(APIC_DFR);
1109 		pr_debug("... APIC DFR: %08x\n", v);
1110 	}
1111 	v = apic_read(APIC_SPIV);
1112 	pr_debug("... APIC SPIV: %08x\n", v);
1113 
1114 	pr_debug("... APIC ISR field:\n");
1115 	print_APIC_field(APIC_ISR);
1116 	pr_debug("... APIC TMR field:\n");
1117 	print_APIC_field(APIC_TMR);
1118 	pr_debug("... APIC IRR field:\n");
1119 	print_APIC_field(APIC_IRR);
1120 
1121 	/* !82489DX */
1122 	if (APIC_INTEGRATED(ver)) {
1123 		/* Due to the Pentium erratum 3AP. */
1124 		if (maxlvt > 3)
1125 			apic_write(APIC_ESR, 0);
1126 
1127 		v = apic_read(APIC_ESR);
1128 		pr_debug("... APIC ESR: %08x\n", v);
1129 	}
1130 
1131 	icr = apic_icr_read();
1132 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1133 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1134 
1135 	v = apic_read(APIC_LVTT);
1136 	pr_debug("... APIC LVTT: %08x\n", v);
1137 
1138 	if (maxlvt > 3) {
1139 		/* PC is LVT#4. */
1140 		v = apic_read(APIC_LVTPC);
1141 		pr_debug("... APIC LVTPC: %08x\n", v);
1142 	}
1143 	v = apic_read(APIC_LVT0);
1144 	pr_debug("... APIC LVT0: %08x\n", v);
1145 	v = apic_read(APIC_LVT1);
1146 	pr_debug("... APIC LVT1: %08x\n", v);
1147 
1148 	if (maxlvt > 2) {
1149 		/* ERR is LVT#3. */
1150 		v = apic_read(APIC_LVTERR);
1151 		pr_debug("... APIC LVTERR: %08x\n", v);
1152 	}
1153 
1154 	v = apic_read(APIC_TMICT);
1155 	pr_debug("... APIC TMICT: %08x\n", v);
1156 	v = apic_read(APIC_TMCCT);
1157 	pr_debug("... APIC TMCCT: %08x\n", v);
1158 	v = apic_read(APIC_TDCR);
1159 	pr_debug("... APIC TDCR: %08x\n", v);
1160 
1161 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1162 		v = apic_read(APIC_EFEAT);
1163 		maxlvt = (v >> 16) & 0xff;
1164 		pr_debug("... APIC EFEAT: %08x\n", v);
1165 		v = apic_read(APIC_ECTRL);
1166 		pr_debug("... APIC ECTRL: %08x\n", v);
1167 		for (i = 0; i < maxlvt; i++) {
1168 			v = apic_read(APIC_EILVTn(i));
1169 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1170 		}
1171 	}
1172 	pr_cont("\n");
1173 }
1174 
1175 static void __init print_local_APICs(int maxcpu)
1176 {
1177 	int cpu;
1178 
1179 	if (!maxcpu)
1180 		return;
1181 
1182 	preempt_disable();
1183 	for_each_online_cpu(cpu) {
1184 		if (cpu >= maxcpu)
1185 			break;
1186 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1187 	}
1188 	preempt_enable();
1189 }
1190 
1191 static void __init print_PIC(void)
1192 {
1193 	unsigned int v;
1194 	unsigned long flags;
1195 
1196 	if (!nr_legacy_irqs())
1197 		return;
1198 
1199 	pr_debug("\nprinting PIC contents\n");
1200 
1201 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1202 
1203 	v = inb(0xa1) << 8 | inb(0x21);
1204 	pr_debug("... PIC  IMR: %04x\n", v);
1205 
1206 	v = inb(0xa0) << 8 | inb(0x20);
1207 	pr_debug("... PIC  IRR: %04x\n", v);
1208 
1209 	outb(0x0b, 0xa0);
1210 	outb(0x0b, 0x20);
1211 	v = inb(0xa0) << 8 | inb(0x20);
1212 	outb(0x0a, 0xa0);
1213 	outb(0x0a, 0x20);
1214 
1215 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1216 
1217 	pr_debug("... PIC  ISR: %04x\n", v);
1218 
1219 	v = inb(0x4d1) << 8 | inb(0x4d0);
1220 	pr_debug("... PIC ELCR: %04x\n", v);
1221 }
1222 
1223 static int show_lapic __initdata = 1;
1224 static __init int setup_show_lapic(char *arg)
1225 {
1226 	int num = -1;
1227 
1228 	if (strcmp(arg, "all") == 0) {
1229 		show_lapic = CONFIG_NR_CPUS;
1230 	} else {
1231 		get_option(&arg, &num);
1232 		if (num >= 0)
1233 			show_lapic = num;
1234 	}
1235 
1236 	return 1;
1237 }
1238 __setup("show_lapic=", setup_show_lapic);
1239 
1240 static int __init print_ICs(void)
1241 {
1242 	if (apic_verbosity == APIC_QUIET)
1243 		return 0;
1244 
1245 	print_PIC();
1246 
1247 	/* don't print out if apic is not there */
1248 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1249 		return 0;
1250 
1251 	print_local_APICs(show_lapic);
1252 	print_IO_APICs();
1253 
1254 	return 0;
1255 }
1256 
1257 late_initcall(print_ICs);
1258