1 /* 2 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * Moved from arch/x86/kernel/apic/io_apic.c. 6 * Jiang Liu <jiang.liu@linux.intel.com> 7 * Enable support of hierarchical irqdomains 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/interrupt.h> 14 #include <linux/init.h> 15 #include <linux/compiler.h> 16 #include <linux/slab.h> 17 #include <asm/irqdomain.h> 18 #include <asm/hw_irq.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 struct apic_chip_data { 25 struct irq_cfg cfg; 26 cpumask_var_t domain; 27 cpumask_var_t old_domain; 28 u8 move_in_progress : 1; 29 }; 30 31 struct irq_domain *x86_vector_domain; 32 EXPORT_SYMBOL_GPL(x86_vector_domain); 33 static DEFINE_RAW_SPINLOCK(vector_lock); 34 static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask; 35 static struct irq_chip lapic_controller; 36 #ifdef CONFIG_X86_IO_APIC 37 static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY]; 38 #endif 39 40 void lock_vector_lock(void) 41 { 42 /* Used to the online set of cpus does not change 43 * during assign_irq_vector. 44 */ 45 raw_spin_lock(&vector_lock); 46 } 47 48 void unlock_vector_lock(void) 49 { 50 raw_spin_unlock(&vector_lock); 51 } 52 53 static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data) 54 { 55 if (!irq_data) 56 return NULL; 57 58 while (irq_data->parent_data) 59 irq_data = irq_data->parent_data; 60 61 return irq_data->chip_data; 62 } 63 64 struct irq_cfg *irqd_cfg(struct irq_data *irq_data) 65 { 66 struct apic_chip_data *data = apic_chip_data(irq_data); 67 68 return data ? &data->cfg : NULL; 69 } 70 EXPORT_SYMBOL_GPL(irqd_cfg); 71 72 struct irq_cfg *irq_cfg(unsigned int irq) 73 { 74 return irqd_cfg(irq_get_irq_data(irq)); 75 } 76 77 static struct apic_chip_data *alloc_apic_chip_data(int node) 78 { 79 struct apic_chip_data *data; 80 81 data = kzalloc_node(sizeof(*data), GFP_KERNEL, node); 82 if (!data) 83 return NULL; 84 if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node)) 85 goto out_data; 86 if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node)) 87 goto out_domain; 88 return data; 89 out_domain: 90 free_cpumask_var(data->domain); 91 out_data: 92 kfree(data); 93 return NULL; 94 } 95 96 static void free_apic_chip_data(struct apic_chip_data *data) 97 { 98 if (data) { 99 free_cpumask_var(data->domain); 100 free_cpumask_var(data->old_domain); 101 kfree(data); 102 } 103 } 104 105 static int __assign_irq_vector(int irq, struct apic_chip_data *d, 106 const struct cpumask *mask) 107 { 108 /* 109 * NOTE! The local APIC isn't very good at handling 110 * multiple interrupts at the same interrupt level. 111 * As the interrupt level is determined by taking the 112 * vector number and shifting that right by 4, we 113 * want to spread these out a bit so that they don't 114 * all fall in the same interrupt level. 115 * 116 * Also, we've got to be careful not to trash gate 117 * 0x80, because int 0x80 is hm, kind of importantish. ;) 118 */ 119 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; 120 static int current_offset = VECTOR_OFFSET_START % 16; 121 int cpu, vector; 122 123 /* 124 * If there is still a move in progress or the previous move has not 125 * been cleaned up completely, tell the caller to come back later. 126 */ 127 if (d->move_in_progress || 128 cpumask_intersects(d->old_domain, cpu_online_mask)) 129 return -EBUSY; 130 131 /* Only try and allocate irqs on cpus that are present */ 132 cpumask_clear(d->old_domain); 133 cpumask_clear(searched_cpumask); 134 cpu = cpumask_first_and(mask, cpu_online_mask); 135 while (cpu < nr_cpu_ids) { 136 int new_cpu, offset; 137 138 /* Get the possible target cpus for @mask/@cpu from the apic */ 139 apic->vector_allocation_domain(cpu, vector_cpumask, mask); 140 141 /* 142 * Clear the offline cpus from @vector_cpumask for searching 143 * and verify whether the result overlaps with @mask. If true, 144 * then the call to apic->cpu_mask_to_apicid_and() will 145 * succeed as well. If not, no point in trying to find a 146 * vector in this mask. 147 */ 148 cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask); 149 if (!cpumask_intersects(vector_searchmask, mask)) 150 goto next_cpu; 151 152 if (cpumask_subset(vector_cpumask, d->domain)) { 153 if (cpumask_equal(vector_cpumask, d->domain)) 154 goto success; 155 /* 156 * Mark the cpus which are not longer in the mask for 157 * cleanup. 158 */ 159 cpumask_andnot(d->old_domain, d->domain, vector_cpumask); 160 vector = d->cfg.vector; 161 goto update; 162 } 163 164 vector = current_vector; 165 offset = current_offset; 166 next: 167 vector += 16; 168 if (vector >= first_system_vector) { 169 offset = (offset + 1) % 16; 170 vector = FIRST_EXTERNAL_VECTOR + offset; 171 } 172 173 /* If the search wrapped around, try the next cpu */ 174 if (unlikely(current_vector == vector)) 175 goto next_cpu; 176 177 if (test_bit(vector, used_vectors)) 178 goto next; 179 180 for_each_cpu(new_cpu, vector_searchmask) { 181 if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector])) 182 goto next; 183 } 184 /* Found one! */ 185 current_vector = vector; 186 current_offset = offset; 187 /* Schedule the old vector for cleanup on all cpus */ 188 if (d->cfg.vector) 189 cpumask_copy(d->old_domain, d->domain); 190 for_each_cpu(new_cpu, vector_searchmask) 191 per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq); 192 goto update; 193 194 next_cpu: 195 /* 196 * We exclude the current @vector_cpumask from the requested 197 * @mask and try again with the next online cpu in the 198 * result. We cannot modify @mask, so we use @vector_cpumask 199 * as a temporary buffer here as it will be reassigned when 200 * calling apic->vector_allocation_domain() above. 201 */ 202 cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask); 203 cpumask_andnot(vector_cpumask, mask, searched_cpumask); 204 cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); 205 continue; 206 } 207 return -ENOSPC; 208 209 update: 210 /* 211 * Exclude offline cpus from the cleanup mask and set the 212 * move_in_progress flag when the result is not empty. 213 */ 214 cpumask_and(d->old_domain, d->old_domain, cpu_online_mask); 215 d->move_in_progress = !cpumask_empty(d->old_domain); 216 d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0; 217 d->cfg.vector = vector; 218 cpumask_copy(d->domain, vector_cpumask); 219 success: 220 /* 221 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail 222 * as we already established, that mask & d->domain & cpu_online_mask 223 * is not empty. 224 */ 225 BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain, 226 &d->cfg.dest_apicid)); 227 return 0; 228 } 229 230 static int assign_irq_vector(int irq, struct apic_chip_data *data, 231 const struct cpumask *mask) 232 { 233 int err; 234 unsigned long flags; 235 236 raw_spin_lock_irqsave(&vector_lock, flags); 237 err = __assign_irq_vector(irq, data, mask); 238 raw_spin_unlock_irqrestore(&vector_lock, flags); 239 return err; 240 } 241 242 static int assign_irq_vector_policy(int irq, int node, 243 struct apic_chip_data *data, 244 struct irq_alloc_info *info) 245 { 246 if (info && info->mask) 247 return assign_irq_vector(irq, data, info->mask); 248 if (node != NUMA_NO_NODE && 249 assign_irq_vector(irq, data, cpumask_of_node(node)) == 0) 250 return 0; 251 return assign_irq_vector(irq, data, apic->target_cpus()); 252 } 253 254 static void clear_irq_vector(int irq, struct apic_chip_data *data) 255 { 256 struct irq_desc *desc; 257 int cpu, vector; 258 259 if (!data->cfg.vector) 260 return; 261 262 vector = data->cfg.vector; 263 for_each_cpu_and(cpu, data->domain, cpu_online_mask) 264 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 265 266 data->cfg.vector = 0; 267 cpumask_clear(data->domain); 268 269 /* 270 * If move is in progress or the old_domain mask is not empty, 271 * i.e. the cleanup IPI has not been processed yet, we need to remove 272 * the old references to desc from all cpus vector tables. 273 */ 274 if (!data->move_in_progress && cpumask_empty(data->old_domain)) 275 return; 276 277 desc = irq_to_desc(irq); 278 for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) { 279 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 280 vector++) { 281 if (per_cpu(vector_irq, cpu)[vector] != desc) 282 continue; 283 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 284 break; 285 } 286 } 287 data->move_in_progress = 0; 288 } 289 290 void init_irq_alloc_info(struct irq_alloc_info *info, 291 const struct cpumask *mask) 292 { 293 memset(info, 0, sizeof(*info)); 294 info->mask = mask; 295 } 296 297 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 298 { 299 if (src) 300 *dst = *src; 301 else 302 memset(dst, 0, sizeof(*dst)); 303 } 304 305 static void x86_vector_free_irqs(struct irq_domain *domain, 306 unsigned int virq, unsigned int nr_irqs) 307 { 308 struct apic_chip_data *apic_data; 309 struct irq_data *irq_data; 310 unsigned long flags; 311 int i; 312 313 for (i = 0; i < nr_irqs; i++) { 314 irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i); 315 if (irq_data && irq_data->chip_data) { 316 raw_spin_lock_irqsave(&vector_lock, flags); 317 clear_irq_vector(virq + i, irq_data->chip_data); 318 apic_data = irq_data->chip_data; 319 irq_domain_reset_irq_data(irq_data); 320 raw_spin_unlock_irqrestore(&vector_lock, flags); 321 free_apic_chip_data(apic_data); 322 #ifdef CONFIG_X86_IO_APIC 323 if (virq + i < nr_legacy_irqs()) 324 legacy_irq_data[virq + i] = NULL; 325 #endif 326 } 327 } 328 } 329 330 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 331 unsigned int nr_irqs, void *arg) 332 { 333 struct irq_alloc_info *info = arg; 334 struct apic_chip_data *data; 335 struct irq_data *irq_data; 336 int i, err, node; 337 338 if (disable_apic) 339 return -ENXIO; 340 341 /* Currently vector allocator can't guarantee contiguous allocations */ 342 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 343 return -ENOSYS; 344 345 for (i = 0; i < nr_irqs; i++) { 346 irq_data = irq_domain_get_irq_data(domain, virq + i); 347 BUG_ON(!irq_data); 348 node = irq_data_get_node(irq_data); 349 #ifdef CONFIG_X86_IO_APIC 350 if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i]) 351 data = legacy_irq_data[virq + i]; 352 else 353 #endif 354 data = alloc_apic_chip_data(node); 355 if (!data) { 356 err = -ENOMEM; 357 goto error; 358 } 359 360 irq_data->chip = &lapic_controller; 361 irq_data->chip_data = data; 362 irq_data->hwirq = virq + i; 363 err = assign_irq_vector_policy(virq + i, node, data, info); 364 if (err) 365 goto error; 366 } 367 368 return 0; 369 370 error: 371 x86_vector_free_irqs(domain, virq, i + 1); 372 return err; 373 } 374 375 static const struct irq_domain_ops x86_vector_domain_ops = { 376 .alloc = x86_vector_alloc_irqs, 377 .free = x86_vector_free_irqs, 378 }; 379 380 int __init arch_probe_nr_irqs(void) 381 { 382 int nr; 383 384 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 385 nr_irqs = NR_VECTORS * nr_cpu_ids; 386 387 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 388 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 389 /* 390 * for MSI and HT dyn irq 391 */ 392 if (gsi_top <= NR_IRQS_LEGACY) 393 nr += 8 * nr_cpu_ids; 394 else 395 nr += gsi_top * 16; 396 #endif 397 if (nr < nr_irqs) 398 nr_irqs = nr; 399 400 /* 401 * We don't know if PIC is present at this point so we need to do 402 * probe() to get the right number of legacy IRQs. 403 */ 404 return legacy_pic->probe(); 405 } 406 407 #ifdef CONFIG_X86_IO_APIC 408 static void init_legacy_irqs(void) 409 { 410 int i, node = cpu_to_node(0); 411 struct apic_chip_data *data; 412 413 /* 414 * For legacy IRQ's, start with assigning irq0 to irq15 to 415 * ISA_IRQ_VECTOR(i) for all cpu's. 416 */ 417 for (i = 0; i < nr_legacy_irqs(); i++) { 418 data = legacy_irq_data[i] = alloc_apic_chip_data(node); 419 BUG_ON(!data); 420 421 data->cfg.vector = ISA_IRQ_VECTOR(i); 422 cpumask_setall(data->domain); 423 irq_set_chip_data(i, data); 424 } 425 } 426 #else 427 static void init_legacy_irqs(void) { } 428 #endif 429 430 int __init arch_early_irq_init(void) 431 { 432 init_legacy_irqs(); 433 434 x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops, 435 NULL); 436 BUG_ON(x86_vector_domain == NULL); 437 irq_set_default_host(x86_vector_domain); 438 439 arch_init_msi_domain(x86_vector_domain); 440 arch_init_htirq_domain(x86_vector_domain); 441 442 BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); 443 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 444 BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL)); 445 446 return arch_early_ioapic_init(); 447 } 448 449 /* Initialize vector_irq on a new cpu */ 450 static void __setup_vector_irq(int cpu) 451 { 452 struct apic_chip_data *data; 453 struct irq_desc *desc; 454 int irq, vector; 455 456 /* Mark the inuse vectors */ 457 for_each_irq_desc(irq, desc) { 458 struct irq_data *idata = irq_desc_get_irq_data(desc); 459 460 data = apic_chip_data(idata); 461 if (!data || !cpumask_test_cpu(cpu, data->domain)) 462 continue; 463 vector = data->cfg.vector; 464 per_cpu(vector_irq, cpu)[vector] = desc; 465 } 466 /* Mark the free vectors */ 467 for (vector = 0; vector < NR_VECTORS; ++vector) { 468 desc = per_cpu(vector_irq, cpu)[vector]; 469 if (IS_ERR_OR_NULL(desc)) 470 continue; 471 472 data = apic_chip_data(irq_desc_get_irq_data(desc)); 473 if (!cpumask_test_cpu(cpu, data->domain)) 474 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 475 } 476 } 477 478 /* 479 * Setup the vector to irq mappings. Must be called with vector_lock held. 480 */ 481 void setup_vector_irq(int cpu) 482 { 483 int irq; 484 485 lockdep_assert_held(&vector_lock); 486 /* 487 * On most of the platforms, legacy PIC delivers the interrupts on the 488 * boot cpu. But there are certain platforms where PIC interrupts are 489 * delivered to multiple cpu's. If the legacy IRQ is handled by the 490 * legacy PIC, for the new cpu that is coming online, setup the static 491 * legacy vector to irq mapping: 492 */ 493 for (irq = 0; irq < nr_legacy_irqs(); irq++) 494 per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq); 495 496 __setup_vector_irq(cpu); 497 } 498 499 static int apic_retrigger_irq(struct irq_data *irq_data) 500 { 501 struct apic_chip_data *data = apic_chip_data(irq_data); 502 unsigned long flags; 503 int cpu; 504 505 raw_spin_lock_irqsave(&vector_lock, flags); 506 cpu = cpumask_first_and(data->domain, cpu_online_mask); 507 apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector); 508 raw_spin_unlock_irqrestore(&vector_lock, flags); 509 510 return 1; 511 } 512 513 void apic_ack_edge(struct irq_data *data) 514 { 515 irq_complete_move(irqd_cfg(data)); 516 irq_move_irq(data); 517 ack_APIC_irq(); 518 } 519 520 static int apic_set_affinity(struct irq_data *irq_data, 521 const struct cpumask *dest, bool force) 522 { 523 struct apic_chip_data *data = irq_data->chip_data; 524 int err, irq = irq_data->irq; 525 526 if (!IS_ENABLED(CONFIG_SMP)) 527 return -EPERM; 528 529 if (!cpumask_intersects(dest, cpu_online_mask)) 530 return -EINVAL; 531 532 err = assign_irq_vector(irq, data, dest); 533 return err ? err : IRQ_SET_MASK_OK; 534 } 535 536 static struct irq_chip lapic_controller = { 537 .irq_ack = apic_ack_edge, 538 .irq_set_affinity = apic_set_affinity, 539 .irq_retrigger = apic_retrigger_irq, 540 }; 541 542 #ifdef CONFIG_SMP 543 static void __send_cleanup_vector(struct apic_chip_data *data) 544 { 545 raw_spin_lock(&vector_lock); 546 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); 547 data->move_in_progress = 0; 548 if (!cpumask_empty(data->old_domain)) 549 apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR); 550 raw_spin_unlock(&vector_lock); 551 } 552 553 void send_cleanup_vector(struct irq_cfg *cfg) 554 { 555 struct apic_chip_data *data; 556 557 data = container_of(cfg, struct apic_chip_data, cfg); 558 if (data->move_in_progress) 559 __send_cleanup_vector(data); 560 } 561 562 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void) 563 { 564 unsigned vector, me; 565 566 entering_ack_irq(); 567 568 /* Prevent vectors vanishing under us */ 569 raw_spin_lock(&vector_lock); 570 571 me = smp_processor_id(); 572 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 573 struct apic_chip_data *data; 574 struct irq_desc *desc; 575 unsigned int irr; 576 577 retry: 578 desc = __this_cpu_read(vector_irq[vector]); 579 if (IS_ERR_OR_NULL(desc)) 580 continue; 581 582 if (!raw_spin_trylock(&desc->lock)) { 583 raw_spin_unlock(&vector_lock); 584 cpu_relax(); 585 raw_spin_lock(&vector_lock); 586 goto retry; 587 } 588 589 data = apic_chip_data(irq_desc_get_irq_data(desc)); 590 if (!data) 591 goto unlock; 592 593 /* 594 * Nothing to cleanup if irq migration is in progress 595 * or this cpu is not set in the cleanup mask. 596 */ 597 if (data->move_in_progress || 598 !cpumask_test_cpu(me, data->old_domain)) 599 goto unlock; 600 601 /* 602 * We have two cases to handle here: 603 * 1) vector is unchanged but the target mask got reduced 604 * 2) vector and the target mask has changed 605 * 606 * #1 is obvious, but in #2 we have two vectors with the same 607 * irq descriptor: the old and the new vector. So we need to 608 * make sure that we only cleanup the old vector. The new 609 * vector has the current @vector number in the config and 610 * this cpu is part of the target mask. We better leave that 611 * one alone. 612 */ 613 if (vector == data->cfg.vector && 614 cpumask_test_cpu(me, data->domain)) 615 goto unlock; 616 617 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 618 /* 619 * Check if the vector that needs to be cleanedup is 620 * registered at the cpu's IRR. If so, then this is not 621 * the best time to clean it up. Lets clean it up in the 622 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 623 * to myself. 624 */ 625 if (irr & (1 << (vector % 32))) { 626 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 627 goto unlock; 628 } 629 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 630 cpumask_clear_cpu(me, data->old_domain); 631 unlock: 632 raw_spin_unlock(&desc->lock); 633 } 634 635 raw_spin_unlock(&vector_lock); 636 637 exiting_irq(); 638 } 639 640 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) 641 { 642 unsigned me; 643 struct apic_chip_data *data; 644 645 data = container_of(cfg, struct apic_chip_data, cfg); 646 if (likely(!data->move_in_progress)) 647 return; 648 649 me = smp_processor_id(); 650 if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) 651 __send_cleanup_vector(data); 652 } 653 654 void irq_complete_move(struct irq_cfg *cfg) 655 { 656 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); 657 } 658 659 /* 660 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 661 */ 662 void irq_force_complete_move(struct irq_desc *desc) 663 { 664 struct irq_data *irqdata; 665 struct apic_chip_data *data; 666 struct irq_cfg *cfg; 667 unsigned int cpu; 668 669 /* 670 * The function is called for all descriptors regardless of which 671 * irqdomain they belong to. For example if an IRQ is provided by 672 * an irq_chip as part of a GPIO driver, the chip data for that 673 * descriptor is specific to the irq_chip in question. 674 * 675 * Check first that the chip_data is what we expect 676 * (apic_chip_data) before touching it any further. 677 */ 678 irqdata = irq_domain_get_irq_data(x86_vector_domain, 679 irq_desc_get_irq(desc)); 680 if (!irqdata) 681 return; 682 683 data = apic_chip_data(irqdata); 684 cfg = data ? &data->cfg : NULL; 685 686 if (!cfg) 687 return; 688 689 /* 690 * This is tricky. If the cleanup of @data->old_domain has not been 691 * done yet, then the following setaffinity call will fail with 692 * -EBUSY. This can leave the interrupt in a stale state. 693 * 694 * All CPUs are stuck in stop machine with interrupts disabled so 695 * calling __irq_complete_move() would be completely pointless. 696 */ 697 raw_spin_lock(&vector_lock); 698 /* 699 * Clean out all offline cpus (including the outgoing one) from the 700 * old_domain mask. 701 */ 702 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); 703 704 /* 705 * If move_in_progress is cleared and the old_domain mask is empty, 706 * then there is nothing to cleanup. fixup_irqs() will take care of 707 * the stale vectors on the outgoing cpu. 708 */ 709 if (!data->move_in_progress && cpumask_empty(data->old_domain)) { 710 raw_spin_unlock(&vector_lock); 711 return; 712 } 713 714 /* 715 * 1) The interrupt is in move_in_progress state. That means that we 716 * have not seen an interrupt since the io_apic was reprogrammed to 717 * the new vector. 718 * 719 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 720 * have not been processed yet. 721 */ 722 if (data->move_in_progress) { 723 /* 724 * In theory there is a race: 725 * 726 * set_ioapic(new_vector) <-- Interrupt is raised before update 727 * is effective, i.e. it's raised on 728 * the old vector. 729 * 730 * So if the target cpu cannot handle that interrupt before 731 * the old vector is cleaned up, we get a spurious interrupt 732 * and in the worst case the ioapic irq line becomes stale. 733 * 734 * But in case of cpu hotplug this should be a non issue 735 * because if the affinity update happens right before all 736 * cpus rendevouz in stop machine, there is no way that the 737 * interrupt can be blocked on the target cpu because all cpus 738 * loops first with interrupts enabled in stop machine, so the 739 * old vector is not yet cleaned up when the interrupt fires. 740 * 741 * So the only way to run into this issue is if the delivery 742 * of the interrupt on the apic/system bus would be delayed 743 * beyond the point where the target cpu disables interrupts 744 * in stop machine. I doubt that it can happen, but at least 745 * there is a theroretical chance. Virtualization might be 746 * able to expose this, but AFAICT the IOAPIC emulation is not 747 * as stupid as the real hardware. 748 * 749 * Anyway, there is nothing we can do about that at this point 750 * w/o refactoring the whole fixup_irq() business completely. 751 * We print at least the irq number and the old vector number, 752 * so we have the necessary information when a problem in that 753 * area arises. 754 */ 755 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 756 irqdata->irq, cfg->old_vector); 757 } 758 /* 759 * If old_domain is not empty, then other cpus still have the irq 760 * descriptor set in their vector array. Clean it up. 761 */ 762 for_each_cpu(cpu, data->old_domain) 763 per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED; 764 765 /* Cleanup the left overs of the (half finished) move */ 766 cpumask_clear(data->old_domain); 767 data->move_in_progress = 0; 768 raw_spin_unlock(&vector_lock); 769 } 770 #endif 771 772 static void __init print_APIC_field(int base) 773 { 774 int i; 775 776 printk(KERN_DEBUG); 777 778 for (i = 0; i < 8; i++) 779 pr_cont("%08x", apic_read(base + i*0x10)); 780 781 pr_cont("\n"); 782 } 783 784 static void __init print_local_APIC(void *dummy) 785 { 786 unsigned int i, v, ver, maxlvt; 787 u64 icr; 788 789 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 790 smp_processor_id(), hard_smp_processor_id()); 791 v = apic_read(APIC_ID); 792 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 793 v = apic_read(APIC_LVR); 794 pr_info("... APIC VERSION: %08x\n", v); 795 ver = GET_APIC_VERSION(v); 796 maxlvt = lapic_get_maxlvt(); 797 798 v = apic_read(APIC_TASKPRI); 799 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 800 801 /* !82489DX */ 802 if (APIC_INTEGRATED(ver)) { 803 if (!APIC_XAPIC(ver)) { 804 v = apic_read(APIC_ARBPRI); 805 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 806 v, v & APIC_ARBPRI_MASK); 807 } 808 v = apic_read(APIC_PROCPRI); 809 pr_debug("... APIC PROCPRI: %08x\n", v); 810 } 811 812 /* 813 * Remote read supported only in the 82489DX and local APIC for 814 * Pentium processors. 815 */ 816 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 817 v = apic_read(APIC_RRR); 818 pr_debug("... APIC RRR: %08x\n", v); 819 } 820 821 v = apic_read(APIC_LDR); 822 pr_debug("... APIC LDR: %08x\n", v); 823 if (!x2apic_enabled()) { 824 v = apic_read(APIC_DFR); 825 pr_debug("... APIC DFR: %08x\n", v); 826 } 827 v = apic_read(APIC_SPIV); 828 pr_debug("... APIC SPIV: %08x\n", v); 829 830 pr_debug("... APIC ISR field:\n"); 831 print_APIC_field(APIC_ISR); 832 pr_debug("... APIC TMR field:\n"); 833 print_APIC_field(APIC_TMR); 834 pr_debug("... APIC IRR field:\n"); 835 print_APIC_field(APIC_IRR); 836 837 /* !82489DX */ 838 if (APIC_INTEGRATED(ver)) { 839 /* Due to the Pentium erratum 3AP. */ 840 if (maxlvt > 3) 841 apic_write(APIC_ESR, 0); 842 843 v = apic_read(APIC_ESR); 844 pr_debug("... APIC ESR: %08x\n", v); 845 } 846 847 icr = apic_icr_read(); 848 pr_debug("... APIC ICR: %08x\n", (u32)icr); 849 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 850 851 v = apic_read(APIC_LVTT); 852 pr_debug("... APIC LVTT: %08x\n", v); 853 854 if (maxlvt > 3) { 855 /* PC is LVT#4. */ 856 v = apic_read(APIC_LVTPC); 857 pr_debug("... APIC LVTPC: %08x\n", v); 858 } 859 v = apic_read(APIC_LVT0); 860 pr_debug("... APIC LVT0: %08x\n", v); 861 v = apic_read(APIC_LVT1); 862 pr_debug("... APIC LVT1: %08x\n", v); 863 864 if (maxlvt > 2) { 865 /* ERR is LVT#3. */ 866 v = apic_read(APIC_LVTERR); 867 pr_debug("... APIC LVTERR: %08x\n", v); 868 } 869 870 v = apic_read(APIC_TMICT); 871 pr_debug("... APIC TMICT: %08x\n", v); 872 v = apic_read(APIC_TMCCT); 873 pr_debug("... APIC TMCCT: %08x\n", v); 874 v = apic_read(APIC_TDCR); 875 pr_debug("... APIC TDCR: %08x\n", v); 876 877 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 878 v = apic_read(APIC_EFEAT); 879 maxlvt = (v >> 16) & 0xff; 880 pr_debug("... APIC EFEAT: %08x\n", v); 881 v = apic_read(APIC_ECTRL); 882 pr_debug("... APIC ECTRL: %08x\n", v); 883 for (i = 0; i < maxlvt; i++) { 884 v = apic_read(APIC_EILVTn(i)); 885 pr_debug("... APIC EILVT%d: %08x\n", i, v); 886 } 887 } 888 pr_cont("\n"); 889 } 890 891 static void __init print_local_APICs(int maxcpu) 892 { 893 int cpu; 894 895 if (!maxcpu) 896 return; 897 898 preempt_disable(); 899 for_each_online_cpu(cpu) { 900 if (cpu >= maxcpu) 901 break; 902 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 903 } 904 preempt_enable(); 905 } 906 907 static void __init print_PIC(void) 908 { 909 unsigned int v; 910 unsigned long flags; 911 912 if (!nr_legacy_irqs()) 913 return; 914 915 pr_debug("\nprinting PIC contents\n"); 916 917 raw_spin_lock_irqsave(&i8259A_lock, flags); 918 919 v = inb(0xa1) << 8 | inb(0x21); 920 pr_debug("... PIC IMR: %04x\n", v); 921 922 v = inb(0xa0) << 8 | inb(0x20); 923 pr_debug("... PIC IRR: %04x\n", v); 924 925 outb(0x0b, 0xa0); 926 outb(0x0b, 0x20); 927 v = inb(0xa0) << 8 | inb(0x20); 928 outb(0x0a, 0xa0); 929 outb(0x0a, 0x20); 930 931 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 932 933 pr_debug("... PIC ISR: %04x\n", v); 934 935 v = inb(0x4d1) << 8 | inb(0x4d0); 936 pr_debug("... PIC ELCR: %04x\n", v); 937 } 938 939 static int show_lapic __initdata = 1; 940 static __init int setup_show_lapic(char *arg) 941 { 942 int num = -1; 943 944 if (strcmp(arg, "all") == 0) { 945 show_lapic = CONFIG_NR_CPUS; 946 } else { 947 get_option(&arg, &num); 948 if (num >= 0) 949 show_lapic = num; 950 } 951 952 return 1; 953 } 954 __setup("show_lapic=", setup_show_lapic); 955 956 static int __init print_ICs(void) 957 { 958 if (apic_verbosity == APIC_QUIET) 959 return 0; 960 961 print_PIC(); 962 963 /* don't print out if apic is not there */ 964 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 965 return 0; 966 967 print_local_APICs(show_lapic); 968 print_IO_APICs(); 969 970 return 0; 971 } 972 973 late_initcall(print_ICs); 974