1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC related interfaces to support IOAPIC, MSI, etc. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Enable support of hierarchical irqdomains 9 */ 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/seq_file.h> 13 #include <linux/init.h> 14 #include <linux/compiler.h> 15 #include <linux/slab.h> 16 #include <asm/irqdomain.h> 17 #include <asm/hw_irq.h> 18 #include <asm/traps.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 #include <asm/trace/irq_vectors.h> 25 26 struct apic_chip_data { 27 struct irq_cfg hw_irq_cfg; 28 unsigned int vector; 29 unsigned int prev_vector; 30 unsigned int cpu; 31 unsigned int prev_cpu; 32 unsigned int irq; 33 struct hlist_node clist; 34 unsigned int move_in_progress : 1, 35 is_managed : 1, 36 can_reserve : 1, 37 has_reserved : 1; 38 }; 39 40 struct irq_domain *x86_vector_domain; 41 EXPORT_SYMBOL_GPL(x86_vector_domain); 42 static DEFINE_RAW_SPINLOCK(vector_lock); 43 static cpumask_var_t vector_searchmask; 44 static struct irq_chip lapic_controller; 45 static struct irq_matrix *vector_matrix; 46 #ifdef CONFIG_SMP 47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list); 48 #endif 49 50 void lock_vector_lock(void) 51 { 52 /* Used to the online set of cpus does not change 53 * during assign_irq_vector. 54 */ 55 raw_spin_lock(&vector_lock); 56 } 57 58 void unlock_vector_lock(void) 59 { 60 raw_spin_unlock(&vector_lock); 61 } 62 63 void init_irq_alloc_info(struct irq_alloc_info *info, 64 const struct cpumask *mask) 65 { 66 memset(info, 0, sizeof(*info)); 67 info->mask = mask; 68 } 69 70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 71 { 72 if (src) 73 *dst = *src; 74 else 75 memset(dst, 0, sizeof(*dst)); 76 } 77 78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 79 { 80 if (!irqd) 81 return NULL; 82 83 while (irqd->parent_data) 84 irqd = irqd->parent_data; 85 86 return irqd->chip_data; 87 } 88 89 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 90 { 91 struct apic_chip_data *apicd = apic_chip_data(irqd); 92 93 return apicd ? &apicd->hw_irq_cfg : NULL; 94 } 95 EXPORT_SYMBOL_GPL(irqd_cfg); 96 97 struct irq_cfg *irq_cfg(unsigned int irq) 98 { 99 return irqd_cfg(irq_get_irq_data(irq)); 100 } 101 102 static struct apic_chip_data *alloc_apic_chip_data(int node) 103 { 104 struct apic_chip_data *apicd; 105 106 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 107 if (apicd) 108 INIT_HLIST_NODE(&apicd->clist); 109 return apicd; 110 } 111 112 static void free_apic_chip_data(struct apic_chip_data *apicd) 113 { 114 kfree(apicd); 115 } 116 117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 118 unsigned int cpu) 119 { 120 struct apic_chip_data *apicd = apic_chip_data(irqd); 121 122 lockdep_assert_held(&vector_lock); 123 124 apicd->hw_irq_cfg.vector = vector; 125 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 126 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 127 trace_vector_config(irqd->irq, vector, cpu, 128 apicd->hw_irq_cfg.dest_apicid); 129 } 130 131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, 132 unsigned int newcpu) 133 { 134 struct apic_chip_data *apicd = apic_chip_data(irqd); 135 struct irq_desc *desc = irq_data_to_desc(irqd); 136 bool managed = irqd_affinity_is_managed(irqd); 137 138 lockdep_assert_held(&vector_lock); 139 140 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 141 apicd->cpu); 142 143 /* 144 * If there is no vector associated or if the associated vector is 145 * the shutdown vector, which is associated to make PCI/MSI 146 * shutdown mode work, then there is nothing to release. Clear out 147 * prev_vector for this and the offlined target case. 148 */ 149 apicd->prev_vector = 0; 150 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) 151 goto setnew; 152 /* 153 * If the target CPU of the previous vector is online, then mark 154 * the vector as move in progress and store it for cleanup when the 155 * first interrupt on the new vector arrives. If the target CPU is 156 * offline then the regular release mechanism via the cleanup 157 * vector is not possible and the vector can be immediately freed 158 * in the underlying matrix allocator. 159 */ 160 if (cpu_online(apicd->cpu)) { 161 apicd->move_in_progress = true; 162 apicd->prev_vector = apicd->vector; 163 apicd->prev_cpu = apicd->cpu; 164 WARN_ON_ONCE(apicd->cpu == newcpu); 165 } else { 166 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector, 167 managed); 168 } 169 170 setnew: 171 apicd->vector = newvec; 172 apicd->cpu = newcpu; 173 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 174 per_cpu(vector_irq, newcpu)[newvec] = desc; 175 } 176 177 static void vector_assign_managed_shutdown(struct irq_data *irqd) 178 { 179 unsigned int cpu = cpumask_first(cpu_online_mask); 180 181 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 182 } 183 184 static int reserve_managed_vector(struct irq_data *irqd) 185 { 186 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 187 struct apic_chip_data *apicd = apic_chip_data(irqd); 188 unsigned long flags; 189 int ret; 190 191 raw_spin_lock_irqsave(&vector_lock, flags); 192 apicd->is_managed = true; 193 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 194 raw_spin_unlock_irqrestore(&vector_lock, flags); 195 trace_vector_reserve_managed(irqd->irq, ret); 196 return ret; 197 } 198 199 static void reserve_irq_vector_locked(struct irq_data *irqd) 200 { 201 struct apic_chip_data *apicd = apic_chip_data(irqd); 202 203 irq_matrix_reserve(vector_matrix); 204 apicd->can_reserve = true; 205 apicd->has_reserved = true; 206 irqd_set_can_reserve(irqd); 207 trace_vector_reserve(irqd->irq, 0); 208 vector_assign_managed_shutdown(irqd); 209 } 210 211 static int reserve_irq_vector(struct irq_data *irqd) 212 { 213 unsigned long flags; 214 215 raw_spin_lock_irqsave(&vector_lock, flags); 216 reserve_irq_vector_locked(irqd); 217 raw_spin_unlock_irqrestore(&vector_lock, flags); 218 return 0; 219 } 220 221 static int 222 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) 223 { 224 struct apic_chip_data *apicd = apic_chip_data(irqd); 225 bool resvd = apicd->has_reserved; 226 unsigned int cpu = apicd->cpu; 227 int vector = apicd->vector; 228 229 lockdep_assert_held(&vector_lock); 230 231 /* 232 * If the current target CPU is online and in the new requested 233 * affinity mask, there is no point in moving the interrupt from 234 * one CPU to another. 235 */ 236 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 237 return 0; 238 239 /* 240 * Careful here. @apicd might either have move_in_progress set or 241 * be enqueued for cleanup. Assigning a new vector would either 242 * leave a stale vector on some CPU around or in case of a pending 243 * cleanup corrupt the hlist. 244 */ 245 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) 246 return -EBUSY; 247 248 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 249 trace_vector_alloc(irqd->irq, vector, resvd, vector); 250 if (vector < 0) 251 return vector; 252 apic_update_vector(irqd, vector, cpu); 253 apic_update_irq_cfg(irqd, vector, cpu); 254 255 return 0; 256 } 257 258 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 259 { 260 unsigned long flags; 261 int ret; 262 263 raw_spin_lock_irqsave(&vector_lock, flags); 264 cpumask_and(vector_searchmask, dest, cpu_online_mask); 265 ret = assign_vector_locked(irqd, vector_searchmask); 266 raw_spin_unlock_irqrestore(&vector_lock, flags); 267 return ret; 268 } 269 270 static int assign_irq_vector_any_locked(struct irq_data *irqd) 271 { 272 /* Get the affinity mask - either irq_default_affinity or (user) set */ 273 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 274 int node = irq_data_get_node(irqd); 275 276 if (node != NUMA_NO_NODE) { 277 /* Try the intersection of @affmsk and node mask */ 278 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 279 if (!assign_vector_locked(irqd, vector_searchmask)) 280 return 0; 281 } 282 283 /* Try the full affinity mask */ 284 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 285 if (!assign_vector_locked(irqd, vector_searchmask)) 286 return 0; 287 288 if (node != NUMA_NO_NODE) { 289 /* Try the node mask */ 290 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 291 return 0; 292 } 293 294 /* Try the full online mask */ 295 return assign_vector_locked(irqd, cpu_online_mask); 296 } 297 298 static int 299 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 300 { 301 if (irqd_affinity_is_managed(irqd)) 302 return reserve_managed_vector(irqd); 303 if (info->mask) 304 return assign_irq_vector(irqd, info->mask); 305 /* 306 * Make only a global reservation with no guarantee. A real vector 307 * is associated at activation time. 308 */ 309 return reserve_irq_vector(irqd); 310 } 311 312 static int 313 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 314 { 315 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 316 struct apic_chip_data *apicd = apic_chip_data(irqd); 317 int vector, cpu; 318 319 cpumask_and(vector_searchmask, dest, affmsk); 320 321 /* set_affinity might call here for nothing */ 322 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 323 return 0; 324 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, 325 &cpu); 326 trace_vector_alloc_managed(irqd->irq, vector, vector); 327 if (vector < 0) 328 return vector; 329 apic_update_vector(irqd, vector, cpu); 330 apic_update_irq_cfg(irqd, vector, cpu); 331 return 0; 332 } 333 334 static void clear_irq_vector(struct irq_data *irqd) 335 { 336 struct apic_chip_data *apicd = apic_chip_data(irqd); 337 bool managed = irqd_affinity_is_managed(irqd); 338 unsigned int vector = apicd->vector; 339 340 lockdep_assert_held(&vector_lock); 341 342 if (!vector) 343 return; 344 345 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 346 apicd->prev_cpu); 347 348 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN; 349 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); 350 apicd->vector = 0; 351 352 /* Clean up move in progress */ 353 vector = apicd->prev_vector; 354 if (!vector) 355 return; 356 357 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN; 358 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); 359 apicd->prev_vector = 0; 360 apicd->move_in_progress = 0; 361 hlist_del_init(&apicd->clist); 362 } 363 364 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 365 { 366 struct apic_chip_data *apicd = apic_chip_data(irqd); 367 unsigned long flags; 368 369 trace_vector_deactivate(irqd->irq, apicd->is_managed, 370 apicd->can_reserve, false); 371 372 /* Regular fixed assigned interrupt */ 373 if (!apicd->is_managed && !apicd->can_reserve) 374 return; 375 /* If the interrupt has a global reservation, nothing to do */ 376 if (apicd->has_reserved) 377 return; 378 379 raw_spin_lock_irqsave(&vector_lock, flags); 380 clear_irq_vector(irqd); 381 if (apicd->can_reserve) 382 reserve_irq_vector_locked(irqd); 383 else 384 vector_assign_managed_shutdown(irqd); 385 raw_spin_unlock_irqrestore(&vector_lock, flags); 386 } 387 388 static int activate_reserved(struct irq_data *irqd) 389 { 390 struct apic_chip_data *apicd = apic_chip_data(irqd); 391 int ret; 392 393 ret = assign_irq_vector_any_locked(irqd); 394 if (!ret) { 395 apicd->has_reserved = false; 396 /* 397 * Core might have disabled reservation mode after 398 * allocating the irq descriptor. Ideally this should 399 * happen before allocation time, but that would require 400 * completely convoluted ways of transporting that 401 * information. 402 */ 403 if (!irqd_can_reserve(irqd)) 404 apicd->can_reserve = false; 405 } 406 407 /* 408 * Check to ensure that the effective affinity mask is a subset 409 * the user supplied affinity mask, and warn the user if it is not 410 */ 411 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd), 412 irq_data_get_affinity_mask(irqd))) { 413 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n", 414 irqd->irq); 415 } 416 417 return ret; 418 } 419 420 static int activate_managed(struct irq_data *irqd) 421 { 422 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 423 int ret; 424 425 cpumask_and(vector_searchmask, dest, cpu_online_mask); 426 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 427 /* Something in the core code broke! Survive gracefully */ 428 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 429 return -EINVAL; 430 } 431 432 ret = assign_managed_vector(irqd, vector_searchmask); 433 /* 434 * This should not happen. The vector reservation got buggered. Handle 435 * it gracefully. 436 */ 437 if (WARN_ON_ONCE(ret < 0)) { 438 pr_err("Managed startup irq %u, no vector available\n", 439 irqd->irq); 440 } 441 return ret; 442 } 443 444 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 445 bool reserve) 446 { 447 struct apic_chip_data *apicd = apic_chip_data(irqd); 448 unsigned long flags; 449 int ret = 0; 450 451 trace_vector_activate(irqd->irq, apicd->is_managed, 452 apicd->can_reserve, reserve); 453 454 raw_spin_lock_irqsave(&vector_lock, flags); 455 if (!apicd->can_reserve && !apicd->is_managed) 456 assign_irq_vector_any_locked(irqd); 457 else if (reserve || irqd_is_managed_and_shutdown(irqd)) 458 vector_assign_managed_shutdown(irqd); 459 else if (apicd->is_managed) 460 ret = activate_managed(irqd); 461 else if (apicd->has_reserved) 462 ret = activate_reserved(irqd); 463 raw_spin_unlock_irqrestore(&vector_lock, flags); 464 return ret; 465 } 466 467 static void vector_free_reserved_and_managed(struct irq_data *irqd) 468 { 469 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 470 struct apic_chip_data *apicd = apic_chip_data(irqd); 471 472 trace_vector_teardown(irqd->irq, apicd->is_managed, 473 apicd->has_reserved); 474 475 if (apicd->has_reserved) 476 irq_matrix_remove_reserved(vector_matrix); 477 if (apicd->is_managed) 478 irq_matrix_remove_managed(vector_matrix, dest); 479 } 480 481 static void x86_vector_free_irqs(struct irq_domain *domain, 482 unsigned int virq, unsigned int nr_irqs) 483 { 484 struct apic_chip_data *apicd; 485 struct irq_data *irqd; 486 unsigned long flags; 487 int i; 488 489 for (i = 0; i < nr_irqs; i++) { 490 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 491 if (irqd && irqd->chip_data) { 492 raw_spin_lock_irqsave(&vector_lock, flags); 493 clear_irq_vector(irqd); 494 vector_free_reserved_and_managed(irqd); 495 apicd = irqd->chip_data; 496 irq_domain_reset_irq_data(irqd); 497 raw_spin_unlock_irqrestore(&vector_lock, flags); 498 free_apic_chip_data(apicd); 499 } 500 } 501 } 502 503 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 504 struct apic_chip_data *apicd) 505 { 506 unsigned long flags; 507 bool realloc = false; 508 509 apicd->vector = ISA_IRQ_VECTOR(virq); 510 apicd->cpu = 0; 511 512 raw_spin_lock_irqsave(&vector_lock, flags); 513 /* 514 * If the interrupt is activated, then it must stay at this vector 515 * position. That's usually the timer interrupt (0). 516 */ 517 if (irqd_is_activated(irqd)) { 518 trace_vector_setup(virq, true, 0); 519 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 520 } else { 521 /* Release the vector */ 522 apicd->can_reserve = true; 523 irqd_set_can_reserve(irqd); 524 clear_irq_vector(irqd); 525 realloc = true; 526 } 527 raw_spin_unlock_irqrestore(&vector_lock, flags); 528 return realloc; 529 } 530 531 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 532 unsigned int nr_irqs, void *arg) 533 { 534 struct irq_alloc_info *info = arg; 535 struct apic_chip_data *apicd; 536 struct irq_data *irqd; 537 int i, err, node; 538 539 if (disable_apic) 540 return -ENXIO; 541 542 /* Currently vector allocator can't guarantee contiguous allocations */ 543 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 544 return -ENOSYS; 545 546 /* 547 * Catch any attempt to touch the cascade interrupt on a PIC 548 * equipped system. 549 */ 550 if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY && 551 virq == PIC_CASCADE_IR)) 552 return -EINVAL; 553 554 for (i = 0; i < nr_irqs; i++) { 555 irqd = irq_domain_get_irq_data(domain, virq + i); 556 BUG_ON(!irqd); 557 node = irq_data_get_node(irqd); 558 WARN_ON_ONCE(irqd->chip_data); 559 apicd = alloc_apic_chip_data(node); 560 if (!apicd) { 561 err = -ENOMEM; 562 goto error; 563 } 564 565 apicd->irq = virq + i; 566 irqd->chip = &lapic_controller; 567 irqd->chip_data = apicd; 568 irqd->hwirq = virq + i; 569 irqd_set_single_target(irqd); 570 /* 571 * Prevent that any of these interrupts is invoked in 572 * non interrupt context via e.g. generic_handle_irq() 573 * as that can corrupt the affinity move state. 574 */ 575 irqd_set_handle_enforce_irqctx(irqd); 576 577 /* Don't invoke affinity setter on deactivated interrupts */ 578 irqd_set_affinity_on_activate(irqd); 579 580 /* 581 * Legacy vectors are already assigned when the IOAPIC 582 * takes them over. They stay on the same vector. This is 583 * required for check_timer() to work correctly as it might 584 * switch back to legacy mode. Only update the hardware 585 * config. 586 */ 587 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 588 if (!vector_configure_legacy(virq + i, irqd, apicd)) 589 continue; 590 } 591 592 err = assign_irq_vector_policy(irqd, info); 593 trace_vector_setup(virq + i, false, err); 594 if (err) { 595 irqd->chip_data = NULL; 596 free_apic_chip_data(apicd); 597 goto error; 598 } 599 } 600 601 return 0; 602 603 error: 604 x86_vector_free_irqs(domain, virq, i); 605 return err; 606 } 607 608 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 609 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 610 struct irq_data *irqd, int ind) 611 { 612 struct apic_chip_data apicd; 613 unsigned long flags; 614 int irq; 615 616 if (!irqd) { 617 irq_matrix_debug_show(m, vector_matrix, ind); 618 return; 619 } 620 621 irq = irqd->irq; 622 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 623 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 624 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 625 return; 626 } 627 628 if (!irqd->chip_data) { 629 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 630 return; 631 } 632 633 raw_spin_lock_irqsave(&vector_lock, flags); 634 memcpy(&apicd, irqd->chip_data, sizeof(apicd)); 635 raw_spin_unlock_irqrestore(&vector_lock, flags); 636 637 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); 638 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); 639 if (apicd.prev_vector) { 640 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); 641 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); 642 } 643 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); 644 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); 645 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); 646 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); 647 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); 648 } 649 #endif 650 651 int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec) 652 { 653 if (fwspec->param_count != 1) 654 return 0; 655 656 if (is_fwnode_irqchip(fwspec->fwnode)) { 657 const char *fwname = fwnode_get_name(fwspec->fwnode); 658 return fwname && !strncmp(fwname, "IO-APIC-", 8) && 659 simple_strtol(fwname+8, NULL, 10) == fwspec->param[0]; 660 } 661 return to_of_node(fwspec->fwnode) && 662 of_device_is_compatible(to_of_node(fwspec->fwnode), 663 "intel,ce4100-ioapic"); 664 } 665 666 int x86_fwspec_is_hpet(struct irq_fwspec *fwspec) 667 { 668 if (fwspec->param_count != 1) 669 return 0; 670 671 if (is_fwnode_irqchip(fwspec->fwnode)) { 672 const char *fwname = fwnode_get_name(fwspec->fwnode); 673 return fwname && !strncmp(fwname, "HPET-MSI-", 9) && 674 simple_strtol(fwname+9, NULL, 10) == fwspec->param[0]; 675 } 676 return 0; 677 } 678 679 static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec, 680 enum irq_domain_bus_token bus_token) 681 { 682 /* 683 * HPET and I/OAPIC cannot be parented in the vector domain 684 * if IRQ remapping is enabled. APIC IDs above 15 bits are 685 * only permitted if IRQ remapping is enabled, so check that. 686 */ 687 if (apic->apic_id_valid(32768)) 688 return 0; 689 690 return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec); 691 } 692 693 static const struct irq_domain_ops x86_vector_domain_ops = { 694 .select = x86_vector_select, 695 .alloc = x86_vector_alloc_irqs, 696 .free = x86_vector_free_irqs, 697 .activate = x86_vector_activate, 698 .deactivate = x86_vector_deactivate, 699 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 700 .debug_show = x86_vector_debug_show, 701 #endif 702 }; 703 704 int __init arch_probe_nr_irqs(void) 705 { 706 int nr; 707 708 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 709 nr_irqs = NR_VECTORS * nr_cpu_ids; 710 711 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 712 #if defined(CONFIG_PCI_MSI) 713 /* 714 * for MSI and HT dyn irq 715 */ 716 if (gsi_top <= NR_IRQS_LEGACY) 717 nr += 8 * nr_cpu_ids; 718 else 719 nr += gsi_top * 16; 720 #endif 721 if (nr < nr_irqs) 722 nr_irqs = nr; 723 724 /* 725 * We don't know if PIC is present at this point so we need to do 726 * probe() to get the right number of legacy IRQs. 727 */ 728 return legacy_pic->probe(); 729 } 730 731 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 732 { 733 /* 734 * Use assign system here so it wont get accounted as allocated 735 * and moveable in the cpu hotplug check and it prevents managed 736 * irq reservation from touching it. 737 */ 738 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 739 } 740 741 void __init lapic_update_legacy_vectors(void) 742 { 743 unsigned int i; 744 745 if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0) 746 return; 747 748 /* 749 * If the IO/APIC is disabled via config, kernel command line or 750 * lack of enumeration then all legacy interrupts are routed 751 * through the PIC. Make sure that they are marked as legacy 752 * vectors. PIC_CASCADE_IRQ has already been marked in 753 * lapic_assign_system_vectors(). 754 */ 755 for (i = 0; i < nr_legacy_irqs(); i++) { 756 if (i != PIC_CASCADE_IR) 757 lapic_assign_legacy_vector(i, true); 758 } 759 } 760 761 void __init lapic_assign_system_vectors(void) 762 { 763 unsigned int i, vector; 764 765 for_each_set_bit(vector, system_vectors, NR_VECTORS) 766 irq_matrix_assign_system(vector_matrix, vector, false); 767 768 if (nr_legacy_irqs() > 1) 769 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 770 771 /* System vectors are reserved, online it */ 772 irq_matrix_online(vector_matrix); 773 774 /* Mark the preallocated legacy interrupts */ 775 for (i = 0; i < nr_legacy_irqs(); i++) { 776 /* 777 * Don't touch the cascade interrupt. It's unusable 778 * on PIC equipped machines. See the large comment 779 * in the IO/APIC code. 780 */ 781 if (i != PIC_CASCADE_IR) 782 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 783 } 784 } 785 786 int __init arch_early_irq_init(void) 787 { 788 struct fwnode_handle *fn; 789 790 fn = irq_domain_alloc_named_fwnode("VECTOR"); 791 BUG_ON(!fn); 792 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 793 NULL); 794 BUG_ON(x86_vector_domain == NULL); 795 irq_set_default_host(x86_vector_domain); 796 797 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 798 799 /* 800 * Allocate the vector matrix allocator data structure and limit the 801 * search area. 802 */ 803 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 804 FIRST_SYSTEM_VECTOR); 805 BUG_ON(!vector_matrix); 806 807 return arch_early_ioapic_init(); 808 } 809 810 #ifdef CONFIG_SMP 811 812 static struct irq_desc *__setup_vector_irq(int vector) 813 { 814 int isairq = vector - ISA_IRQ_VECTOR(0); 815 816 /* Check whether the irq is in the legacy space */ 817 if (isairq < 0 || isairq >= nr_legacy_irqs()) 818 return VECTOR_UNUSED; 819 /* Check whether the irq is handled by the IOAPIC */ 820 if (test_bit(isairq, &io_apic_irqs)) 821 return VECTOR_UNUSED; 822 return irq_to_desc(isairq); 823 } 824 825 /* Online the local APIC infrastructure and initialize the vectors */ 826 void lapic_online(void) 827 { 828 unsigned int vector; 829 830 lockdep_assert_held(&vector_lock); 831 832 /* Online the vector matrix array for this CPU */ 833 irq_matrix_online(vector_matrix); 834 835 /* 836 * The interrupt affinity logic never targets interrupts to offline 837 * CPUs. The exception are the legacy PIC interrupts. In general 838 * they are only targeted to CPU0, but depending on the platform 839 * they can be distributed to any online CPU in hardware. The 840 * kernel has no influence on that. So all active legacy vectors 841 * must be installed on all CPUs. All non legacy interrupts can be 842 * cleared. 843 */ 844 for (vector = 0; vector < NR_VECTORS; vector++) 845 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 846 } 847 848 void lapic_offline(void) 849 { 850 lock_vector_lock(); 851 irq_matrix_offline(vector_matrix); 852 unlock_vector_lock(); 853 } 854 855 static int apic_set_affinity(struct irq_data *irqd, 856 const struct cpumask *dest, bool force) 857 { 858 int err; 859 860 if (WARN_ON_ONCE(!irqd_is_activated(irqd))) 861 return -EIO; 862 863 raw_spin_lock(&vector_lock); 864 cpumask_and(vector_searchmask, dest, cpu_online_mask); 865 if (irqd_affinity_is_managed(irqd)) 866 err = assign_managed_vector(irqd, vector_searchmask); 867 else 868 err = assign_vector_locked(irqd, vector_searchmask); 869 raw_spin_unlock(&vector_lock); 870 return err ? err : IRQ_SET_MASK_OK; 871 } 872 873 #else 874 # define apic_set_affinity NULL 875 #endif 876 877 static int apic_retrigger_irq(struct irq_data *irqd) 878 { 879 struct apic_chip_data *apicd = apic_chip_data(irqd); 880 unsigned long flags; 881 882 raw_spin_lock_irqsave(&vector_lock, flags); 883 apic->send_IPI(apicd->cpu, apicd->vector); 884 raw_spin_unlock_irqrestore(&vector_lock, flags); 885 886 return 1; 887 } 888 889 void apic_ack_irq(struct irq_data *irqd) 890 { 891 irq_move_irq(irqd); 892 ack_APIC_irq(); 893 } 894 895 void apic_ack_edge(struct irq_data *irqd) 896 { 897 irq_complete_move(irqd_cfg(irqd)); 898 apic_ack_irq(irqd); 899 } 900 901 static void x86_vector_msi_compose_msg(struct irq_data *data, 902 struct msi_msg *msg) 903 { 904 __irq_msi_compose_msg(irqd_cfg(data), msg, false); 905 } 906 907 static struct irq_chip lapic_controller = { 908 .name = "APIC", 909 .irq_ack = apic_ack_edge, 910 .irq_set_affinity = apic_set_affinity, 911 .irq_compose_msi_msg = x86_vector_msi_compose_msg, 912 .irq_retrigger = apic_retrigger_irq, 913 }; 914 915 #ifdef CONFIG_SMP 916 917 static void free_moved_vector(struct apic_chip_data *apicd) 918 { 919 unsigned int vector = apicd->prev_vector; 920 unsigned int cpu = apicd->prev_cpu; 921 bool managed = apicd->is_managed; 922 923 /* 924 * Managed interrupts are usually not migrated away 925 * from an online CPU, but CPU isolation 'managed_irq' 926 * can make that happen. 927 * 1) Activation does not take the isolation into account 928 * to keep the code simple 929 * 2) Migration away from an isolated CPU can happen when 930 * a non-isolated CPU which is in the calculated 931 * affinity mask comes online. 932 */ 933 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 934 irq_matrix_free(vector_matrix, cpu, vector, managed); 935 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 936 hlist_del_init(&apicd->clist); 937 apicd->prev_vector = 0; 938 apicd->move_in_progress = 0; 939 } 940 941 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup) 942 { 943 struct hlist_head *clhead = this_cpu_ptr(&cleanup_list); 944 struct apic_chip_data *apicd; 945 struct hlist_node *tmp; 946 947 ack_APIC_irq(); 948 /* Prevent vectors vanishing under us */ 949 raw_spin_lock(&vector_lock); 950 951 hlist_for_each_entry_safe(apicd, tmp, clhead, clist) { 952 unsigned int irr, vector = apicd->prev_vector; 953 954 /* 955 * Paranoia: Check if the vector that needs to be cleaned 956 * up is registered at the APICs IRR. If so, then this is 957 * not the best time to clean it up. Clean it up in the 958 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 959 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest 960 * priority external vector, so on return from this 961 * interrupt the device interrupt will happen first. 962 */ 963 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 964 if (irr & (1U << (vector % 32))) { 965 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 966 continue; 967 } 968 free_moved_vector(apicd); 969 } 970 971 raw_spin_unlock(&vector_lock); 972 } 973 974 static void __send_cleanup_vector(struct apic_chip_data *apicd) 975 { 976 unsigned int cpu; 977 978 raw_spin_lock(&vector_lock); 979 apicd->move_in_progress = 0; 980 cpu = apicd->prev_cpu; 981 if (cpu_online(cpu)) { 982 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu)); 983 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR); 984 } else { 985 apicd->prev_vector = 0; 986 } 987 raw_spin_unlock(&vector_lock); 988 } 989 990 void send_cleanup_vector(struct irq_cfg *cfg) 991 { 992 struct apic_chip_data *apicd; 993 994 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 995 if (apicd->move_in_progress) 996 __send_cleanup_vector(apicd); 997 } 998 999 void irq_complete_move(struct irq_cfg *cfg) 1000 { 1001 struct apic_chip_data *apicd; 1002 1003 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 1004 if (likely(!apicd->move_in_progress)) 1005 return; 1006 1007 /* 1008 * If the interrupt arrived on the new target CPU, cleanup the 1009 * vector on the old target CPU. A vector check is not required 1010 * because an interrupt can never move from one vector to another 1011 * on the same CPU. 1012 */ 1013 if (apicd->cpu == smp_processor_id()) 1014 __send_cleanup_vector(apicd); 1015 } 1016 1017 /* 1018 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 1019 */ 1020 void irq_force_complete_move(struct irq_desc *desc) 1021 { 1022 struct apic_chip_data *apicd; 1023 struct irq_data *irqd; 1024 unsigned int vector; 1025 1026 /* 1027 * The function is called for all descriptors regardless of which 1028 * irqdomain they belong to. For example if an IRQ is provided by 1029 * an irq_chip as part of a GPIO driver, the chip data for that 1030 * descriptor is specific to the irq_chip in question. 1031 * 1032 * Check first that the chip_data is what we expect 1033 * (apic_chip_data) before touching it any further. 1034 */ 1035 irqd = irq_domain_get_irq_data(x86_vector_domain, 1036 irq_desc_get_irq(desc)); 1037 if (!irqd) 1038 return; 1039 1040 raw_spin_lock(&vector_lock); 1041 apicd = apic_chip_data(irqd); 1042 if (!apicd) 1043 goto unlock; 1044 1045 /* 1046 * If prev_vector is empty, no action required. 1047 */ 1048 vector = apicd->prev_vector; 1049 if (!vector) 1050 goto unlock; 1051 1052 /* 1053 * This is tricky. If the cleanup of the old vector has not been 1054 * done yet, then the following setaffinity call will fail with 1055 * -EBUSY. This can leave the interrupt in a stale state. 1056 * 1057 * All CPUs are stuck in stop machine with interrupts disabled so 1058 * calling __irq_complete_move() would be completely pointless. 1059 * 1060 * 1) The interrupt is in move_in_progress state. That means that we 1061 * have not seen an interrupt since the io_apic was reprogrammed to 1062 * the new vector. 1063 * 1064 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 1065 * have not been processed yet. 1066 */ 1067 if (apicd->move_in_progress) { 1068 /* 1069 * In theory there is a race: 1070 * 1071 * set_ioapic(new_vector) <-- Interrupt is raised before update 1072 * is effective, i.e. it's raised on 1073 * the old vector. 1074 * 1075 * So if the target cpu cannot handle that interrupt before 1076 * the old vector is cleaned up, we get a spurious interrupt 1077 * and in the worst case the ioapic irq line becomes stale. 1078 * 1079 * But in case of cpu hotplug this should be a non issue 1080 * because if the affinity update happens right before all 1081 * cpus rendezvous in stop machine, there is no way that the 1082 * interrupt can be blocked on the target cpu because all cpus 1083 * loops first with interrupts enabled in stop machine, so the 1084 * old vector is not yet cleaned up when the interrupt fires. 1085 * 1086 * So the only way to run into this issue is if the delivery 1087 * of the interrupt on the apic/system bus would be delayed 1088 * beyond the point where the target cpu disables interrupts 1089 * in stop machine. I doubt that it can happen, but at least 1090 * there is a theoretical chance. Virtualization might be 1091 * able to expose this, but AFAICT the IOAPIC emulation is not 1092 * as stupid as the real hardware. 1093 * 1094 * Anyway, there is nothing we can do about that at this point 1095 * w/o refactoring the whole fixup_irq() business completely. 1096 * We print at least the irq number and the old vector number, 1097 * so we have the necessary information when a problem in that 1098 * area arises. 1099 */ 1100 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 1101 irqd->irq, vector); 1102 } 1103 free_moved_vector(apicd); 1104 unlock: 1105 raw_spin_unlock(&vector_lock); 1106 } 1107 1108 #ifdef CONFIG_HOTPLUG_CPU 1109 /* 1110 * Note, this is not accurate accounting, but at least good enough to 1111 * prevent that the actual interrupt move will run out of vectors. 1112 */ 1113 int lapic_can_unplug_cpu(void) 1114 { 1115 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 1116 int ret = 0; 1117 1118 raw_spin_lock(&vector_lock); 1119 tomove = irq_matrix_allocated(vector_matrix); 1120 avl = irq_matrix_available(vector_matrix, true); 1121 if (avl < tomove) { 1122 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1123 cpu, tomove, avl); 1124 ret = -ENOSPC; 1125 goto out; 1126 } 1127 rsvd = irq_matrix_reserved(vector_matrix); 1128 if (avl < rsvd) { 1129 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1130 rsvd, avl); 1131 } 1132 out: 1133 raw_spin_unlock(&vector_lock); 1134 return ret; 1135 } 1136 #endif /* HOTPLUG_CPU */ 1137 #endif /* SMP */ 1138 1139 static void __init print_APIC_field(int base) 1140 { 1141 int i; 1142 1143 printk(KERN_DEBUG); 1144 1145 for (i = 0; i < 8; i++) 1146 pr_cont("%08x", apic_read(base + i*0x10)); 1147 1148 pr_cont("\n"); 1149 } 1150 1151 static void __init print_local_APIC(void *dummy) 1152 { 1153 unsigned int i, v, ver, maxlvt; 1154 u64 icr; 1155 1156 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1157 smp_processor_id(), hard_smp_processor_id()); 1158 v = apic_read(APIC_ID); 1159 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1160 v = apic_read(APIC_LVR); 1161 pr_info("... APIC VERSION: %08x\n", v); 1162 ver = GET_APIC_VERSION(v); 1163 maxlvt = lapic_get_maxlvt(); 1164 1165 v = apic_read(APIC_TASKPRI); 1166 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1167 1168 /* !82489DX */ 1169 if (APIC_INTEGRATED(ver)) { 1170 if (!APIC_XAPIC(ver)) { 1171 v = apic_read(APIC_ARBPRI); 1172 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1173 v, v & APIC_ARBPRI_MASK); 1174 } 1175 v = apic_read(APIC_PROCPRI); 1176 pr_debug("... APIC PROCPRI: %08x\n", v); 1177 } 1178 1179 /* 1180 * Remote read supported only in the 82489DX and local APIC for 1181 * Pentium processors. 1182 */ 1183 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1184 v = apic_read(APIC_RRR); 1185 pr_debug("... APIC RRR: %08x\n", v); 1186 } 1187 1188 v = apic_read(APIC_LDR); 1189 pr_debug("... APIC LDR: %08x\n", v); 1190 if (!x2apic_enabled()) { 1191 v = apic_read(APIC_DFR); 1192 pr_debug("... APIC DFR: %08x\n", v); 1193 } 1194 v = apic_read(APIC_SPIV); 1195 pr_debug("... APIC SPIV: %08x\n", v); 1196 1197 pr_debug("... APIC ISR field:\n"); 1198 print_APIC_field(APIC_ISR); 1199 pr_debug("... APIC TMR field:\n"); 1200 print_APIC_field(APIC_TMR); 1201 pr_debug("... APIC IRR field:\n"); 1202 print_APIC_field(APIC_IRR); 1203 1204 /* !82489DX */ 1205 if (APIC_INTEGRATED(ver)) { 1206 /* Due to the Pentium erratum 3AP. */ 1207 if (maxlvt > 3) 1208 apic_write(APIC_ESR, 0); 1209 1210 v = apic_read(APIC_ESR); 1211 pr_debug("... APIC ESR: %08x\n", v); 1212 } 1213 1214 icr = apic_icr_read(); 1215 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1216 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1217 1218 v = apic_read(APIC_LVTT); 1219 pr_debug("... APIC LVTT: %08x\n", v); 1220 1221 if (maxlvt > 3) { 1222 /* PC is LVT#4. */ 1223 v = apic_read(APIC_LVTPC); 1224 pr_debug("... APIC LVTPC: %08x\n", v); 1225 } 1226 v = apic_read(APIC_LVT0); 1227 pr_debug("... APIC LVT0: %08x\n", v); 1228 v = apic_read(APIC_LVT1); 1229 pr_debug("... APIC LVT1: %08x\n", v); 1230 1231 if (maxlvt > 2) { 1232 /* ERR is LVT#3. */ 1233 v = apic_read(APIC_LVTERR); 1234 pr_debug("... APIC LVTERR: %08x\n", v); 1235 } 1236 1237 v = apic_read(APIC_TMICT); 1238 pr_debug("... APIC TMICT: %08x\n", v); 1239 v = apic_read(APIC_TMCCT); 1240 pr_debug("... APIC TMCCT: %08x\n", v); 1241 v = apic_read(APIC_TDCR); 1242 pr_debug("... APIC TDCR: %08x\n", v); 1243 1244 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1245 v = apic_read(APIC_EFEAT); 1246 maxlvt = (v >> 16) & 0xff; 1247 pr_debug("... APIC EFEAT: %08x\n", v); 1248 v = apic_read(APIC_ECTRL); 1249 pr_debug("... APIC ECTRL: %08x\n", v); 1250 for (i = 0; i < maxlvt; i++) { 1251 v = apic_read(APIC_EILVTn(i)); 1252 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1253 } 1254 } 1255 pr_cont("\n"); 1256 } 1257 1258 static void __init print_local_APICs(int maxcpu) 1259 { 1260 int cpu; 1261 1262 if (!maxcpu) 1263 return; 1264 1265 preempt_disable(); 1266 for_each_online_cpu(cpu) { 1267 if (cpu >= maxcpu) 1268 break; 1269 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1270 } 1271 preempt_enable(); 1272 } 1273 1274 static void __init print_PIC(void) 1275 { 1276 unsigned int v; 1277 unsigned long flags; 1278 1279 if (!nr_legacy_irqs()) 1280 return; 1281 1282 pr_debug("\nprinting PIC contents\n"); 1283 1284 raw_spin_lock_irqsave(&i8259A_lock, flags); 1285 1286 v = inb(0xa1) << 8 | inb(0x21); 1287 pr_debug("... PIC IMR: %04x\n", v); 1288 1289 v = inb(0xa0) << 8 | inb(0x20); 1290 pr_debug("... PIC IRR: %04x\n", v); 1291 1292 outb(0x0b, 0xa0); 1293 outb(0x0b, 0x20); 1294 v = inb(0xa0) << 8 | inb(0x20); 1295 outb(0x0a, 0xa0); 1296 outb(0x0a, 0x20); 1297 1298 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1299 1300 pr_debug("... PIC ISR: %04x\n", v); 1301 1302 v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1); 1303 pr_debug("... PIC ELCR: %04x\n", v); 1304 } 1305 1306 static int show_lapic __initdata = 1; 1307 static __init int setup_show_lapic(char *arg) 1308 { 1309 int num = -1; 1310 1311 if (strcmp(arg, "all") == 0) { 1312 show_lapic = CONFIG_NR_CPUS; 1313 } else { 1314 get_option(&arg, &num); 1315 if (num >= 0) 1316 show_lapic = num; 1317 } 1318 1319 return 1; 1320 } 1321 __setup("show_lapic=", setup_show_lapic); 1322 1323 static int __init print_ICs(void) 1324 { 1325 if (apic_verbosity == APIC_QUIET) 1326 return 0; 1327 1328 print_PIC(); 1329 1330 /* don't print out if apic is not there */ 1331 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1332 return 0; 1333 1334 print_local_APICs(show_lapic); 1335 print_IO_APICs(); 1336 1337 return 0; 1338 } 1339 1340 late_initcall(print_ICs); 1341