1 /* 2 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * Moved from arch/x86/kernel/apic/io_apic.c. 6 * Jiang Liu <jiang.liu@linux.intel.com> 7 * Enable support of hierarchical irqdomains 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/interrupt.h> 14 #include <linux/init.h> 15 #include <linux/compiler.h> 16 #include <linux/slab.h> 17 #include <asm/irqdomain.h> 18 #include <asm/hw_irq.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 struct apic_chip_data { 25 struct irq_cfg cfg; 26 cpumask_var_t domain; 27 cpumask_var_t old_domain; 28 u8 move_in_progress : 1; 29 }; 30 31 struct irq_domain *x86_vector_domain; 32 EXPORT_SYMBOL_GPL(x86_vector_domain); 33 static DEFINE_RAW_SPINLOCK(vector_lock); 34 static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask; 35 static struct irq_chip lapic_controller; 36 #ifdef CONFIG_X86_IO_APIC 37 static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY]; 38 #endif 39 40 void lock_vector_lock(void) 41 { 42 /* Used to the online set of cpus does not change 43 * during assign_irq_vector. 44 */ 45 raw_spin_lock(&vector_lock); 46 } 47 48 void unlock_vector_lock(void) 49 { 50 raw_spin_unlock(&vector_lock); 51 } 52 53 static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data) 54 { 55 if (!irq_data) 56 return NULL; 57 58 while (irq_data->parent_data) 59 irq_data = irq_data->parent_data; 60 61 return irq_data->chip_data; 62 } 63 64 struct irq_cfg *irqd_cfg(struct irq_data *irq_data) 65 { 66 struct apic_chip_data *data = apic_chip_data(irq_data); 67 68 return data ? &data->cfg : NULL; 69 } 70 EXPORT_SYMBOL_GPL(irqd_cfg); 71 72 struct irq_cfg *irq_cfg(unsigned int irq) 73 { 74 return irqd_cfg(irq_get_irq_data(irq)); 75 } 76 77 static struct apic_chip_data *alloc_apic_chip_data(int node) 78 { 79 struct apic_chip_data *data; 80 81 data = kzalloc_node(sizeof(*data), GFP_KERNEL, node); 82 if (!data) 83 return NULL; 84 if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node)) 85 goto out_data; 86 if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node)) 87 goto out_domain; 88 return data; 89 out_domain: 90 free_cpumask_var(data->domain); 91 out_data: 92 kfree(data); 93 return NULL; 94 } 95 96 static void free_apic_chip_data(struct apic_chip_data *data) 97 { 98 if (data) { 99 free_cpumask_var(data->domain); 100 free_cpumask_var(data->old_domain); 101 kfree(data); 102 } 103 } 104 105 static int __assign_irq_vector(int irq, struct apic_chip_data *d, 106 const struct cpumask *mask, 107 struct irq_data *irqdata) 108 { 109 /* 110 * NOTE! The local APIC isn't very good at handling 111 * multiple interrupts at the same interrupt level. 112 * As the interrupt level is determined by taking the 113 * vector number and shifting that right by 4, we 114 * want to spread these out a bit so that they don't 115 * all fall in the same interrupt level. 116 * 117 * Also, we've got to be careful not to trash gate 118 * 0x80, because int 0x80 is hm, kind of importantish. ;) 119 */ 120 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; 121 static int current_offset = VECTOR_OFFSET_START % 16; 122 int cpu, vector; 123 124 /* 125 * If there is still a move in progress or the previous move has not 126 * been cleaned up completely, tell the caller to come back later. 127 */ 128 if (d->move_in_progress || 129 cpumask_intersects(d->old_domain, cpu_online_mask)) 130 return -EBUSY; 131 132 /* Only try and allocate irqs on cpus that are present */ 133 cpumask_clear(d->old_domain); 134 cpumask_clear(searched_cpumask); 135 cpu = cpumask_first_and(mask, cpu_online_mask); 136 while (cpu < nr_cpu_ids) { 137 int new_cpu, offset; 138 139 /* Get the possible target cpus for @mask/@cpu from the apic */ 140 apic->vector_allocation_domain(cpu, vector_cpumask, mask); 141 142 /* 143 * Clear the offline cpus from @vector_cpumask for searching 144 * and verify whether the result overlaps with @mask. If true, 145 * then the call to apic->cpu_mask_to_apicid() will 146 * succeed as well. If not, no point in trying to find a 147 * vector in this mask. 148 */ 149 cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask); 150 if (!cpumask_intersects(vector_searchmask, mask)) 151 goto next_cpu; 152 153 if (cpumask_subset(vector_cpumask, d->domain)) { 154 if (cpumask_equal(vector_cpumask, d->domain)) 155 goto success; 156 /* 157 * Mark the cpus which are not longer in the mask for 158 * cleanup. 159 */ 160 cpumask_andnot(d->old_domain, d->domain, vector_cpumask); 161 vector = d->cfg.vector; 162 goto update; 163 } 164 165 vector = current_vector; 166 offset = current_offset; 167 next: 168 vector += 16; 169 if (vector >= first_system_vector) { 170 offset = (offset + 1) % 16; 171 vector = FIRST_EXTERNAL_VECTOR + offset; 172 } 173 174 /* If the search wrapped around, try the next cpu */ 175 if (unlikely(current_vector == vector)) 176 goto next_cpu; 177 178 if (test_bit(vector, used_vectors)) 179 goto next; 180 181 for_each_cpu(new_cpu, vector_searchmask) { 182 if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector])) 183 goto next; 184 } 185 /* Found one! */ 186 current_vector = vector; 187 current_offset = offset; 188 /* Schedule the old vector for cleanup on all cpus */ 189 if (d->cfg.vector) 190 cpumask_copy(d->old_domain, d->domain); 191 for_each_cpu(new_cpu, vector_searchmask) 192 per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq); 193 goto update; 194 195 next_cpu: 196 /* 197 * We exclude the current @vector_cpumask from the requested 198 * @mask and try again with the next online cpu in the 199 * result. We cannot modify @mask, so we use @vector_cpumask 200 * as a temporary buffer here as it will be reassigned when 201 * calling apic->vector_allocation_domain() above. 202 */ 203 cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask); 204 cpumask_andnot(vector_cpumask, mask, searched_cpumask); 205 cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); 206 continue; 207 } 208 return -ENOSPC; 209 210 update: 211 /* 212 * Exclude offline cpus from the cleanup mask and set the 213 * move_in_progress flag when the result is not empty. 214 */ 215 cpumask_and(d->old_domain, d->old_domain, cpu_online_mask); 216 d->move_in_progress = !cpumask_empty(d->old_domain); 217 d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0; 218 d->cfg.vector = vector; 219 cpumask_copy(d->domain, vector_cpumask); 220 success: 221 /* 222 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail 223 * as we already established, that mask & d->domain & cpu_online_mask 224 * is not empty. 225 * 226 * vector_searchmask is a subset of d->domain and has the offline 227 * cpus masked out. 228 */ 229 cpumask_and(vector_searchmask, vector_searchmask, mask); 230 BUG_ON(apic->cpu_mask_to_apicid(vector_searchmask, irqdata, 231 &d->cfg.dest_apicid)); 232 return 0; 233 } 234 235 static int assign_irq_vector(int irq, struct apic_chip_data *data, 236 const struct cpumask *mask, 237 struct irq_data *irqdata) 238 { 239 int err; 240 unsigned long flags; 241 242 raw_spin_lock_irqsave(&vector_lock, flags); 243 err = __assign_irq_vector(irq, data, mask, irqdata); 244 raw_spin_unlock_irqrestore(&vector_lock, flags); 245 return err; 246 } 247 248 static int assign_irq_vector_policy(int irq, int node, 249 struct apic_chip_data *data, 250 struct irq_alloc_info *info, 251 struct irq_data *irqdata) 252 { 253 if (info && info->mask) 254 return assign_irq_vector(irq, data, info->mask, irqdata); 255 if (node != NUMA_NO_NODE && 256 assign_irq_vector(irq, data, cpumask_of_node(node), irqdata) == 0) 257 return 0; 258 return assign_irq_vector(irq, data, apic->target_cpus(), irqdata); 259 } 260 261 static void clear_irq_vector(int irq, struct apic_chip_data *data) 262 { 263 struct irq_desc *desc; 264 int cpu, vector; 265 266 if (!data->cfg.vector) 267 return; 268 269 vector = data->cfg.vector; 270 for_each_cpu_and(cpu, data->domain, cpu_online_mask) 271 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 272 273 data->cfg.vector = 0; 274 cpumask_clear(data->domain); 275 276 /* 277 * If move is in progress or the old_domain mask is not empty, 278 * i.e. the cleanup IPI has not been processed yet, we need to remove 279 * the old references to desc from all cpus vector tables. 280 */ 281 if (!data->move_in_progress && cpumask_empty(data->old_domain)) 282 return; 283 284 desc = irq_to_desc(irq); 285 for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) { 286 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 287 vector++) { 288 if (per_cpu(vector_irq, cpu)[vector] != desc) 289 continue; 290 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 291 break; 292 } 293 } 294 data->move_in_progress = 0; 295 } 296 297 void init_irq_alloc_info(struct irq_alloc_info *info, 298 const struct cpumask *mask) 299 { 300 memset(info, 0, sizeof(*info)); 301 info->mask = mask; 302 } 303 304 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 305 { 306 if (src) 307 *dst = *src; 308 else 309 memset(dst, 0, sizeof(*dst)); 310 } 311 312 static void x86_vector_free_irqs(struct irq_domain *domain, 313 unsigned int virq, unsigned int nr_irqs) 314 { 315 struct apic_chip_data *apic_data; 316 struct irq_data *irq_data; 317 unsigned long flags; 318 int i; 319 320 for (i = 0; i < nr_irqs; i++) { 321 irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i); 322 if (irq_data && irq_data->chip_data) { 323 raw_spin_lock_irqsave(&vector_lock, flags); 324 clear_irq_vector(virq + i, irq_data->chip_data); 325 apic_data = irq_data->chip_data; 326 irq_domain_reset_irq_data(irq_data); 327 raw_spin_unlock_irqrestore(&vector_lock, flags); 328 free_apic_chip_data(apic_data); 329 #ifdef CONFIG_X86_IO_APIC 330 if (virq + i < nr_legacy_irqs()) 331 legacy_irq_data[virq + i] = NULL; 332 #endif 333 } 334 } 335 } 336 337 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 338 unsigned int nr_irqs, void *arg) 339 { 340 struct irq_alloc_info *info = arg; 341 struct apic_chip_data *data; 342 struct irq_data *irq_data; 343 int i, err, node; 344 345 if (disable_apic) 346 return -ENXIO; 347 348 /* Currently vector allocator can't guarantee contiguous allocations */ 349 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 350 return -ENOSYS; 351 352 for (i = 0; i < nr_irqs; i++) { 353 irq_data = irq_domain_get_irq_data(domain, virq + i); 354 BUG_ON(!irq_data); 355 node = irq_data_get_node(irq_data); 356 #ifdef CONFIG_X86_IO_APIC 357 if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i]) 358 data = legacy_irq_data[virq + i]; 359 else 360 #endif 361 data = alloc_apic_chip_data(node); 362 if (!data) { 363 err = -ENOMEM; 364 goto error; 365 } 366 367 irq_data->chip = &lapic_controller; 368 irq_data->chip_data = data; 369 irq_data->hwirq = virq + i; 370 err = assign_irq_vector_policy(virq + i, node, data, info, 371 irq_data); 372 if (err) 373 goto error; 374 /* 375 * If the apic destination mode is physical, then the 376 * effective affinity is restricted to a single target 377 * CPU. Mark the interrupt accordingly. 378 */ 379 if (!apic->irq_dest_mode) 380 irqd_set_single_target(irq_data); 381 } 382 383 return 0; 384 385 error: 386 x86_vector_free_irqs(domain, virq, i + 1); 387 return err; 388 } 389 390 static const struct irq_domain_ops x86_vector_domain_ops = { 391 .alloc = x86_vector_alloc_irqs, 392 .free = x86_vector_free_irqs, 393 }; 394 395 int __init arch_probe_nr_irqs(void) 396 { 397 int nr; 398 399 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 400 nr_irqs = NR_VECTORS * nr_cpu_ids; 401 402 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 403 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 404 /* 405 * for MSI and HT dyn irq 406 */ 407 if (gsi_top <= NR_IRQS_LEGACY) 408 nr += 8 * nr_cpu_ids; 409 else 410 nr += gsi_top * 16; 411 #endif 412 if (nr < nr_irqs) 413 nr_irqs = nr; 414 415 /* 416 * We don't know if PIC is present at this point so we need to do 417 * probe() to get the right number of legacy IRQs. 418 */ 419 return legacy_pic->probe(); 420 } 421 422 #ifdef CONFIG_X86_IO_APIC 423 static void __init init_legacy_irqs(void) 424 { 425 int i, node = cpu_to_node(0); 426 struct apic_chip_data *data; 427 428 /* 429 * For legacy IRQ's, start with assigning irq0 to irq15 to 430 * ISA_IRQ_VECTOR(i) for all cpu's. 431 */ 432 for (i = 0; i < nr_legacy_irqs(); i++) { 433 data = legacy_irq_data[i] = alloc_apic_chip_data(node); 434 BUG_ON(!data); 435 436 data->cfg.vector = ISA_IRQ_VECTOR(i); 437 cpumask_setall(data->domain); 438 irq_set_chip_data(i, data); 439 } 440 } 441 #else 442 static inline void init_legacy_irqs(void) { } 443 #endif 444 445 int __init arch_early_irq_init(void) 446 { 447 struct fwnode_handle *fn; 448 449 init_legacy_irqs(); 450 451 fn = irq_domain_alloc_named_fwnode("VECTOR"); 452 BUG_ON(!fn); 453 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 454 NULL); 455 BUG_ON(x86_vector_domain == NULL); 456 irq_domain_free_fwnode(fn); 457 irq_set_default_host(x86_vector_domain); 458 459 arch_init_msi_domain(x86_vector_domain); 460 arch_init_htirq_domain(x86_vector_domain); 461 462 BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); 463 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 464 BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL)); 465 466 return arch_early_ioapic_init(); 467 } 468 469 /* Initialize vector_irq on a new cpu */ 470 static void __setup_vector_irq(int cpu) 471 { 472 struct apic_chip_data *data; 473 struct irq_desc *desc; 474 int irq, vector; 475 476 /* Mark the inuse vectors */ 477 for_each_irq_desc(irq, desc) { 478 struct irq_data *idata = irq_desc_get_irq_data(desc); 479 480 data = apic_chip_data(idata); 481 if (!data || !cpumask_test_cpu(cpu, data->domain)) 482 continue; 483 vector = data->cfg.vector; 484 per_cpu(vector_irq, cpu)[vector] = desc; 485 } 486 /* Mark the free vectors */ 487 for (vector = 0; vector < NR_VECTORS; ++vector) { 488 desc = per_cpu(vector_irq, cpu)[vector]; 489 if (IS_ERR_OR_NULL(desc)) 490 continue; 491 492 data = apic_chip_data(irq_desc_get_irq_data(desc)); 493 if (!cpumask_test_cpu(cpu, data->domain)) 494 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 495 } 496 } 497 498 /* 499 * Setup the vector to irq mappings. Must be called with vector_lock held. 500 */ 501 void setup_vector_irq(int cpu) 502 { 503 int irq; 504 505 lockdep_assert_held(&vector_lock); 506 /* 507 * On most of the platforms, legacy PIC delivers the interrupts on the 508 * boot cpu. But there are certain platforms where PIC interrupts are 509 * delivered to multiple cpu's. If the legacy IRQ is handled by the 510 * legacy PIC, for the new cpu that is coming online, setup the static 511 * legacy vector to irq mapping: 512 */ 513 for (irq = 0; irq < nr_legacy_irqs(); irq++) 514 per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq); 515 516 __setup_vector_irq(cpu); 517 } 518 519 static int apic_retrigger_irq(struct irq_data *irq_data) 520 { 521 struct apic_chip_data *data = apic_chip_data(irq_data); 522 unsigned long flags; 523 int cpu; 524 525 raw_spin_lock_irqsave(&vector_lock, flags); 526 cpu = cpumask_first_and(data->domain, cpu_online_mask); 527 apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector); 528 raw_spin_unlock_irqrestore(&vector_lock, flags); 529 530 return 1; 531 } 532 533 void apic_ack_edge(struct irq_data *data) 534 { 535 irq_complete_move(irqd_cfg(data)); 536 irq_move_irq(data); 537 ack_APIC_irq(); 538 } 539 540 static int apic_set_affinity(struct irq_data *irq_data, 541 const struct cpumask *dest, bool force) 542 { 543 struct apic_chip_data *data = irq_data->chip_data; 544 int err, irq = irq_data->irq; 545 546 if (!IS_ENABLED(CONFIG_SMP)) 547 return -EPERM; 548 549 if (!cpumask_intersects(dest, cpu_online_mask)) 550 return -EINVAL; 551 552 err = assign_irq_vector(irq, data, dest, irq_data); 553 return err ? err : IRQ_SET_MASK_OK; 554 } 555 556 static struct irq_chip lapic_controller = { 557 .name = "APIC", 558 .irq_ack = apic_ack_edge, 559 .irq_set_affinity = apic_set_affinity, 560 .irq_retrigger = apic_retrigger_irq, 561 }; 562 563 #ifdef CONFIG_SMP 564 static void __send_cleanup_vector(struct apic_chip_data *data) 565 { 566 raw_spin_lock(&vector_lock); 567 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); 568 data->move_in_progress = 0; 569 if (!cpumask_empty(data->old_domain)) 570 apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR); 571 raw_spin_unlock(&vector_lock); 572 } 573 574 void send_cleanup_vector(struct irq_cfg *cfg) 575 { 576 struct apic_chip_data *data; 577 578 data = container_of(cfg, struct apic_chip_data, cfg); 579 if (data->move_in_progress) 580 __send_cleanup_vector(data); 581 } 582 583 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void) 584 { 585 unsigned vector, me; 586 587 entering_ack_irq(); 588 589 /* Prevent vectors vanishing under us */ 590 raw_spin_lock(&vector_lock); 591 592 me = smp_processor_id(); 593 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 594 struct apic_chip_data *data; 595 struct irq_desc *desc; 596 unsigned int irr; 597 598 retry: 599 desc = __this_cpu_read(vector_irq[vector]); 600 if (IS_ERR_OR_NULL(desc)) 601 continue; 602 603 if (!raw_spin_trylock(&desc->lock)) { 604 raw_spin_unlock(&vector_lock); 605 cpu_relax(); 606 raw_spin_lock(&vector_lock); 607 goto retry; 608 } 609 610 data = apic_chip_data(irq_desc_get_irq_data(desc)); 611 if (!data) 612 goto unlock; 613 614 /* 615 * Nothing to cleanup if irq migration is in progress 616 * or this cpu is not set in the cleanup mask. 617 */ 618 if (data->move_in_progress || 619 !cpumask_test_cpu(me, data->old_domain)) 620 goto unlock; 621 622 /* 623 * We have two cases to handle here: 624 * 1) vector is unchanged but the target mask got reduced 625 * 2) vector and the target mask has changed 626 * 627 * #1 is obvious, but in #2 we have two vectors with the same 628 * irq descriptor: the old and the new vector. So we need to 629 * make sure that we only cleanup the old vector. The new 630 * vector has the current @vector number in the config and 631 * this cpu is part of the target mask. We better leave that 632 * one alone. 633 */ 634 if (vector == data->cfg.vector && 635 cpumask_test_cpu(me, data->domain)) 636 goto unlock; 637 638 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 639 /* 640 * Check if the vector that needs to be cleanedup is 641 * registered at the cpu's IRR. If so, then this is not 642 * the best time to clean it up. Lets clean it up in the 643 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 644 * to myself. 645 */ 646 if (irr & (1 << (vector % 32))) { 647 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 648 goto unlock; 649 } 650 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 651 cpumask_clear_cpu(me, data->old_domain); 652 unlock: 653 raw_spin_unlock(&desc->lock); 654 } 655 656 raw_spin_unlock(&vector_lock); 657 658 exiting_irq(); 659 } 660 661 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) 662 { 663 unsigned me; 664 struct apic_chip_data *data; 665 666 data = container_of(cfg, struct apic_chip_data, cfg); 667 if (likely(!data->move_in_progress)) 668 return; 669 670 me = smp_processor_id(); 671 if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) 672 __send_cleanup_vector(data); 673 } 674 675 void irq_complete_move(struct irq_cfg *cfg) 676 { 677 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); 678 } 679 680 /* 681 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 682 */ 683 void irq_force_complete_move(struct irq_desc *desc) 684 { 685 struct irq_data *irqdata; 686 struct apic_chip_data *data; 687 struct irq_cfg *cfg; 688 unsigned int cpu; 689 690 /* 691 * The function is called for all descriptors regardless of which 692 * irqdomain they belong to. For example if an IRQ is provided by 693 * an irq_chip as part of a GPIO driver, the chip data for that 694 * descriptor is specific to the irq_chip in question. 695 * 696 * Check first that the chip_data is what we expect 697 * (apic_chip_data) before touching it any further. 698 */ 699 irqdata = irq_domain_get_irq_data(x86_vector_domain, 700 irq_desc_get_irq(desc)); 701 if (!irqdata) 702 return; 703 704 data = apic_chip_data(irqdata); 705 cfg = data ? &data->cfg : NULL; 706 707 if (!cfg) 708 return; 709 710 /* 711 * This is tricky. If the cleanup of @data->old_domain has not been 712 * done yet, then the following setaffinity call will fail with 713 * -EBUSY. This can leave the interrupt in a stale state. 714 * 715 * All CPUs are stuck in stop machine with interrupts disabled so 716 * calling __irq_complete_move() would be completely pointless. 717 */ 718 raw_spin_lock(&vector_lock); 719 /* 720 * Clean out all offline cpus (including the outgoing one) from the 721 * old_domain mask. 722 */ 723 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); 724 725 /* 726 * If move_in_progress is cleared and the old_domain mask is empty, 727 * then there is nothing to cleanup. fixup_irqs() will take care of 728 * the stale vectors on the outgoing cpu. 729 */ 730 if (!data->move_in_progress && cpumask_empty(data->old_domain)) { 731 raw_spin_unlock(&vector_lock); 732 return; 733 } 734 735 /* 736 * 1) The interrupt is in move_in_progress state. That means that we 737 * have not seen an interrupt since the io_apic was reprogrammed to 738 * the new vector. 739 * 740 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 741 * have not been processed yet. 742 */ 743 if (data->move_in_progress) { 744 /* 745 * In theory there is a race: 746 * 747 * set_ioapic(new_vector) <-- Interrupt is raised before update 748 * is effective, i.e. it's raised on 749 * the old vector. 750 * 751 * So if the target cpu cannot handle that interrupt before 752 * the old vector is cleaned up, we get a spurious interrupt 753 * and in the worst case the ioapic irq line becomes stale. 754 * 755 * But in case of cpu hotplug this should be a non issue 756 * because if the affinity update happens right before all 757 * cpus rendevouz in stop machine, there is no way that the 758 * interrupt can be blocked on the target cpu because all cpus 759 * loops first with interrupts enabled in stop machine, so the 760 * old vector is not yet cleaned up when the interrupt fires. 761 * 762 * So the only way to run into this issue is if the delivery 763 * of the interrupt on the apic/system bus would be delayed 764 * beyond the point where the target cpu disables interrupts 765 * in stop machine. I doubt that it can happen, but at least 766 * there is a theroretical chance. Virtualization might be 767 * able to expose this, but AFAICT the IOAPIC emulation is not 768 * as stupid as the real hardware. 769 * 770 * Anyway, there is nothing we can do about that at this point 771 * w/o refactoring the whole fixup_irq() business completely. 772 * We print at least the irq number and the old vector number, 773 * so we have the necessary information when a problem in that 774 * area arises. 775 */ 776 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 777 irqdata->irq, cfg->old_vector); 778 } 779 /* 780 * If old_domain is not empty, then other cpus still have the irq 781 * descriptor set in their vector array. Clean it up. 782 */ 783 for_each_cpu(cpu, data->old_domain) 784 per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED; 785 786 /* Cleanup the left overs of the (half finished) move */ 787 cpumask_clear(data->old_domain); 788 data->move_in_progress = 0; 789 raw_spin_unlock(&vector_lock); 790 } 791 #endif 792 793 static void __init print_APIC_field(int base) 794 { 795 int i; 796 797 printk(KERN_DEBUG); 798 799 for (i = 0; i < 8; i++) 800 pr_cont("%08x", apic_read(base + i*0x10)); 801 802 pr_cont("\n"); 803 } 804 805 static void __init print_local_APIC(void *dummy) 806 { 807 unsigned int i, v, ver, maxlvt; 808 u64 icr; 809 810 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 811 smp_processor_id(), hard_smp_processor_id()); 812 v = apic_read(APIC_ID); 813 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 814 v = apic_read(APIC_LVR); 815 pr_info("... APIC VERSION: %08x\n", v); 816 ver = GET_APIC_VERSION(v); 817 maxlvt = lapic_get_maxlvt(); 818 819 v = apic_read(APIC_TASKPRI); 820 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 821 822 /* !82489DX */ 823 if (APIC_INTEGRATED(ver)) { 824 if (!APIC_XAPIC(ver)) { 825 v = apic_read(APIC_ARBPRI); 826 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 827 v, v & APIC_ARBPRI_MASK); 828 } 829 v = apic_read(APIC_PROCPRI); 830 pr_debug("... APIC PROCPRI: %08x\n", v); 831 } 832 833 /* 834 * Remote read supported only in the 82489DX and local APIC for 835 * Pentium processors. 836 */ 837 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 838 v = apic_read(APIC_RRR); 839 pr_debug("... APIC RRR: %08x\n", v); 840 } 841 842 v = apic_read(APIC_LDR); 843 pr_debug("... APIC LDR: %08x\n", v); 844 if (!x2apic_enabled()) { 845 v = apic_read(APIC_DFR); 846 pr_debug("... APIC DFR: %08x\n", v); 847 } 848 v = apic_read(APIC_SPIV); 849 pr_debug("... APIC SPIV: %08x\n", v); 850 851 pr_debug("... APIC ISR field:\n"); 852 print_APIC_field(APIC_ISR); 853 pr_debug("... APIC TMR field:\n"); 854 print_APIC_field(APIC_TMR); 855 pr_debug("... APIC IRR field:\n"); 856 print_APIC_field(APIC_IRR); 857 858 /* !82489DX */ 859 if (APIC_INTEGRATED(ver)) { 860 /* Due to the Pentium erratum 3AP. */ 861 if (maxlvt > 3) 862 apic_write(APIC_ESR, 0); 863 864 v = apic_read(APIC_ESR); 865 pr_debug("... APIC ESR: %08x\n", v); 866 } 867 868 icr = apic_icr_read(); 869 pr_debug("... APIC ICR: %08x\n", (u32)icr); 870 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 871 872 v = apic_read(APIC_LVTT); 873 pr_debug("... APIC LVTT: %08x\n", v); 874 875 if (maxlvt > 3) { 876 /* PC is LVT#4. */ 877 v = apic_read(APIC_LVTPC); 878 pr_debug("... APIC LVTPC: %08x\n", v); 879 } 880 v = apic_read(APIC_LVT0); 881 pr_debug("... APIC LVT0: %08x\n", v); 882 v = apic_read(APIC_LVT1); 883 pr_debug("... APIC LVT1: %08x\n", v); 884 885 if (maxlvt > 2) { 886 /* ERR is LVT#3. */ 887 v = apic_read(APIC_LVTERR); 888 pr_debug("... APIC LVTERR: %08x\n", v); 889 } 890 891 v = apic_read(APIC_TMICT); 892 pr_debug("... APIC TMICT: %08x\n", v); 893 v = apic_read(APIC_TMCCT); 894 pr_debug("... APIC TMCCT: %08x\n", v); 895 v = apic_read(APIC_TDCR); 896 pr_debug("... APIC TDCR: %08x\n", v); 897 898 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 899 v = apic_read(APIC_EFEAT); 900 maxlvt = (v >> 16) & 0xff; 901 pr_debug("... APIC EFEAT: %08x\n", v); 902 v = apic_read(APIC_ECTRL); 903 pr_debug("... APIC ECTRL: %08x\n", v); 904 for (i = 0; i < maxlvt; i++) { 905 v = apic_read(APIC_EILVTn(i)); 906 pr_debug("... APIC EILVT%d: %08x\n", i, v); 907 } 908 } 909 pr_cont("\n"); 910 } 911 912 static void __init print_local_APICs(int maxcpu) 913 { 914 int cpu; 915 916 if (!maxcpu) 917 return; 918 919 preempt_disable(); 920 for_each_online_cpu(cpu) { 921 if (cpu >= maxcpu) 922 break; 923 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 924 } 925 preempt_enable(); 926 } 927 928 static void __init print_PIC(void) 929 { 930 unsigned int v; 931 unsigned long flags; 932 933 if (!nr_legacy_irqs()) 934 return; 935 936 pr_debug("\nprinting PIC contents\n"); 937 938 raw_spin_lock_irqsave(&i8259A_lock, flags); 939 940 v = inb(0xa1) << 8 | inb(0x21); 941 pr_debug("... PIC IMR: %04x\n", v); 942 943 v = inb(0xa0) << 8 | inb(0x20); 944 pr_debug("... PIC IRR: %04x\n", v); 945 946 outb(0x0b, 0xa0); 947 outb(0x0b, 0x20); 948 v = inb(0xa0) << 8 | inb(0x20); 949 outb(0x0a, 0xa0); 950 outb(0x0a, 0x20); 951 952 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 953 954 pr_debug("... PIC ISR: %04x\n", v); 955 956 v = inb(0x4d1) << 8 | inb(0x4d0); 957 pr_debug("... PIC ELCR: %04x\n", v); 958 } 959 960 static int show_lapic __initdata = 1; 961 static __init int setup_show_lapic(char *arg) 962 { 963 int num = -1; 964 965 if (strcmp(arg, "all") == 0) { 966 show_lapic = CONFIG_NR_CPUS; 967 } else { 968 get_option(&arg, &num); 969 if (num >= 0) 970 show_lapic = num; 971 } 972 973 return 1; 974 } 975 __setup("show_lapic=", setup_show_lapic); 976 977 static int __init print_ICs(void) 978 { 979 if (apic_verbosity == APIC_QUIET) 980 return 0; 981 982 print_PIC(); 983 984 /* don't print out if apic is not there */ 985 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 986 return 0; 987 988 print_local_APICs(show_lapic); 989 print_IO_APICs(); 990 991 return 0; 992 } 993 994 late_initcall(print_ICs); 995