xref: /openbmc/linux/arch/x86/kernel/apic/vector.c (revision 74ce1896)
1 /*
2  * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
3  *
4  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *	Moved from arch/x86/kernel/apic/io_apic.c.
6  * Jiang Liu <jiang.liu@linux.intel.com>
7  *	Enable support of hierarchical irqdomains
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/interrupt.h>
14 #include <linux/init.h>
15 #include <linux/compiler.h>
16 #include <linux/slab.h>
17 #include <asm/irqdomain.h>
18 #include <asm/hw_irq.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 struct apic_chip_data {
25 	struct irq_cfg		cfg;
26 	cpumask_var_t		domain;
27 	cpumask_var_t		old_domain;
28 	u8			move_in_progress : 1;
29 };
30 
31 struct irq_domain *x86_vector_domain;
32 EXPORT_SYMBOL_GPL(x86_vector_domain);
33 static DEFINE_RAW_SPINLOCK(vector_lock);
34 static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
35 static struct irq_chip lapic_controller;
36 #ifdef	CONFIG_X86_IO_APIC
37 static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
38 #endif
39 
40 void lock_vector_lock(void)
41 {
42 	/* Used to the online set of cpus does not change
43 	 * during assign_irq_vector.
44 	 */
45 	raw_spin_lock(&vector_lock);
46 }
47 
48 void unlock_vector_lock(void)
49 {
50 	raw_spin_unlock(&vector_lock);
51 }
52 
53 static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data)
54 {
55 	if (!irq_data)
56 		return NULL;
57 
58 	while (irq_data->parent_data)
59 		irq_data = irq_data->parent_data;
60 
61 	return irq_data->chip_data;
62 }
63 
64 struct irq_cfg *irqd_cfg(struct irq_data *irq_data)
65 {
66 	struct apic_chip_data *data = apic_chip_data(irq_data);
67 
68 	return data ? &data->cfg : NULL;
69 }
70 EXPORT_SYMBOL_GPL(irqd_cfg);
71 
72 struct irq_cfg *irq_cfg(unsigned int irq)
73 {
74 	return irqd_cfg(irq_get_irq_data(irq));
75 }
76 
77 static struct apic_chip_data *alloc_apic_chip_data(int node)
78 {
79 	struct apic_chip_data *data;
80 
81 	data = kzalloc_node(sizeof(*data), GFP_KERNEL, node);
82 	if (!data)
83 		return NULL;
84 	if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node))
85 		goto out_data;
86 	if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node))
87 		goto out_domain;
88 	return data;
89 out_domain:
90 	free_cpumask_var(data->domain);
91 out_data:
92 	kfree(data);
93 	return NULL;
94 }
95 
96 static void free_apic_chip_data(struct apic_chip_data *data)
97 {
98 	if (data) {
99 		free_cpumask_var(data->domain);
100 		free_cpumask_var(data->old_domain);
101 		kfree(data);
102 	}
103 }
104 
105 static int __assign_irq_vector(int irq, struct apic_chip_data *d,
106 			       const struct cpumask *mask,
107 			       struct irq_data *irqdata)
108 {
109 	/*
110 	 * NOTE! The local APIC isn't very good at handling
111 	 * multiple interrupts at the same interrupt level.
112 	 * As the interrupt level is determined by taking the
113 	 * vector number and shifting that right by 4, we
114 	 * want to spread these out a bit so that they don't
115 	 * all fall in the same interrupt level.
116 	 *
117 	 * Also, we've got to be careful not to trash gate
118 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
119 	 */
120 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
121 	static int current_offset = VECTOR_OFFSET_START % 16;
122 	int cpu, vector;
123 
124 	/*
125 	 * If there is still a move in progress or the previous move has not
126 	 * been cleaned up completely, tell the caller to come back later.
127 	 */
128 	if (d->move_in_progress ||
129 	    cpumask_intersects(d->old_domain, cpu_online_mask))
130 		return -EBUSY;
131 
132 	/* Only try and allocate irqs on cpus that are present */
133 	cpumask_clear(d->old_domain);
134 	cpumask_clear(searched_cpumask);
135 	cpu = cpumask_first_and(mask, cpu_online_mask);
136 	while (cpu < nr_cpu_ids) {
137 		int new_cpu, offset;
138 
139 		/* Get the possible target cpus for @mask/@cpu from the apic */
140 		apic->vector_allocation_domain(cpu, vector_cpumask, mask);
141 
142 		/*
143 		 * Clear the offline cpus from @vector_cpumask for searching
144 		 * and verify whether the result overlaps with @mask. If true,
145 		 * then the call to apic->cpu_mask_to_apicid() will
146 		 * succeed as well. If not, no point in trying to find a
147 		 * vector in this mask.
148 		 */
149 		cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
150 		if (!cpumask_intersects(vector_searchmask, mask))
151 			goto next_cpu;
152 
153 		if (cpumask_subset(vector_cpumask, d->domain)) {
154 			if (cpumask_equal(vector_cpumask, d->domain))
155 				goto success;
156 			/*
157 			 * Mark the cpus which are not longer in the mask for
158 			 * cleanup.
159 			 */
160 			cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
161 			vector = d->cfg.vector;
162 			goto update;
163 		}
164 
165 		vector = current_vector;
166 		offset = current_offset;
167 next:
168 		vector += 16;
169 		if (vector >= FIRST_SYSTEM_VECTOR) {
170 			offset = (offset + 1) % 16;
171 			vector = FIRST_EXTERNAL_VECTOR + offset;
172 		}
173 
174 		/* If the search wrapped around, try the next cpu */
175 		if (unlikely(current_vector == vector))
176 			goto next_cpu;
177 
178 		if (test_bit(vector, used_vectors))
179 			goto next;
180 
181 		for_each_cpu(new_cpu, vector_searchmask) {
182 			if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
183 				goto next;
184 		}
185 		/* Found one! */
186 		current_vector = vector;
187 		current_offset = offset;
188 		/* Schedule the old vector for cleanup on all cpus */
189 		if (d->cfg.vector)
190 			cpumask_copy(d->old_domain, d->domain);
191 		for_each_cpu(new_cpu, vector_searchmask)
192 			per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
193 		goto update;
194 
195 next_cpu:
196 		/*
197 		 * We exclude the current @vector_cpumask from the requested
198 		 * @mask and try again with the next online cpu in the
199 		 * result. We cannot modify @mask, so we use @vector_cpumask
200 		 * as a temporary buffer here as it will be reassigned when
201 		 * calling apic->vector_allocation_domain() above.
202 		 */
203 		cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
204 		cpumask_andnot(vector_cpumask, mask, searched_cpumask);
205 		cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
206 		continue;
207 	}
208 	return -ENOSPC;
209 
210 update:
211 	/*
212 	 * Exclude offline cpus from the cleanup mask and set the
213 	 * move_in_progress flag when the result is not empty.
214 	 */
215 	cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
216 	d->move_in_progress = !cpumask_empty(d->old_domain);
217 	d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0;
218 	d->cfg.vector = vector;
219 	cpumask_copy(d->domain, vector_cpumask);
220 success:
221 	/*
222 	 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
223 	 * as we already established, that mask & d->domain & cpu_online_mask
224 	 * is not empty.
225 	 *
226 	 * vector_searchmask is a subset of d->domain and has the offline
227 	 * cpus masked out.
228 	 */
229 	cpumask_and(vector_searchmask, vector_searchmask, mask);
230 	BUG_ON(apic->cpu_mask_to_apicid(vector_searchmask, irqdata,
231 					&d->cfg.dest_apicid));
232 	return 0;
233 }
234 
235 static int assign_irq_vector(int irq, struct apic_chip_data *data,
236 			     const struct cpumask *mask,
237 			     struct irq_data *irqdata)
238 {
239 	int err;
240 	unsigned long flags;
241 
242 	raw_spin_lock_irqsave(&vector_lock, flags);
243 	err = __assign_irq_vector(irq, data, mask, irqdata);
244 	raw_spin_unlock_irqrestore(&vector_lock, flags);
245 	return err;
246 }
247 
248 static int assign_irq_vector_policy(int irq, int node,
249 				    struct apic_chip_data *data,
250 				    struct irq_alloc_info *info,
251 				    struct irq_data *irqdata)
252 {
253 	if (info && info->mask)
254 		return assign_irq_vector(irq, data, info->mask, irqdata);
255 	if (node != NUMA_NO_NODE &&
256 	    assign_irq_vector(irq, data, cpumask_of_node(node), irqdata) == 0)
257 		return 0;
258 	return assign_irq_vector(irq, data, apic->target_cpus(), irqdata);
259 }
260 
261 static void clear_irq_vector(int irq, struct apic_chip_data *data)
262 {
263 	struct irq_desc *desc;
264 	int cpu, vector;
265 
266 	if (!data->cfg.vector)
267 		return;
268 
269 	vector = data->cfg.vector;
270 	for_each_cpu_and(cpu, data->domain, cpu_online_mask)
271 		per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
272 
273 	data->cfg.vector = 0;
274 	cpumask_clear(data->domain);
275 
276 	/*
277 	 * If move is in progress or the old_domain mask is not empty,
278 	 * i.e. the cleanup IPI has not been processed yet, we need to remove
279 	 * the old references to desc from all cpus vector tables.
280 	 */
281 	if (!data->move_in_progress && cpumask_empty(data->old_domain))
282 		return;
283 
284 	desc = irq_to_desc(irq);
285 	for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) {
286 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
287 		     vector++) {
288 			if (per_cpu(vector_irq, cpu)[vector] != desc)
289 				continue;
290 			per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
291 			break;
292 		}
293 	}
294 	data->move_in_progress = 0;
295 }
296 
297 void init_irq_alloc_info(struct irq_alloc_info *info,
298 			 const struct cpumask *mask)
299 {
300 	memset(info, 0, sizeof(*info));
301 	info->mask = mask;
302 }
303 
304 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
305 {
306 	if (src)
307 		*dst = *src;
308 	else
309 		memset(dst, 0, sizeof(*dst));
310 }
311 
312 static void x86_vector_free_irqs(struct irq_domain *domain,
313 				 unsigned int virq, unsigned int nr_irqs)
314 {
315 	struct apic_chip_data *apic_data;
316 	struct irq_data *irq_data;
317 	unsigned long flags;
318 	int i;
319 
320 	for (i = 0; i < nr_irqs; i++) {
321 		irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i);
322 		if (irq_data && irq_data->chip_data) {
323 			raw_spin_lock_irqsave(&vector_lock, flags);
324 			clear_irq_vector(virq + i, irq_data->chip_data);
325 			apic_data = irq_data->chip_data;
326 			irq_domain_reset_irq_data(irq_data);
327 			raw_spin_unlock_irqrestore(&vector_lock, flags);
328 			free_apic_chip_data(apic_data);
329 #ifdef	CONFIG_X86_IO_APIC
330 			if (virq + i < nr_legacy_irqs())
331 				legacy_irq_data[virq + i] = NULL;
332 #endif
333 		}
334 	}
335 }
336 
337 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
338 				 unsigned int nr_irqs, void *arg)
339 {
340 	struct irq_alloc_info *info = arg;
341 	struct apic_chip_data *data;
342 	struct irq_data *irq_data;
343 	int i, err, node;
344 
345 	if (disable_apic)
346 		return -ENXIO;
347 
348 	/* Currently vector allocator can't guarantee contiguous allocations */
349 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
350 		return -ENOSYS;
351 
352 	for (i = 0; i < nr_irqs; i++) {
353 		irq_data = irq_domain_get_irq_data(domain, virq + i);
354 		BUG_ON(!irq_data);
355 		node = irq_data_get_node(irq_data);
356 #ifdef	CONFIG_X86_IO_APIC
357 		if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
358 			data = legacy_irq_data[virq + i];
359 		else
360 #endif
361 			data = alloc_apic_chip_data(node);
362 		if (!data) {
363 			err = -ENOMEM;
364 			goto error;
365 		}
366 
367 		irq_data->chip = &lapic_controller;
368 		irq_data->chip_data = data;
369 		irq_data->hwirq = virq + i;
370 		err = assign_irq_vector_policy(virq + i, node, data, info,
371 					       irq_data);
372 		if (err)
373 			goto error;
374 		/*
375 		 * If the apic destination mode is physical, then the
376 		 * effective affinity is restricted to a single target
377 		 * CPU. Mark the interrupt accordingly.
378 		 */
379 		if (!apic->irq_dest_mode)
380 			irqd_set_single_target(irq_data);
381 	}
382 
383 	return 0;
384 
385 error:
386 	x86_vector_free_irqs(domain, virq, i + 1);
387 	return err;
388 }
389 
390 static const struct irq_domain_ops x86_vector_domain_ops = {
391 	.alloc	= x86_vector_alloc_irqs,
392 	.free	= x86_vector_free_irqs,
393 };
394 
395 int __init arch_probe_nr_irqs(void)
396 {
397 	int nr;
398 
399 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
400 		nr_irqs = NR_VECTORS * nr_cpu_ids;
401 
402 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
403 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
404 	/*
405 	 * for MSI and HT dyn irq
406 	 */
407 	if (gsi_top <= NR_IRQS_LEGACY)
408 		nr +=  8 * nr_cpu_ids;
409 	else
410 		nr += gsi_top * 16;
411 #endif
412 	if (nr < nr_irqs)
413 		nr_irqs = nr;
414 
415 	/*
416 	 * We don't know if PIC is present at this point so we need to do
417 	 * probe() to get the right number of legacy IRQs.
418 	 */
419 	return legacy_pic->probe();
420 }
421 
422 #ifdef	CONFIG_X86_IO_APIC
423 static void __init init_legacy_irqs(void)
424 {
425 	int i, node = cpu_to_node(0);
426 	struct apic_chip_data *data;
427 
428 	/*
429 	 * For legacy IRQ's, start with assigning irq0 to irq15 to
430 	 * ISA_IRQ_VECTOR(i) for all cpu's.
431 	 */
432 	for (i = 0; i < nr_legacy_irqs(); i++) {
433 		data = legacy_irq_data[i] = alloc_apic_chip_data(node);
434 		BUG_ON(!data);
435 
436 		data->cfg.vector = ISA_IRQ_VECTOR(i);
437 		cpumask_setall(data->domain);
438 		irq_set_chip_data(i, data);
439 	}
440 }
441 #else
442 static inline void init_legacy_irqs(void) { }
443 #endif
444 
445 int __init arch_early_irq_init(void)
446 {
447 	struct fwnode_handle *fn;
448 
449 	init_legacy_irqs();
450 
451 	fn = irq_domain_alloc_named_fwnode("VECTOR");
452 	BUG_ON(!fn);
453 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
454 						   NULL);
455 	BUG_ON(x86_vector_domain == NULL);
456 	irq_domain_free_fwnode(fn);
457 	irq_set_default_host(x86_vector_domain);
458 
459 	arch_init_msi_domain(x86_vector_domain);
460 	arch_init_htirq_domain(x86_vector_domain);
461 
462 	BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
463 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
464 	BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
465 
466 	return arch_early_ioapic_init();
467 }
468 
469 /* Initialize vector_irq on a new cpu */
470 static void __setup_vector_irq(int cpu)
471 {
472 	struct apic_chip_data *data;
473 	struct irq_desc *desc;
474 	int irq, vector;
475 
476 	/* Mark the inuse vectors */
477 	for_each_irq_desc(irq, desc) {
478 		struct irq_data *idata = irq_desc_get_irq_data(desc);
479 
480 		data = apic_chip_data(idata);
481 		if (!data || !cpumask_test_cpu(cpu, data->domain))
482 			continue;
483 		vector = data->cfg.vector;
484 		per_cpu(vector_irq, cpu)[vector] = desc;
485 	}
486 	/* Mark the free vectors */
487 	for (vector = 0; vector < NR_VECTORS; ++vector) {
488 		desc = per_cpu(vector_irq, cpu)[vector];
489 		if (IS_ERR_OR_NULL(desc))
490 			continue;
491 
492 		data = apic_chip_data(irq_desc_get_irq_data(desc));
493 		if (!cpumask_test_cpu(cpu, data->domain))
494 			per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
495 	}
496 }
497 
498 /*
499  * Setup the vector to irq mappings. Must be called with vector_lock held.
500  */
501 void setup_vector_irq(int cpu)
502 {
503 	int irq;
504 
505 	lockdep_assert_held(&vector_lock);
506 	/*
507 	 * On most of the platforms, legacy PIC delivers the interrupts on the
508 	 * boot cpu. But there are certain platforms where PIC interrupts are
509 	 * delivered to multiple cpu's. If the legacy IRQ is handled by the
510 	 * legacy PIC, for the new cpu that is coming online, setup the static
511 	 * legacy vector to irq mapping:
512 	 */
513 	for (irq = 0; irq < nr_legacy_irqs(); irq++)
514 		per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq);
515 
516 	__setup_vector_irq(cpu);
517 }
518 
519 static int apic_retrigger_irq(struct irq_data *irq_data)
520 {
521 	struct apic_chip_data *data = apic_chip_data(irq_data);
522 	unsigned long flags;
523 	int cpu;
524 
525 	raw_spin_lock_irqsave(&vector_lock, flags);
526 	cpu = cpumask_first_and(data->domain, cpu_online_mask);
527 	apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector);
528 	raw_spin_unlock_irqrestore(&vector_lock, flags);
529 
530 	return 1;
531 }
532 
533 void apic_ack_edge(struct irq_data *data)
534 {
535 	irq_complete_move(irqd_cfg(data));
536 	irq_move_irq(data);
537 	ack_APIC_irq();
538 }
539 
540 static int apic_set_affinity(struct irq_data *irq_data,
541 			     const struct cpumask *dest, bool force)
542 {
543 	struct apic_chip_data *data = irq_data->chip_data;
544 	int err, irq = irq_data->irq;
545 
546 	if (!IS_ENABLED(CONFIG_SMP))
547 		return -EPERM;
548 
549 	if (!cpumask_intersects(dest, cpu_online_mask))
550 		return -EINVAL;
551 
552 	err = assign_irq_vector(irq, data, dest, irq_data);
553 	return err ? err : IRQ_SET_MASK_OK;
554 }
555 
556 static struct irq_chip lapic_controller = {
557 	.name			= "APIC",
558 	.irq_ack		= apic_ack_edge,
559 	.irq_set_affinity	= apic_set_affinity,
560 	.irq_retrigger		= apic_retrigger_irq,
561 };
562 
563 #ifdef CONFIG_SMP
564 static void __send_cleanup_vector(struct apic_chip_data *data)
565 {
566 	raw_spin_lock(&vector_lock);
567 	cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
568 	data->move_in_progress = 0;
569 	if (!cpumask_empty(data->old_domain))
570 		apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
571 	raw_spin_unlock(&vector_lock);
572 }
573 
574 void send_cleanup_vector(struct irq_cfg *cfg)
575 {
576 	struct apic_chip_data *data;
577 
578 	data = container_of(cfg, struct apic_chip_data, cfg);
579 	if (data->move_in_progress)
580 		__send_cleanup_vector(data);
581 }
582 
583 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
584 {
585 	unsigned vector, me;
586 
587 	entering_ack_irq();
588 
589 	/* Prevent vectors vanishing under us */
590 	raw_spin_lock(&vector_lock);
591 
592 	me = smp_processor_id();
593 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
594 		struct apic_chip_data *data;
595 		struct irq_desc *desc;
596 		unsigned int irr;
597 
598 	retry:
599 		desc = __this_cpu_read(vector_irq[vector]);
600 		if (IS_ERR_OR_NULL(desc))
601 			continue;
602 
603 		if (!raw_spin_trylock(&desc->lock)) {
604 			raw_spin_unlock(&vector_lock);
605 			cpu_relax();
606 			raw_spin_lock(&vector_lock);
607 			goto retry;
608 		}
609 
610 		data = apic_chip_data(irq_desc_get_irq_data(desc));
611 		if (!data)
612 			goto unlock;
613 
614 		/*
615 		 * Nothing to cleanup if irq migration is in progress
616 		 * or this cpu is not set in the cleanup mask.
617 		 */
618 		if (data->move_in_progress ||
619 		    !cpumask_test_cpu(me, data->old_domain))
620 			goto unlock;
621 
622 		/*
623 		 * We have two cases to handle here:
624 		 * 1) vector is unchanged but the target mask got reduced
625 		 * 2) vector and the target mask has changed
626 		 *
627 		 * #1 is obvious, but in #2 we have two vectors with the same
628 		 * irq descriptor: the old and the new vector. So we need to
629 		 * make sure that we only cleanup the old vector. The new
630 		 * vector has the current @vector number in the config and
631 		 * this cpu is part of the target mask. We better leave that
632 		 * one alone.
633 		 */
634 		if (vector == data->cfg.vector &&
635 		    cpumask_test_cpu(me, data->domain))
636 			goto unlock;
637 
638 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
639 		/*
640 		 * Check if the vector that needs to be cleanedup is
641 		 * registered at the cpu's IRR. If so, then this is not
642 		 * the best time to clean it up. Lets clean it up in the
643 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
644 		 * to myself.
645 		 */
646 		if (irr  & (1 << (vector % 32))) {
647 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
648 			goto unlock;
649 		}
650 		__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
651 		cpumask_clear_cpu(me, data->old_domain);
652 unlock:
653 		raw_spin_unlock(&desc->lock);
654 	}
655 
656 	raw_spin_unlock(&vector_lock);
657 
658 	exiting_irq();
659 }
660 
661 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
662 {
663 	unsigned me;
664 	struct apic_chip_data *data;
665 
666 	data = container_of(cfg, struct apic_chip_data, cfg);
667 	if (likely(!data->move_in_progress))
668 		return;
669 
670 	me = smp_processor_id();
671 	if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain))
672 		__send_cleanup_vector(data);
673 }
674 
675 void irq_complete_move(struct irq_cfg *cfg)
676 {
677 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
678 }
679 
680 /*
681  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
682  */
683 void irq_force_complete_move(struct irq_desc *desc)
684 {
685 	struct irq_data *irqdata;
686 	struct apic_chip_data *data;
687 	struct irq_cfg *cfg;
688 	unsigned int cpu;
689 
690 	/*
691 	 * The function is called for all descriptors regardless of which
692 	 * irqdomain they belong to. For example if an IRQ is provided by
693 	 * an irq_chip as part of a GPIO driver, the chip data for that
694 	 * descriptor is specific to the irq_chip in question.
695 	 *
696 	 * Check first that the chip_data is what we expect
697 	 * (apic_chip_data) before touching it any further.
698 	 */
699 	irqdata = irq_domain_get_irq_data(x86_vector_domain,
700 					  irq_desc_get_irq(desc));
701 	if (!irqdata)
702 		return;
703 
704 	data = apic_chip_data(irqdata);
705 	cfg = data ? &data->cfg : NULL;
706 
707 	if (!cfg)
708 		return;
709 
710 	/*
711 	 * This is tricky. If the cleanup of @data->old_domain has not been
712 	 * done yet, then the following setaffinity call will fail with
713 	 * -EBUSY. This can leave the interrupt in a stale state.
714 	 *
715 	 * All CPUs are stuck in stop machine with interrupts disabled so
716 	 * calling __irq_complete_move() would be completely pointless.
717 	 */
718 	raw_spin_lock(&vector_lock);
719 	/*
720 	 * Clean out all offline cpus (including the outgoing one) from the
721 	 * old_domain mask.
722 	 */
723 	cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
724 
725 	/*
726 	 * If move_in_progress is cleared and the old_domain mask is empty,
727 	 * then there is nothing to cleanup. fixup_irqs() will take care of
728 	 * the stale vectors on the outgoing cpu.
729 	 */
730 	if (!data->move_in_progress && cpumask_empty(data->old_domain)) {
731 		raw_spin_unlock(&vector_lock);
732 		return;
733 	}
734 
735 	/*
736 	 * 1) The interrupt is in move_in_progress state. That means that we
737 	 *    have not seen an interrupt since the io_apic was reprogrammed to
738 	 *    the new vector.
739 	 *
740 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
741 	 *    have not been processed yet.
742 	 */
743 	if (data->move_in_progress) {
744 		/*
745 		 * In theory there is a race:
746 		 *
747 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
748 		 *			      is effective, i.e. it's raised on
749 		 *			      the old vector.
750 		 *
751 		 * So if the target cpu cannot handle that interrupt before
752 		 * the old vector is cleaned up, we get a spurious interrupt
753 		 * and in the worst case the ioapic irq line becomes stale.
754 		 *
755 		 * But in case of cpu hotplug this should be a non issue
756 		 * because if the affinity update happens right before all
757 		 * cpus rendevouz in stop machine, there is no way that the
758 		 * interrupt can be blocked on the target cpu because all cpus
759 		 * loops first with interrupts enabled in stop machine, so the
760 		 * old vector is not yet cleaned up when the interrupt fires.
761 		 *
762 		 * So the only way to run into this issue is if the delivery
763 		 * of the interrupt on the apic/system bus would be delayed
764 		 * beyond the point where the target cpu disables interrupts
765 		 * in stop machine. I doubt that it can happen, but at least
766 		 * there is a theroretical chance. Virtualization might be
767 		 * able to expose this, but AFAICT the IOAPIC emulation is not
768 		 * as stupid as the real hardware.
769 		 *
770 		 * Anyway, there is nothing we can do about that at this point
771 		 * w/o refactoring the whole fixup_irq() business completely.
772 		 * We print at least the irq number and the old vector number,
773 		 * so we have the necessary information when a problem in that
774 		 * area arises.
775 		 */
776 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
777 			irqdata->irq, cfg->old_vector);
778 	}
779 	/*
780 	 * If old_domain is not empty, then other cpus still have the irq
781 	 * descriptor set in their vector array. Clean it up.
782 	 */
783 	for_each_cpu(cpu, data->old_domain)
784 		per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED;
785 
786 	/* Cleanup the left overs of the (half finished) move */
787 	cpumask_clear(data->old_domain);
788 	data->move_in_progress = 0;
789 	raw_spin_unlock(&vector_lock);
790 }
791 #endif
792 
793 static void __init print_APIC_field(int base)
794 {
795 	int i;
796 
797 	printk(KERN_DEBUG);
798 
799 	for (i = 0; i < 8; i++)
800 		pr_cont("%08x", apic_read(base + i*0x10));
801 
802 	pr_cont("\n");
803 }
804 
805 static void __init print_local_APIC(void *dummy)
806 {
807 	unsigned int i, v, ver, maxlvt;
808 	u64 icr;
809 
810 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
811 		 smp_processor_id(), hard_smp_processor_id());
812 	v = apic_read(APIC_ID);
813 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
814 	v = apic_read(APIC_LVR);
815 	pr_info("... APIC VERSION: %08x\n", v);
816 	ver = GET_APIC_VERSION(v);
817 	maxlvt = lapic_get_maxlvt();
818 
819 	v = apic_read(APIC_TASKPRI);
820 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
821 
822 	/* !82489DX */
823 	if (APIC_INTEGRATED(ver)) {
824 		if (!APIC_XAPIC(ver)) {
825 			v = apic_read(APIC_ARBPRI);
826 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
827 				 v, v & APIC_ARBPRI_MASK);
828 		}
829 		v = apic_read(APIC_PROCPRI);
830 		pr_debug("... APIC PROCPRI: %08x\n", v);
831 	}
832 
833 	/*
834 	 * Remote read supported only in the 82489DX and local APIC for
835 	 * Pentium processors.
836 	 */
837 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
838 		v = apic_read(APIC_RRR);
839 		pr_debug("... APIC RRR: %08x\n", v);
840 	}
841 
842 	v = apic_read(APIC_LDR);
843 	pr_debug("... APIC LDR: %08x\n", v);
844 	if (!x2apic_enabled()) {
845 		v = apic_read(APIC_DFR);
846 		pr_debug("... APIC DFR: %08x\n", v);
847 	}
848 	v = apic_read(APIC_SPIV);
849 	pr_debug("... APIC SPIV: %08x\n", v);
850 
851 	pr_debug("... APIC ISR field:\n");
852 	print_APIC_field(APIC_ISR);
853 	pr_debug("... APIC TMR field:\n");
854 	print_APIC_field(APIC_TMR);
855 	pr_debug("... APIC IRR field:\n");
856 	print_APIC_field(APIC_IRR);
857 
858 	/* !82489DX */
859 	if (APIC_INTEGRATED(ver)) {
860 		/* Due to the Pentium erratum 3AP. */
861 		if (maxlvt > 3)
862 			apic_write(APIC_ESR, 0);
863 
864 		v = apic_read(APIC_ESR);
865 		pr_debug("... APIC ESR: %08x\n", v);
866 	}
867 
868 	icr = apic_icr_read();
869 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
870 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
871 
872 	v = apic_read(APIC_LVTT);
873 	pr_debug("... APIC LVTT: %08x\n", v);
874 
875 	if (maxlvt > 3) {
876 		/* PC is LVT#4. */
877 		v = apic_read(APIC_LVTPC);
878 		pr_debug("... APIC LVTPC: %08x\n", v);
879 	}
880 	v = apic_read(APIC_LVT0);
881 	pr_debug("... APIC LVT0: %08x\n", v);
882 	v = apic_read(APIC_LVT1);
883 	pr_debug("... APIC LVT1: %08x\n", v);
884 
885 	if (maxlvt > 2) {
886 		/* ERR is LVT#3. */
887 		v = apic_read(APIC_LVTERR);
888 		pr_debug("... APIC LVTERR: %08x\n", v);
889 	}
890 
891 	v = apic_read(APIC_TMICT);
892 	pr_debug("... APIC TMICT: %08x\n", v);
893 	v = apic_read(APIC_TMCCT);
894 	pr_debug("... APIC TMCCT: %08x\n", v);
895 	v = apic_read(APIC_TDCR);
896 	pr_debug("... APIC TDCR: %08x\n", v);
897 
898 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
899 		v = apic_read(APIC_EFEAT);
900 		maxlvt = (v >> 16) & 0xff;
901 		pr_debug("... APIC EFEAT: %08x\n", v);
902 		v = apic_read(APIC_ECTRL);
903 		pr_debug("... APIC ECTRL: %08x\n", v);
904 		for (i = 0; i < maxlvt; i++) {
905 			v = apic_read(APIC_EILVTn(i));
906 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
907 		}
908 	}
909 	pr_cont("\n");
910 }
911 
912 static void __init print_local_APICs(int maxcpu)
913 {
914 	int cpu;
915 
916 	if (!maxcpu)
917 		return;
918 
919 	preempt_disable();
920 	for_each_online_cpu(cpu) {
921 		if (cpu >= maxcpu)
922 			break;
923 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
924 	}
925 	preempt_enable();
926 }
927 
928 static void __init print_PIC(void)
929 {
930 	unsigned int v;
931 	unsigned long flags;
932 
933 	if (!nr_legacy_irqs())
934 		return;
935 
936 	pr_debug("\nprinting PIC contents\n");
937 
938 	raw_spin_lock_irqsave(&i8259A_lock, flags);
939 
940 	v = inb(0xa1) << 8 | inb(0x21);
941 	pr_debug("... PIC  IMR: %04x\n", v);
942 
943 	v = inb(0xa0) << 8 | inb(0x20);
944 	pr_debug("... PIC  IRR: %04x\n", v);
945 
946 	outb(0x0b, 0xa0);
947 	outb(0x0b, 0x20);
948 	v = inb(0xa0) << 8 | inb(0x20);
949 	outb(0x0a, 0xa0);
950 	outb(0x0a, 0x20);
951 
952 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
953 
954 	pr_debug("... PIC  ISR: %04x\n", v);
955 
956 	v = inb(0x4d1) << 8 | inb(0x4d0);
957 	pr_debug("... PIC ELCR: %04x\n", v);
958 }
959 
960 static int show_lapic __initdata = 1;
961 static __init int setup_show_lapic(char *arg)
962 {
963 	int num = -1;
964 
965 	if (strcmp(arg, "all") == 0) {
966 		show_lapic = CONFIG_NR_CPUS;
967 	} else {
968 		get_option(&arg, &num);
969 		if (num >= 0)
970 			show_lapic = num;
971 	}
972 
973 	return 1;
974 }
975 __setup("show_lapic=", setup_show_lapic);
976 
977 static int __init print_ICs(void)
978 {
979 	if (apic_verbosity == APIC_QUIET)
980 		return 0;
981 
982 	print_PIC();
983 
984 	/* don't print out if apic is not there */
985 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
986 		return 0;
987 
988 	print_local_APICs(show_lapic);
989 	print_IO_APICs();
990 
991 	return 0;
992 }
993 
994 late_initcall(print_ICs);
995