xref: /openbmc/linux/arch/x86/kernel/apic/vector.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 #include <asm/trace/irq_vectors.h>
25 
26 struct apic_chip_data {
27 	struct irq_cfg		hw_irq_cfg;
28 	unsigned int		vector;
29 	unsigned int		prev_vector;
30 	unsigned int		cpu;
31 	unsigned int		prev_cpu;
32 	unsigned int		irq;
33 	struct hlist_node	clist;
34 	unsigned int		move_in_progress	: 1,
35 				is_managed		: 1,
36 				can_reserve		: 1,
37 				has_reserved		: 1;
38 };
39 
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49 
50 void lock_vector_lock(void)
51 {
52 	/* Used to the online set of cpus does not change
53 	 * during assign_irq_vector.
54 	 */
55 	raw_spin_lock(&vector_lock);
56 }
57 
58 void unlock_vector_lock(void)
59 {
60 	raw_spin_unlock(&vector_lock);
61 }
62 
63 void init_irq_alloc_info(struct irq_alloc_info *info,
64 			 const struct cpumask *mask)
65 {
66 	memset(info, 0, sizeof(*info));
67 	info->mask = mask;
68 }
69 
70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72 	if (src)
73 		*dst = *src;
74 	else
75 		memset(dst, 0, sizeof(*dst));
76 }
77 
78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80 	if (!irqd)
81 		return NULL;
82 
83 	while (irqd->parent_data)
84 		irqd = irqd->parent_data;
85 
86 	return irqd->chip_data;
87 }
88 
89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91 	struct apic_chip_data *apicd = apic_chip_data(irqd);
92 
93 	return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96 
97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99 	return irqd_cfg(irq_get_irq_data(irq));
100 }
101 
102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104 	struct apic_chip_data *apicd;
105 
106 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107 	if (apicd)
108 		INIT_HLIST_NODE(&apicd->clist);
109 	return apicd;
110 }
111 
112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114 	kfree(apicd);
115 }
116 
117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118 				unsigned int cpu)
119 {
120 	struct apic_chip_data *apicd = apic_chip_data(irqd);
121 
122 	lockdep_assert_held(&vector_lock);
123 
124 	apicd->hw_irq_cfg.vector = vector;
125 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127 	trace_vector_config(irqd->irq, vector, cpu,
128 			    apicd->hw_irq_cfg.dest_apicid);
129 }
130 
131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132 			       unsigned int newcpu)
133 {
134 	struct apic_chip_data *apicd = apic_chip_data(irqd);
135 	struct irq_desc *desc = irq_data_to_desc(irqd);
136 	bool managed = irqd_affinity_is_managed(irqd);
137 
138 	lockdep_assert_held(&vector_lock);
139 
140 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141 			    apicd->cpu);
142 
143 	/*
144 	 * If there is no vector associated or if the associated vector is
145 	 * the shutdown vector, which is associated to make PCI/MSI
146 	 * shutdown mode work, then there is nothing to release. Clear out
147 	 * prev_vector for this and the offlined target case.
148 	 */
149 	apicd->prev_vector = 0;
150 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151 		goto setnew;
152 	/*
153 	 * If the target CPU of the previous vector is online, then mark
154 	 * the vector as move in progress and store it for cleanup when the
155 	 * first interrupt on the new vector arrives. If the target CPU is
156 	 * offline then the regular release mechanism via the cleanup
157 	 * vector is not possible and the vector can be immediately freed
158 	 * in the underlying matrix allocator.
159 	 */
160 	if (cpu_online(apicd->cpu)) {
161 		apicd->move_in_progress = true;
162 		apicd->prev_vector = apicd->vector;
163 		apicd->prev_cpu = apicd->cpu;
164 	} else {
165 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
166 				managed);
167 	}
168 
169 setnew:
170 	apicd->vector = newvec;
171 	apicd->cpu = newcpu;
172 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
173 	per_cpu(vector_irq, newcpu)[newvec] = desc;
174 }
175 
176 static void vector_assign_managed_shutdown(struct irq_data *irqd)
177 {
178 	unsigned int cpu = cpumask_first(cpu_online_mask);
179 
180 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
181 }
182 
183 static int reserve_managed_vector(struct irq_data *irqd)
184 {
185 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
186 	struct apic_chip_data *apicd = apic_chip_data(irqd);
187 	unsigned long flags;
188 	int ret;
189 
190 	raw_spin_lock_irqsave(&vector_lock, flags);
191 	apicd->is_managed = true;
192 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
193 	raw_spin_unlock_irqrestore(&vector_lock, flags);
194 	trace_vector_reserve_managed(irqd->irq, ret);
195 	return ret;
196 }
197 
198 static void reserve_irq_vector_locked(struct irq_data *irqd)
199 {
200 	struct apic_chip_data *apicd = apic_chip_data(irqd);
201 
202 	irq_matrix_reserve(vector_matrix);
203 	apicd->can_reserve = true;
204 	apicd->has_reserved = true;
205 	irqd_set_can_reserve(irqd);
206 	trace_vector_reserve(irqd->irq, 0);
207 	vector_assign_managed_shutdown(irqd);
208 }
209 
210 static int reserve_irq_vector(struct irq_data *irqd)
211 {
212 	unsigned long flags;
213 
214 	raw_spin_lock_irqsave(&vector_lock, flags);
215 	reserve_irq_vector_locked(irqd);
216 	raw_spin_unlock_irqrestore(&vector_lock, flags);
217 	return 0;
218 }
219 
220 static int
221 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
222 {
223 	struct apic_chip_data *apicd = apic_chip_data(irqd);
224 	bool resvd = apicd->has_reserved;
225 	unsigned int cpu = apicd->cpu;
226 	int vector = apicd->vector;
227 
228 	lockdep_assert_held(&vector_lock);
229 
230 	/*
231 	 * If the current target CPU is online and in the new requested
232 	 * affinity mask, there is no point in moving the interrupt from
233 	 * one CPU to another.
234 	 */
235 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
236 		return 0;
237 
238 	/*
239 	 * Careful here. @apicd might either have move_in_progress set or
240 	 * be enqueued for cleanup. Assigning a new vector would either
241 	 * leave a stale vector on some CPU around or in case of a pending
242 	 * cleanup corrupt the hlist.
243 	 */
244 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
245 		return -EBUSY;
246 
247 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
248 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
249 	if (vector < 0)
250 		return vector;
251 	apic_update_vector(irqd, vector, cpu);
252 	apic_update_irq_cfg(irqd, vector, cpu);
253 
254 	return 0;
255 }
256 
257 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
258 {
259 	unsigned long flags;
260 	int ret;
261 
262 	raw_spin_lock_irqsave(&vector_lock, flags);
263 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
264 	ret = assign_vector_locked(irqd, vector_searchmask);
265 	raw_spin_unlock_irqrestore(&vector_lock, flags);
266 	return ret;
267 }
268 
269 static int assign_irq_vector_any_locked(struct irq_data *irqd)
270 {
271 	/* Get the affinity mask - either irq_default_affinity or (user) set */
272 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
273 	int node = irq_data_get_node(irqd);
274 
275 	if (node == NUMA_NO_NODE)
276 		goto all;
277 	/* Try the intersection of @affmsk and node mask */
278 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
279 	if (!assign_vector_locked(irqd, vector_searchmask))
280 		return 0;
281 	/* Try the node mask */
282 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
283 		return 0;
284 all:
285 	/* Try the full affinity mask */
286 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
287 	if (!assign_vector_locked(irqd, vector_searchmask))
288 		return 0;
289 	/* Try the full online mask */
290 	return assign_vector_locked(irqd, cpu_online_mask);
291 }
292 
293 static int
294 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
295 {
296 	if (irqd_affinity_is_managed(irqd))
297 		return reserve_managed_vector(irqd);
298 	if (info->mask)
299 		return assign_irq_vector(irqd, info->mask);
300 	/*
301 	 * Make only a global reservation with no guarantee. A real vector
302 	 * is associated at activation time.
303 	 */
304 	return reserve_irq_vector(irqd);
305 }
306 
307 static int
308 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
309 {
310 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
311 	struct apic_chip_data *apicd = apic_chip_data(irqd);
312 	int vector, cpu;
313 
314 	cpumask_and(vector_searchmask, dest, affmsk);
315 
316 	/* set_affinity might call here for nothing */
317 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
318 		return 0;
319 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
320 					  &cpu);
321 	trace_vector_alloc_managed(irqd->irq, vector, vector);
322 	if (vector < 0)
323 		return vector;
324 	apic_update_vector(irqd, vector, cpu);
325 	apic_update_irq_cfg(irqd, vector, cpu);
326 	return 0;
327 }
328 
329 static void clear_irq_vector(struct irq_data *irqd)
330 {
331 	struct apic_chip_data *apicd = apic_chip_data(irqd);
332 	bool managed = irqd_affinity_is_managed(irqd);
333 	unsigned int vector = apicd->vector;
334 
335 	lockdep_assert_held(&vector_lock);
336 
337 	if (!vector)
338 		return;
339 
340 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
341 			   apicd->prev_cpu);
342 
343 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
344 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
345 	apicd->vector = 0;
346 
347 	/* Clean up move in progress */
348 	vector = apicd->prev_vector;
349 	if (!vector)
350 		return;
351 
352 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
353 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
354 	apicd->prev_vector = 0;
355 	apicd->move_in_progress = 0;
356 	hlist_del_init(&apicd->clist);
357 }
358 
359 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
360 {
361 	struct apic_chip_data *apicd = apic_chip_data(irqd);
362 	unsigned long flags;
363 
364 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
365 				apicd->can_reserve, false);
366 
367 	/* Regular fixed assigned interrupt */
368 	if (!apicd->is_managed && !apicd->can_reserve)
369 		return;
370 	/* If the interrupt has a global reservation, nothing to do */
371 	if (apicd->has_reserved)
372 		return;
373 
374 	raw_spin_lock_irqsave(&vector_lock, flags);
375 	clear_irq_vector(irqd);
376 	if (apicd->can_reserve)
377 		reserve_irq_vector_locked(irqd);
378 	else
379 		vector_assign_managed_shutdown(irqd);
380 	raw_spin_unlock_irqrestore(&vector_lock, flags);
381 }
382 
383 static int activate_reserved(struct irq_data *irqd)
384 {
385 	struct apic_chip_data *apicd = apic_chip_data(irqd);
386 	int ret;
387 
388 	ret = assign_irq_vector_any_locked(irqd);
389 	if (!ret) {
390 		apicd->has_reserved = false;
391 		/*
392 		 * Core might have disabled reservation mode after
393 		 * allocating the irq descriptor. Ideally this should
394 		 * happen before allocation time, but that would require
395 		 * completely convoluted ways of transporting that
396 		 * information.
397 		 */
398 		if (!irqd_can_reserve(irqd))
399 			apicd->can_reserve = false;
400 	}
401 
402 	/*
403 	 * Check to ensure that the effective affinity mask is a subset
404 	 * the user supplied affinity mask, and warn the user if it is not
405 	 */
406 	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
407 			    irq_data_get_affinity_mask(irqd))) {
408 		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
409 			irqd->irq);
410 	}
411 
412 	return ret;
413 }
414 
415 static int activate_managed(struct irq_data *irqd)
416 {
417 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
418 	int ret;
419 
420 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
421 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
422 		/* Something in the core code broke! Survive gracefully */
423 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
424 		return -EINVAL;
425 	}
426 
427 	ret = assign_managed_vector(irqd, vector_searchmask);
428 	/*
429 	 * This should not happen. The vector reservation got buggered.  Handle
430 	 * it gracefully.
431 	 */
432 	if (WARN_ON_ONCE(ret < 0)) {
433 		pr_err("Managed startup irq %u, no vector available\n",
434 		       irqd->irq);
435 	}
436 	return ret;
437 }
438 
439 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
440 			       bool reserve)
441 {
442 	struct apic_chip_data *apicd = apic_chip_data(irqd);
443 	unsigned long flags;
444 	int ret = 0;
445 
446 	trace_vector_activate(irqd->irq, apicd->is_managed,
447 			      apicd->can_reserve, reserve);
448 
449 	raw_spin_lock_irqsave(&vector_lock, flags);
450 	if (!apicd->can_reserve && !apicd->is_managed)
451 		assign_irq_vector_any_locked(irqd);
452 	else if (reserve || irqd_is_managed_and_shutdown(irqd))
453 		vector_assign_managed_shutdown(irqd);
454 	else if (apicd->is_managed)
455 		ret = activate_managed(irqd);
456 	else if (apicd->has_reserved)
457 		ret = activate_reserved(irqd);
458 	raw_spin_unlock_irqrestore(&vector_lock, flags);
459 	return ret;
460 }
461 
462 static void vector_free_reserved_and_managed(struct irq_data *irqd)
463 {
464 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
465 	struct apic_chip_data *apicd = apic_chip_data(irqd);
466 
467 	trace_vector_teardown(irqd->irq, apicd->is_managed,
468 			      apicd->has_reserved);
469 
470 	if (apicd->has_reserved)
471 		irq_matrix_remove_reserved(vector_matrix);
472 	if (apicd->is_managed)
473 		irq_matrix_remove_managed(vector_matrix, dest);
474 }
475 
476 static void x86_vector_free_irqs(struct irq_domain *domain,
477 				 unsigned int virq, unsigned int nr_irqs)
478 {
479 	struct apic_chip_data *apicd;
480 	struct irq_data *irqd;
481 	unsigned long flags;
482 	int i;
483 
484 	for (i = 0; i < nr_irqs; i++) {
485 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
486 		if (irqd && irqd->chip_data) {
487 			raw_spin_lock_irqsave(&vector_lock, flags);
488 			clear_irq_vector(irqd);
489 			vector_free_reserved_and_managed(irqd);
490 			apicd = irqd->chip_data;
491 			irq_domain_reset_irq_data(irqd);
492 			raw_spin_unlock_irqrestore(&vector_lock, flags);
493 			free_apic_chip_data(apicd);
494 		}
495 	}
496 }
497 
498 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
499 				    struct apic_chip_data *apicd)
500 {
501 	unsigned long flags;
502 	bool realloc = false;
503 
504 	apicd->vector = ISA_IRQ_VECTOR(virq);
505 	apicd->cpu = 0;
506 
507 	raw_spin_lock_irqsave(&vector_lock, flags);
508 	/*
509 	 * If the interrupt is activated, then it must stay at this vector
510 	 * position. That's usually the timer interrupt (0).
511 	 */
512 	if (irqd_is_activated(irqd)) {
513 		trace_vector_setup(virq, true, 0);
514 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
515 	} else {
516 		/* Release the vector */
517 		apicd->can_reserve = true;
518 		irqd_set_can_reserve(irqd);
519 		clear_irq_vector(irqd);
520 		realloc = true;
521 	}
522 	raw_spin_unlock_irqrestore(&vector_lock, flags);
523 	return realloc;
524 }
525 
526 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
527 				 unsigned int nr_irqs, void *arg)
528 {
529 	struct irq_alloc_info *info = arg;
530 	struct apic_chip_data *apicd;
531 	struct irq_data *irqd;
532 	int i, err, node;
533 
534 	if (disable_apic)
535 		return -ENXIO;
536 
537 	/* Currently vector allocator can't guarantee contiguous allocations */
538 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
539 		return -ENOSYS;
540 
541 	for (i = 0; i < nr_irqs; i++) {
542 		irqd = irq_domain_get_irq_data(domain, virq + i);
543 		BUG_ON(!irqd);
544 		node = irq_data_get_node(irqd);
545 		WARN_ON_ONCE(irqd->chip_data);
546 		apicd = alloc_apic_chip_data(node);
547 		if (!apicd) {
548 			err = -ENOMEM;
549 			goto error;
550 		}
551 
552 		apicd->irq = virq + i;
553 		irqd->chip = &lapic_controller;
554 		irqd->chip_data = apicd;
555 		irqd->hwirq = virq + i;
556 		irqd_set_single_target(irqd);
557 		/*
558 		 * Prevent that any of these interrupts is invoked in
559 		 * non interrupt context via e.g. generic_handle_irq()
560 		 * as that can corrupt the affinity move state.
561 		 */
562 		irqd_set_handle_enforce_irqctx(irqd);
563 
564 		/* Don't invoke affinity setter on deactivated interrupts */
565 		irqd_set_affinity_on_activate(irqd);
566 
567 		/*
568 		 * Legacy vectors are already assigned when the IOAPIC
569 		 * takes them over. They stay on the same vector. This is
570 		 * required for check_timer() to work correctly as it might
571 		 * switch back to legacy mode. Only update the hardware
572 		 * config.
573 		 */
574 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
575 			if (!vector_configure_legacy(virq + i, irqd, apicd))
576 				continue;
577 		}
578 
579 		err = assign_irq_vector_policy(irqd, info);
580 		trace_vector_setup(virq + i, false, err);
581 		if (err) {
582 			irqd->chip_data = NULL;
583 			free_apic_chip_data(apicd);
584 			goto error;
585 		}
586 	}
587 
588 	return 0;
589 
590 error:
591 	x86_vector_free_irqs(domain, virq, i);
592 	return err;
593 }
594 
595 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
596 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
597 				  struct irq_data *irqd, int ind)
598 {
599 	struct apic_chip_data apicd;
600 	unsigned long flags;
601 	int irq;
602 
603 	if (!irqd) {
604 		irq_matrix_debug_show(m, vector_matrix, ind);
605 		return;
606 	}
607 
608 	irq = irqd->irq;
609 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
610 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
611 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
612 		return;
613 	}
614 
615 	if (!irqd->chip_data) {
616 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
617 		return;
618 	}
619 
620 	raw_spin_lock_irqsave(&vector_lock, flags);
621 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
622 	raw_spin_unlock_irqrestore(&vector_lock, flags);
623 
624 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
625 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
626 	if (apicd.prev_vector) {
627 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
628 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
629 	}
630 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
631 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
632 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
633 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
634 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
635 }
636 #endif
637 
638 static const struct irq_domain_ops x86_vector_domain_ops = {
639 	.alloc		= x86_vector_alloc_irqs,
640 	.free		= x86_vector_free_irqs,
641 	.activate	= x86_vector_activate,
642 	.deactivate	= x86_vector_deactivate,
643 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
644 	.debug_show	= x86_vector_debug_show,
645 #endif
646 };
647 
648 int __init arch_probe_nr_irqs(void)
649 {
650 	int nr;
651 
652 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
653 		nr_irqs = NR_VECTORS * nr_cpu_ids;
654 
655 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
656 #if defined(CONFIG_PCI_MSI)
657 	/*
658 	 * for MSI and HT dyn irq
659 	 */
660 	if (gsi_top <= NR_IRQS_LEGACY)
661 		nr +=  8 * nr_cpu_ids;
662 	else
663 		nr += gsi_top * 16;
664 #endif
665 	if (nr < nr_irqs)
666 		nr_irqs = nr;
667 
668 	/*
669 	 * We don't know if PIC is present at this point so we need to do
670 	 * probe() to get the right number of legacy IRQs.
671 	 */
672 	return legacy_pic->probe();
673 }
674 
675 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
676 {
677 	/*
678 	 * Use assign system here so it wont get accounted as allocated
679 	 * and moveable in the cpu hotplug check and it prevents managed
680 	 * irq reservation from touching it.
681 	 */
682 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
683 }
684 
685 void __init lapic_assign_system_vectors(void)
686 {
687 	unsigned int i, vector = 0;
688 
689 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
690 		irq_matrix_assign_system(vector_matrix, vector, false);
691 
692 	if (nr_legacy_irqs() > 1)
693 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
694 
695 	/* System vectors are reserved, online it */
696 	irq_matrix_online(vector_matrix);
697 
698 	/* Mark the preallocated legacy interrupts */
699 	for (i = 0; i < nr_legacy_irqs(); i++) {
700 		if (i != PIC_CASCADE_IR)
701 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
702 	}
703 }
704 
705 int __init arch_early_irq_init(void)
706 {
707 	struct fwnode_handle *fn;
708 
709 	fn = irq_domain_alloc_named_fwnode("VECTOR");
710 	BUG_ON(!fn);
711 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
712 						   NULL);
713 	BUG_ON(x86_vector_domain == NULL);
714 	irq_set_default_host(x86_vector_domain);
715 
716 	arch_init_msi_domain(x86_vector_domain);
717 
718 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
719 
720 	/*
721 	 * Allocate the vector matrix allocator data structure and limit the
722 	 * search area.
723 	 */
724 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
725 					 FIRST_SYSTEM_VECTOR);
726 	BUG_ON(!vector_matrix);
727 
728 	return arch_early_ioapic_init();
729 }
730 
731 #ifdef CONFIG_SMP
732 
733 static struct irq_desc *__setup_vector_irq(int vector)
734 {
735 	int isairq = vector - ISA_IRQ_VECTOR(0);
736 
737 	/* Check whether the irq is in the legacy space */
738 	if (isairq < 0 || isairq >= nr_legacy_irqs())
739 		return VECTOR_UNUSED;
740 	/* Check whether the irq is handled by the IOAPIC */
741 	if (test_bit(isairq, &io_apic_irqs))
742 		return VECTOR_UNUSED;
743 	return irq_to_desc(isairq);
744 }
745 
746 /* Online the local APIC infrastructure and initialize the vectors */
747 void lapic_online(void)
748 {
749 	unsigned int vector;
750 
751 	lockdep_assert_held(&vector_lock);
752 
753 	/* Online the vector matrix array for this CPU */
754 	irq_matrix_online(vector_matrix);
755 
756 	/*
757 	 * The interrupt affinity logic never targets interrupts to offline
758 	 * CPUs. The exception are the legacy PIC interrupts. In general
759 	 * they are only targeted to CPU0, but depending on the platform
760 	 * they can be distributed to any online CPU in hardware. The
761 	 * kernel has no influence on that. So all active legacy vectors
762 	 * must be installed on all CPUs. All non legacy interrupts can be
763 	 * cleared.
764 	 */
765 	for (vector = 0; vector < NR_VECTORS; vector++)
766 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
767 }
768 
769 void lapic_offline(void)
770 {
771 	lock_vector_lock();
772 	irq_matrix_offline(vector_matrix);
773 	unlock_vector_lock();
774 }
775 
776 static int apic_set_affinity(struct irq_data *irqd,
777 			     const struct cpumask *dest, bool force)
778 {
779 	int err;
780 
781 	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
782 		return -EIO;
783 
784 	raw_spin_lock(&vector_lock);
785 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
786 	if (irqd_affinity_is_managed(irqd))
787 		err = assign_managed_vector(irqd, vector_searchmask);
788 	else
789 		err = assign_vector_locked(irqd, vector_searchmask);
790 	raw_spin_unlock(&vector_lock);
791 	return err ? err : IRQ_SET_MASK_OK;
792 }
793 
794 #else
795 # define apic_set_affinity	NULL
796 #endif
797 
798 static int apic_retrigger_irq(struct irq_data *irqd)
799 {
800 	struct apic_chip_data *apicd = apic_chip_data(irqd);
801 	unsigned long flags;
802 
803 	raw_spin_lock_irqsave(&vector_lock, flags);
804 	apic->send_IPI(apicd->cpu, apicd->vector);
805 	raw_spin_unlock_irqrestore(&vector_lock, flags);
806 
807 	return 1;
808 }
809 
810 void apic_ack_irq(struct irq_data *irqd)
811 {
812 	irq_move_irq(irqd);
813 	ack_APIC_irq();
814 }
815 
816 void apic_ack_edge(struct irq_data *irqd)
817 {
818 	irq_complete_move(irqd_cfg(irqd));
819 	apic_ack_irq(irqd);
820 }
821 
822 static struct irq_chip lapic_controller = {
823 	.name			= "APIC",
824 	.irq_ack		= apic_ack_edge,
825 	.irq_set_affinity	= apic_set_affinity,
826 	.irq_retrigger		= apic_retrigger_irq,
827 };
828 
829 #ifdef CONFIG_SMP
830 
831 static void free_moved_vector(struct apic_chip_data *apicd)
832 {
833 	unsigned int vector = apicd->prev_vector;
834 	unsigned int cpu = apicd->prev_cpu;
835 	bool managed = apicd->is_managed;
836 
837 	/*
838 	 * Managed interrupts are usually not migrated away
839 	 * from an online CPU, but CPU isolation 'managed_irq'
840 	 * can make that happen.
841 	 * 1) Activation does not take the isolation into account
842 	 *    to keep the code simple
843 	 * 2) Migration away from an isolated CPU can happen when
844 	 *    a non-isolated CPU which is in the calculated
845 	 *    affinity mask comes online.
846 	 */
847 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
848 	irq_matrix_free(vector_matrix, cpu, vector, managed);
849 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
850 	hlist_del_init(&apicd->clist);
851 	apicd->prev_vector = 0;
852 	apicd->move_in_progress = 0;
853 }
854 
855 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup)
856 {
857 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
858 	struct apic_chip_data *apicd;
859 	struct hlist_node *tmp;
860 
861 	ack_APIC_irq();
862 	/* Prevent vectors vanishing under us */
863 	raw_spin_lock(&vector_lock);
864 
865 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
866 		unsigned int irr, vector = apicd->prev_vector;
867 
868 		/*
869 		 * Paranoia: Check if the vector that needs to be cleaned
870 		 * up is registered at the APICs IRR. If so, then this is
871 		 * not the best time to clean it up. Clean it up in the
872 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
873 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
874 		 * priority external vector, so on return from this
875 		 * interrupt the device interrupt will happen first.
876 		 */
877 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
878 		if (irr & (1U << (vector % 32))) {
879 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
880 			continue;
881 		}
882 		free_moved_vector(apicd);
883 	}
884 
885 	raw_spin_unlock(&vector_lock);
886 }
887 
888 static void __send_cleanup_vector(struct apic_chip_data *apicd)
889 {
890 	unsigned int cpu;
891 
892 	raw_spin_lock(&vector_lock);
893 	apicd->move_in_progress = 0;
894 	cpu = apicd->prev_cpu;
895 	if (cpu_online(cpu)) {
896 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
897 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
898 	} else {
899 		apicd->prev_vector = 0;
900 	}
901 	raw_spin_unlock(&vector_lock);
902 }
903 
904 void send_cleanup_vector(struct irq_cfg *cfg)
905 {
906 	struct apic_chip_data *apicd;
907 
908 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
909 	if (apicd->move_in_progress)
910 		__send_cleanup_vector(apicd);
911 }
912 
913 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
914 {
915 	struct apic_chip_data *apicd;
916 
917 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
918 	if (likely(!apicd->move_in_progress))
919 		return;
920 
921 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
922 		__send_cleanup_vector(apicd);
923 }
924 
925 void irq_complete_move(struct irq_cfg *cfg)
926 {
927 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
928 }
929 
930 /*
931  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
932  */
933 void irq_force_complete_move(struct irq_desc *desc)
934 {
935 	struct apic_chip_data *apicd;
936 	struct irq_data *irqd;
937 	unsigned int vector;
938 
939 	/*
940 	 * The function is called for all descriptors regardless of which
941 	 * irqdomain they belong to. For example if an IRQ is provided by
942 	 * an irq_chip as part of a GPIO driver, the chip data for that
943 	 * descriptor is specific to the irq_chip in question.
944 	 *
945 	 * Check first that the chip_data is what we expect
946 	 * (apic_chip_data) before touching it any further.
947 	 */
948 	irqd = irq_domain_get_irq_data(x86_vector_domain,
949 				       irq_desc_get_irq(desc));
950 	if (!irqd)
951 		return;
952 
953 	raw_spin_lock(&vector_lock);
954 	apicd = apic_chip_data(irqd);
955 	if (!apicd)
956 		goto unlock;
957 
958 	/*
959 	 * If prev_vector is empty, no action required.
960 	 */
961 	vector = apicd->prev_vector;
962 	if (!vector)
963 		goto unlock;
964 
965 	/*
966 	 * This is tricky. If the cleanup of the old vector has not been
967 	 * done yet, then the following setaffinity call will fail with
968 	 * -EBUSY. This can leave the interrupt in a stale state.
969 	 *
970 	 * All CPUs are stuck in stop machine with interrupts disabled so
971 	 * calling __irq_complete_move() would be completely pointless.
972 	 *
973 	 * 1) The interrupt is in move_in_progress state. That means that we
974 	 *    have not seen an interrupt since the io_apic was reprogrammed to
975 	 *    the new vector.
976 	 *
977 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
978 	 *    have not been processed yet.
979 	 */
980 	if (apicd->move_in_progress) {
981 		/*
982 		 * In theory there is a race:
983 		 *
984 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
985 		 *			      is effective, i.e. it's raised on
986 		 *			      the old vector.
987 		 *
988 		 * So if the target cpu cannot handle that interrupt before
989 		 * the old vector is cleaned up, we get a spurious interrupt
990 		 * and in the worst case the ioapic irq line becomes stale.
991 		 *
992 		 * But in case of cpu hotplug this should be a non issue
993 		 * because if the affinity update happens right before all
994 		 * cpus rendevouz in stop machine, there is no way that the
995 		 * interrupt can be blocked on the target cpu because all cpus
996 		 * loops first with interrupts enabled in stop machine, so the
997 		 * old vector is not yet cleaned up when the interrupt fires.
998 		 *
999 		 * So the only way to run into this issue is if the delivery
1000 		 * of the interrupt on the apic/system bus would be delayed
1001 		 * beyond the point where the target cpu disables interrupts
1002 		 * in stop machine. I doubt that it can happen, but at least
1003 		 * there is a theroretical chance. Virtualization might be
1004 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1005 		 * as stupid as the real hardware.
1006 		 *
1007 		 * Anyway, there is nothing we can do about that at this point
1008 		 * w/o refactoring the whole fixup_irq() business completely.
1009 		 * We print at least the irq number and the old vector number,
1010 		 * so we have the necessary information when a problem in that
1011 		 * area arises.
1012 		 */
1013 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1014 			irqd->irq, vector);
1015 	}
1016 	free_moved_vector(apicd);
1017 unlock:
1018 	raw_spin_unlock(&vector_lock);
1019 }
1020 
1021 #ifdef CONFIG_HOTPLUG_CPU
1022 /*
1023  * Note, this is not accurate accounting, but at least good enough to
1024  * prevent that the actual interrupt move will run out of vectors.
1025  */
1026 int lapic_can_unplug_cpu(void)
1027 {
1028 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1029 	int ret = 0;
1030 
1031 	raw_spin_lock(&vector_lock);
1032 	tomove = irq_matrix_allocated(vector_matrix);
1033 	avl = irq_matrix_available(vector_matrix, true);
1034 	if (avl < tomove) {
1035 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1036 			cpu, tomove, avl);
1037 		ret = -ENOSPC;
1038 		goto out;
1039 	}
1040 	rsvd = irq_matrix_reserved(vector_matrix);
1041 	if (avl < rsvd) {
1042 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1043 			rsvd, avl);
1044 	}
1045 out:
1046 	raw_spin_unlock(&vector_lock);
1047 	return ret;
1048 }
1049 #endif /* HOTPLUG_CPU */
1050 #endif /* SMP */
1051 
1052 static void __init print_APIC_field(int base)
1053 {
1054 	int i;
1055 
1056 	printk(KERN_DEBUG);
1057 
1058 	for (i = 0; i < 8; i++)
1059 		pr_cont("%08x", apic_read(base + i*0x10));
1060 
1061 	pr_cont("\n");
1062 }
1063 
1064 static void __init print_local_APIC(void *dummy)
1065 {
1066 	unsigned int i, v, ver, maxlvt;
1067 	u64 icr;
1068 
1069 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1070 		 smp_processor_id(), hard_smp_processor_id());
1071 	v = apic_read(APIC_ID);
1072 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1073 	v = apic_read(APIC_LVR);
1074 	pr_info("... APIC VERSION: %08x\n", v);
1075 	ver = GET_APIC_VERSION(v);
1076 	maxlvt = lapic_get_maxlvt();
1077 
1078 	v = apic_read(APIC_TASKPRI);
1079 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1080 
1081 	/* !82489DX */
1082 	if (APIC_INTEGRATED(ver)) {
1083 		if (!APIC_XAPIC(ver)) {
1084 			v = apic_read(APIC_ARBPRI);
1085 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1086 				 v, v & APIC_ARBPRI_MASK);
1087 		}
1088 		v = apic_read(APIC_PROCPRI);
1089 		pr_debug("... APIC PROCPRI: %08x\n", v);
1090 	}
1091 
1092 	/*
1093 	 * Remote read supported only in the 82489DX and local APIC for
1094 	 * Pentium processors.
1095 	 */
1096 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1097 		v = apic_read(APIC_RRR);
1098 		pr_debug("... APIC RRR: %08x\n", v);
1099 	}
1100 
1101 	v = apic_read(APIC_LDR);
1102 	pr_debug("... APIC LDR: %08x\n", v);
1103 	if (!x2apic_enabled()) {
1104 		v = apic_read(APIC_DFR);
1105 		pr_debug("... APIC DFR: %08x\n", v);
1106 	}
1107 	v = apic_read(APIC_SPIV);
1108 	pr_debug("... APIC SPIV: %08x\n", v);
1109 
1110 	pr_debug("... APIC ISR field:\n");
1111 	print_APIC_field(APIC_ISR);
1112 	pr_debug("... APIC TMR field:\n");
1113 	print_APIC_field(APIC_TMR);
1114 	pr_debug("... APIC IRR field:\n");
1115 	print_APIC_field(APIC_IRR);
1116 
1117 	/* !82489DX */
1118 	if (APIC_INTEGRATED(ver)) {
1119 		/* Due to the Pentium erratum 3AP. */
1120 		if (maxlvt > 3)
1121 			apic_write(APIC_ESR, 0);
1122 
1123 		v = apic_read(APIC_ESR);
1124 		pr_debug("... APIC ESR: %08x\n", v);
1125 	}
1126 
1127 	icr = apic_icr_read();
1128 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1129 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1130 
1131 	v = apic_read(APIC_LVTT);
1132 	pr_debug("... APIC LVTT: %08x\n", v);
1133 
1134 	if (maxlvt > 3) {
1135 		/* PC is LVT#4. */
1136 		v = apic_read(APIC_LVTPC);
1137 		pr_debug("... APIC LVTPC: %08x\n", v);
1138 	}
1139 	v = apic_read(APIC_LVT0);
1140 	pr_debug("... APIC LVT0: %08x\n", v);
1141 	v = apic_read(APIC_LVT1);
1142 	pr_debug("... APIC LVT1: %08x\n", v);
1143 
1144 	if (maxlvt > 2) {
1145 		/* ERR is LVT#3. */
1146 		v = apic_read(APIC_LVTERR);
1147 		pr_debug("... APIC LVTERR: %08x\n", v);
1148 	}
1149 
1150 	v = apic_read(APIC_TMICT);
1151 	pr_debug("... APIC TMICT: %08x\n", v);
1152 	v = apic_read(APIC_TMCCT);
1153 	pr_debug("... APIC TMCCT: %08x\n", v);
1154 	v = apic_read(APIC_TDCR);
1155 	pr_debug("... APIC TDCR: %08x\n", v);
1156 
1157 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1158 		v = apic_read(APIC_EFEAT);
1159 		maxlvt = (v >> 16) & 0xff;
1160 		pr_debug("... APIC EFEAT: %08x\n", v);
1161 		v = apic_read(APIC_ECTRL);
1162 		pr_debug("... APIC ECTRL: %08x\n", v);
1163 		for (i = 0; i < maxlvt; i++) {
1164 			v = apic_read(APIC_EILVTn(i));
1165 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1166 		}
1167 	}
1168 	pr_cont("\n");
1169 }
1170 
1171 static void __init print_local_APICs(int maxcpu)
1172 {
1173 	int cpu;
1174 
1175 	if (!maxcpu)
1176 		return;
1177 
1178 	preempt_disable();
1179 	for_each_online_cpu(cpu) {
1180 		if (cpu >= maxcpu)
1181 			break;
1182 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1183 	}
1184 	preempt_enable();
1185 }
1186 
1187 static void __init print_PIC(void)
1188 {
1189 	unsigned int v;
1190 	unsigned long flags;
1191 
1192 	if (!nr_legacy_irqs())
1193 		return;
1194 
1195 	pr_debug("\nprinting PIC contents\n");
1196 
1197 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1198 
1199 	v = inb(0xa1) << 8 | inb(0x21);
1200 	pr_debug("... PIC  IMR: %04x\n", v);
1201 
1202 	v = inb(0xa0) << 8 | inb(0x20);
1203 	pr_debug("... PIC  IRR: %04x\n", v);
1204 
1205 	outb(0x0b, 0xa0);
1206 	outb(0x0b, 0x20);
1207 	v = inb(0xa0) << 8 | inb(0x20);
1208 	outb(0x0a, 0xa0);
1209 	outb(0x0a, 0x20);
1210 
1211 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1212 
1213 	pr_debug("... PIC  ISR: %04x\n", v);
1214 
1215 	v = inb(0x4d1) << 8 | inb(0x4d0);
1216 	pr_debug("... PIC ELCR: %04x\n", v);
1217 }
1218 
1219 static int show_lapic __initdata = 1;
1220 static __init int setup_show_lapic(char *arg)
1221 {
1222 	int num = -1;
1223 
1224 	if (strcmp(arg, "all") == 0) {
1225 		show_lapic = CONFIG_NR_CPUS;
1226 	} else {
1227 		get_option(&arg, &num);
1228 		if (num >= 0)
1229 			show_lapic = num;
1230 	}
1231 
1232 	return 1;
1233 }
1234 __setup("show_lapic=", setup_show_lapic);
1235 
1236 static int __init print_ICs(void)
1237 {
1238 	if (apic_verbosity == APIC_QUIET)
1239 		return 0;
1240 
1241 	print_PIC();
1242 
1243 	/* don't print out if apic is not there */
1244 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1245 		return 0;
1246 
1247 	print_local_APICs(show_lapic);
1248 	print_IO_APICs();
1249 
1250 	return 0;
1251 }
1252 
1253 late_initcall(print_ICs);
1254