1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC related interfaces to support IOAPIC, MSI, etc. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Enable support of hierarchical irqdomains 9 */ 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/seq_file.h> 13 #include <linux/init.h> 14 #include <linux/compiler.h> 15 #include <linux/slab.h> 16 #include <asm/irqdomain.h> 17 #include <asm/hw_irq.h> 18 #include <asm/traps.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 #include <asm/trace/irq_vectors.h> 25 26 struct apic_chip_data { 27 struct irq_cfg hw_irq_cfg; 28 unsigned int vector; 29 unsigned int prev_vector; 30 unsigned int cpu; 31 unsigned int prev_cpu; 32 unsigned int irq; 33 struct hlist_node clist; 34 unsigned int move_in_progress : 1, 35 is_managed : 1, 36 can_reserve : 1, 37 has_reserved : 1; 38 }; 39 40 struct irq_domain *x86_vector_domain; 41 EXPORT_SYMBOL_GPL(x86_vector_domain); 42 static DEFINE_RAW_SPINLOCK(vector_lock); 43 static cpumask_var_t vector_searchmask; 44 static struct irq_chip lapic_controller; 45 static struct irq_matrix *vector_matrix; 46 #ifdef CONFIG_SMP 47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list); 48 #endif 49 50 void lock_vector_lock(void) 51 { 52 /* Used to the online set of cpus does not change 53 * during assign_irq_vector. 54 */ 55 raw_spin_lock(&vector_lock); 56 } 57 58 void unlock_vector_lock(void) 59 { 60 raw_spin_unlock(&vector_lock); 61 } 62 63 void init_irq_alloc_info(struct irq_alloc_info *info, 64 const struct cpumask *mask) 65 { 66 memset(info, 0, sizeof(*info)); 67 info->mask = mask; 68 } 69 70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 71 { 72 if (src) 73 *dst = *src; 74 else 75 memset(dst, 0, sizeof(*dst)); 76 } 77 78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 79 { 80 if (!irqd) 81 return NULL; 82 83 while (irqd->parent_data) 84 irqd = irqd->parent_data; 85 86 return irqd->chip_data; 87 } 88 89 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 90 { 91 struct apic_chip_data *apicd = apic_chip_data(irqd); 92 93 return apicd ? &apicd->hw_irq_cfg : NULL; 94 } 95 EXPORT_SYMBOL_GPL(irqd_cfg); 96 97 struct irq_cfg *irq_cfg(unsigned int irq) 98 { 99 return irqd_cfg(irq_get_irq_data(irq)); 100 } 101 102 static struct apic_chip_data *alloc_apic_chip_data(int node) 103 { 104 struct apic_chip_data *apicd; 105 106 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 107 if (apicd) 108 INIT_HLIST_NODE(&apicd->clist); 109 return apicd; 110 } 111 112 static void free_apic_chip_data(struct apic_chip_data *apicd) 113 { 114 kfree(apicd); 115 } 116 117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 118 unsigned int cpu) 119 { 120 struct apic_chip_data *apicd = apic_chip_data(irqd); 121 122 lockdep_assert_held(&vector_lock); 123 124 apicd->hw_irq_cfg.vector = vector; 125 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 126 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 127 trace_vector_config(irqd->irq, vector, cpu, 128 apicd->hw_irq_cfg.dest_apicid); 129 } 130 131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, 132 unsigned int newcpu) 133 { 134 struct apic_chip_data *apicd = apic_chip_data(irqd); 135 struct irq_desc *desc = irq_data_to_desc(irqd); 136 bool managed = irqd_affinity_is_managed(irqd); 137 138 lockdep_assert_held(&vector_lock); 139 140 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 141 apicd->cpu); 142 143 /* 144 * If there is no vector associated or if the associated vector is 145 * the shutdown vector, which is associated to make PCI/MSI 146 * shutdown mode work, then there is nothing to release. Clear out 147 * prev_vector for this and the offlined target case. 148 */ 149 apicd->prev_vector = 0; 150 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) 151 goto setnew; 152 /* 153 * If the target CPU of the previous vector is online, then mark 154 * the vector as move in progress and store it for cleanup when the 155 * first interrupt on the new vector arrives. If the target CPU is 156 * offline then the regular release mechanism via the cleanup 157 * vector is not possible and the vector can be immediately freed 158 * in the underlying matrix allocator. 159 */ 160 if (cpu_online(apicd->cpu)) { 161 apicd->move_in_progress = true; 162 apicd->prev_vector = apicd->vector; 163 apicd->prev_cpu = apicd->cpu; 164 WARN_ON_ONCE(apicd->cpu == newcpu); 165 } else { 166 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector, 167 managed); 168 } 169 170 setnew: 171 apicd->vector = newvec; 172 apicd->cpu = newcpu; 173 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 174 per_cpu(vector_irq, newcpu)[newvec] = desc; 175 } 176 177 static void vector_assign_managed_shutdown(struct irq_data *irqd) 178 { 179 unsigned int cpu = cpumask_first(cpu_online_mask); 180 181 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 182 } 183 184 static int reserve_managed_vector(struct irq_data *irqd) 185 { 186 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 187 struct apic_chip_data *apicd = apic_chip_data(irqd); 188 unsigned long flags; 189 int ret; 190 191 raw_spin_lock_irqsave(&vector_lock, flags); 192 apicd->is_managed = true; 193 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 194 raw_spin_unlock_irqrestore(&vector_lock, flags); 195 trace_vector_reserve_managed(irqd->irq, ret); 196 return ret; 197 } 198 199 static void reserve_irq_vector_locked(struct irq_data *irqd) 200 { 201 struct apic_chip_data *apicd = apic_chip_data(irqd); 202 203 irq_matrix_reserve(vector_matrix); 204 apicd->can_reserve = true; 205 apicd->has_reserved = true; 206 irqd_set_can_reserve(irqd); 207 trace_vector_reserve(irqd->irq, 0); 208 vector_assign_managed_shutdown(irqd); 209 } 210 211 static int reserve_irq_vector(struct irq_data *irqd) 212 { 213 unsigned long flags; 214 215 raw_spin_lock_irqsave(&vector_lock, flags); 216 reserve_irq_vector_locked(irqd); 217 raw_spin_unlock_irqrestore(&vector_lock, flags); 218 return 0; 219 } 220 221 static int 222 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) 223 { 224 struct apic_chip_data *apicd = apic_chip_data(irqd); 225 bool resvd = apicd->has_reserved; 226 unsigned int cpu = apicd->cpu; 227 int vector = apicd->vector; 228 229 lockdep_assert_held(&vector_lock); 230 231 /* 232 * If the current target CPU is online and in the new requested 233 * affinity mask, there is no point in moving the interrupt from 234 * one CPU to another. 235 */ 236 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 237 return 0; 238 239 /* 240 * Careful here. @apicd might either have move_in_progress set or 241 * be enqueued for cleanup. Assigning a new vector would either 242 * leave a stale vector on some CPU around or in case of a pending 243 * cleanup corrupt the hlist. 244 */ 245 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) 246 return -EBUSY; 247 248 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 249 trace_vector_alloc(irqd->irq, vector, resvd, vector); 250 if (vector < 0) 251 return vector; 252 apic_update_vector(irqd, vector, cpu); 253 apic_update_irq_cfg(irqd, vector, cpu); 254 255 return 0; 256 } 257 258 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 259 { 260 unsigned long flags; 261 int ret; 262 263 raw_spin_lock_irqsave(&vector_lock, flags); 264 cpumask_and(vector_searchmask, dest, cpu_online_mask); 265 ret = assign_vector_locked(irqd, vector_searchmask); 266 raw_spin_unlock_irqrestore(&vector_lock, flags); 267 return ret; 268 } 269 270 static int assign_irq_vector_any_locked(struct irq_data *irqd) 271 { 272 /* Get the affinity mask - either irq_default_affinity or (user) set */ 273 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 274 int node = irq_data_get_node(irqd); 275 276 if (node != NUMA_NO_NODE) { 277 /* Try the intersection of @affmsk and node mask */ 278 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 279 if (!assign_vector_locked(irqd, vector_searchmask)) 280 return 0; 281 } 282 283 /* Try the full affinity mask */ 284 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 285 if (!assign_vector_locked(irqd, vector_searchmask)) 286 return 0; 287 288 if (node != NUMA_NO_NODE) { 289 /* Try the node mask */ 290 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 291 return 0; 292 } 293 294 /* Try the full online mask */ 295 return assign_vector_locked(irqd, cpu_online_mask); 296 } 297 298 static int 299 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 300 { 301 if (irqd_affinity_is_managed(irqd)) 302 return reserve_managed_vector(irqd); 303 if (info->mask) 304 return assign_irq_vector(irqd, info->mask); 305 /* 306 * Make only a global reservation with no guarantee. A real vector 307 * is associated at activation time. 308 */ 309 return reserve_irq_vector(irqd); 310 } 311 312 static int 313 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 314 { 315 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 316 struct apic_chip_data *apicd = apic_chip_data(irqd); 317 int vector, cpu; 318 319 cpumask_and(vector_searchmask, dest, affmsk); 320 321 /* set_affinity might call here for nothing */ 322 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 323 return 0; 324 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, 325 &cpu); 326 trace_vector_alloc_managed(irqd->irq, vector, vector); 327 if (vector < 0) 328 return vector; 329 apic_update_vector(irqd, vector, cpu); 330 apic_update_irq_cfg(irqd, vector, cpu); 331 return 0; 332 } 333 334 static void clear_irq_vector(struct irq_data *irqd) 335 { 336 struct apic_chip_data *apicd = apic_chip_data(irqd); 337 bool managed = irqd_affinity_is_managed(irqd); 338 unsigned int vector = apicd->vector; 339 340 lockdep_assert_held(&vector_lock); 341 342 if (!vector) 343 return; 344 345 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 346 apicd->prev_cpu); 347 348 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN; 349 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); 350 apicd->vector = 0; 351 352 /* Clean up move in progress */ 353 vector = apicd->prev_vector; 354 if (!vector) 355 return; 356 357 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN; 358 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); 359 apicd->prev_vector = 0; 360 apicd->move_in_progress = 0; 361 hlist_del_init(&apicd->clist); 362 } 363 364 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 365 { 366 struct apic_chip_data *apicd = apic_chip_data(irqd); 367 unsigned long flags; 368 369 trace_vector_deactivate(irqd->irq, apicd->is_managed, 370 apicd->can_reserve, false); 371 372 /* Regular fixed assigned interrupt */ 373 if (!apicd->is_managed && !apicd->can_reserve) 374 return; 375 /* If the interrupt has a global reservation, nothing to do */ 376 if (apicd->has_reserved) 377 return; 378 379 raw_spin_lock_irqsave(&vector_lock, flags); 380 clear_irq_vector(irqd); 381 if (apicd->can_reserve) 382 reserve_irq_vector_locked(irqd); 383 else 384 vector_assign_managed_shutdown(irqd); 385 raw_spin_unlock_irqrestore(&vector_lock, flags); 386 } 387 388 static int activate_reserved(struct irq_data *irqd) 389 { 390 struct apic_chip_data *apicd = apic_chip_data(irqd); 391 int ret; 392 393 ret = assign_irq_vector_any_locked(irqd); 394 if (!ret) { 395 apicd->has_reserved = false; 396 /* 397 * Core might have disabled reservation mode after 398 * allocating the irq descriptor. Ideally this should 399 * happen before allocation time, but that would require 400 * completely convoluted ways of transporting that 401 * information. 402 */ 403 if (!irqd_can_reserve(irqd)) 404 apicd->can_reserve = false; 405 } 406 407 /* 408 * Check to ensure that the effective affinity mask is a subset 409 * the user supplied affinity mask, and warn the user if it is not 410 */ 411 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd), 412 irq_data_get_affinity_mask(irqd))) { 413 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n", 414 irqd->irq); 415 } 416 417 return ret; 418 } 419 420 static int activate_managed(struct irq_data *irqd) 421 { 422 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 423 int ret; 424 425 cpumask_and(vector_searchmask, dest, cpu_online_mask); 426 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 427 /* Something in the core code broke! Survive gracefully */ 428 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 429 return -EINVAL; 430 } 431 432 ret = assign_managed_vector(irqd, vector_searchmask); 433 /* 434 * This should not happen. The vector reservation got buggered. Handle 435 * it gracefully. 436 */ 437 if (WARN_ON_ONCE(ret < 0)) { 438 pr_err("Managed startup irq %u, no vector available\n", 439 irqd->irq); 440 } 441 return ret; 442 } 443 444 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 445 bool reserve) 446 { 447 struct apic_chip_data *apicd = apic_chip_data(irqd); 448 unsigned long flags; 449 int ret = 0; 450 451 trace_vector_activate(irqd->irq, apicd->is_managed, 452 apicd->can_reserve, reserve); 453 454 raw_spin_lock_irqsave(&vector_lock, flags); 455 if (!apicd->can_reserve && !apicd->is_managed) 456 assign_irq_vector_any_locked(irqd); 457 else if (reserve || irqd_is_managed_and_shutdown(irqd)) 458 vector_assign_managed_shutdown(irqd); 459 else if (apicd->is_managed) 460 ret = activate_managed(irqd); 461 else if (apicd->has_reserved) 462 ret = activate_reserved(irqd); 463 raw_spin_unlock_irqrestore(&vector_lock, flags); 464 return ret; 465 } 466 467 static void vector_free_reserved_and_managed(struct irq_data *irqd) 468 { 469 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 470 struct apic_chip_data *apicd = apic_chip_data(irqd); 471 472 trace_vector_teardown(irqd->irq, apicd->is_managed, 473 apicd->has_reserved); 474 475 if (apicd->has_reserved) 476 irq_matrix_remove_reserved(vector_matrix); 477 if (apicd->is_managed) 478 irq_matrix_remove_managed(vector_matrix, dest); 479 } 480 481 static void x86_vector_free_irqs(struct irq_domain *domain, 482 unsigned int virq, unsigned int nr_irqs) 483 { 484 struct apic_chip_data *apicd; 485 struct irq_data *irqd; 486 unsigned long flags; 487 int i; 488 489 for (i = 0; i < nr_irqs; i++) { 490 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 491 if (irqd && irqd->chip_data) { 492 raw_spin_lock_irqsave(&vector_lock, flags); 493 clear_irq_vector(irqd); 494 vector_free_reserved_and_managed(irqd); 495 apicd = irqd->chip_data; 496 irq_domain_reset_irq_data(irqd); 497 raw_spin_unlock_irqrestore(&vector_lock, flags); 498 free_apic_chip_data(apicd); 499 } 500 } 501 } 502 503 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 504 struct apic_chip_data *apicd) 505 { 506 unsigned long flags; 507 bool realloc = false; 508 509 apicd->vector = ISA_IRQ_VECTOR(virq); 510 apicd->cpu = 0; 511 512 raw_spin_lock_irqsave(&vector_lock, flags); 513 /* 514 * If the interrupt is activated, then it must stay at this vector 515 * position. That's usually the timer interrupt (0). 516 */ 517 if (irqd_is_activated(irqd)) { 518 trace_vector_setup(virq, true, 0); 519 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 520 } else { 521 /* Release the vector */ 522 apicd->can_reserve = true; 523 irqd_set_can_reserve(irqd); 524 clear_irq_vector(irqd); 525 realloc = true; 526 } 527 raw_spin_unlock_irqrestore(&vector_lock, flags); 528 return realloc; 529 } 530 531 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 532 unsigned int nr_irqs, void *arg) 533 { 534 struct irq_alloc_info *info = arg; 535 struct apic_chip_data *apicd; 536 struct irq_data *irqd; 537 int i, err, node; 538 539 if (disable_apic) 540 return -ENXIO; 541 542 /* Currently vector allocator can't guarantee contiguous allocations */ 543 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 544 return -ENOSYS; 545 546 for (i = 0; i < nr_irqs; i++) { 547 irqd = irq_domain_get_irq_data(domain, virq + i); 548 BUG_ON(!irqd); 549 node = irq_data_get_node(irqd); 550 WARN_ON_ONCE(irqd->chip_data); 551 apicd = alloc_apic_chip_data(node); 552 if (!apicd) { 553 err = -ENOMEM; 554 goto error; 555 } 556 557 apicd->irq = virq + i; 558 irqd->chip = &lapic_controller; 559 irqd->chip_data = apicd; 560 irqd->hwirq = virq + i; 561 irqd_set_single_target(irqd); 562 /* 563 * Prevent that any of these interrupts is invoked in 564 * non interrupt context via e.g. generic_handle_irq() 565 * as that can corrupt the affinity move state. 566 */ 567 irqd_set_handle_enforce_irqctx(irqd); 568 569 /* Don't invoke affinity setter on deactivated interrupts */ 570 irqd_set_affinity_on_activate(irqd); 571 572 /* 573 * Legacy vectors are already assigned when the IOAPIC 574 * takes them over. They stay on the same vector. This is 575 * required for check_timer() to work correctly as it might 576 * switch back to legacy mode. Only update the hardware 577 * config. 578 */ 579 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 580 if (!vector_configure_legacy(virq + i, irqd, apicd)) 581 continue; 582 } 583 584 err = assign_irq_vector_policy(irqd, info); 585 trace_vector_setup(virq + i, false, err); 586 if (err) { 587 irqd->chip_data = NULL; 588 free_apic_chip_data(apicd); 589 goto error; 590 } 591 } 592 593 return 0; 594 595 error: 596 x86_vector_free_irqs(domain, virq, i); 597 return err; 598 } 599 600 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 601 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 602 struct irq_data *irqd, int ind) 603 { 604 struct apic_chip_data apicd; 605 unsigned long flags; 606 int irq; 607 608 if (!irqd) { 609 irq_matrix_debug_show(m, vector_matrix, ind); 610 return; 611 } 612 613 irq = irqd->irq; 614 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 615 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 616 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 617 return; 618 } 619 620 if (!irqd->chip_data) { 621 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 622 return; 623 } 624 625 raw_spin_lock_irqsave(&vector_lock, flags); 626 memcpy(&apicd, irqd->chip_data, sizeof(apicd)); 627 raw_spin_unlock_irqrestore(&vector_lock, flags); 628 629 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); 630 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); 631 if (apicd.prev_vector) { 632 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); 633 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); 634 } 635 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); 636 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); 637 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); 638 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); 639 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); 640 } 641 #endif 642 643 int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec) 644 { 645 if (fwspec->param_count != 1) 646 return 0; 647 648 if (is_fwnode_irqchip(fwspec->fwnode)) { 649 const char *fwname = fwnode_get_name(fwspec->fwnode); 650 return fwname && !strncmp(fwname, "IO-APIC-", 8) && 651 simple_strtol(fwname+8, NULL, 10) == fwspec->param[0]; 652 } 653 return to_of_node(fwspec->fwnode) && 654 of_device_is_compatible(to_of_node(fwspec->fwnode), 655 "intel,ce4100-ioapic"); 656 } 657 658 int x86_fwspec_is_hpet(struct irq_fwspec *fwspec) 659 { 660 if (fwspec->param_count != 1) 661 return 0; 662 663 if (is_fwnode_irqchip(fwspec->fwnode)) { 664 const char *fwname = fwnode_get_name(fwspec->fwnode); 665 return fwname && !strncmp(fwname, "HPET-MSI-", 9) && 666 simple_strtol(fwname+9, NULL, 10) == fwspec->param[0]; 667 } 668 return 0; 669 } 670 671 static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec, 672 enum irq_domain_bus_token bus_token) 673 { 674 /* 675 * HPET and I/OAPIC cannot be parented in the vector domain 676 * if IRQ remapping is enabled. APIC IDs above 15 bits are 677 * only permitted if IRQ remapping is enabled, so check that. 678 */ 679 if (apic->apic_id_valid(32768)) 680 return 0; 681 682 return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec); 683 } 684 685 static const struct irq_domain_ops x86_vector_domain_ops = { 686 .select = x86_vector_select, 687 .alloc = x86_vector_alloc_irqs, 688 .free = x86_vector_free_irqs, 689 .activate = x86_vector_activate, 690 .deactivate = x86_vector_deactivate, 691 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 692 .debug_show = x86_vector_debug_show, 693 #endif 694 }; 695 696 int __init arch_probe_nr_irqs(void) 697 { 698 int nr; 699 700 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 701 nr_irqs = NR_VECTORS * nr_cpu_ids; 702 703 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 704 #if defined(CONFIG_PCI_MSI) 705 /* 706 * for MSI and HT dyn irq 707 */ 708 if (gsi_top <= NR_IRQS_LEGACY) 709 nr += 8 * nr_cpu_ids; 710 else 711 nr += gsi_top * 16; 712 #endif 713 if (nr < nr_irqs) 714 nr_irqs = nr; 715 716 /* 717 * We don't know if PIC is present at this point so we need to do 718 * probe() to get the right number of legacy IRQs. 719 */ 720 return legacy_pic->probe(); 721 } 722 723 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 724 { 725 /* 726 * Use assign system here so it wont get accounted as allocated 727 * and moveable in the cpu hotplug check and it prevents managed 728 * irq reservation from touching it. 729 */ 730 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 731 } 732 733 void __init lapic_assign_system_vectors(void) 734 { 735 unsigned int i, vector = 0; 736 737 for_each_set_bit_from(vector, system_vectors, NR_VECTORS) 738 irq_matrix_assign_system(vector_matrix, vector, false); 739 740 if (nr_legacy_irqs() > 1) 741 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 742 743 /* System vectors are reserved, online it */ 744 irq_matrix_online(vector_matrix); 745 746 /* Mark the preallocated legacy interrupts */ 747 for (i = 0; i < nr_legacy_irqs(); i++) { 748 if (i != PIC_CASCADE_IR) 749 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 750 } 751 } 752 753 int __init arch_early_irq_init(void) 754 { 755 struct fwnode_handle *fn; 756 757 fn = irq_domain_alloc_named_fwnode("VECTOR"); 758 BUG_ON(!fn); 759 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 760 NULL); 761 BUG_ON(x86_vector_domain == NULL); 762 irq_set_default_host(x86_vector_domain); 763 764 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 765 766 /* 767 * Allocate the vector matrix allocator data structure and limit the 768 * search area. 769 */ 770 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 771 FIRST_SYSTEM_VECTOR); 772 BUG_ON(!vector_matrix); 773 774 return arch_early_ioapic_init(); 775 } 776 777 #ifdef CONFIG_SMP 778 779 static struct irq_desc *__setup_vector_irq(int vector) 780 { 781 int isairq = vector - ISA_IRQ_VECTOR(0); 782 783 /* Check whether the irq is in the legacy space */ 784 if (isairq < 0 || isairq >= nr_legacy_irqs()) 785 return VECTOR_UNUSED; 786 /* Check whether the irq is handled by the IOAPIC */ 787 if (test_bit(isairq, &io_apic_irqs)) 788 return VECTOR_UNUSED; 789 return irq_to_desc(isairq); 790 } 791 792 /* Online the local APIC infrastructure and initialize the vectors */ 793 void lapic_online(void) 794 { 795 unsigned int vector; 796 797 lockdep_assert_held(&vector_lock); 798 799 /* Online the vector matrix array for this CPU */ 800 irq_matrix_online(vector_matrix); 801 802 /* 803 * The interrupt affinity logic never targets interrupts to offline 804 * CPUs. The exception are the legacy PIC interrupts. In general 805 * they are only targeted to CPU0, but depending on the platform 806 * they can be distributed to any online CPU in hardware. The 807 * kernel has no influence on that. So all active legacy vectors 808 * must be installed on all CPUs. All non legacy interrupts can be 809 * cleared. 810 */ 811 for (vector = 0; vector < NR_VECTORS; vector++) 812 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 813 } 814 815 void lapic_offline(void) 816 { 817 lock_vector_lock(); 818 irq_matrix_offline(vector_matrix); 819 unlock_vector_lock(); 820 } 821 822 static int apic_set_affinity(struct irq_data *irqd, 823 const struct cpumask *dest, bool force) 824 { 825 int err; 826 827 if (WARN_ON_ONCE(!irqd_is_activated(irqd))) 828 return -EIO; 829 830 raw_spin_lock(&vector_lock); 831 cpumask_and(vector_searchmask, dest, cpu_online_mask); 832 if (irqd_affinity_is_managed(irqd)) 833 err = assign_managed_vector(irqd, vector_searchmask); 834 else 835 err = assign_vector_locked(irqd, vector_searchmask); 836 raw_spin_unlock(&vector_lock); 837 return err ? err : IRQ_SET_MASK_OK; 838 } 839 840 #else 841 # define apic_set_affinity NULL 842 #endif 843 844 static int apic_retrigger_irq(struct irq_data *irqd) 845 { 846 struct apic_chip_data *apicd = apic_chip_data(irqd); 847 unsigned long flags; 848 849 raw_spin_lock_irqsave(&vector_lock, flags); 850 apic->send_IPI(apicd->cpu, apicd->vector); 851 raw_spin_unlock_irqrestore(&vector_lock, flags); 852 853 return 1; 854 } 855 856 void apic_ack_irq(struct irq_data *irqd) 857 { 858 irq_move_irq(irqd); 859 ack_APIC_irq(); 860 } 861 862 void apic_ack_edge(struct irq_data *irqd) 863 { 864 irq_complete_move(irqd_cfg(irqd)); 865 apic_ack_irq(irqd); 866 } 867 868 static void x86_vector_msi_compose_msg(struct irq_data *data, 869 struct msi_msg *msg) 870 { 871 __irq_msi_compose_msg(irqd_cfg(data), msg, false); 872 } 873 874 static struct irq_chip lapic_controller = { 875 .name = "APIC", 876 .irq_ack = apic_ack_edge, 877 .irq_set_affinity = apic_set_affinity, 878 .irq_compose_msi_msg = x86_vector_msi_compose_msg, 879 .irq_retrigger = apic_retrigger_irq, 880 }; 881 882 #ifdef CONFIG_SMP 883 884 static void free_moved_vector(struct apic_chip_data *apicd) 885 { 886 unsigned int vector = apicd->prev_vector; 887 unsigned int cpu = apicd->prev_cpu; 888 bool managed = apicd->is_managed; 889 890 /* 891 * Managed interrupts are usually not migrated away 892 * from an online CPU, but CPU isolation 'managed_irq' 893 * can make that happen. 894 * 1) Activation does not take the isolation into account 895 * to keep the code simple 896 * 2) Migration away from an isolated CPU can happen when 897 * a non-isolated CPU which is in the calculated 898 * affinity mask comes online. 899 */ 900 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 901 irq_matrix_free(vector_matrix, cpu, vector, managed); 902 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 903 hlist_del_init(&apicd->clist); 904 apicd->prev_vector = 0; 905 apicd->move_in_progress = 0; 906 } 907 908 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup) 909 { 910 struct hlist_head *clhead = this_cpu_ptr(&cleanup_list); 911 struct apic_chip_data *apicd; 912 struct hlist_node *tmp; 913 914 ack_APIC_irq(); 915 /* Prevent vectors vanishing under us */ 916 raw_spin_lock(&vector_lock); 917 918 hlist_for_each_entry_safe(apicd, tmp, clhead, clist) { 919 unsigned int irr, vector = apicd->prev_vector; 920 921 /* 922 * Paranoia: Check if the vector that needs to be cleaned 923 * up is registered at the APICs IRR. If so, then this is 924 * not the best time to clean it up. Clean it up in the 925 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 926 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest 927 * priority external vector, so on return from this 928 * interrupt the device interrupt will happen first. 929 */ 930 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 931 if (irr & (1U << (vector % 32))) { 932 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 933 continue; 934 } 935 free_moved_vector(apicd); 936 } 937 938 raw_spin_unlock(&vector_lock); 939 } 940 941 static void __send_cleanup_vector(struct apic_chip_data *apicd) 942 { 943 unsigned int cpu; 944 945 raw_spin_lock(&vector_lock); 946 apicd->move_in_progress = 0; 947 cpu = apicd->prev_cpu; 948 if (cpu_online(cpu)) { 949 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu)); 950 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR); 951 } else { 952 apicd->prev_vector = 0; 953 } 954 raw_spin_unlock(&vector_lock); 955 } 956 957 void send_cleanup_vector(struct irq_cfg *cfg) 958 { 959 struct apic_chip_data *apicd; 960 961 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 962 if (apicd->move_in_progress) 963 __send_cleanup_vector(apicd); 964 } 965 966 void irq_complete_move(struct irq_cfg *cfg) 967 { 968 struct apic_chip_data *apicd; 969 970 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 971 if (likely(!apicd->move_in_progress)) 972 return; 973 974 /* 975 * If the interrupt arrived on the new target CPU, cleanup the 976 * vector on the old target CPU. A vector check is not required 977 * because an interrupt can never move from one vector to another 978 * on the same CPU. 979 */ 980 if (apicd->cpu == smp_processor_id()) 981 __send_cleanup_vector(apicd); 982 } 983 984 /* 985 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 986 */ 987 void irq_force_complete_move(struct irq_desc *desc) 988 { 989 struct apic_chip_data *apicd; 990 struct irq_data *irqd; 991 unsigned int vector; 992 993 /* 994 * The function is called for all descriptors regardless of which 995 * irqdomain they belong to. For example if an IRQ is provided by 996 * an irq_chip as part of a GPIO driver, the chip data for that 997 * descriptor is specific to the irq_chip in question. 998 * 999 * Check first that the chip_data is what we expect 1000 * (apic_chip_data) before touching it any further. 1001 */ 1002 irqd = irq_domain_get_irq_data(x86_vector_domain, 1003 irq_desc_get_irq(desc)); 1004 if (!irqd) 1005 return; 1006 1007 raw_spin_lock(&vector_lock); 1008 apicd = apic_chip_data(irqd); 1009 if (!apicd) 1010 goto unlock; 1011 1012 /* 1013 * If prev_vector is empty, no action required. 1014 */ 1015 vector = apicd->prev_vector; 1016 if (!vector) 1017 goto unlock; 1018 1019 /* 1020 * This is tricky. If the cleanup of the old vector has not been 1021 * done yet, then the following setaffinity call will fail with 1022 * -EBUSY. This can leave the interrupt in a stale state. 1023 * 1024 * All CPUs are stuck in stop machine with interrupts disabled so 1025 * calling __irq_complete_move() would be completely pointless. 1026 * 1027 * 1) The interrupt is in move_in_progress state. That means that we 1028 * have not seen an interrupt since the io_apic was reprogrammed to 1029 * the new vector. 1030 * 1031 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 1032 * have not been processed yet. 1033 */ 1034 if (apicd->move_in_progress) { 1035 /* 1036 * In theory there is a race: 1037 * 1038 * set_ioapic(new_vector) <-- Interrupt is raised before update 1039 * is effective, i.e. it's raised on 1040 * the old vector. 1041 * 1042 * So if the target cpu cannot handle that interrupt before 1043 * the old vector is cleaned up, we get a spurious interrupt 1044 * and in the worst case the ioapic irq line becomes stale. 1045 * 1046 * But in case of cpu hotplug this should be a non issue 1047 * because if the affinity update happens right before all 1048 * cpus rendevouz in stop machine, there is no way that the 1049 * interrupt can be blocked on the target cpu because all cpus 1050 * loops first with interrupts enabled in stop machine, so the 1051 * old vector is not yet cleaned up when the interrupt fires. 1052 * 1053 * So the only way to run into this issue is if the delivery 1054 * of the interrupt on the apic/system bus would be delayed 1055 * beyond the point where the target cpu disables interrupts 1056 * in stop machine. I doubt that it can happen, but at least 1057 * there is a theroretical chance. Virtualization might be 1058 * able to expose this, but AFAICT the IOAPIC emulation is not 1059 * as stupid as the real hardware. 1060 * 1061 * Anyway, there is nothing we can do about that at this point 1062 * w/o refactoring the whole fixup_irq() business completely. 1063 * We print at least the irq number and the old vector number, 1064 * so we have the necessary information when a problem in that 1065 * area arises. 1066 */ 1067 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 1068 irqd->irq, vector); 1069 } 1070 free_moved_vector(apicd); 1071 unlock: 1072 raw_spin_unlock(&vector_lock); 1073 } 1074 1075 #ifdef CONFIG_HOTPLUG_CPU 1076 /* 1077 * Note, this is not accurate accounting, but at least good enough to 1078 * prevent that the actual interrupt move will run out of vectors. 1079 */ 1080 int lapic_can_unplug_cpu(void) 1081 { 1082 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 1083 int ret = 0; 1084 1085 raw_spin_lock(&vector_lock); 1086 tomove = irq_matrix_allocated(vector_matrix); 1087 avl = irq_matrix_available(vector_matrix, true); 1088 if (avl < tomove) { 1089 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1090 cpu, tomove, avl); 1091 ret = -ENOSPC; 1092 goto out; 1093 } 1094 rsvd = irq_matrix_reserved(vector_matrix); 1095 if (avl < rsvd) { 1096 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1097 rsvd, avl); 1098 } 1099 out: 1100 raw_spin_unlock(&vector_lock); 1101 return ret; 1102 } 1103 #endif /* HOTPLUG_CPU */ 1104 #endif /* SMP */ 1105 1106 static void __init print_APIC_field(int base) 1107 { 1108 int i; 1109 1110 printk(KERN_DEBUG); 1111 1112 for (i = 0; i < 8; i++) 1113 pr_cont("%08x", apic_read(base + i*0x10)); 1114 1115 pr_cont("\n"); 1116 } 1117 1118 static void __init print_local_APIC(void *dummy) 1119 { 1120 unsigned int i, v, ver, maxlvt; 1121 u64 icr; 1122 1123 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1124 smp_processor_id(), hard_smp_processor_id()); 1125 v = apic_read(APIC_ID); 1126 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1127 v = apic_read(APIC_LVR); 1128 pr_info("... APIC VERSION: %08x\n", v); 1129 ver = GET_APIC_VERSION(v); 1130 maxlvt = lapic_get_maxlvt(); 1131 1132 v = apic_read(APIC_TASKPRI); 1133 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1134 1135 /* !82489DX */ 1136 if (APIC_INTEGRATED(ver)) { 1137 if (!APIC_XAPIC(ver)) { 1138 v = apic_read(APIC_ARBPRI); 1139 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1140 v, v & APIC_ARBPRI_MASK); 1141 } 1142 v = apic_read(APIC_PROCPRI); 1143 pr_debug("... APIC PROCPRI: %08x\n", v); 1144 } 1145 1146 /* 1147 * Remote read supported only in the 82489DX and local APIC for 1148 * Pentium processors. 1149 */ 1150 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1151 v = apic_read(APIC_RRR); 1152 pr_debug("... APIC RRR: %08x\n", v); 1153 } 1154 1155 v = apic_read(APIC_LDR); 1156 pr_debug("... APIC LDR: %08x\n", v); 1157 if (!x2apic_enabled()) { 1158 v = apic_read(APIC_DFR); 1159 pr_debug("... APIC DFR: %08x\n", v); 1160 } 1161 v = apic_read(APIC_SPIV); 1162 pr_debug("... APIC SPIV: %08x\n", v); 1163 1164 pr_debug("... APIC ISR field:\n"); 1165 print_APIC_field(APIC_ISR); 1166 pr_debug("... APIC TMR field:\n"); 1167 print_APIC_field(APIC_TMR); 1168 pr_debug("... APIC IRR field:\n"); 1169 print_APIC_field(APIC_IRR); 1170 1171 /* !82489DX */ 1172 if (APIC_INTEGRATED(ver)) { 1173 /* Due to the Pentium erratum 3AP. */ 1174 if (maxlvt > 3) 1175 apic_write(APIC_ESR, 0); 1176 1177 v = apic_read(APIC_ESR); 1178 pr_debug("... APIC ESR: %08x\n", v); 1179 } 1180 1181 icr = apic_icr_read(); 1182 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1183 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1184 1185 v = apic_read(APIC_LVTT); 1186 pr_debug("... APIC LVTT: %08x\n", v); 1187 1188 if (maxlvt > 3) { 1189 /* PC is LVT#4. */ 1190 v = apic_read(APIC_LVTPC); 1191 pr_debug("... APIC LVTPC: %08x\n", v); 1192 } 1193 v = apic_read(APIC_LVT0); 1194 pr_debug("... APIC LVT0: %08x\n", v); 1195 v = apic_read(APIC_LVT1); 1196 pr_debug("... APIC LVT1: %08x\n", v); 1197 1198 if (maxlvt > 2) { 1199 /* ERR is LVT#3. */ 1200 v = apic_read(APIC_LVTERR); 1201 pr_debug("... APIC LVTERR: %08x\n", v); 1202 } 1203 1204 v = apic_read(APIC_TMICT); 1205 pr_debug("... APIC TMICT: %08x\n", v); 1206 v = apic_read(APIC_TMCCT); 1207 pr_debug("... APIC TMCCT: %08x\n", v); 1208 v = apic_read(APIC_TDCR); 1209 pr_debug("... APIC TDCR: %08x\n", v); 1210 1211 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1212 v = apic_read(APIC_EFEAT); 1213 maxlvt = (v >> 16) & 0xff; 1214 pr_debug("... APIC EFEAT: %08x\n", v); 1215 v = apic_read(APIC_ECTRL); 1216 pr_debug("... APIC ECTRL: %08x\n", v); 1217 for (i = 0; i < maxlvt; i++) { 1218 v = apic_read(APIC_EILVTn(i)); 1219 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1220 } 1221 } 1222 pr_cont("\n"); 1223 } 1224 1225 static void __init print_local_APICs(int maxcpu) 1226 { 1227 int cpu; 1228 1229 if (!maxcpu) 1230 return; 1231 1232 preempt_disable(); 1233 for_each_online_cpu(cpu) { 1234 if (cpu >= maxcpu) 1235 break; 1236 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1237 } 1238 preempt_enable(); 1239 } 1240 1241 static void __init print_PIC(void) 1242 { 1243 unsigned int v; 1244 unsigned long flags; 1245 1246 if (!nr_legacy_irqs()) 1247 return; 1248 1249 pr_debug("\nprinting PIC contents\n"); 1250 1251 raw_spin_lock_irqsave(&i8259A_lock, flags); 1252 1253 v = inb(0xa1) << 8 | inb(0x21); 1254 pr_debug("... PIC IMR: %04x\n", v); 1255 1256 v = inb(0xa0) << 8 | inb(0x20); 1257 pr_debug("... PIC IRR: %04x\n", v); 1258 1259 outb(0x0b, 0xa0); 1260 outb(0x0b, 0x20); 1261 v = inb(0xa0) << 8 | inb(0x20); 1262 outb(0x0a, 0xa0); 1263 outb(0x0a, 0x20); 1264 1265 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1266 1267 pr_debug("... PIC ISR: %04x\n", v); 1268 1269 v = inb(0x4d1) << 8 | inb(0x4d0); 1270 pr_debug("... PIC ELCR: %04x\n", v); 1271 } 1272 1273 static int show_lapic __initdata = 1; 1274 static __init int setup_show_lapic(char *arg) 1275 { 1276 int num = -1; 1277 1278 if (strcmp(arg, "all") == 0) { 1279 show_lapic = CONFIG_NR_CPUS; 1280 } else { 1281 get_option(&arg, &num); 1282 if (num >= 0) 1283 show_lapic = num; 1284 } 1285 1286 return 1; 1287 } 1288 __setup("show_lapic=", setup_show_lapic); 1289 1290 static int __init print_ICs(void) 1291 { 1292 if (apic_verbosity == APIC_QUIET) 1293 return 0; 1294 1295 print_PIC(); 1296 1297 /* don't print out if apic is not there */ 1298 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1299 return 0; 1300 1301 print_local_APICs(show_lapic); 1302 print_IO_APICs(); 1303 1304 return 0; 1305 } 1306 1307 late_initcall(print_ICs); 1308