1 /* 2 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * Moved from arch/x86/kernel/apic/io_apic.c. 6 * Jiang Liu <jiang.liu@linux.intel.com> 7 * Enable support of hierarchical irqdomains 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/interrupt.h> 14 #include <linux/init.h> 15 #include <linux/compiler.h> 16 #include <linux/slab.h> 17 #include <asm/irqdomain.h> 18 #include <asm/hw_irq.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 struct apic_chip_data { 25 struct irq_cfg cfg; 26 cpumask_var_t domain; 27 cpumask_var_t old_domain; 28 u8 move_in_progress : 1; 29 }; 30 31 struct irq_domain *x86_vector_domain; 32 EXPORT_SYMBOL_GPL(x86_vector_domain); 33 static DEFINE_RAW_SPINLOCK(vector_lock); 34 static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask; 35 static struct irq_chip lapic_controller; 36 #ifdef CONFIG_X86_IO_APIC 37 static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY]; 38 #endif 39 40 void lock_vector_lock(void) 41 { 42 /* Used to the online set of cpus does not change 43 * during assign_irq_vector. 44 */ 45 raw_spin_lock(&vector_lock); 46 } 47 48 void unlock_vector_lock(void) 49 { 50 raw_spin_unlock(&vector_lock); 51 } 52 53 static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data) 54 { 55 if (!irq_data) 56 return NULL; 57 58 while (irq_data->parent_data) 59 irq_data = irq_data->parent_data; 60 61 return irq_data->chip_data; 62 } 63 64 struct irq_cfg *irqd_cfg(struct irq_data *irq_data) 65 { 66 struct apic_chip_data *data = apic_chip_data(irq_data); 67 68 return data ? &data->cfg : NULL; 69 } 70 EXPORT_SYMBOL_GPL(irqd_cfg); 71 72 struct irq_cfg *irq_cfg(unsigned int irq) 73 { 74 return irqd_cfg(irq_get_irq_data(irq)); 75 } 76 77 static struct apic_chip_data *alloc_apic_chip_data(int node) 78 { 79 struct apic_chip_data *data; 80 81 data = kzalloc_node(sizeof(*data), GFP_KERNEL, node); 82 if (!data) 83 return NULL; 84 if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node)) 85 goto out_data; 86 if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node)) 87 goto out_domain; 88 return data; 89 out_domain: 90 free_cpumask_var(data->domain); 91 out_data: 92 kfree(data); 93 return NULL; 94 } 95 96 static void free_apic_chip_data(struct apic_chip_data *data) 97 { 98 if (data) { 99 free_cpumask_var(data->domain); 100 free_cpumask_var(data->old_domain); 101 kfree(data); 102 } 103 } 104 105 static int __assign_irq_vector(int irq, struct apic_chip_data *d, 106 const struct cpumask *mask) 107 { 108 /* 109 * NOTE! The local APIC isn't very good at handling 110 * multiple interrupts at the same interrupt level. 111 * As the interrupt level is determined by taking the 112 * vector number and shifting that right by 4, we 113 * want to spread these out a bit so that they don't 114 * all fall in the same interrupt level. 115 * 116 * Also, we've got to be careful not to trash gate 117 * 0x80, because int 0x80 is hm, kind of importantish. ;) 118 */ 119 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; 120 static int current_offset = VECTOR_OFFSET_START % 16; 121 int cpu, vector; 122 123 /* 124 * If there is still a move in progress or the previous move has not 125 * been cleaned up completely, tell the caller to come back later. 126 */ 127 if (d->move_in_progress || 128 cpumask_intersects(d->old_domain, cpu_online_mask)) 129 return -EBUSY; 130 131 /* Only try and allocate irqs on cpus that are present */ 132 cpumask_clear(d->old_domain); 133 cpumask_clear(searched_cpumask); 134 cpu = cpumask_first_and(mask, cpu_online_mask); 135 while (cpu < nr_cpu_ids) { 136 int new_cpu, offset; 137 138 /* Get the possible target cpus for @mask/@cpu from the apic */ 139 apic->vector_allocation_domain(cpu, vector_cpumask, mask); 140 141 /* 142 * Clear the offline cpus from @vector_cpumask for searching 143 * and verify whether the result overlaps with @mask. If true, 144 * then the call to apic->cpu_mask_to_apicid_and() will 145 * succeed as well. If not, no point in trying to find a 146 * vector in this mask. 147 */ 148 cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask); 149 if (!cpumask_intersects(vector_searchmask, mask)) 150 goto next_cpu; 151 152 if (cpumask_subset(vector_cpumask, d->domain)) { 153 if (cpumask_equal(vector_cpumask, d->domain)) 154 goto success; 155 /* 156 * Mark the cpus which are not longer in the mask for 157 * cleanup. 158 */ 159 cpumask_andnot(d->old_domain, d->domain, vector_cpumask); 160 vector = d->cfg.vector; 161 goto update; 162 } 163 164 vector = current_vector; 165 offset = current_offset; 166 next: 167 vector += 16; 168 if (vector >= first_system_vector) { 169 offset = (offset + 1) % 16; 170 vector = FIRST_EXTERNAL_VECTOR + offset; 171 } 172 173 /* If the search wrapped around, try the next cpu */ 174 if (unlikely(current_vector == vector)) 175 goto next_cpu; 176 177 if (test_bit(vector, used_vectors)) 178 goto next; 179 180 for_each_cpu(new_cpu, vector_searchmask) { 181 if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector])) 182 goto next; 183 } 184 /* Found one! */ 185 current_vector = vector; 186 current_offset = offset; 187 /* Schedule the old vector for cleanup on all cpus */ 188 if (d->cfg.vector) 189 cpumask_copy(d->old_domain, d->domain); 190 for_each_cpu(new_cpu, vector_searchmask) 191 per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq); 192 goto update; 193 194 next_cpu: 195 /* 196 * We exclude the current @vector_cpumask from the requested 197 * @mask and try again with the next online cpu in the 198 * result. We cannot modify @mask, so we use @vector_cpumask 199 * as a temporary buffer here as it will be reassigned when 200 * calling apic->vector_allocation_domain() above. 201 */ 202 cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask); 203 cpumask_andnot(vector_cpumask, mask, searched_cpumask); 204 cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); 205 continue; 206 } 207 return -ENOSPC; 208 209 update: 210 /* 211 * Exclude offline cpus from the cleanup mask and set the 212 * move_in_progress flag when the result is not empty. 213 */ 214 cpumask_and(d->old_domain, d->old_domain, cpu_online_mask); 215 d->move_in_progress = !cpumask_empty(d->old_domain); 216 d->cfg.vector = vector; 217 cpumask_copy(d->domain, vector_cpumask); 218 success: 219 /* 220 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail 221 * as we already established, that mask & d->domain & cpu_online_mask 222 * is not empty. 223 */ 224 BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain, 225 &d->cfg.dest_apicid)); 226 return 0; 227 } 228 229 static int assign_irq_vector(int irq, struct apic_chip_data *data, 230 const struct cpumask *mask) 231 { 232 int err; 233 unsigned long flags; 234 235 raw_spin_lock_irqsave(&vector_lock, flags); 236 err = __assign_irq_vector(irq, data, mask); 237 raw_spin_unlock_irqrestore(&vector_lock, flags); 238 return err; 239 } 240 241 static int assign_irq_vector_policy(int irq, int node, 242 struct apic_chip_data *data, 243 struct irq_alloc_info *info) 244 { 245 if (info && info->mask) 246 return assign_irq_vector(irq, data, info->mask); 247 if (node != NUMA_NO_NODE && 248 assign_irq_vector(irq, data, cpumask_of_node(node)) == 0) 249 return 0; 250 return assign_irq_vector(irq, data, apic->target_cpus()); 251 } 252 253 static void clear_irq_vector(int irq, struct apic_chip_data *data) 254 { 255 struct irq_desc *desc; 256 int cpu, vector; 257 258 BUG_ON(!data->cfg.vector); 259 260 vector = data->cfg.vector; 261 for_each_cpu_and(cpu, data->domain, cpu_online_mask) 262 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 263 264 data->cfg.vector = 0; 265 cpumask_clear(data->domain); 266 267 /* 268 * If move is in progress or the old_domain mask is not empty, 269 * i.e. the cleanup IPI has not been processed yet, we need to remove 270 * the old references to desc from all cpus vector tables. 271 */ 272 if (!data->move_in_progress && cpumask_empty(data->old_domain)) 273 return; 274 275 desc = irq_to_desc(irq); 276 for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) { 277 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 278 vector++) { 279 if (per_cpu(vector_irq, cpu)[vector] != desc) 280 continue; 281 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 282 break; 283 } 284 } 285 data->move_in_progress = 0; 286 } 287 288 void init_irq_alloc_info(struct irq_alloc_info *info, 289 const struct cpumask *mask) 290 { 291 memset(info, 0, sizeof(*info)); 292 info->mask = mask; 293 } 294 295 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 296 { 297 if (src) 298 *dst = *src; 299 else 300 memset(dst, 0, sizeof(*dst)); 301 } 302 303 static void x86_vector_free_irqs(struct irq_domain *domain, 304 unsigned int virq, unsigned int nr_irqs) 305 { 306 struct apic_chip_data *apic_data; 307 struct irq_data *irq_data; 308 unsigned long flags; 309 int i; 310 311 for (i = 0; i < nr_irqs; i++) { 312 irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i); 313 if (irq_data && irq_data->chip_data) { 314 raw_spin_lock_irqsave(&vector_lock, flags); 315 clear_irq_vector(virq + i, irq_data->chip_data); 316 apic_data = irq_data->chip_data; 317 irq_domain_reset_irq_data(irq_data); 318 raw_spin_unlock_irqrestore(&vector_lock, flags); 319 free_apic_chip_data(apic_data); 320 #ifdef CONFIG_X86_IO_APIC 321 if (virq + i < nr_legacy_irqs()) 322 legacy_irq_data[virq + i] = NULL; 323 #endif 324 } 325 } 326 } 327 328 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 329 unsigned int nr_irqs, void *arg) 330 { 331 struct irq_alloc_info *info = arg; 332 struct apic_chip_data *data; 333 struct irq_data *irq_data; 334 int i, err, node; 335 336 if (disable_apic) 337 return -ENXIO; 338 339 /* Currently vector allocator can't guarantee contiguous allocations */ 340 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 341 return -ENOSYS; 342 343 for (i = 0; i < nr_irqs; i++) { 344 irq_data = irq_domain_get_irq_data(domain, virq + i); 345 BUG_ON(!irq_data); 346 node = irq_data_get_node(irq_data); 347 #ifdef CONFIG_X86_IO_APIC 348 if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i]) 349 data = legacy_irq_data[virq + i]; 350 else 351 #endif 352 data = alloc_apic_chip_data(node); 353 if (!data) { 354 err = -ENOMEM; 355 goto error; 356 } 357 358 irq_data->chip = &lapic_controller; 359 irq_data->chip_data = data; 360 irq_data->hwirq = virq + i; 361 err = assign_irq_vector_policy(virq + i, node, data, info); 362 if (err) 363 goto error; 364 } 365 366 return 0; 367 368 error: 369 x86_vector_free_irqs(domain, virq, i + 1); 370 return err; 371 } 372 373 static const struct irq_domain_ops x86_vector_domain_ops = { 374 .alloc = x86_vector_alloc_irqs, 375 .free = x86_vector_free_irqs, 376 }; 377 378 int __init arch_probe_nr_irqs(void) 379 { 380 int nr; 381 382 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 383 nr_irqs = NR_VECTORS * nr_cpu_ids; 384 385 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 386 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 387 /* 388 * for MSI and HT dyn irq 389 */ 390 if (gsi_top <= NR_IRQS_LEGACY) 391 nr += 8 * nr_cpu_ids; 392 else 393 nr += gsi_top * 16; 394 #endif 395 if (nr < nr_irqs) 396 nr_irqs = nr; 397 398 /* 399 * We don't know if PIC is present at this point so we need to do 400 * probe() to get the right number of legacy IRQs. 401 */ 402 return legacy_pic->probe(); 403 } 404 405 #ifdef CONFIG_X86_IO_APIC 406 static void init_legacy_irqs(void) 407 { 408 int i, node = cpu_to_node(0); 409 struct apic_chip_data *data; 410 411 /* 412 * For legacy IRQ's, start with assigning irq0 to irq15 to 413 * ISA_IRQ_VECTOR(i) for all cpu's. 414 */ 415 for (i = 0; i < nr_legacy_irqs(); i++) { 416 data = legacy_irq_data[i] = alloc_apic_chip_data(node); 417 BUG_ON(!data); 418 419 data->cfg.vector = ISA_IRQ_VECTOR(i); 420 cpumask_setall(data->domain); 421 irq_set_chip_data(i, data); 422 } 423 } 424 #else 425 static void init_legacy_irqs(void) { } 426 #endif 427 428 int __init arch_early_irq_init(void) 429 { 430 init_legacy_irqs(); 431 432 x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops, 433 NULL); 434 BUG_ON(x86_vector_domain == NULL); 435 irq_set_default_host(x86_vector_domain); 436 437 arch_init_msi_domain(x86_vector_domain); 438 arch_init_htirq_domain(x86_vector_domain); 439 440 BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); 441 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 442 BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL)); 443 444 return arch_early_ioapic_init(); 445 } 446 447 /* Initialize vector_irq on a new cpu */ 448 static void __setup_vector_irq(int cpu) 449 { 450 struct apic_chip_data *data; 451 struct irq_desc *desc; 452 int irq, vector; 453 454 /* Mark the inuse vectors */ 455 for_each_irq_desc(irq, desc) { 456 struct irq_data *idata = irq_desc_get_irq_data(desc); 457 458 data = apic_chip_data(idata); 459 if (!data || !cpumask_test_cpu(cpu, data->domain)) 460 continue; 461 vector = data->cfg.vector; 462 per_cpu(vector_irq, cpu)[vector] = desc; 463 } 464 /* Mark the free vectors */ 465 for (vector = 0; vector < NR_VECTORS; ++vector) { 466 desc = per_cpu(vector_irq, cpu)[vector]; 467 if (IS_ERR_OR_NULL(desc)) 468 continue; 469 470 data = apic_chip_data(irq_desc_get_irq_data(desc)); 471 if (!cpumask_test_cpu(cpu, data->domain)) 472 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 473 } 474 } 475 476 /* 477 * Setup the vector to irq mappings. Must be called with vector_lock held. 478 */ 479 void setup_vector_irq(int cpu) 480 { 481 int irq; 482 483 lockdep_assert_held(&vector_lock); 484 /* 485 * On most of the platforms, legacy PIC delivers the interrupts on the 486 * boot cpu. But there are certain platforms where PIC interrupts are 487 * delivered to multiple cpu's. If the legacy IRQ is handled by the 488 * legacy PIC, for the new cpu that is coming online, setup the static 489 * legacy vector to irq mapping: 490 */ 491 for (irq = 0; irq < nr_legacy_irqs(); irq++) 492 per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq); 493 494 __setup_vector_irq(cpu); 495 } 496 497 static int apic_retrigger_irq(struct irq_data *irq_data) 498 { 499 struct apic_chip_data *data = apic_chip_data(irq_data); 500 unsigned long flags; 501 int cpu; 502 503 raw_spin_lock_irqsave(&vector_lock, flags); 504 cpu = cpumask_first_and(data->domain, cpu_online_mask); 505 apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector); 506 raw_spin_unlock_irqrestore(&vector_lock, flags); 507 508 return 1; 509 } 510 511 void apic_ack_edge(struct irq_data *data) 512 { 513 irq_complete_move(irqd_cfg(data)); 514 irq_move_irq(data); 515 ack_APIC_irq(); 516 } 517 518 static int apic_set_affinity(struct irq_data *irq_data, 519 const struct cpumask *dest, bool force) 520 { 521 struct apic_chip_data *data = irq_data->chip_data; 522 int err, irq = irq_data->irq; 523 524 if (!config_enabled(CONFIG_SMP)) 525 return -EPERM; 526 527 if (!cpumask_intersects(dest, cpu_online_mask)) 528 return -EINVAL; 529 530 err = assign_irq_vector(irq, data, dest); 531 return err ? err : IRQ_SET_MASK_OK; 532 } 533 534 static struct irq_chip lapic_controller = { 535 .irq_ack = apic_ack_edge, 536 .irq_set_affinity = apic_set_affinity, 537 .irq_retrigger = apic_retrigger_irq, 538 }; 539 540 #ifdef CONFIG_SMP 541 static void __send_cleanup_vector(struct apic_chip_data *data) 542 { 543 raw_spin_lock(&vector_lock); 544 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); 545 data->move_in_progress = 0; 546 if (!cpumask_empty(data->old_domain)) 547 apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR); 548 raw_spin_unlock(&vector_lock); 549 } 550 551 void send_cleanup_vector(struct irq_cfg *cfg) 552 { 553 struct apic_chip_data *data; 554 555 data = container_of(cfg, struct apic_chip_data, cfg); 556 if (data->move_in_progress) 557 __send_cleanup_vector(data); 558 } 559 560 asmlinkage __visible void smp_irq_move_cleanup_interrupt(void) 561 { 562 unsigned vector, me; 563 564 entering_ack_irq(); 565 566 /* Prevent vectors vanishing under us */ 567 raw_spin_lock(&vector_lock); 568 569 me = smp_processor_id(); 570 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 571 struct apic_chip_data *data; 572 struct irq_desc *desc; 573 unsigned int irr; 574 575 retry: 576 desc = __this_cpu_read(vector_irq[vector]); 577 if (IS_ERR_OR_NULL(desc)) 578 continue; 579 580 if (!raw_spin_trylock(&desc->lock)) { 581 raw_spin_unlock(&vector_lock); 582 cpu_relax(); 583 raw_spin_lock(&vector_lock); 584 goto retry; 585 } 586 587 data = apic_chip_data(irq_desc_get_irq_data(desc)); 588 if (!data) 589 goto unlock; 590 591 /* 592 * Nothing to cleanup if irq migration is in progress 593 * or this cpu is not set in the cleanup mask. 594 */ 595 if (data->move_in_progress || 596 !cpumask_test_cpu(me, data->old_domain)) 597 goto unlock; 598 599 /* 600 * We have two cases to handle here: 601 * 1) vector is unchanged but the target mask got reduced 602 * 2) vector and the target mask has changed 603 * 604 * #1 is obvious, but in #2 we have two vectors with the same 605 * irq descriptor: the old and the new vector. So we need to 606 * make sure that we only cleanup the old vector. The new 607 * vector has the current @vector number in the config and 608 * this cpu is part of the target mask. We better leave that 609 * one alone. 610 */ 611 if (vector == data->cfg.vector && 612 cpumask_test_cpu(me, data->domain)) 613 goto unlock; 614 615 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 616 /* 617 * Check if the vector that needs to be cleanedup is 618 * registered at the cpu's IRR. If so, then this is not 619 * the best time to clean it up. Lets clean it up in the 620 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 621 * to myself. 622 */ 623 if (irr & (1 << (vector % 32))) { 624 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 625 goto unlock; 626 } 627 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 628 cpumask_clear_cpu(me, data->old_domain); 629 unlock: 630 raw_spin_unlock(&desc->lock); 631 } 632 633 raw_spin_unlock(&vector_lock); 634 635 exiting_irq(); 636 } 637 638 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) 639 { 640 unsigned me; 641 struct apic_chip_data *data; 642 643 data = container_of(cfg, struct apic_chip_data, cfg); 644 if (likely(!data->move_in_progress)) 645 return; 646 647 me = smp_processor_id(); 648 if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain)) 649 __send_cleanup_vector(data); 650 } 651 652 void irq_complete_move(struct irq_cfg *cfg) 653 { 654 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); 655 } 656 657 /* 658 * Called with @desc->lock held and interrupts disabled. 659 */ 660 void irq_force_complete_move(struct irq_desc *desc) 661 { 662 struct irq_data *irqdata = irq_desc_get_irq_data(desc); 663 struct apic_chip_data *data = apic_chip_data(irqdata); 664 struct irq_cfg *cfg = data ? &data->cfg : NULL; 665 666 if (!cfg) 667 return; 668 669 __irq_complete_move(cfg, cfg->vector); 670 671 /* 672 * This is tricky. If the cleanup of @data->old_domain has not been 673 * done yet, then the following setaffinity call will fail with 674 * -EBUSY. This can leave the interrupt in a stale state. 675 * 676 * The cleanup cannot make progress because we hold @desc->lock. So in 677 * case @data->old_domain is not yet cleaned up, we need to drop the 678 * lock and acquire it again. @desc cannot go away, because the 679 * hotplug code holds the sparse irq lock. 680 */ 681 raw_spin_lock(&vector_lock); 682 /* Clean out all offline cpus (including ourself) first. */ 683 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask); 684 while (!cpumask_empty(data->old_domain)) { 685 raw_spin_unlock(&vector_lock); 686 raw_spin_unlock(&desc->lock); 687 cpu_relax(); 688 raw_spin_lock(&desc->lock); 689 /* 690 * Reevaluate apic_chip_data. It might have been cleared after 691 * we dropped @desc->lock. 692 */ 693 data = apic_chip_data(irqdata); 694 if (!data) 695 return; 696 raw_spin_lock(&vector_lock); 697 } 698 raw_spin_unlock(&vector_lock); 699 } 700 #endif 701 702 static void __init print_APIC_field(int base) 703 { 704 int i; 705 706 printk(KERN_DEBUG); 707 708 for (i = 0; i < 8; i++) 709 pr_cont("%08x", apic_read(base + i*0x10)); 710 711 pr_cont("\n"); 712 } 713 714 static void __init print_local_APIC(void *dummy) 715 { 716 unsigned int i, v, ver, maxlvt; 717 u64 icr; 718 719 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 720 smp_processor_id(), hard_smp_processor_id()); 721 v = apic_read(APIC_ID); 722 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 723 v = apic_read(APIC_LVR); 724 pr_info("... APIC VERSION: %08x\n", v); 725 ver = GET_APIC_VERSION(v); 726 maxlvt = lapic_get_maxlvt(); 727 728 v = apic_read(APIC_TASKPRI); 729 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 730 731 /* !82489DX */ 732 if (APIC_INTEGRATED(ver)) { 733 if (!APIC_XAPIC(ver)) { 734 v = apic_read(APIC_ARBPRI); 735 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 736 v, v & APIC_ARBPRI_MASK); 737 } 738 v = apic_read(APIC_PROCPRI); 739 pr_debug("... APIC PROCPRI: %08x\n", v); 740 } 741 742 /* 743 * Remote read supported only in the 82489DX and local APIC for 744 * Pentium processors. 745 */ 746 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 747 v = apic_read(APIC_RRR); 748 pr_debug("... APIC RRR: %08x\n", v); 749 } 750 751 v = apic_read(APIC_LDR); 752 pr_debug("... APIC LDR: %08x\n", v); 753 if (!x2apic_enabled()) { 754 v = apic_read(APIC_DFR); 755 pr_debug("... APIC DFR: %08x\n", v); 756 } 757 v = apic_read(APIC_SPIV); 758 pr_debug("... APIC SPIV: %08x\n", v); 759 760 pr_debug("... APIC ISR field:\n"); 761 print_APIC_field(APIC_ISR); 762 pr_debug("... APIC TMR field:\n"); 763 print_APIC_field(APIC_TMR); 764 pr_debug("... APIC IRR field:\n"); 765 print_APIC_field(APIC_IRR); 766 767 /* !82489DX */ 768 if (APIC_INTEGRATED(ver)) { 769 /* Due to the Pentium erratum 3AP. */ 770 if (maxlvt > 3) 771 apic_write(APIC_ESR, 0); 772 773 v = apic_read(APIC_ESR); 774 pr_debug("... APIC ESR: %08x\n", v); 775 } 776 777 icr = apic_icr_read(); 778 pr_debug("... APIC ICR: %08x\n", (u32)icr); 779 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 780 781 v = apic_read(APIC_LVTT); 782 pr_debug("... APIC LVTT: %08x\n", v); 783 784 if (maxlvt > 3) { 785 /* PC is LVT#4. */ 786 v = apic_read(APIC_LVTPC); 787 pr_debug("... APIC LVTPC: %08x\n", v); 788 } 789 v = apic_read(APIC_LVT0); 790 pr_debug("... APIC LVT0: %08x\n", v); 791 v = apic_read(APIC_LVT1); 792 pr_debug("... APIC LVT1: %08x\n", v); 793 794 if (maxlvt > 2) { 795 /* ERR is LVT#3. */ 796 v = apic_read(APIC_LVTERR); 797 pr_debug("... APIC LVTERR: %08x\n", v); 798 } 799 800 v = apic_read(APIC_TMICT); 801 pr_debug("... APIC TMICT: %08x\n", v); 802 v = apic_read(APIC_TMCCT); 803 pr_debug("... APIC TMCCT: %08x\n", v); 804 v = apic_read(APIC_TDCR); 805 pr_debug("... APIC TDCR: %08x\n", v); 806 807 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 808 v = apic_read(APIC_EFEAT); 809 maxlvt = (v >> 16) & 0xff; 810 pr_debug("... APIC EFEAT: %08x\n", v); 811 v = apic_read(APIC_ECTRL); 812 pr_debug("... APIC ECTRL: %08x\n", v); 813 for (i = 0; i < maxlvt; i++) { 814 v = apic_read(APIC_EILVTn(i)); 815 pr_debug("... APIC EILVT%d: %08x\n", i, v); 816 } 817 } 818 pr_cont("\n"); 819 } 820 821 static void __init print_local_APICs(int maxcpu) 822 { 823 int cpu; 824 825 if (!maxcpu) 826 return; 827 828 preempt_disable(); 829 for_each_online_cpu(cpu) { 830 if (cpu >= maxcpu) 831 break; 832 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 833 } 834 preempt_enable(); 835 } 836 837 static void __init print_PIC(void) 838 { 839 unsigned int v; 840 unsigned long flags; 841 842 if (!nr_legacy_irqs()) 843 return; 844 845 pr_debug("\nprinting PIC contents\n"); 846 847 raw_spin_lock_irqsave(&i8259A_lock, flags); 848 849 v = inb(0xa1) << 8 | inb(0x21); 850 pr_debug("... PIC IMR: %04x\n", v); 851 852 v = inb(0xa0) << 8 | inb(0x20); 853 pr_debug("... PIC IRR: %04x\n", v); 854 855 outb(0x0b, 0xa0); 856 outb(0x0b, 0x20); 857 v = inb(0xa0) << 8 | inb(0x20); 858 outb(0x0a, 0xa0); 859 outb(0x0a, 0x20); 860 861 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 862 863 pr_debug("... PIC ISR: %04x\n", v); 864 865 v = inb(0x4d1) << 8 | inb(0x4d0); 866 pr_debug("... PIC ELCR: %04x\n", v); 867 } 868 869 static int show_lapic __initdata = 1; 870 static __init int setup_show_lapic(char *arg) 871 { 872 int num = -1; 873 874 if (strcmp(arg, "all") == 0) { 875 show_lapic = CONFIG_NR_CPUS; 876 } else { 877 get_option(&arg, &num); 878 if (num >= 0) 879 show_lapic = num; 880 } 881 882 return 1; 883 } 884 __setup("show_lapic=", setup_show_lapic); 885 886 static int __init print_ICs(void) 887 { 888 if (apic_verbosity == APIC_QUIET) 889 return 0; 890 891 print_PIC(); 892 893 /* don't print out if apic is not there */ 894 if (!cpu_has_apic && !apic_from_smp_config()) 895 return 0; 896 897 print_local_APICs(show_lapic); 898 print_IO_APICs(); 899 900 return 0; 901 } 902 903 late_initcall(print_ICs); 904