xref: /openbmc/linux/arch/x86/kernel/apic/vector.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 #include <asm/trace/irq_vectors.h>
25 
26 struct apic_chip_data {
27 	struct irq_cfg		hw_irq_cfg;
28 	unsigned int		vector;
29 	unsigned int		prev_vector;
30 	unsigned int		cpu;
31 	unsigned int		prev_cpu;
32 	unsigned int		irq;
33 	struct hlist_node	clist;
34 	unsigned int		move_in_progress	: 1,
35 				is_managed		: 1,
36 				can_reserve		: 1,
37 				has_reserved		: 1;
38 };
39 
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49 
50 void lock_vector_lock(void)
51 {
52 	/* Used to the online set of cpus does not change
53 	 * during assign_irq_vector.
54 	 */
55 	raw_spin_lock(&vector_lock);
56 }
57 
58 void unlock_vector_lock(void)
59 {
60 	raw_spin_unlock(&vector_lock);
61 }
62 
63 void init_irq_alloc_info(struct irq_alloc_info *info,
64 			 const struct cpumask *mask)
65 {
66 	memset(info, 0, sizeof(*info));
67 	info->mask = mask;
68 }
69 
70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72 	if (src)
73 		*dst = *src;
74 	else
75 		memset(dst, 0, sizeof(*dst));
76 }
77 
78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80 	if (!irqd)
81 		return NULL;
82 
83 	while (irqd->parent_data)
84 		irqd = irqd->parent_data;
85 
86 	return irqd->chip_data;
87 }
88 
89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91 	struct apic_chip_data *apicd = apic_chip_data(irqd);
92 
93 	return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96 
97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99 	return irqd_cfg(irq_get_irq_data(irq));
100 }
101 
102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104 	struct apic_chip_data *apicd;
105 
106 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107 	if (apicd)
108 		INIT_HLIST_NODE(&apicd->clist);
109 	return apicd;
110 }
111 
112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114 	kfree(apicd);
115 }
116 
117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118 				unsigned int cpu)
119 {
120 	struct apic_chip_data *apicd = apic_chip_data(irqd);
121 
122 	lockdep_assert_held(&vector_lock);
123 
124 	apicd->hw_irq_cfg.vector = vector;
125 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127 	trace_vector_config(irqd->irq, vector, cpu,
128 			    apicd->hw_irq_cfg.dest_apicid);
129 }
130 
131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132 			       unsigned int newcpu)
133 {
134 	struct apic_chip_data *apicd = apic_chip_data(irqd);
135 	struct irq_desc *desc = irq_data_to_desc(irqd);
136 	bool managed = irqd_affinity_is_managed(irqd);
137 
138 	lockdep_assert_held(&vector_lock);
139 
140 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141 			    apicd->cpu);
142 
143 	/*
144 	 * If there is no vector associated or if the associated vector is
145 	 * the shutdown vector, which is associated to make PCI/MSI
146 	 * shutdown mode work, then there is nothing to release. Clear out
147 	 * prev_vector for this and the offlined target case.
148 	 */
149 	apicd->prev_vector = 0;
150 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151 		goto setnew;
152 	/*
153 	 * If the target CPU of the previous vector is online, then mark
154 	 * the vector as move in progress and store it for cleanup when the
155 	 * first interrupt on the new vector arrives. If the target CPU is
156 	 * offline then the regular release mechanism via the cleanup
157 	 * vector is not possible and the vector can be immediately freed
158 	 * in the underlying matrix allocator.
159 	 */
160 	if (cpu_online(apicd->cpu)) {
161 		apicd->move_in_progress = true;
162 		apicd->prev_vector = apicd->vector;
163 		apicd->prev_cpu = apicd->cpu;
164 		WARN_ON_ONCE(apicd->cpu == newcpu);
165 	} else {
166 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
167 				managed);
168 	}
169 
170 setnew:
171 	apicd->vector = newvec;
172 	apicd->cpu = newcpu;
173 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
174 	per_cpu(vector_irq, newcpu)[newvec] = desc;
175 }
176 
177 static void vector_assign_managed_shutdown(struct irq_data *irqd)
178 {
179 	unsigned int cpu = cpumask_first(cpu_online_mask);
180 
181 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
182 }
183 
184 static int reserve_managed_vector(struct irq_data *irqd)
185 {
186 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
187 	struct apic_chip_data *apicd = apic_chip_data(irqd);
188 	unsigned long flags;
189 	int ret;
190 
191 	raw_spin_lock_irqsave(&vector_lock, flags);
192 	apicd->is_managed = true;
193 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
194 	raw_spin_unlock_irqrestore(&vector_lock, flags);
195 	trace_vector_reserve_managed(irqd->irq, ret);
196 	return ret;
197 }
198 
199 static void reserve_irq_vector_locked(struct irq_data *irqd)
200 {
201 	struct apic_chip_data *apicd = apic_chip_data(irqd);
202 
203 	irq_matrix_reserve(vector_matrix);
204 	apicd->can_reserve = true;
205 	apicd->has_reserved = true;
206 	irqd_set_can_reserve(irqd);
207 	trace_vector_reserve(irqd->irq, 0);
208 	vector_assign_managed_shutdown(irqd);
209 }
210 
211 static int reserve_irq_vector(struct irq_data *irqd)
212 {
213 	unsigned long flags;
214 
215 	raw_spin_lock_irqsave(&vector_lock, flags);
216 	reserve_irq_vector_locked(irqd);
217 	raw_spin_unlock_irqrestore(&vector_lock, flags);
218 	return 0;
219 }
220 
221 static int
222 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
223 {
224 	struct apic_chip_data *apicd = apic_chip_data(irqd);
225 	bool resvd = apicd->has_reserved;
226 	unsigned int cpu = apicd->cpu;
227 	int vector = apicd->vector;
228 
229 	lockdep_assert_held(&vector_lock);
230 
231 	/*
232 	 * If the current target CPU is online and in the new requested
233 	 * affinity mask, there is no point in moving the interrupt from
234 	 * one CPU to another.
235 	 */
236 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
237 		return 0;
238 
239 	/*
240 	 * Careful here. @apicd might either have move_in_progress set or
241 	 * be enqueued for cleanup. Assigning a new vector would either
242 	 * leave a stale vector on some CPU around or in case of a pending
243 	 * cleanup corrupt the hlist.
244 	 */
245 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
246 		return -EBUSY;
247 
248 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
249 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
250 	if (vector < 0)
251 		return vector;
252 	apic_update_vector(irqd, vector, cpu);
253 	apic_update_irq_cfg(irqd, vector, cpu);
254 
255 	return 0;
256 }
257 
258 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
259 {
260 	unsigned long flags;
261 	int ret;
262 
263 	raw_spin_lock_irqsave(&vector_lock, flags);
264 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
265 	ret = assign_vector_locked(irqd, vector_searchmask);
266 	raw_spin_unlock_irqrestore(&vector_lock, flags);
267 	return ret;
268 }
269 
270 static int assign_irq_vector_any_locked(struct irq_data *irqd)
271 {
272 	/* Get the affinity mask - either irq_default_affinity or (user) set */
273 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
274 	int node = irq_data_get_node(irqd);
275 
276 	if (node == NUMA_NO_NODE)
277 		goto all;
278 	/* Try the intersection of @affmsk and node mask */
279 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
280 	if (!assign_vector_locked(irqd, vector_searchmask))
281 		return 0;
282 	/* Try the node mask */
283 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
284 		return 0;
285 all:
286 	/* Try the full affinity mask */
287 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
288 	if (!assign_vector_locked(irqd, vector_searchmask))
289 		return 0;
290 	/* Try the full online mask */
291 	return assign_vector_locked(irqd, cpu_online_mask);
292 }
293 
294 static int
295 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
296 {
297 	if (irqd_affinity_is_managed(irqd))
298 		return reserve_managed_vector(irqd);
299 	if (info->mask)
300 		return assign_irq_vector(irqd, info->mask);
301 	/*
302 	 * Make only a global reservation with no guarantee. A real vector
303 	 * is associated at activation time.
304 	 */
305 	return reserve_irq_vector(irqd);
306 }
307 
308 static int
309 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
310 {
311 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
312 	struct apic_chip_data *apicd = apic_chip_data(irqd);
313 	int vector, cpu;
314 
315 	cpumask_and(vector_searchmask, dest, affmsk);
316 
317 	/* set_affinity might call here for nothing */
318 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
319 		return 0;
320 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
321 					  &cpu);
322 	trace_vector_alloc_managed(irqd->irq, vector, vector);
323 	if (vector < 0)
324 		return vector;
325 	apic_update_vector(irqd, vector, cpu);
326 	apic_update_irq_cfg(irqd, vector, cpu);
327 	return 0;
328 }
329 
330 static void clear_irq_vector(struct irq_data *irqd)
331 {
332 	struct apic_chip_data *apicd = apic_chip_data(irqd);
333 	bool managed = irqd_affinity_is_managed(irqd);
334 	unsigned int vector = apicd->vector;
335 
336 	lockdep_assert_held(&vector_lock);
337 
338 	if (!vector)
339 		return;
340 
341 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
342 			   apicd->prev_cpu);
343 
344 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
345 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
346 	apicd->vector = 0;
347 
348 	/* Clean up move in progress */
349 	vector = apicd->prev_vector;
350 	if (!vector)
351 		return;
352 
353 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
354 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
355 	apicd->prev_vector = 0;
356 	apicd->move_in_progress = 0;
357 	hlist_del_init(&apicd->clist);
358 }
359 
360 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
361 {
362 	struct apic_chip_data *apicd = apic_chip_data(irqd);
363 	unsigned long flags;
364 
365 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
366 				apicd->can_reserve, false);
367 
368 	/* Regular fixed assigned interrupt */
369 	if (!apicd->is_managed && !apicd->can_reserve)
370 		return;
371 	/* If the interrupt has a global reservation, nothing to do */
372 	if (apicd->has_reserved)
373 		return;
374 
375 	raw_spin_lock_irqsave(&vector_lock, flags);
376 	clear_irq_vector(irqd);
377 	if (apicd->can_reserve)
378 		reserve_irq_vector_locked(irqd);
379 	else
380 		vector_assign_managed_shutdown(irqd);
381 	raw_spin_unlock_irqrestore(&vector_lock, flags);
382 }
383 
384 static int activate_reserved(struct irq_data *irqd)
385 {
386 	struct apic_chip_data *apicd = apic_chip_data(irqd);
387 	int ret;
388 
389 	ret = assign_irq_vector_any_locked(irqd);
390 	if (!ret) {
391 		apicd->has_reserved = false;
392 		/*
393 		 * Core might have disabled reservation mode after
394 		 * allocating the irq descriptor. Ideally this should
395 		 * happen before allocation time, but that would require
396 		 * completely convoluted ways of transporting that
397 		 * information.
398 		 */
399 		if (!irqd_can_reserve(irqd))
400 			apicd->can_reserve = false;
401 	}
402 
403 	/*
404 	 * Check to ensure that the effective affinity mask is a subset
405 	 * the user supplied affinity mask, and warn the user if it is not
406 	 */
407 	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
408 			    irq_data_get_affinity_mask(irqd))) {
409 		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
410 			irqd->irq);
411 	}
412 
413 	return ret;
414 }
415 
416 static int activate_managed(struct irq_data *irqd)
417 {
418 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
419 	int ret;
420 
421 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
422 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
423 		/* Something in the core code broke! Survive gracefully */
424 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
425 		return -EINVAL;
426 	}
427 
428 	ret = assign_managed_vector(irqd, vector_searchmask);
429 	/*
430 	 * This should not happen. The vector reservation got buggered.  Handle
431 	 * it gracefully.
432 	 */
433 	if (WARN_ON_ONCE(ret < 0)) {
434 		pr_err("Managed startup irq %u, no vector available\n",
435 		       irqd->irq);
436 	}
437 	return ret;
438 }
439 
440 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
441 			       bool reserve)
442 {
443 	struct apic_chip_data *apicd = apic_chip_data(irqd);
444 	unsigned long flags;
445 	int ret = 0;
446 
447 	trace_vector_activate(irqd->irq, apicd->is_managed,
448 			      apicd->can_reserve, reserve);
449 
450 	raw_spin_lock_irqsave(&vector_lock, flags);
451 	if (!apicd->can_reserve && !apicd->is_managed)
452 		assign_irq_vector_any_locked(irqd);
453 	else if (reserve || irqd_is_managed_and_shutdown(irqd))
454 		vector_assign_managed_shutdown(irqd);
455 	else if (apicd->is_managed)
456 		ret = activate_managed(irqd);
457 	else if (apicd->has_reserved)
458 		ret = activate_reserved(irqd);
459 	raw_spin_unlock_irqrestore(&vector_lock, flags);
460 	return ret;
461 }
462 
463 static void vector_free_reserved_and_managed(struct irq_data *irqd)
464 {
465 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
466 	struct apic_chip_data *apicd = apic_chip_data(irqd);
467 
468 	trace_vector_teardown(irqd->irq, apicd->is_managed,
469 			      apicd->has_reserved);
470 
471 	if (apicd->has_reserved)
472 		irq_matrix_remove_reserved(vector_matrix);
473 	if (apicd->is_managed)
474 		irq_matrix_remove_managed(vector_matrix, dest);
475 }
476 
477 static void x86_vector_free_irqs(struct irq_domain *domain,
478 				 unsigned int virq, unsigned int nr_irqs)
479 {
480 	struct apic_chip_data *apicd;
481 	struct irq_data *irqd;
482 	unsigned long flags;
483 	int i;
484 
485 	for (i = 0; i < nr_irqs; i++) {
486 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
487 		if (irqd && irqd->chip_data) {
488 			raw_spin_lock_irqsave(&vector_lock, flags);
489 			clear_irq_vector(irqd);
490 			vector_free_reserved_and_managed(irqd);
491 			apicd = irqd->chip_data;
492 			irq_domain_reset_irq_data(irqd);
493 			raw_spin_unlock_irqrestore(&vector_lock, flags);
494 			free_apic_chip_data(apicd);
495 		}
496 	}
497 }
498 
499 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
500 				    struct apic_chip_data *apicd)
501 {
502 	unsigned long flags;
503 	bool realloc = false;
504 
505 	apicd->vector = ISA_IRQ_VECTOR(virq);
506 	apicd->cpu = 0;
507 
508 	raw_spin_lock_irqsave(&vector_lock, flags);
509 	/*
510 	 * If the interrupt is activated, then it must stay at this vector
511 	 * position. That's usually the timer interrupt (0).
512 	 */
513 	if (irqd_is_activated(irqd)) {
514 		trace_vector_setup(virq, true, 0);
515 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
516 	} else {
517 		/* Release the vector */
518 		apicd->can_reserve = true;
519 		irqd_set_can_reserve(irqd);
520 		clear_irq_vector(irqd);
521 		realloc = true;
522 	}
523 	raw_spin_unlock_irqrestore(&vector_lock, flags);
524 	return realloc;
525 }
526 
527 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
528 				 unsigned int nr_irqs, void *arg)
529 {
530 	struct irq_alloc_info *info = arg;
531 	struct apic_chip_data *apicd;
532 	struct irq_data *irqd;
533 	int i, err, node;
534 
535 	if (disable_apic)
536 		return -ENXIO;
537 
538 	/* Currently vector allocator can't guarantee contiguous allocations */
539 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
540 		return -ENOSYS;
541 
542 	for (i = 0; i < nr_irqs; i++) {
543 		irqd = irq_domain_get_irq_data(domain, virq + i);
544 		BUG_ON(!irqd);
545 		node = irq_data_get_node(irqd);
546 		WARN_ON_ONCE(irqd->chip_data);
547 		apicd = alloc_apic_chip_data(node);
548 		if (!apicd) {
549 			err = -ENOMEM;
550 			goto error;
551 		}
552 
553 		apicd->irq = virq + i;
554 		irqd->chip = &lapic_controller;
555 		irqd->chip_data = apicd;
556 		irqd->hwirq = virq + i;
557 		irqd_set_single_target(irqd);
558 		/*
559 		 * Prevent that any of these interrupts is invoked in
560 		 * non interrupt context via e.g. generic_handle_irq()
561 		 * as that can corrupt the affinity move state.
562 		 */
563 		irqd_set_handle_enforce_irqctx(irqd);
564 
565 		/* Don't invoke affinity setter on deactivated interrupts */
566 		irqd_set_affinity_on_activate(irqd);
567 
568 		/*
569 		 * Legacy vectors are already assigned when the IOAPIC
570 		 * takes them over. They stay on the same vector. This is
571 		 * required for check_timer() to work correctly as it might
572 		 * switch back to legacy mode. Only update the hardware
573 		 * config.
574 		 */
575 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
576 			if (!vector_configure_legacy(virq + i, irqd, apicd))
577 				continue;
578 		}
579 
580 		err = assign_irq_vector_policy(irqd, info);
581 		trace_vector_setup(virq + i, false, err);
582 		if (err) {
583 			irqd->chip_data = NULL;
584 			free_apic_chip_data(apicd);
585 			goto error;
586 		}
587 	}
588 
589 	return 0;
590 
591 error:
592 	x86_vector_free_irqs(domain, virq, i);
593 	return err;
594 }
595 
596 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
597 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
598 				  struct irq_data *irqd, int ind)
599 {
600 	struct apic_chip_data apicd;
601 	unsigned long flags;
602 	int irq;
603 
604 	if (!irqd) {
605 		irq_matrix_debug_show(m, vector_matrix, ind);
606 		return;
607 	}
608 
609 	irq = irqd->irq;
610 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
611 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
612 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
613 		return;
614 	}
615 
616 	if (!irqd->chip_data) {
617 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
618 		return;
619 	}
620 
621 	raw_spin_lock_irqsave(&vector_lock, flags);
622 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
623 	raw_spin_unlock_irqrestore(&vector_lock, flags);
624 
625 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
626 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
627 	if (apicd.prev_vector) {
628 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
629 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
630 	}
631 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
632 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
633 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
634 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
635 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
636 }
637 #endif
638 
639 static const struct irq_domain_ops x86_vector_domain_ops = {
640 	.alloc		= x86_vector_alloc_irqs,
641 	.free		= x86_vector_free_irqs,
642 	.activate	= x86_vector_activate,
643 	.deactivate	= x86_vector_deactivate,
644 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
645 	.debug_show	= x86_vector_debug_show,
646 #endif
647 };
648 
649 int __init arch_probe_nr_irqs(void)
650 {
651 	int nr;
652 
653 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
654 		nr_irqs = NR_VECTORS * nr_cpu_ids;
655 
656 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
657 #if defined(CONFIG_PCI_MSI)
658 	/*
659 	 * for MSI and HT dyn irq
660 	 */
661 	if (gsi_top <= NR_IRQS_LEGACY)
662 		nr +=  8 * nr_cpu_ids;
663 	else
664 		nr += gsi_top * 16;
665 #endif
666 	if (nr < nr_irqs)
667 		nr_irqs = nr;
668 
669 	/*
670 	 * We don't know if PIC is present at this point so we need to do
671 	 * probe() to get the right number of legacy IRQs.
672 	 */
673 	return legacy_pic->probe();
674 }
675 
676 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
677 {
678 	/*
679 	 * Use assign system here so it wont get accounted as allocated
680 	 * and moveable in the cpu hotplug check and it prevents managed
681 	 * irq reservation from touching it.
682 	 */
683 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
684 }
685 
686 void __init lapic_assign_system_vectors(void)
687 {
688 	unsigned int i, vector = 0;
689 
690 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
691 		irq_matrix_assign_system(vector_matrix, vector, false);
692 
693 	if (nr_legacy_irqs() > 1)
694 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
695 
696 	/* System vectors are reserved, online it */
697 	irq_matrix_online(vector_matrix);
698 
699 	/* Mark the preallocated legacy interrupts */
700 	for (i = 0; i < nr_legacy_irqs(); i++) {
701 		if (i != PIC_CASCADE_IR)
702 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
703 	}
704 }
705 
706 int __init arch_early_irq_init(void)
707 {
708 	struct fwnode_handle *fn;
709 
710 	fn = irq_domain_alloc_named_fwnode("VECTOR");
711 	BUG_ON(!fn);
712 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
713 						   NULL);
714 	BUG_ON(x86_vector_domain == NULL);
715 	irq_set_default_host(x86_vector_domain);
716 
717 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
718 
719 	/*
720 	 * Allocate the vector matrix allocator data structure and limit the
721 	 * search area.
722 	 */
723 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
724 					 FIRST_SYSTEM_VECTOR);
725 	BUG_ON(!vector_matrix);
726 
727 	return arch_early_ioapic_init();
728 }
729 
730 #ifdef CONFIG_SMP
731 
732 static struct irq_desc *__setup_vector_irq(int vector)
733 {
734 	int isairq = vector - ISA_IRQ_VECTOR(0);
735 
736 	/* Check whether the irq is in the legacy space */
737 	if (isairq < 0 || isairq >= nr_legacy_irqs())
738 		return VECTOR_UNUSED;
739 	/* Check whether the irq is handled by the IOAPIC */
740 	if (test_bit(isairq, &io_apic_irqs))
741 		return VECTOR_UNUSED;
742 	return irq_to_desc(isairq);
743 }
744 
745 /* Online the local APIC infrastructure and initialize the vectors */
746 void lapic_online(void)
747 {
748 	unsigned int vector;
749 
750 	lockdep_assert_held(&vector_lock);
751 
752 	/* Online the vector matrix array for this CPU */
753 	irq_matrix_online(vector_matrix);
754 
755 	/*
756 	 * The interrupt affinity logic never targets interrupts to offline
757 	 * CPUs. The exception are the legacy PIC interrupts. In general
758 	 * they are only targeted to CPU0, but depending on the platform
759 	 * they can be distributed to any online CPU in hardware. The
760 	 * kernel has no influence on that. So all active legacy vectors
761 	 * must be installed on all CPUs. All non legacy interrupts can be
762 	 * cleared.
763 	 */
764 	for (vector = 0; vector < NR_VECTORS; vector++)
765 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
766 }
767 
768 void lapic_offline(void)
769 {
770 	lock_vector_lock();
771 	irq_matrix_offline(vector_matrix);
772 	unlock_vector_lock();
773 }
774 
775 static int apic_set_affinity(struct irq_data *irqd,
776 			     const struct cpumask *dest, bool force)
777 {
778 	int err;
779 
780 	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
781 		return -EIO;
782 
783 	raw_spin_lock(&vector_lock);
784 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
785 	if (irqd_affinity_is_managed(irqd))
786 		err = assign_managed_vector(irqd, vector_searchmask);
787 	else
788 		err = assign_vector_locked(irqd, vector_searchmask);
789 	raw_spin_unlock(&vector_lock);
790 	return err ? err : IRQ_SET_MASK_OK;
791 }
792 
793 #else
794 # define apic_set_affinity	NULL
795 #endif
796 
797 static int apic_retrigger_irq(struct irq_data *irqd)
798 {
799 	struct apic_chip_data *apicd = apic_chip_data(irqd);
800 	unsigned long flags;
801 
802 	raw_spin_lock_irqsave(&vector_lock, flags);
803 	apic->send_IPI(apicd->cpu, apicd->vector);
804 	raw_spin_unlock_irqrestore(&vector_lock, flags);
805 
806 	return 1;
807 }
808 
809 void apic_ack_irq(struct irq_data *irqd)
810 {
811 	irq_move_irq(irqd);
812 	ack_APIC_irq();
813 }
814 
815 void apic_ack_edge(struct irq_data *irqd)
816 {
817 	irq_complete_move(irqd_cfg(irqd));
818 	apic_ack_irq(irqd);
819 }
820 
821 static struct irq_chip lapic_controller = {
822 	.name			= "APIC",
823 	.irq_ack		= apic_ack_edge,
824 	.irq_set_affinity	= apic_set_affinity,
825 	.irq_compose_msi_msg	= x86_vector_msi_compose_msg,
826 	.irq_retrigger		= apic_retrigger_irq,
827 };
828 
829 #ifdef CONFIG_SMP
830 
831 static void free_moved_vector(struct apic_chip_data *apicd)
832 {
833 	unsigned int vector = apicd->prev_vector;
834 	unsigned int cpu = apicd->prev_cpu;
835 	bool managed = apicd->is_managed;
836 
837 	/*
838 	 * Managed interrupts are usually not migrated away
839 	 * from an online CPU, but CPU isolation 'managed_irq'
840 	 * can make that happen.
841 	 * 1) Activation does not take the isolation into account
842 	 *    to keep the code simple
843 	 * 2) Migration away from an isolated CPU can happen when
844 	 *    a non-isolated CPU which is in the calculated
845 	 *    affinity mask comes online.
846 	 */
847 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
848 	irq_matrix_free(vector_matrix, cpu, vector, managed);
849 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
850 	hlist_del_init(&apicd->clist);
851 	apicd->prev_vector = 0;
852 	apicd->move_in_progress = 0;
853 }
854 
855 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup)
856 {
857 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
858 	struct apic_chip_data *apicd;
859 	struct hlist_node *tmp;
860 
861 	ack_APIC_irq();
862 	/* Prevent vectors vanishing under us */
863 	raw_spin_lock(&vector_lock);
864 
865 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
866 		unsigned int irr, vector = apicd->prev_vector;
867 
868 		/*
869 		 * Paranoia: Check if the vector that needs to be cleaned
870 		 * up is registered at the APICs IRR. If so, then this is
871 		 * not the best time to clean it up. Clean it up in the
872 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
873 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
874 		 * priority external vector, so on return from this
875 		 * interrupt the device interrupt will happen first.
876 		 */
877 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
878 		if (irr & (1U << (vector % 32))) {
879 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
880 			continue;
881 		}
882 		free_moved_vector(apicd);
883 	}
884 
885 	raw_spin_unlock(&vector_lock);
886 }
887 
888 static void __send_cleanup_vector(struct apic_chip_data *apicd)
889 {
890 	unsigned int cpu;
891 
892 	raw_spin_lock(&vector_lock);
893 	apicd->move_in_progress = 0;
894 	cpu = apicd->prev_cpu;
895 	if (cpu_online(cpu)) {
896 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
897 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
898 	} else {
899 		apicd->prev_vector = 0;
900 	}
901 	raw_spin_unlock(&vector_lock);
902 }
903 
904 void send_cleanup_vector(struct irq_cfg *cfg)
905 {
906 	struct apic_chip_data *apicd;
907 
908 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
909 	if (apicd->move_in_progress)
910 		__send_cleanup_vector(apicd);
911 }
912 
913 void irq_complete_move(struct irq_cfg *cfg)
914 {
915 	struct apic_chip_data *apicd;
916 
917 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
918 	if (likely(!apicd->move_in_progress))
919 		return;
920 
921 	/*
922 	 * If the interrupt arrived on the new target CPU, cleanup the
923 	 * vector on the old target CPU. A vector check is not required
924 	 * because an interrupt can never move from one vector to another
925 	 * on the same CPU.
926 	 */
927 	if (apicd->cpu == smp_processor_id())
928 		__send_cleanup_vector(apicd);
929 }
930 
931 /*
932  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
933  */
934 void irq_force_complete_move(struct irq_desc *desc)
935 {
936 	struct apic_chip_data *apicd;
937 	struct irq_data *irqd;
938 	unsigned int vector;
939 
940 	/*
941 	 * The function is called for all descriptors regardless of which
942 	 * irqdomain they belong to. For example if an IRQ is provided by
943 	 * an irq_chip as part of a GPIO driver, the chip data for that
944 	 * descriptor is specific to the irq_chip in question.
945 	 *
946 	 * Check first that the chip_data is what we expect
947 	 * (apic_chip_data) before touching it any further.
948 	 */
949 	irqd = irq_domain_get_irq_data(x86_vector_domain,
950 				       irq_desc_get_irq(desc));
951 	if (!irqd)
952 		return;
953 
954 	raw_spin_lock(&vector_lock);
955 	apicd = apic_chip_data(irqd);
956 	if (!apicd)
957 		goto unlock;
958 
959 	/*
960 	 * If prev_vector is empty, no action required.
961 	 */
962 	vector = apicd->prev_vector;
963 	if (!vector)
964 		goto unlock;
965 
966 	/*
967 	 * This is tricky. If the cleanup of the old vector has not been
968 	 * done yet, then the following setaffinity call will fail with
969 	 * -EBUSY. This can leave the interrupt in a stale state.
970 	 *
971 	 * All CPUs are stuck in stop machine with interrupts disabled so
972 	 * calling __irq_complete_move() would be completely pointless.
973 	 *
974 	 * 1) The interrupt is in move_in_progress state. That means that we
975 	 *    have not seen an interrupt since the io_apic was reprogrammed to
976 	 *    the new vector.
977 	 *
978 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
979 	 *    have not been processed yet.
980 	 */
981 	if (apicd->move_in_progress) {
982 		/*
983 		 * In theory there is a race:
984 		 *
985 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
986 		 *			      is effective, i.e. it's raised on
987 		 *			      the old vector.
988 		 *
989 		 * So if the target cpu cannot handle that interrupt before
990 		 * the old vector is cleaned up, we get a spurious interrupt
991 		 * and in the worst case the ioapic irq line becomes stale.
992 		 *
993 		 * But in case of cpu hotplug this should be a non issue
994 		 * because if the affinity update happens right before all
995 		 * cpus rendevouz in stop machine, there is no way that the
996 		 * interrupt can be blocked on the target cpu because all cpus
997 		 * loops first with interrupts enabled in stop machine, so the
998 		 * old vector is not yet cleaned up when the interrupt fires.
999 		 *
1000 		 * So the only way to run into this issue is if the delivery
1001 		 * of the interrupt on the apic/system bus would be delayed
1002 		 * beyond the point where the target cpu disables interrupts
1003 		 * in stop machine. I doubt that it can happen, but at least
1004 		 * there is a theroretical chance. Virtualization might be
1005 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1006 		 * as stupid as the real hardware.
1007 		 *
1008 		 * Anyway, there is nothing we can do about that at this point
1009 		 * w/o refactoring the whole fixup_irq() business completely.
1010 		 * We print at least the irq number and the old vector number,
1011 		 * so we have the necessary information when a problem in that
1012 		 * area arises.
1013 		 */
1014 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1015 			irqd->irq, vector);
1016 	}
1017 	free_moved_vector(apicd);
1018 unlock:
1019 	raw_spin_unlock(&vector_lock);
1020 }
1021 
1022 #ifdef CONFIG_HOTPLUG_CPU
1023 /*
1024  * Note, this is not accurate accounting, but at least good enough to
1025  * prevent that the actual interrupt move will run out of vectors.
1026  */
1027 int lapic_can_unplug_cpu(void)
1028 {
1029 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1030 	int ret = 0;
1031 
1032 	raw_spin_lock(&vector_lock);
1033 	tomove = irq_matrix_allocated(vector_matrix);
1034 	avl = irq_matrix_available(vector_matrix, true);
1035 	if (avl < tomove) {
1036 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1037 			cpu, tomove, avl);
1038 		ret = -ENOSPC;
1039 		goto out;
1040 	}
1041 	rsvd = irq_matrix_reserved(vector_matrix);
1042 	if (avl < rsvd) {
1043 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1044 			rsvd, avl);
1045 	}
1046 out:
1047 	raw_spin_unlock(&vector_lock);
1048 	return ret;
1049 }
1050 #endif /* HOTPLUG_CPU */
1051 #endif /* SMP */
1052 
1053 static void __init print_APIC_field(int base)
1054 {
1055 	int i;
1056 
1057 	printk(KERN_DEBUG);
1058 
1059 	for (i = 0; i < 8; i++)
1060 		pr_cont("%08x", apic_read(base + i*0x10));
1061 
1062 	pr_cont("\n");
1063 }
1064 
1065 static void __init print_local_APIC(void *dummy)
1066 {
1067 	unsigned int i, v, ver, maxlvt;
1068 	u64 icr;
1069 
1070 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1071 		 smp_processor_id(), hard_smp_processor_id());
1072 	v = apic_read(APIC_ID);
1073 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1074 	v = apic_read(APIC_LVR);
1075 	pr_info("... APIC VERSION: %08x\n", v);
1076 	ver = GET_APIC_VERSION(v);
1077 	maxlvt = lapic_get_maxlvt();
1078 
1079 	v = apic_read(APIC_TASKPRI);
1080 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1081 
1082 	/* !82489DX */
1083 	if (APIC_INTEGRATED(ver)) {
1084 		if (!APIC_XAPIC(ver)) {
1085 			v = apic_read(APIC_ARBPRI);
1086 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1087 				 v, v & APIC_ARBPRI_MASK);
1088 		}
1089 		v = apic_read(APIC_PROCPRI);
1090 		pr_debug("... APIC PROCPRI: %08x\n", v);
1091 	}
1092 
1093 	/*
1094 	 * Remote read supported only in the 82489DX and local APIC for
1095 	 * Pentium processors.
1096 	 */
1097 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1098 		v = apic_read(APIC_RRR);
1099 		pr_debug("... APIC RRR: %08x\n", v);
1100 	}
1101 
1102 	v = apic_read(APIC_LDR);
1103 	pr_debug("... APIC LDR: %08x\n", v);
1104 	if (!x2apic_enabled()) {
1105 		v = apic_read(APIC_DFR);
1106 		pr_debug("... APIC DFR: %08x\n", v);
1107 	}
1108 	v = apic_read(APIC_SPIV);
1109 	pr_debug("... APIC SPIV: %08x\n", v);
1110 
1111 	pr_debug("... APIC ISR field:\n");
1112 	print_APIC_field(APIC_ISR);
1113 	pr_debug("... APIC TMR field:\n");
1114 	print_APIC_field(APIC_TMR);
1115 	pr_debug("... APIC IRR field:\n");
1116 	print_APIC_field(APIC_IRR);
1117 
1118 	/* !82489DX */
1119 	if (APIC_INTEGRATED(ver)) {
1120 		/* Due to the Pentium erratum 3AP. */
1121 		if (maxlvt > 3)
1122 			apic_write(APIC_ESR, 0);
1123 
1124 		v = apic_read(APIC_ESR);
1125 		pr_debug("... APIC ESR: %08x\n", v);
1126 	}
1127 
1128 	icr = apic_icr_read();
1129 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1130 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1131 
1132 	v = apic_read(APIC_LVTT);
1133 	pr_debug("... APIC LVTT: %08x\n", v);
1134 
1135 	if (maxlvt > 3) {
1136 		/* PC is LVT#4. */
1137 		v = apic_read(APIC_LVTPC);
1138 		pr_debug("... APIC LVTPC: %08x\n", v);
1139 	}
1140 	v = apic_read(APIC_LVT0);
1141 	pr_debug("... APIC LVT0: %08x\n", v);
1142 	v = apic_read(APIC_LVT1);
1143 	pr_debug("... APIC LVT1: %08x\n", v);
1144 
1145 	if (maxlvt > 2) {
1146 		/* ERR is LVT#3. */
1147 		v = apic_read(APIC_LVTERR);
1148 		pr_debug("... APIC LVTERR: %08x\n", v);
1149 	}
1150 
1151 	v = apic_read(APIC_TMICT);
1152 	pr_debug("... APIC TMICT: %08x\n", v);
1153 	v = apic_read(APIC_TMCCT);
1154 	pr_debug("... APIC TMCCT: %08x\n", v);
1155 	v = apic_read(APIC_TDCR);
1156 	pr_debug("... APIC TDCR: %08x\n", v);
1157 
1158 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1159 		v = apic_read(APIC_EFEAT);
1160 		maxlvt = (v >> 16) & 0xff;
1161 		pr_debug("... APIC EFEAT: %08x\n", v);
1162 		v = apic_read(APIC_ECTRL);
1163 		pr_debug("... APIC ECTRL: %08x\n", v);
1164 		for (i = 0; i < maxlvt; i++) {
1165 			v = apic_read(APIC_EILVTn(i));
1166 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1167 		}
1168 	}
1169 	pr_cont("\n");
1170 }
1171 
1172 static void __init print_local_APICs(int maxcpu)
1173 {
1174 	int cpu;
1175 
1176 	if (!maxcpu)
1177 		return;
1178 
1179 	preempt_disable();
1180 	for_each_online_cpu(cpu) {
1181 		if (cpu >= maxcpu)
1182 			break;
1183 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1184 	}
1185 	preempt_enable();
1186 }
1187 
1188 static void __init print_PIC(void)
1189 {
1190 	unsigned int v;
1191 	unsigned long flags;
1192 
1193 	if (!nr_legacy_irqs())
1194 		return;
1195 
1196 	pr_debug("\nprinting PIC contents\n");
1197 
1198 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1199 
1200 	v = inb(0xa1) << 8 | inb(0x21);
1201 	pr_debug("... PIC  IMR: %04x\n", v);
1202 
1203 	v = inb(0xa0) << 8 | inb(0x20);
1204 	pr_debug("... PIC  IRR: %04x\n", v);
1205 
1206 	outb(0x0b, 0xa0);
1207 	outb(0x0b, 0x20);
1208 	v = inb(0xa0) << 8 | inb(0x20);
1209 	outb(0x0a, 0xa0);
1210 	outb(0x0a, 0x20);
1211 
1212 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1213 
1214 	pr_debug("... PIC  ISR: %04x\n", v);
1215 
1216 	v = inb(0x4d1) << 8 | inb(0x4d0);
1217 	pr_debug("... PIC ELCR: %04x\n", v);
1218 }
1219 
1220 static int show_lapic __initdata = 1;
1221 static __init int setup_show_lapic(char *arg)
1222 {
1223 	int num = -1;
1224 
1225 	if (strcmp(arg, "all") == 0) {
1226 		show_lapic = CONFIG_NR_CPUS;
1227 	} else {
1228 		get_option(&arg, &num);
1229 		if (num >= 0)
1230 			show_lapic = num;
1231 	}
1232 
1233 	return 1;
1234 }
1235 __setup("show_lapic=", setup_show_lapic);
1236 
1237 static int __init print_ICs(void)
1238 {
1239 	if (apic_verbosity == APIC_QUIET)
1240 		return 0;
1241 
1242 	print_PIC();
1243 
1244 	/* don't print out if apic is not there */
1245 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1246 		return 0;
1247 
1248 	print_local_APICs(show_lapic);
1249 	print_IO_APICs();
1250 
1251 	return 0;
1252 }
1253 
1254 late_initcall(print_ICs);
1255