xref: /openbmc/linux/arch/x86/kernel/apic/msi.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Support of MSI, HPET and DMAR interrupts.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Convert to hierarchical irqdomain
9  */
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/pci.h>
14 #include <linux/dmar.h>
15 #include <linux/hpet.h>
16 #include <linux/msi.h>
17 #include <asm/irqdomain.h>
18 #include <asm/msidef.h>
19 #include <asm/hpet.h>
20 #include <asm/hw_irq.h>
21 #include <asm/apic.h>
22 #include <asm/irq_remapping.h>
23 
24 struct irq_domain *x86_pci_msi_default_domain __ro_after_init;
25 
26 static void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg)
27 {
28 	msg->address_hi = MSI_ADDR_BASE_HI;
29 
30 	if (x2apic_enabled())
31 		msg->address_hi |= MSI_ADDR_EXT_DEST_ID(cfg->dest_apicid);
32 
33 	msg->address_lo =
34 		MSI_ADDR_BASE_LO |
35 		((apic->irq_dest_mode == 0) ?
36 			MSI_ADDR_DEST_MODE_PHYSICAL :
37 			MSI_ADDR_DEST_MODE_LOGICAL) |
38 		MSI_ADDR_REDIRECTION_CPU |
39 		MSI_ADDR_DEST_ID(cfg->dest_apicid);
40 
41 	msg->data =
42 		MSI_DATA_TRIGGER_EDGE |
43 		MSI_DATA_LEVEL_ASSERT |
44 		MSI_DATA_DELIVERY_FIXED |
45 		MSI_DATA_VECTOR(cfg->vector);
46 }
47 
48 void x86_vector_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
49 {
50 	__irq_msi_compose_msg(irqd_cfg(data), msg);
51 }
52 
53 static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
54 {
55 	struct msi_msg msg[2] = { [1] = { }, };
56 
57 	__irq_msi_compose_msg(cfg, msg);
58 	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
59 }
60 
61 static int
62 msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
63 {
64 	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
65 	struct irq_data *parent = irqd->parent_data;
66 	unsigned int cpu;
67 	int ret;
68 
69 	/* Save the current configuration */
70 	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
71 	old_cfg = *cfg;
72 
73 	/* Allocate a new target vector */
74 	ret = parent->chip->irq_set_affinity(parent, mask, force);
75 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
76 		return ret;
77 
78 	/*
79 	 * For non-maskable and non-remapped MSI interrupts the migration
80 	 * to a different destination CPU and a different vector has to be
81 	 * done careful to handle the possible stray interrupt which can be
82 	 * caused by the non-atomic update of the address/data pair.
83 	 *
84 	 * Direct update is possible when:
85 	 * - The MSI is maskable (remapped MSI does not use this code path)).
86 	 *   The quirk bit is not set in this case.
87 	 * - The new vector is the same as the old vector
88 	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
89 	 * - The new destination CPU is the same as the old destination CPU
90 	 */
91 	if (!irqd_msi_nomask_quirk(irqd) ||
92 	    cfg->vector == old_cfg.vector ||
93 	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
94 	    cfg->dest_apicid == old_cfg.dest_apicid) {
95 		irq_msi_update_msg(irqd, cfg);
96 		return ret;
97 	}
98 
99 	/*
100 	 * Paranoia: Validate that the interrupt target is the local
101 	 * CPU.
102 	 */
103 	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
104 		irq_msi_update_msg(irqd, cfg);
105 		return ret;
106 	}
107 
108 	/*
109 	 * Redirect the interrupt to the new vector on the current CPU
110 	 * first. This might cause a spurious interrupt on this vector if
111 	 * the device raises an interrupt right between this update and the
112 	 * update to the final destination CPU.
113 	 *
114 	 * If the vector is in use then the installed device handler will
115 	 * denote it as spurious which is no harm as this is a rare event
116 	 * and interrupt handlers have to cope with spurious interrupts
117 	 * anyway. If the vector is unused, then it is marked so it won't
118 	 * trigger the 'No irq handler for vector' warning in
119 	 * common_interrupt().
120 	 *
121 	 * This requires to hold vector lock to prevent concurrent updates to
122 	 * the affected vector.
123 	 */
124 	lock_vector_lock();
125 
126 	/*
127 	 * Mark the new target vector on the local CPU if it is currently
128 	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
129 	 * the CPU hotplug path for a similar purpose. This cannot be
130 	 * undone here as the current CPU has interrupts disabled and
131 	 * cannot handle the interrupt before the whole set_affinity()
132 	 * section is done. In the CPU unplug case, the current CPU is
133 	 * about to vanish and will not handle any interrupts anymore. The
134 	 * vector is cleaned up when the CPU comes online again.
135 	 */
136 	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
137 		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
138 
139 	/* Redirect it to the new vector on the local CPU temporarily */
140 	old_cfg.vector = cfg->vector;
141 	irq_msi_update_msg(irqd, &old_cfg);
142 
143 	/* Now transition it to the target CPU */
144 	irq_msi_update_msg(irqd, cfg);
145 
146 	/*
147 	 * All interrupts after this point are now targeted at the new
148 	 * vector/CPU.
149 	 *
150 	 * Drop vector lock before testing whether the temporary assignment
151 	 * to the local CPU was hit by an interrupt raised in the device,
152 	 * because the retrigger function acquires vector lock again.
153 	 */
154 	unlock_vector_lock();
155 
156 	/*
157 	 * Check whether the transition raced with a device interrupt and
158 	 * is pending in the local APICs IRR. It is safe to do this outside
159 	 * of vector lock as the irq_desc::lock of this interrupt is still
160 	 * held and interrupts are disabled: The check is not accessing the
161 	 * underlying vector store. It's just checking the local APIC's
162 	 * IRR.
163 	 */
164 	if (lapic_vector_set_in_irr(cfg->vector))
165 		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
166 
167 	return ret;
168 }
169 
170 /*
171  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
172  * which implement the MSI or MSI-X Capability Structure.
173  */
174 static struct irq_chip pci_msi_controller = {
175 	.name			= "PCI-MSI",
176 	.irq_unmask		= pci_msi_unmask_irq,
177 	.irq_mask		= pci_msi_mask_irq,
178 	.irq_ack		= irq_chip_ack_parent,
179 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
180 	.irq_set_affinity	= msi_set_affinity,
181 	.flags			= IRQCHIP_SKIP_SET_WAKE,
182 };
183 
184 int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
185 		    msi_alloc_info_t *arg)
186 {
187 	struct pci_dev *pdev = to_pci_dev(dev);
188 	struct msi_desc *desc = first_pci_msi_entry(pdev);
189 
190 	init_irq_alloc_info(arg, NULL);
191 	if (desc->msi_attrib.is_msix) {
192 		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
193 	} else {
194 		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
195 		arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
196 	}
197 
198 	return 0;
199 }
200 EXPORT_SYMBOL_GPL(pci_msi_prepare);
201 
202 static struct msi_domain_ops pci_msi_domain_ops = {
203 	.msi_prepare	= pci_msi_prepare,
204 };
205 
206 static struct msi_domain_info pci_msi_domain_info = {
207 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
208 			  MSI_FLAG_PCI_MSIX,
209 	.ops		= &pci_msi_domain_ops,
210 	.chip		= &pci_msi_controller,
211 	.handler	= handle_edge_irq,
212 	.handler_name	= "edge",
213 };
214 
215 struct irq_domain * __init native_create_pci_msi_domain(void)
216 {
217 	struct fwnode_handle *fn;
218 	struct irq_domain *d;
219 
220 	if (disable_apic)
221 		return NULL;
222 
223 	fn = irq_domain_alloc_named_fwnode("PCI-MSI");
224 	if (!fn)
225 		return NULL;
226 
227 	d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
228 				      x86_vector_domain);
229 	if (!d) {
230 		irq_domain_free_fwnode(fn);
231 		pr_warn("Failed to initialize PCI-MSI irqdomain.\n");
232 	} else {
233 		d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
234 	}
235 	return d;
236 }
237 
238 void __init x86_create_pci_msi_domain(void)
239 {
240 	x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
241 }
242 
243 #ifdef CONFIG_IRQ_REMAP
244 static struct irq_chip pci_msi_ir_controller = {
245 	.name			= "IR-PCI-MSI",
246 	.irq_unmask		= pci_msi_unmask_irq,
247 	.irq_mask		= pci_msi_mask_irq,
248 	.irq_ack		= irq_chip_ack_parent,
249 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
250 	.flags			= IRQCHIP_SKIP_SET_WAKE,
251 };
252 
253 static struct msi_domain_info pci_msi_ir_domain_info = {
254 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
255 			  MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
256 	.ops		= &pci_msi_domain_ops,
257 	.chip		= &pci_msi_ir_controller,
258 	.handler	= handle_edge_irq,
259 	.handler_name	= "edge",
260 };
261 
262 struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
263 						    const char *name, int id)
264 {
265 	struct fwnode_handle *fn;
266 	struct irq_domain *d;
267 
268 	fn = irq_domain_alloc_named_id_fwnode(name, id);
269 	if (!fn)
270 		return NULL;
271 	d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
272 	if (!d)
273 		irq_domain_free_fwnode(fn);
274 	return d;
275 }
276 #endif
277 
278 #ifdef CONFIG_DMAR_TABLE
279 static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
280 {
281 	dmar_msi_write(data->irq, msg);
282 }
283 
284 static struct irq_chip dmar_msi_controller = {
285 	.name			= "DMAR-MSI",
286 	.irq_unmask		= dmar_msi_unmask,
287 	.irq_mask		= dmar_msi_mask,
288 	.irq_ack		= irq_chip_ack_parent,
289 	.irq_set_affinity	= msi_domain_set_affinity,
290 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
291 	.irq_write_msi_msg	= dmar_msi_write_msg,
292 	.flags			= IRQCHIP_SKIP_SET_WAKE,
293 };
294 
295 static int dmar_msi_init(struct irq_domain *domain,
296 			 struct msi_domain_info *info, unsigned int virq,
297 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
298 {
299 	irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
300 			    handle_edge_irq, arg->data, "edge");
301 
302 	return 0;
303 }
304 
305 static struct msi_domain_ops dmar_msi_domain_ops = {
306 	.msi_init	= dmar_msi_init,
307 };
308 
309 static struct msi_domain_info dmar_msi_domain_info = {
310 	.ops		= &dmar_msi_domain_ops,
311 	.chip		= &dmar_msi_controller,
312 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
313 };
314 
315 static struct irq_domain *dmar_get_irq_domain(void)
316 {
317 	static struct irq_domain *dmar_domain;
318 	static DEFINE_MUTEX(dmar_lock);
319 	struct fwnode_handle *fn;
320 
321 	mutex_lock(&dmar_lock);
322 	if (dmar_domain)
323 		goto out;
324 
325 	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
326 	if (fn) {
327 		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
328 						    x86_vector_domain);
329 		if (!dmar_domain)
330 			irq_domain_free_fwnode(fn);
331 	}
332 out:
333 	mutex_unlock(&dmar_lock);
334 	return dmar_domain;
335 }
336 
337 int dmar_alloc_hwirq(int id, int node, void *arg)
338 {
339 	struct irq_domain *domain = dmar_get_irq_domain();
340 	struct irq_alloc_info info;
341 
342 	if (!domain)
343 		return -1;
344 
345 	init_irq_alloc_info(&info, NULL);
346 	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
347 	info.devid = id;
348 	info.hwirq = id;
349 	info.data = arg;
350 
351 	return irq_domain_alloc_irqs(domain, 1, node, &info);
352 }
353 
354 void dmar_free_hwirq(int irq)
355 {
356 	irq_domain_free_irqs(irq, 1);
357 }
358 #endif
359 
360 /*
361  * MSI message composition
362  */
363 #ifdef CONFIG_HPET_TIMER
364 static inline int hpet_dev_id(struct irq_domain *domain)
365 {
366 	struct msi_domain_info *info = msi_get_domain_info(domain);
367 
368 	return (int)(long)info->data;
369 }
370 
371 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
372 {
373 	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
374 }
375 
376 static struct irq_chip hpet_msi_controller __ro_after_init = {
377 	.name = "HPET-MSI",
378 	.irq_unmask = hpet_msi_unmask,
379 	.irq_mask = hpet_msi_mask,
380 	.irq_ack = irq_chip_ack_parent,
381 	.irq_set_affinity = msi_domain_set_affinity,
382 	.irq_retrigger = irq_chip_retrigger_hierarchy,
383 	.irq_write_msi_msg = hpet_msi_write_msg,
384 	.flags = IRQCHIP_SKIP_SET_WAKE,
385 };
386 
387 static int hpet_msi_init(struct irq_domain *domain,
388 			 struct msi_domain_info *info, unsigned int virq,
389 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
390 {
391 	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
392 	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
393 			    handle_edge_irq, arg->data, "edge");
394 
395 	return 0;
396 }
397 
398 static void hpet_msi_free(struct irq_domain *domain,
399 			  struct msi_domain_info *info, unsigned int virq)
400 {
401 	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
402 }
403 
404 static struct msi_domain_ops hpet_msi_domain_ops = {
405 	.msi_init	= hpet_msi_init,
406 	.msi_free	= hpet_msi_free,
407 };
408 
409 static struct msi_domain_info hpet_msi_domain_info = {
410 	.ops		= &hpet_msi_domain_ops,
411 	.chip		= &hpet_msi_controller,
412 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
413 };
414 
415 struct irq_domain *hpet_create_irq_domain(int hpet_id)
416 {
417 	struct msi_domain_info *domain_info;
418 	struct irq_domain *parent, *d;
419 	struct irq_alloc_info info;
420 	struct fwnode_handle *fn;
421 
422 	if (x86_vector_domain == NULL)
423 		return NULL;
424 
425 	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
426 	if (!domain_info)
427 		return NULL;
428 
429 	*domain_info = hpet_msi_domain_info;
430 	domain_info->data = (void *)(long)hpet_id;
431 
432 	init_irq_alloc_info(&info, NULL);
433 	info.type = X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT;
434 	info.devid = hpet_id;
435 	parent = irq_remapping_get_irq_domain(&info);
436 	if (parent == NULL)
437 		parent = x86_vector_domain;
438 	else
439 		hpet_msi_controller.name = "IR-HPET-MSI";
440 
441 	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
442 					      hpet_id);
443 	if (!fn) {
444 		kfree(domain_info);
445 		return NULL;
446 	}
447 
448 	d = msi_create_irq_domain(fn, domain_info, parent);
449 	if (!d) {
450 		irq_domain_free_fwnode(fn);
451 		kfree(domain_info);
452 	}
453 	return d;
454 }
455 
456 int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
457 		    int dev_num)
458 {
459 	struct irq_alloc_info info;
460 
461 	init_irq_alloc_info(&info, NULL);
462 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
463 	info.data = hc;
464 	info.devid = hpet_dev_id(domain);
465 	info.hwirq = dev_num;
466 
467 	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
468 }
469 #endif
470