1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support of MSI, HPET and DMAR interrupts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Convert to hierarchical irqdomain 9 */ 10 #include <linux/mm.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/pci.h> 14 #include <linux/dmar.h> 15 #include <linux/hpet.h> 16 #include <linux/msi.h> 17 #include <asm/irqdomain.h> 18 #include <asm/msidef.h> 19 #include <asm/hpet.h> 20 #include <asm/hw_irq.h> 21 #include <asm/apic.h> 22 #include <asm/irq_remapping.h> 23 24 struct irq_domain *x86_pci_msi_default_domain __ro_after_init; 25 26 static void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg) 27 { 28 msg->address_hi = MSI_ADDR_BASE_HI; 29 30 if (x2apic_enabled()) 31 msg->address_hi |= MSI_ADDR_EXT_DEST_ID(cfg->dest_apicid); 32 33 msg->address_lo = 34 MSI_ADDR_BASE_LO | 35 ((apic->irq_dest_mode == 0) ? 36 MSI_ADDR_DEST_MODE_PHYSICAL : 37 MSI_ADDR_DEST_MODE_LOGICAL) | 38 MSI_ADDR_REDIRECTION_CPU | 39 MSI_ADDR_DEST_ID(cfg->dest_apicid); 40 41 msg->data = 42 MSI_DATA_TRIGGER_EDGE | 43 MSI_DATA_LEVEL_ASSERT | 44 MSI_DATA_DELIVERY_FIXED | 45 MSI_DATA_VECTOR(cfg->vector); 46 } 47 48 void x86_vector_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) 49 { 50 __irq_msi_compose_msg(irqd_cfg(data), msg); 51 } 52 53 static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg) 54 { 55 struct msi_msg msg[2] = { [1] = { }, }; 56 57 __irq_msi_compose_msg(cfg, msg); 58 irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg); 59 } 60 61 static int 62 msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force) 63 { 64 struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd); 65 struct irq_data *parent = irqd->parent_data; 66 unsigned int cpu; 67 int ret; 68 69 /* Save the current configuration */ 70 cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); 71 old_cfg = *cfg; 72 73 /* Allocate a new target vector */ 74 ret = parent->chip->irq_set_affinity(parent, mask, force); 75 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 76 return ret; 77 78 /* 79 * For non-maskable and non-remapped MSI interrupts the migration 80 * to a different destination CPU and a different vector has to be 81 * done careful to handle the possible stray interrupt which can be 82 * caused by the non-atomic update of the address/data pair. 83 * 84 * Direct update is possible when: 85 * - The MSI is maskable (remapped MSI does not use this code path)). 86 * The quirk bit is not set in this case. 87 * - The new vector is the same as the old vector 88 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up) 89 * - The new destination CPU is the same as the old destination CPU 90 */ 91 if (!irqd_msi_nomask_quirk(irqd) || 92 cfg->vector == old_cfg.vector || 93 old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR || 94 cfg->dest_apicid == old_cfg.dest_apicid) { 95 irq_msi_update_msg(irqd, cfg); 96 return ret; 97 } 98 99 /* 100 * Paranoia: Validate that the interrupt target is the local 101 * CPU. 102 */ 103 if (WARN_ON_ONCE(cpu != smp_processor_id())) { 104 irq_msi_update_msg(irqd, cfg); 105 return ret; 106 } 107 108 /* 109 * Redirect the interrupt to the new vector on the current CPU 110 * first. This might cause a spurious interrupt on this vector if 111 * the device raises an interrupt right between this update and the 112 * update to the final destination CPU. 113 * 114 * If the vector is in use then the installed device handler will 115 * denote it as spurious which is no harm as this is a rare event 116 * and interrupt handlers have to cope with spurious interrupts 117 * anyway. If the vector is unused, then it is marked so it won't 118 * trigger the 'No irq handler for vector' warning in 119 * common_interrupt(). 120 * 121 * This requires to hold vector lock to prevent concurrent updates to 122 * the affected vector. 123 */ 124 lock_vector_lock(); 125 126 /* 127 * Mark the new target vector on the local CPU if it is currently 128 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in 129 * the CPU hotplug path for a similar purpose. This cannot be 130 * undone here as the current CPU has interrupts disabled and 131 * cannot handle the interrupt before the whole set_affinity() 132 * section is done. In the CPU unplug case, the current CPU is 133 * about to vanish and will not handle any interrupts anymore. The 134 * vector is cleaned up when the CPU comes online again. 135 */ 136 if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector]))) 137 this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED); 138 139 /* Redirect it to the new vector on the local CPU temporarily */ 140 old_cfg.vector = cfg->vector; 141 irq_msi_update_msg(irqd, &old_cfg); 142 143 /* Now transition it to the target CPU */ 144 irq_msi_update_msg(irqd, cfg); 145 146 /* 147 * All interrupts after this point are now targeted at the new 148 * vector/CPU. 149 * 150 * Drop vector lock before testing whether the temporary assignment 151 * to the local CPU was hit by an interrupt raised in the device, 152 * because the retrigger function acquires vector lock again. 153 */ 154 unlock_vector_lock(); 155 156 /* 157 * Check whether the transition raced with a device interrupt and 158 * is pending in the local APICs IRR. It is safe to do this outside 159 * of vector lock as the irq_desc::lock of this interrupt is still 160 * held and interrupts are disabled: The check is not accessing the 161 * underlying vector store. It's just checking the local APIC's 162 * IRR. 163 */ 164 if (lapic_vector_set_in_irr(cfg->vector)) 165 irq_data_get_irq_chip(irqd)->irq_retrigger(irqd); 166 167 return ret; 168 } 169 170 /* 171 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, 172 * which implement the MSI or MSI-X Capability Structure. 173 */ 174 static struct irq_chip pci_msi_controller = { 175 .name = "PCI-MSI", 176 .irq_unmask = pci_msi_unmask_irq, 177 .irq_mask = pci_msi_mask_irq, 178 .irq_ack = irq_chip_ack_parent, 179 .irq_retrigger = irq_chip_retrigger_hierarchy, 180 .irq_set_affinity = msi_set_affinity, 181 .flags = IRQCHIP_SKIP_SET_WAKE, 182 }; 183 184 int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, 185 msi_alloc_info_t *arg) 186 { 187 struct pci_dev *pdev = to_pci_dev(dev); 188 struct msi_desc *desc = first_pci_msi_entry(pdev); 189 190 init_irq_alloc_info(arg, NULL); 191 if (desc->msi_attrib.is_msix) { 192 arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; 193 } else { 194 arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; 195 arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 196 } 197 198 return 0; 199 } 200 EXPORT_SYMBOL_GPL(pci_msi_prepare); 201 202 static struct msi_domain_ops pci_msi_domain_ops = { 203 .msi_prepare = pci_msi_prepare, 204 }; 205 206 static struct msi_domain_info pci_msi_domain_info = { 207 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 208 MSI_FLAG_PCI_MSIX, 209 .ops = &pci_msi_domain_ops, 210 .chip = &pci_msi_controller, 211 .handler = handle_edge_irq, 212 .handler_name = "edge", 213 }; 214 215 struct irq_domain * __init native_create_pci_msi_domain(void) 216 { 217 struct fwnode_handle *fn; 218 struct irq_domain *d; 219 220 if (disable_apic) 221 return NULL; 222 223 fn = irq_domain_alloc_named_fwnode("PCI-MSI"); 224 if (!fn) 225 return NULL; 226 227 d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info, 228 x86_vector_domain); 229 if (!d) { 230 irq_domain_free_fwnode(fn); 231 pr_warn("Failed to initialize PCI-MSI irqdomain.\n"); 232 } else { 233 d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK; 234 } 235 return d; 236 } 237 238 void __init x86_create_pci_msi_domain(void) 239 { 240 x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain(); 241 } 242 243 #ifdef CONFIG_IRQ_REMAP 244 static struct irq_chip pci_msi_ir_controller = { 245 .name = "IR-PCI-MSI", 246 .irq_unmask = pci_msi_unmask_irq, 247 .irq_mask = pci_msi_mask_irq, 248 .irq_ack = irq_chip_ack_parent, 249 .irq_retrigger = irq_chip_retrigger_hierarchy, 250 .flags = IRQCHIP_SKIP_SET_WAKE, 251 }; 252 253 static struct msi_domain_info pci_msi_ir_domain_info = { 254 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 255 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, 256 .ops = &pci_msi_domain_ops, 257 .chip = &pci_msi_ir_controller, 258 .handler = handle_edge_irq, 259 .handler_name = "edge", 260 }; 261 262 struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent, 263 const char *name, int id) 264 { 265 struct fwnode_handle *fn; 266 struct irq_domain *d; 267 268 fn = irq_domain_alloc_named_id_fwnode(name, id); 269 if (!fn) 270 return NULL; 271 d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent); 272 if (!d) 273 irq_domain_free_fwnode(fn); 274 return d; 275 } 276 #endif 277 278 #ifdef CONFIG_DMAR_TABLE 279 static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg) 280 { 281 dmar_msi_write(data->irq, msg); 282 } 283 284 static struct irq_chip dmar_msi_controller = { 285 .name = "DMAR-MSI", 286 .irq_unmask = dmar_msi_unmask, 287 .irq_mask = dmar_msi_mask, 288 .irq_ack = irq_chip_ack_parent, 289 .irq_set_affinity = msi_domain_set_affinity, 290 .irq_retrigger = irq_chip_retrigger_hierarchy, 291 .irq_write_msi_msg = dmar_msi_write_msg, 292 .flags = IRQCHIP_SKIP_SET_WAKE, 293 }; 294 295 static int dmar_msi_init(struct irq_domain *domain, 296 struct msi_domain_info *info, unsigned int virq, 297 irq_hw_number_t hwirq, msi_alloc_info_t *arg) 298 { 299 irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL, 300 handle_edge_irq, arg->data, "edge"); 301 302 return 0; 303 } 304 305 static struct msi_domain_ops dmar_msi_domain_ops = { 306 .msi_init = dmar_msi_init, 307 }; 308 309 static struct msi_domain_info dmar_msi_domain_info = { 310 .ops = &dmar_msi_domain_ops, 311 .chip = &dmar_msi_controller, 312 .flags = MSI_FLAG_USE_DEF_DOM_OPS, 313 }; 314 315 static struct irq_domain *dmar_get_irq_domain(void) 316 { 317 static struct irq_domain *dmar_domain; 318 static DEFINE_MUTEX(dmar_lock); 319 struct fwnode_handle *fn; 320 321 mutex_lock(&dmar_lock); 322 if (dmar_domain) 323 goto out; 324 325 fn = irq_domain_alloc_named_fwnode("DMAR-MSI"); 326 if (fn) { 327 dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info, 328 x86_vector_domain); 329 if (!dmar_domain) 330 irq_domain_free_fwnode(fn); 331 } 332 out: 333 mutex_unlock(&dmar_lock); 334 return dmar_domain; 335 } 336 337 int dmar_alloc_hwirq(int id, int node, void *arg) 338 { 339 struct irq_domain *domain = dmar_get_irq_domain(); 340 struct irq_alloc_info info; 341 342 if (!domain) 343 return -1; 344 345 init_irq_alloc_info(&info, NULL); 346 info.type = X86_IRQ_ALLOC_TYPE_DMAR; 347 info.devid = id; 348 info.hwirq = id; 349 info.data = arg; 350 351 return irq_domain_alloc_irqs(domain, 1, node, &info); 352 } 353 354 void dmar_free_hwirq(int irq) 355 { 356 irq_domain_free_irqs(irq, 1); 357 } 358 #endif 359 360 /* 361 * MSI message composition 362 */ 363 #ifdef CONFIG_HPET_TIMER 364 static inline int hpet_dev_id(struct irq_domain *domain) 365 { 366 struct msi_domain_info *info = msi_get_domain_info(domain); 367 368 return (int)(long)info->data; 369 } 370 371 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg) 372 { 373 hpet_msi_write(irq_data_get_irq_handler_data(data), msg); 374 } 375 376 static struct irq_chip hpet_msi_controller __ro_after_init = { 377 .name = "HPET-MSI", 378 .irq_unmask = hpet_msi_unmask, 379 .irq_mask = hpet_msi_mask, 380 .irq_ack = irq_chip_ack_parent, 381 .irq_set_affinity = msi_domain_set_affinity, 382 .irq_retrigger = irq_chip_retrigger_hierarchy, 383 .irq_write_msi_msg = hpet_msi_write_msg, 384 .flags = IRQCHIP_SKIP_SET_WAKE, 385 }; 386 387 static int hpet_msi_init(struct irq_domain *domain, 388 struct msi_domain_info *info, unsigned int virq, 389 irq_hw_number_t hwirq, msi_alloc_info_t *arg) 390 { 391 irq_set_status_flags(virq, IRQ_MOVE_PCNTXT); 392 irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL, 393 handle_edge_irq, arg->data, "edge"); 394 395 return 0; 396 } 397 398 static void hpet_msi_free(struct irq_domain *domain, 399 struct msi_domain_info *info, unsigned int virq) 400 { 401 irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT); 402 } 403 404 static struct msi_domain_ops hpet_msi_domain_ops = { 405 .msi_init = hpet_msi_init, 406 .msi_free = hpet_msi_free, 407 }; 408 409 static struct msi_domain_info hpet_msi_domain_info = { 410 .ops = &hpet_msi_domain_ops, 411 .chip = &hpet_msi_controller, 412 .flags = MSI_FLAG_USE_DEF_DOM_OPS, 413 }; 414 415 struct irq_domain *hpet_create_irq_domain(int hpet_id) 416 { 417 struct msi_domain_info *domain_info; 418 struct irq_domain *parent, *d; 419 struct irq_alloc_info info; 420 struct fwnode_handle *fn; 421 422 if (x86_vector_domain == NULL) 423 return NULL; 424 425 domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL); 426 if (!domain_info) 427 return NULL; 428 429 *domain_info = hpet_msi_domain_info; 430 domain_info->data = (void *)(long)hpet_id; 431 432 init_irq_alloc_info(&info, NULL); 433 info.type = X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT; 434 info.devid = hpet_id; 435 parent = irq_remapping_get_irq_domain(&info); 436 if (parent == NULL) 437 parent = x86_vector_domain; 438 else 439 hpet_msi_controller.name = "IR-HPET-MSI"; 440 441 fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name, 442 hpet_id); 443 if (!fn) { 444 kfree(domain_info); 445 return NULL; 446 } 447 448 d = msi_create_irq_domain(fn, domain_info, parent); 449 if (!d) { 450 irq_domain_free_fwnode(fn); 451 kfree(domain_info); 452 } 453 return d; 454 } 455 456 int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc, 457 int dev_num) 458 { 459 struct irq_alloc_info info; 460 461 init_irq_alloc_info(&info, NULL); 462 info.type = X86_IRQ_ALLOC_TYPE_HPET; 463 info.data = hc; 464 info.devid = hpet_dev_id(domain); 465 info.hwirq = dev_num; 466 467 return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info); 468 } 469 #endif 470