1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support of MSI, HPET and DMAR interrupts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Convert to hierarchical irqdomain 9 */ 10 #include <linux/mm.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/pci.h> 14 #include <linux/dmar.h> 15 #include <linux/hpet.h> 16 #include <linux/msi.h> 17 #include <asm/irqdomain.h> 18 #include <asm/hpet.h> 19 #include <asm/hw_irq.h> 20 #include <asm/apic.h> 21 #include <asm/irq_remapping.h> 22 #include <asm/xen/hypervisor.h> 23 24 struct irq_domain *x86_pci_msi_default_domain __ro_after_init; 25 26 static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg) 27 { 28 struct msi_msg msg[2] = { [1] = { }, }; 29 30 __irq_msi_compose_msg(cfg, msg, false); 31 irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg); 32 } 33 34 static int 35 msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force) 36 { 37 struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd); 38 struct irq_data *parent = irqd->parent_data; 39 unsigned int cpu; 40 int ret; 41 42 /* Save the current configuration */ 43 cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); 44 old_cfg = *cfg; 45 46 /* Allocate a new target vector */ 47 ret = parent->chip->irq_set_affinity(parent, mask, force); 48 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 49 return ret; 50 51 /* 52 * For non-maskable and non-remapped MSI interrupts the migration 53 * to a different destination CPU and a different vector has to be 54 * done careful to handle the possible stray interrupt which can be 55 * caused by the non-atomic update of the address/data pair. 56 * 57 * Direct update is possible when: 58 * - The MSI is maskable (remapped MSI does not use this code path). 59 * The reservation mode bit is set in this case. 60 * - The new vector is the same as the old vector 61 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up) 62 * - The interrupt is not yet started up 63 * - The new destination CPU is the same as the old destination CPU 64 */ 65 if (!irqd_can_reserve(irqd) || 66 cfg->vector == old_cfg.vector || 67 old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR || 68 !irqd_is_started(irqd) || 69 cfg->dest_apicid == old_cfg.dest_apicid) { 70 irq_msi_update_msg(irqd, cfg); 71 return ret; 72 } 73 74 /* 75 * Paranoia: Validate that the interrupt target is the local 76 * CPU. 77 */ 78 if (WARN_ON_ONCE(cpu != smp_processor_id())) { 79 irq_msi_update_msg(irqd, cfg); 80 return ret; 81 } 82 83 /* 84 * Redirect the interrupt to the new vector on the current CPU 85 * first. This might cause a spurious interrupt on this vector if 86 * the device raises an interrupt right between this update and the 87 * update to the final destination CPU. 88 * 89 * If the vector is in use then the installed device handler will 90 * denote it as spurious which is no harm as this is a rare event 91 * and interrupt handlers have to cope with spurious interrupts 92 * anyway. If the vector is unused, then it is marked so it won't 93 * trigger the 'No irq handler for vector' warning in 94 * common_interrupt(). 95 * 96 * This requires to hold vector lock to prevent concurrent updates to 97 * the affected vector. 98 */ 99 lock_vector_lock(); 100 101 /* 102 * Mark the new target vector on the local CPU if it is currently 103 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in 104 * the CPU hotplug path for a similar purpose. This cannot be 105 * undone here as the current CPU has interrupts disabled and 106 * cannot handle the interrupt before the whole set_affinity() 107 * section is done. In the CPU unplug case, the current CPU is 108 * about to vanish and will not handle any interrupts anymore. The 109 * vector is cleaned up when the CPU comes online again. 110 */ 111 if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector]))) 112 this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED); 113 114 /* Redirect it to the new vector on the local CPU temporarily */ 115 old_cfg.vector = cfg->vector; 116 irq_msi_update_msg(irqd, &old_cfg); 117 118 /* Now transition it to the target CPU */ 119 irq_msi_update_msg(irqd, cfg); 120 121 /* 122 * All interrupts after this point are now targeted at the new 123 * vector/CPU. 124 * 125 * Drop vector lock before testing whether the temporary assignment 126 * to the local CPU was hit by an interrupt raised in the device, 127 * because the retrigger function acquires vector lock again. 128 */ 129 unlock_vector_lock(); 130 131 /* 132 * Check whether the transition raced with a device interrupt and 133 * is pending in the local APICs IRR. It is safe to do this outside 134 * of vector lock as the irq_desc::lock of this interrupt is still 135 * held and interrupts are disabled: The check is not accessing the 136 * underlying vector store. It's just checking the local APIC's 137 * IRR. 138 */ 139 if (lapic_vector_set_in_irr(cfg->vector)) 140 irq_data_get_irq_chip(irqd)->irq_retrigger(irqd); 141 142 return ret; 143 } 144 145 /** 146 * pci_dev_has_default_msi_parent_domain - Check whether the device has the default 147 * MSI parent domain associated 148 * @dev: Pointer to the PCI device 149 */ 150 bool pci_dev_has_default_msi_parent_domain(struct pci_dev *dev) 151 { 152 struct irq_domain *domain = dev_get_msi_domain(&dev->dev); 153 154 if (!domain) 155 domain = dev_get_msi_domain(&dev->bus->dev); 156 if (!domain) 157 return false; 158 159 return domain == x86_vector_domain; 160 } 161 162 /** 163 * x86_msi_prepare - Setup of msi_alloc_info_t for allocations 164 * @domain: The domain for which this setup happens 165 * @dev: The device for which interrupts are allocated 166 * @nvec: The number of vectors to allocate 167 * @alloc: The allocation info structure to initialize 168 * 169 * This function is to be used for all types of MSI domains above the x86 170 * vector domain and any intermediates. It is always invoked from the 171 * top level interrupt domain. The domain specific allocation 172 * functionality is determined via the @domain's bus token which allows to 173 * map the X86 specific allocation type. 174 */ 175 static int x86_msi_prepare(struct irq_domain *domain, struct device *dev, 176 int nvec, msi_alloc_info_t *alloc) 177 { 178 struct msi_domain_info *info = domain->host_data; 179 180 init_irq_alloc_info(alloc, NULL); 181 182 switch (info->bus_token) { 183 case DOMAIN_BUS_PCI_DEVICE_MSI: 184 alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; 185 return 0; 186 case DOMAIN_BUS_PCI_DEVICE_MSIX: 187 case DOMAIN_BUS_PCI_DEVICE_IMS: 188 alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; 189 return 0; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 /** 196 * x86_init_dev_msi_info - Domain info setup for MSI domains 197 * @dev: The device for which the domain should be created 198 * @domain: The (root) domain providing this callback 199 * @real_parent: The real parent domain of the to initialize domain 200 * @info: The domain info for the to initialize domain 201 * 202 * This function is to be used for all types of MSI domains above the x86 203 * vector domain and any intermediates. The domain specific functionality 204 * is determined via the @real_parent. 205 */ 206 static bool x86_init_dev_msi_info(struct device *dev, struct irq_domain *domain, 207 struct irq_domain *real_parent, struct msi_domain_info *info) 208 { 209 const struct msi_parent_ops *pops = real_parent->msi_parent_ops; 210 211 /* MSI parent domain specific settings */ 212 switch (real_parent->bus_token) { 213 case DOMAIN_BUS_ANY: 214 /* Only the vector domain can have the ANY token */ 215 if (WARN_ON_ONCE(domain != real_parent)) 216 return false; 217 info->chip->irq_set_affinity = msi_set_affinity; 218 break; 219 case DOMAIN_BUS_DMAR: 220 case DOMAIN_BUS_AMDVI: 221 break; 222 default: 223 WARN_ON_ONCE(1); 224 return false; 225 } 226 227 /* Is the target supported? */ 228 switch(info->bus_token) { 229 case DOMAIN_BUS_PCI_DEVICE_MSI: 230 case DOMAIN_BUS_PCI_DEVICE_MSIX: 231 break; 232 case DOMAIN_BUS_PCI_DEVICE_IMS: 233 if (!(pops->supported_flags & MSI_FLAG_PCI_IMS)) 234 return false; 235 break; 236 default: 237 WARN_ON_ONCE(1); 238 return false; 239 } 240 241 /* 242 * Mask out the domain specific MSI feature flags which are not 243 * supported by the real parent. 244 */ 245 info->flags &= pops->supported_flags; 246 /* Enforce the required flags */ 247 info->flags |= X86_VECTOR_MSI_FLAGS_REQUIRED; 248 249 /* This is always invoked from the top level MSI domain! */ 250 info->ops->msi_prepare = x86_msi_prepare; 251 252 info->chip->irq_ack = irq_chip_ack_parent; 253 info->chip->irq_retrigger = irq_chip_retrigger_hierarchy; 254 info->chip->flags |= IRQCHIP_SKIP_SET_WAKE | 255 IRQCHIP_AFFINITY_PRE_STARTUP; 256 257 info->handler = handle_edge_irq; 258 info->handler_name = "edge"; 259 260 return true; 261 } 262 263 static const struct msi_parent_ops x86_vector_msi_parent_ops = { 264 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED, 265 .init_dev_msi_info = x86_init_dev_msi_info, 266 }; 267 268 struct irq_domain * __init native_create_pci_msi_domain(void) 269 { 270 if (apic_is_disabled) 271 return NULL; 272 273 x86_vector_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 274 x86_vector_domain->msi_parent_ops = &x86_vector_msi_parent_ops; 275 return x86_vector_domain; 276 } 277 278 void __init x86_create_pci_msi_domain(void) 279 { 280 x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain(); 281 } 282 283 /* Keep around for hyperV */ 284 int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, 285 msi_alloc_info_t *arg) 286 { 287 init_irq_alloc_info(arg, NULL); 288 289 if (to_pci_dev(dev)->msix_enabled) 290 arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; 291 else 292 arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; 293 return 0; 294 } 295 EXPORT_SYMBOL_GPL(pci_msi_prepare); 296 297 #ifdef CONFIG_DMAR_TABLE 298 /* 299 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the 300 * high bits of the destination APIC ID. This can't be done in the general 301 * case for MSIs as it would be targeting real memory above 4GiB not the 302 * APIC. 303 */ 304 static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) 305 { 306 __irq_msi_compose_msg(irqd_cfg(data), msg, true); 307 } 308 309 static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg) 310 { 311 dmar_msi_write(data->irq, msg); 312 } 313 314 static struct irq_chip dmar_msi_controller = { 315 .name = "DMAR-MSI", 316 .irq_unmask = dmar_msi_unmask, 317 .irq_mask = dmar_msi_mask, 318 .irq_ack = irq_chip_ack_parent, 319 .irq_set_affinity = msi_domain_set_affinity, 320 .irq_retrigger = irq_chip_retrigger_hierarchy, 321 .irq_compose_msi_msg = dmar_msi_compose_msg, 322 .irq_write_msi_msg = dmar_msi_write_msg, 323 .flags = IRQCHIP_SKIP_SET_WAKE | 324 IRQCHIP_AFFINITY_PRE_STARTUP, 325 }; 326 327 static int dmar_msi_init(struct irq_domain *domain, 328 struct msi_domain_info *info, unsigned int virq, 329 irq_hw_number_t hwirq, msi_alloc_info_t *arg) 330 { 331 irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL, 332 handle_edge_irq, arg->data, "edge"); 333 334 return 0; 335 } 336 337 static struct msi_domain_ops dmar_msi_domain_ops = { 338 .msi_init = dmar_msi_init, 339 }; 340 341 static struct msi_domain_info dmar_msi_domain_info = { 342 .ops = &dmar_msi_domain_ops, 343 .chip = &dmar_msi_controller, 344 .flags = MSI_FLAG_USE_DEF_DOM_OPS, 345 }; 346 347 static struct irq_domain *dmar_get_irq_domain(void) 348 { 349 static struct irq_domain *dmar_domain; 350 static DEFINE_MUTEX(dmar_lock); 351 struct fwnode_handle *fn; 352 353 mutex_lock(&dmar_lock); 354 if (dmar_domain) 355 goto out; 356 357 fn = irq_domain_alloc_named_fwnode("DMAR-MSI"); 358 if (fn) { 359 dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info, 360 x86_vector_domain); 361 if (!dmar_domain) 362 irq_domain_free_fwnode(fn); 363 } 364 out: 365 mutex_unlock(&dmar_lock); 366 return dmar_domain; 367 } 368 369 int dmar_alloc_hwirq(int id, int node, void *arg) 370 { 371 struct irq_domain *domain = dmar_get_irq_domain(); 372 struct irq_alloc_info info; 373 374 if (!domain) 375 return -1; 376 377 init_irq_alloc_info(&info, NULL); 378 info.type = X86_IRQ_ALLOC_TYPE_DMAR; 379 info.devid = id; 380 info.hwirq = id; 381 info.data = arg; 382 383 return irq_domain_alloc_irqs(domain, 1, node, &info); 384 } 385 386 void dmar_free_hwirq(int irq) 387 { 388 irq_domain_free_irqs(irq, 1); 389 } 390 #endif 391 392 bool arch_restore_msi_irqs(struct pci_dev *dev) 393 { 394 return xen_initdom_restore_msi(dev); 395 } 396