1 /* 2 * Intel IO-APIC support for multi-Pentium hosts. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * 6 * Many thanks to Stig Venaas for trying out countless experimental 7 * patches and reporting/debugging problems patiently! 8 * 9 * (c) 1999, Multiple IO-APIC support, developed by 10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 12 * further tested and cleaned up by Zach Brown <zab@redhat.com> 13 * and Ingo Molnar <mingo@redhat.com> 14 * 15 * Fixes 16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 17 * thanks to Eric Gilmore 18 * and Rolf G. Tews 19 * for testing these extensively 20 * Paul Diefenbaugh : Added full ACPI support 21 */ 22 23 #include <linux/mm.h> 24 #include <linux/interrupt.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/sched.h> 28 #include <linux/pci.h> 29 #include <linux/mc146818rtc.h> 30 #include <linux/compiler.h> 31 #include <linux/acpi.h> 32 #include <linux/module.h> 33 #include <linux/sysdev.h> 34 #include <linux/msi.h> 35 #include <linux/htirq.h> 36 #include <linux/freezer.h> 37 #include <linux/kthread.h> 38 #include <linux/jiffies.h> /* time_after() */ 39 #ifdef CONFIG_ACPI 40 #include <acpi/acpi_bus.h> 41 #endif 42 #include <linux/bootmem.h> 43 #include <linux/dmar.h> 44 #include <linux/hpet.h> 45 46 #include <asm/idle.h> 47 #include <asm/io.h> 48 #include <asm/smp.h> 49 #include <asm/cpu.h> 50 #include <asm/desc.h> 51 #include <asm/proto.h> 52 #include <asm/acpi.h> 53 #include <asm/dma.h> 54 #include <asm/timer.h> 55 #include <asm/i8259.h> 56 #include <asm/nmi.h> 57 #include <asm/msidef.h> 58 #include <asm/hypertransport.h> 59 #include <asm/setup.h> 60 #include <asm/irq_remapping.h> 61 #include <asm/hpet.h> 62 #include <asm/hw_irq.h> 63 #include <asm/uv/uv_hub.h> 64 #include <asm/uv/uv_irq.h> 65 66 #include <asm/apic.h> 67 68 #define __apicdebuginit(type) static type __init 69 #define for_each_irq_pin(entry, head) \ 70 for (entry = head; entry; entry = entry->next) 71 72 /* 73 * Is the SiS APIC rmw bug present ? 74 * -1 = don't know, 0 = no, 1 = yes 75 */ 76 int sis_apic_bug = -1; 77 78 static DEFINE_SPINLOCK(ioapic_lock); 79 static DEFINE_SPINLOCK(vector_lock); 80 81 /* 82 * # of IRQ routing registers 83 */ 84 int nr_ioapic_registers[MAX_IO_APICS]; 85 86 /* I/O APIC entries */ 87 struct mpc_ioapic mp_ioapics[MAX_IO_APICS]; 88 int nr_ioapics; 89 90 /* IO APIC gsi routing info */ 91 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS]; 92 93 /* MP IRQ source entries */ 94 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 95 96 /* # of MP IRQ source entries */ 97 int mp_irq_entries; 98 99 /* Number of legacy interrupts */ 100 static int nr_legacy_irqs __read_mostly = NR_IRQS_LEGACY; 101 /* GSI interrupts */ 102 static int nr_irqs_gsi = NR_IRQS_LEGACY; 103 104 #if defined (CONFIG_MCA) || defined (CONFIG_EISA) 105 int mp_bus_id_to_type[MAX_MP_BUSSES]; 106 #endif 107 108 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 109 110 int skip_ioapic_setup; 111 112 void arch_disable_smp_support(void) 113 { 114 #ifdef CONFIG_PCI 115 noioapicquirk = 1; 116 noioapicreroute = -1; 117 #endif 118 skip_ioapic_setup = 1; 119 } 120 121 static int __init parse_noapic(char *str) 122 { 123 /* disable IO-APIC */ 124 arch_disable_smp_support(); 125 return 0; 126 } 127 early_param("noapic", parse_noapic); 128 129 struct irq_pin_list { 130 int apic, pin; 131 struct irq_pin_list *next; 132 }; 133 134 static struct irq_pin_list *get_one_free_irq_2_pin(int node) 135 { 136 struct irq_pin_list *pin; 137 138 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node); 139 140 return pin; 141 } 142 143 /* 144 * This is performance-critical, we want to do it O(1) 145 * 146 * Most irqs are mapped 1:1 with pins. 147 */ 148 struct irq_cfg { 149 struct irq_pin_list *irq_2_pin; 150 cpumask_var_t domain; 151 cpumask_var_t old_domain; 152 unsigned move_cleanup_count; 153 u8 vector; 154 u8 move_in_progress : 1; 155 }; 156 157 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ 158 #ifdef CONFIG_SPARSE_IRQ 159 static struct irq_cfg irq_cfgx[] = { 160 #else 161 static struct irq_cfg irq_cfgx[NR_IRQS] = { 162 #endif 163 [0] = { .vector = IRQ0_VECTOR, }, 164 [1] = { .vector = IRQ1_VECTOR, }, 165 [2] = { .vector = IRQ2_VECTOR, }, 166 [3] = { .vector = IRQ3_VECTOR, }, 167 [4] = { .vector = IRQ4_VECTOR, }, 168 [5] = { .vector = IRQ5_VECTOR, }, 169 [6] = { .vector = IRQ6_VECTOR, }, 170 [7] = { .vector = IRQ7_VECTOR, }, 171 [8] = { .vector = IRQ8_VECTOR, }, 172 [9] = { .vector = IRQ9_VECTOR, }, 173 [10] = { .vector = IRQ10_VECTOR, }, 174 [11] = { .vector = IRQ11_VECTOR, }, 175 [12] = { .vector = IRQ12_VECTOR, }, 176 [13] = { .vector = IRQ13_VECTOR, }, 177 [14] = { .vector = IRQ14_VECTOR, }, 178 [15] = { .vector = IRQ15_VECTOR, }, 179 }; 180 181 void __init io_apic_disable_legacy(void) 182 { 183 nr_legacy_irqs = 0; 184 nr_irqs_gsi = 0; 185 } 186 187 int __init arch_early_irq_init(void) 188 { 189 struct irq_cfg *cfg; 190 struct irq_desc *desc; 191 int count; 192 int node; 193 int i; 194 195 cfg = irq_cfgx; 196 count = ARRAY_SIZE(irq_cfgx); 197 node= cpu_to_node(boot_cpu_id); 198 199 for (i = 0; i < count; i++) { 200 desc = irq_to_desc(i); 201 desc->chip_data = &cfg[i]; 202 zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node); 203 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node); 204 if (i < nr_legacy_irqs) 205 cpumask_setall(cfg[i].domain); 206 } 207 208 return 0; 209 } 210 211 #ifdef CONFIG_SPARSE_IRQ 212 static struct irq_cfg *irq_cfg(unsigned int irq) 213 { 214 struct irq_cfg *cfg = NULL; 215 struct irq_desc *desc; 216 217 desc = irq_to_desc(irq); 218 if (desc) 219 cfg = desc->chip_data; 220 221 return cfg; 222 } 223 224 static struct irq_cfg *get_one_free_irq_cfg(int node) 225 { 226 struct irq_cfg *cfg; 227 228 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node); 229 if (cfg) { 230 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) { 231 kfree(cfg); 232 cfg = NULL; 233 } else if (!alloc_cpumask_var_node(&cfg->old_domain, 234 GFP_ATOMIC, node)) { 235 free_cpumask_var(cfg->domain); 236 kfree(cfg); 237 cfg = NULL; 238 } else { 239 cpumask_clear(cfg->domain); 240 cpumask_clear(cfg->old_domain); 241 } 242 } 243 244 return cfg; 245 } 246 247 int arch_init_chip_data(struct irq_desc *desc, int node) 248 { 249 struct irq_cfg *cfg; 250 251 cfg = desc->chip_data; 252 if (!cfg) { 253 desc->chip_data = get_one_free_irq_cfg(node); 254 if (!desc->chip_data) { 255 printk(KERN_ERR "can not alloc irq_cfg\n"); 256 BUG_ON(1); 257 } 258 } 259 260 return 0; 261 } 262 263 /* for move_irq_desc */ 264 static void 265 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node) 266 { 267 struct irq_pin_list *old_entry, *head, *tail, *entry; 268 269 cfg->irq_2_pin = NULL; 270 old_entry = old_cfg->irq_2_pin; 271 if (!old_entry) 272 return; 273 274 entry = get_one_free_irq_2_pin(node); 275 if (!entry) 276 return; 277 278 entry->apic = old_entry->apic; 279 entry->pin = old_entry->pin; 280 head = entry; 281 tail = entry; 282 old_entry = old_entry->next; 283 while (old_entry) { 284 entry = get_one_free_irq_2_pin(node); 285 if (!entry) { 286 entry = head; 287 while (entry) { 288 head = entry->next; 289 kfree(entry); 290 entry = head; 291 } 292 /* still use the old one */ 293 return; 294 } 295 entry->apic = old_entry->apic; 296 entry->pin = old_entry->pin; 297 tail->next = entry; 298 tail = entry; 299 old_entry = old_entry->next; 300 } 301 302 tail->next = NULL; 303 cfg->irq_2_pin = head; 304 } 305 306 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg) 307 { 308 struct irq_pin_list *entry, *next; 309 310 if (old_cfg->irq_2_pin == cfg->irq_2_pin) 311 return; 312 313 entry = old_cfg->irq_2_pin; 314 315 while (entry) { 316 next = entry->next; 317 kfree(entry); 318 entry = next; 319 } 320 old_cfg->irq_2_pin = NULL; 321 } 322 323 void arch_init_copy_chip_data(struct irq_desc *old_desc, 324 struct irq_desc *desc, int node) 325 { 326 struct irq_cfg *cfg; 327 struct irq_cfg *old_cfg; 328 329 cfg = get_one_free_irq_cfg(node); 330 331 if (!cfg) 332 return; 333 334 desc->chip_data = cfg; 335 336 old_cfg = old_desc->chip_data; 337 338 memcpy(cfg, old_cfg, sizeof(struct irq_cfg)); 339 340 init_copy_irq_2_pin(old_cfg, cfg, node); 341 } 342 343 static void free_irq_cfg(struct irq_cfg *old_cfg) 344 { 345 kfree(old_cfg); 346 } 347 348 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc) 349 { 350 struct irq_cfg *old_cfg, *cfg; 351 352 old_cfg = old_desc->chip_data; 353 cfg = desc->chip_data; 354 355 if (old_cfg == cfg) 356 return; 357 358 if (old_cfg) { 359 free_irq_2_pin(old_cfg, cfg); 360 free_irq_cfg(old_cfg); 361 old_desc->chip_data = NULL; 362 } 363 } 364 /* end for move_irq_desc */ 365 366 #else 367 static struct irq_cfg *irq_cfg(unsigned int irq) 368 { 369 return irq < nr_irqs ? irq_cfgx + irq : NULL; 370 } 371 372 #endif 373 374 struct io_apic { 375 unsigned int index; 376 unsigned int unused[3]; 377 unsigned int data; 378 unsigned int unused2[11]; 379 unsigned int eoi; 380 }; 381 382 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 383 { 384 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 385 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK); 386 } 387 388 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 389 { 390 struct io_apic __iomem *io_apic = io_apic_base(apic); 391 writel(vector, &io_apic->eoi); 392 } 393 394 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) 395 { 396 struct io_apic __iomem *io_apic = io_apic_base(apic); 397 writel(reg, &io_apic->index); 398 return readl(&io_apic->data); 399 } 400 401 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) 402 { 403 struct io_apic __iomem *io_apic = io_apic_base(apic); 404 writel(reg, &io_apic->index); 405 writel(value, &io_apic->data); 406 } 407 408 /* 409 * Re-write a value: to be used for read-modify-write 410 * cycles where the read already set up the index register. 411 * 412 * Older SiS APIC requires we rewrite the index register 413 */ 414 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value) 415 { 416 struct io_apic __iomem *io_apic = io_apic_base(apic); 417 418 if (sis_apic_bug) 419 writel(reg, &io_apic->index); 420 writel(value, &io_apic->data); 421 } 422 423 static bool io_apic_level_ack_pending(struct irq_cfg *cfg) 424 { 425 struct irq_pin_list *entry; 426 unsigned long flags; 427 428 spin_lock_irqsave(&ioapic_lock, flags); 429 for_each_irq_pin(entry, cfg->irq_2_pin) { 430 unsigned int reg; 431 int pin; 432 433 pin = entry->pin; 434 reg = io_apic_read(entry->apic, 0x10 + pin*2); 435 /* Is the remote IRR bit set? */ 436 if (reg & IO_APIC_REDIR_REMOTE_IRR) { 437 spin_unlock_irqrestore(&ioapic_lock, flags); 438 return true; 439 } 440 } 441 spin_unlock_irqrestore(&ioapic_lock, flags); 442 443 return false; 444 } 445 446 union entry_union { 447 struct { u32 w1, w2; }; 448 struct IO_APIC_route_entry entry; 449 }; 450 451 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 452 { 453 union entry_union eu; 454 unsigned long flags; 455 spin_lock_irqsave(&ioapic_lock, flags); 456 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); 457 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); 458 spin_unlock_irqrestore(&ioapic_lock, flags); 459 return eu.entry; 460 } 461 462 /* 463 * When we write a new IO APIC routing entry, we need to write the high 464 * word first! If the mask bit in the low word is clear, we will enable 465 * the interrupt, and we need to make sure the entry is fully populated 466 * before that happens. 467 */ 468 static void 469 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 470 { 471 union entry_union eu = {{0, 0}}; 472 473 eu.entry = e; 474 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 475 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 476 } 477 478 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 479 { 480 unsigned long flags; 481 spin_lock_irqsave(&ioapic_lock, flags); 482 __ioapic_write_entry(apic, pin, e); 483 spin_unlock_irqrestore(&ioapic_lock, flags); 484 } 485 486 /* 487 * When we mask an IO APIC routing entry, we need to write the low 488 * word first, in order to set the mask bit before we change the 489 * high bits! 490 */ 491 static void ioapic_mask_entry(int apic, int pin) 492 { 493 unsigned long flags; 494 union entry_union eu = { .entry.mask = 1 }; 495 496 spin_lock_irqsave(&ioapic_lock, flags); 497 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 498 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 499 spin_unlock_irqrestore(&ioapic_lock, flags); 500 } 501 502 /* 503 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 504 * shared ISA-space IRQs, so we have to support them. We are super 505 * fast in the common case, and fast for shared ISA-space IRQs. 506 */ 507 static int 508 add_pin_to_irq_node_nopanic(struct irq_cfg *cfg, int node, int apic, int pin) 509 { 510 struct irq_pin_list **last, *entry; 511 512 /* don't allow duplicates */ 513 last = &cfg->irq_2_pin; 514 for_each_irq_pin(entry, cfg->irq_2_pin) { 515 if (entry->apic == apic && entry->pin == pin) 516 return 0; 517 last = &entry->next; 518 } 519 520 entry = get_one_free_irq_2_pin(node); 521 if (!entry) { 522 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n", 523 node, apic, pin); 524 return -ENOMEM; 525 } 526 entry->apic = apic; 527 entry->pin = pin; 528 529 *last = entry; 530 return 0; 531 } 532 533 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin) 534 { 535 if (add_pin_to_irq_node_nopanic(cfg, node, apic, pin)) 536 panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); 537 } 538 539 /* 540 * Reroute an IRQ to a different pin. 541 */ 542 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node, 543 int oldapic, int oldpin, 544 int newapic, int newpin) 545 { 546 struct irq_pin_list *entry; 547 548 for_each_irq_pin(entry, cfg->irq_2_pin) { 549 if (entry->apic == oldapic && entry->pin == oldpin) { 550 entry->apic = newapic; 551 entry->pin = newpin; 552 /* every one is different, right? */ 553 return; 554 } 555 } 556 557 /* old apic/pin didn't exist, so just add new ones */ 558 add_pin_to_irq_node(cfg, node, newapic, newpin); 559 } 560 561 static void io_apic_modify_irq(struct irq_cfg *cfg, 562 int mask_and, int mask_or, 563 void (*final)(struct irq_pin_list *entry)) 564 { 565 int pin; 566 struct irq_pin_list *entry; 567 568 for_each_irq_pin(entry, cfg->irq_2_pin) { 569 unsigned int reg; 570 pin = entry->pin; 571 reg = io_apic_read(entry->apic, 0x10 + pin * 2); 572 reg &= mask_and; 573 reg |= mask_or; 574 io_apic_modify(entry->apic, 0x10 + pin * 2, reg); 575 if (final) 576 final(entry); 577 } 578 } 579 580 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg) 581 { 582 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL); 583 } 584 585 static void io_apic_sync(struct irq_pin_list *entry) 586 { 587 /* 588 * Synchronize the IO-APIC and the CPU by doing 589 * a dummy read from the IO-APIC 590 */ 591 struct io_apic __iomem *io_apic; 592 io_apic = io_apic_base(entry->apic); 593 readl(&io_apic->data); 594 } 595 596 static void __mask_IO_APIC_irq(struct irq_cfg *cfg) 597 { 598 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync); 599 } 600 601 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg) 602 { 603 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER, 604 IO_APIC_REDIR_MASKED, NULL); 605 } 606 607 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg) 608 { 609 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 610 IO_APIC_REDIR_LEVEL_TRIGGER, NULL); 611 } 612 613 static void mask_IO_APIC_irq_desc(struct irq_desc *desc) 614 { 615 struct irq_cfg *cfg = desc->chip_data; 616 unsigned long flags; 617 618 BUG_ON(!cfg); 619 620 spin_lock_irqsave(&ioapic_lock, flags); 621 __mask_IO_APIC_irq(cfg); 622 spin_unlock_irqrestore(&ioapic_lock, flags); 623 } 624 625 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc) 626 { 627 struct irq_cfg *cfg = desc->chip_data; 628 unsigned long flags; 629 630 spin_lock_irqsave(&ioapic_lock, flags); 631 __unmask_IO_APIC_irq(cfg); 632 spin_unlock_irqrestore(&ioapic_lock, flags); 633 } 634 635 static void mask_IO_APIC_irq(unsigned int irq) 636 { 637 struct irq_desc *desc = irq_to_desc(irq); 638 639 mask_IO_APIC_irq_desc(desc); 640 } 641 static void unmask_IO_APIC_irq(unsigned int irq) 642 { 643 struct irq_desc *desc = irq_to_desc(irq); 644 645 unmask_IO_APIC_irq_desc(desc); 646 } 647 648 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 649 { 650 struct IO_APIC_route_entry entry; 651 652 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 653 entry = ioapic_read_entry(apic, pin); 654 if (entry.delivery_mode == dest_SMI) 655 return; 656 /* 657 * Disable it in the IO-APIC irq-routing table: 658 */ 659 ioapic_mask_entry(apic, pin); 660 } 661 662 static void clear_IO_APIC (void) 663 { 664 int apic, pin; 665 666 for (apic = 0; apic < nr_ioapics; apic++) 667 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 668 clear_IO_APIC_pin(apic, pin); 669 } 670 671 #ifdef CONFIG_X86_32 672 /* 673 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 674 * specific CPU-side IRQs. 675 */ 676 677 #define MAX_PIRQS 8 678 static int pirq_entries[MAX_PIRQS] = { 679 [0 ... MAX_PIRQS - 1] = -1 680 }; 681 682 static int __init ioapic_pirq_setup(char *str) 683 { 684 int i, max; 685 int ints[MAX_PIRQS+1]; 686 687 get_options(str, ARRAY_SIZE(ints), ints); 688 689 apic_printk(APIC_VERBOSE, KERN_INFO 690 "PIRQ redirection, working around broken MP-BIOS.\n"); 691 max = MAX_PIRQS; 692 if (ints[0] < MAX_PIRQS) 693 max = ints[0]; 694 695 for (i = 0; i < max; i++) { 696 apic_printk(APIC_VERBOSE, KERN_DEBUG 697 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 698 /* 699 * PIRQs are mapped upside down, usually. 700 */ 701 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 702 } 703 return 1; 704 } 705 706 __setup("pirq=", ioapic_pirq_setup); 707 #endif /* CONFIG_X86_32 */ 708 709 struct IO_APIC_route_entry **alloc_ioapic_entries(void) 710 { 711 int apic; 712 struct IO_APIC_route_entry **ioapic_entries; 713 714 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics, 715 GFP_ATOMIC); 716 if (!ioapic_entries) 717 return 0; 718 719 for (apic = 0; apic < nr_ioapics; apic++) { 720 ioapic_entries[apic] = 721 kzalloc(sizeof(struct IO_APIC_route_entry) * 722 nr_ioapic_registers[apic], GFP_ATOMIC); 723 if (!ioapic_entries[apic]) 724 goto nomem; 725 } 726 727 return ioapic_entries; 728 729 nomem: 730 while (--apic >= 0) 731 kfree(ioapic_entries[apic]); 732 kfree(ioapic_entries); 733 734 return 0; 735 } 736 737 /* 738 * Saves all the IO-APIC RTE's 739 */ 740 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 741 { 742 int apic, pin; 743 744 if (!ioapic_entries) 745 return -ENOMEM; 746 747 for (apic = 0; apic < nr_ioapics; apic++) { 748 if (!ioapic_entries[apic]) 749 return -ENOMEM; 750 751 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 752 ioapic_entries[apic][pin] = 753 ioapic_read_entry(apic, pin); 754 } 755 756 return 0; 757 } 758 759 /* 760 * Mask all IO APIC entries. 761 */ 762 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 763 { 764 int apic, pin; 765 766 if (!ioapic_entries) 767 return; 768 769 for (apic = 0; apic < nr_ioapics; apic++) { 770 if (!ioapic_entries[apic]) 771 break; 772 773 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 774 struct IO_APIC_route_entry entry; 775 776 entry = ioapic_entries[apic][pin]; 777 if (!entry.mask) { 778 entry.mask = 1; 779 ioapic_write_entry(apic, pin, entry); 780 } 781 } 782 } 783 } 784 785 /* 786 * Restore IO APIC entries which was saved in ioapic_entries. 787 */ 788 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 789 { 790 int apic, pin; 791 792 if (!ioapic_entries) 793 return -ENOMEM; 794 795 for (apic = 0; apic < nr_ioapics; apic++) { 796 if (!ioapic_entries[apic]) 797 return -ENOMEM; 798 799 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 800 ioapic_write_entry(apic, pin, 801 ioapic_entries[apic][pin]); 802 } 803 return 0; 804 } 805 806 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries) 807 { 808 int apic; 809 810 for (apic = 0; apic < nr_ioapics; apic++) 811 kfree(ioapic_entries[apic]); 812 813 kfree(ioapic_entries); 814 } 815 816 /* 817 * Find the IRQ entry number of a certain pin. 818 */ 819 static int find_irq_entry(int apic, int pin, int type) 820 { 821 int i; 822 823 for (i = 0; i < mp_irq_entries; i++) 824 if (mp_irqs[i].irqtype == type && 825 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid || 826 mp_irqs[i].dstapic == MP_APIC_ALL) && 827 mp_irqs[i].dstirq == pin) 828 return i; 829 830 return -1; 831 } 832 833 /* 834 * Find the pin to which IRQ[irq] (ISA) is connected 835 */ 836 static int __init find_isa_irq_pin(int irq, int type) 837 { 838 int i; 839 840 for (i = 0; i < mp_irq_entries; i++) { 841 int lbus = mp_irqs[i].srcbus; 842 843 if (test_bit(lbus, mp_bus_not_pci) && 844 (mp_irqs[i].irqtype == type) && 845 (mp_irqs[i].srcbusirq == irq)) 846 847 return mp_irqs[i].dstirq; 848 } 849 return -1; 850 } 851 852 static int __init find_isa_irq_apic(int irq, int type) 853 { 854 int i; 855 856 for (i = 0; i < mp_irq_entries; i++) { 857 int lbus = mp_irqs[i].srcbus; 858 859 if (test_bit(lbus, mp_bus_not_pci) && 860 (mp_irqs[i].irqtype == type) && 861 (mp_irqs[i].srcbusirq == irq)) 862 break; 863 } 864 if (i < mp_irq_entries) { 865 int apic; 866 for(apic = 0; apic < nr_ioapics; apic++) { 867 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic) 868 return apic; 869 } 870 } 871 872 return -1; 873 } 874 875 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 876 /* 877 * EISA Edge/Level control register, ELCR 878 */ 879 static int EISA_ELCR(unsigned int irq) 880 { 881 if (irq < nr_legacy_irqs) { 882 unsigned int port = 0x4d0 + (irq >> 3); 883 return (inb(port) >> (irq & 7)) & 1; 884 } 885 apic_printk(APIC_VERBOSE, KERN_INFO 886 "Broken MPtable reports ISA irq %d\n", irq); 887 return 0; 888 } 889 890 #endif 891 892 /* ISA interrupts are always polarity zero edge triggered, 893 * when listed as conforming in the MP table. */ 894 895 #define default_ISA_trigger(idx) (0) 896 #define default_ISA_polarity(idx) (0) 897 898 /* EISA interrupts are always polarity zero and can be edge or level 899 * trigger depending on the ELCR value. If an interrupt is listed as 900 * EISA conforming in the MP table, that means its trigger type must 901 * be read in from the ELCR */ 902 903 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq)) 904 #define default_EISA_polarity(idx) default_ISA_polarity(idx) 905 906 /* PCI interrupts are always polarity one level triggered, 907 * when listed as conforming in the MP table. */ 908 909 #define default_PCI_trigger(idx) (1) 910 #define default_PCI_polarity(idx) (1) 911 912 /* MCA interrupts are always polarity zero level triggered, 913 * when listed as conforming in the MP table. */ 914 915 #define default_MCA_trigger(idx) (1) 916 #define default_MCA_polarity(idx) default_ISA_polarity(idx) 917 918 static int MPBIOS_polarity(int idx) 919 { 920 int bus = mp_irqs[idx].srcbus; 921 int polarity; 922 923 /* 924 * Determine IRQ line polarity (high active or low active): 925 */ 926 switch (mp_irqs[idx].irqflag & 3) 927 { 928 case 0: /* conforms, ie. bus-type dependent polarity */ 929 if (test_bit(bus, mp_bus_not_pci)) 930 polarity = default_ISA_polarity(idx); 931 else 932 polarity = default_PCI_polarity(idx); 933 break; 934 case 1: /* high active */ 935 { 936 polarity = 0; 937 break; 938 } 939 case 2: /* reserved */ 940 { 941 printk(KERN_WARNING "broken BIOS!!\n"); 942 polarity = 1; 943 break; 944 } 945 case 3: /* low active */ 946 { 947 polarity = 1; 948 break; 949 } 950 default: /* invalid */ 951 { 952 printk(KERN_WARNING "broken BIOS!!\n"); 953 polarity = 1; 954 break; 955 } 956 } 957 return polarity; 958 } 959 960 static int MPBIOS_trigger(int idx) 961 { 962 int bus = mp_irqs[idx].srcbus; 963 int trigger; 964 965 /* 966 * Determine IRQ trigger mode (edge or level sensitive): 967 */ 968 switch ((mp_irqs[idx].irqflag>>2) & 3) 969 { 970 case 0: /* conforms, ie. bus-type dependent */ 971 if (test_bit(bus, mp_bus_not_pci)) 972 trigger = default_ISA_trigger(idx); 973 else 974 trigger = default_PCI_trigger(idx); 975 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 976 switch (mp_bus_id_to_type[bus]) { 977 case MP_BUS_ISA: /* ISA pin */ 978 { 979 /* set before the switch */ 980 break; 981 } 982 case MP_BUS_EISA: /* EISA pin */ 983 { 984 trigger = default_EISA_trigger(idx); 985 break; 986 } 987 case MP_BUS_PCI: /* PCI pin */ 988 { 989 /* set before the switch */ 990 break; 991 } 992 case MP_BUS_MCA: /* MCA pin */ 993 { 994 trigger = default_MCA_trigger(idx); 995 break; 996 } 997 default: 998 { 999 printk(KERN_WARNING "broken BIOS!!\n"); 1000 trigger = 1; 1001 break; 1002 } 1003 } 1004 #endif 1005 break; 1006 case 1: /* edge */ 1007 { 1008 trigger = 0; 1009 break; 1010 } 1011 case 2: /* reserved */ 1012 { 1013 printk(KERN_WARNING "broken BIOS!!\n"); 1014 trigger = 1; 1015 break; 1016 } 1017 case 3: /* level */ 1018 { 1019 trigger = 1; 1020 break; 1021 } 1022 default: /* invalid */ 1023 { 1024 printk(KERN_WARNING "broken BIOS!!\n"); 1025 trigger = 0; 1026 break; 1027 } 1028 } 1029 return trigger; 1030 } 1031 1032 static inline int irq_polarity(int idx) 1033 { 1034 return MPBIOS_polarity(idx); 1035 } 1036 1037 static inline int irq_trigger(int idx) 1038 { 1039 return MPBIOS_trigger(idx); 1040 } 1041 1042 int (*ioapic_renumber_irq)(int ioapic, int irq); 1043 static int pin_2_irq(int idx, int apic, int pin) 1044 { 1045 int irq, i; 1046 int bus = mp_irqs[idx].srcbus; 1047 1048 /* 1049 * Debugging check, we are in big trouble if this message pops up! 1050 */ 1051 if (mp_irqs[idx].dstirq != pin) 1052 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); 1053 1054 if (test_bit(bus, mp_bus_not_pci)) { 1055 irq = mp_irqs[idx].srcbusirq; 1056 } else { 1057 /* 1058 * PCI IRQs are mapped in order 1059 */ 1060 i = irq = 0; 1061 while (i < apic) 1062 irq += nr_ioapic_registers[i++]; 1063 irq += pin; 1064 /* 1065 * For MPS mode, so far only needed by ES7000 platform 1066 */ 1067 if (ioapic_renumber_irq) 1068 irq = ioapic_renumber_irq(apic, irq); 1069 } 1070 1071 #ifdef CONFIG_X86_32 1072 /* 1073 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1074 */ 1075 if ((pin >= 16) && (pin <= 23)) { 1076 if (pirq_entries[pin-16] != -1) { 1077 if (!pirq_entries[pin-16]) { 1078 apic_printk(APIC_VERBOSE, KERN_DEBUG 1079 "disabling PIRQ%d\n", pin-16); 1080 } else { 1081 irq = pirq_entries[pin-16]; 1082 apic_printk(APIC_VERBOSE, KERN_DEBUG 1083 "using PIRQ%d -> IRQ %d\n", 1084 pin-16, irq); 1085 } 1086 } 1087 } 1088 #endif 1089 1090 return irq; 1091 } 1092 1093 /* 1094 * Find a specific PCI IRQ entry. 1095 * Not an __init, possibly needed by modules 1096 */ 1097 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin, 1098 struct io_apic_irq_attr *irq_attr) 1099 { 1100 int apic, i, best_guess = -1; 1101 1102 apic_printk(APIC_DEBUG, 1103 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1104 bus, slot, pin); 1105 if (test_bit(bus, mp_bus_not_pci)) { 1106 apic_printk(APIC_VERBOSE, 1107 "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1108 return -1; 1109 } 1110 for (i = 0; i < mp_irq_entries; i++) { 1111 int lbus = mp_irqs[i].srcbus; 1112 1113 for (apic = 0; apic < nr_ioapics; apic++) 1114 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic || 1115 mp_irqs[i].dstapic == MP_APIC_ALL) 1116 break; 1117 1118 if (!test_bit(lbus, mp_bus_not_pci) && 1119 !mp_irqs[i].irqtype && 1120 (bus == lbus) && 1121 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) { 1122 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq); 1123 1124 if (!(apic || IO_APIC_IRQ(irq))) 1125 continue; 1126 1127 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1128 set_io_apic_irq_attr(irq_attr, apic, 1129 mp_irqs[i].dstirq, 1130 irq_trigger(i), 1131 irq_polarity(i)); 1132 return irq; 1133 } 1134 /* 1135 * Use the first all-but-pin matching entry as a 1136 * best-guess fuzzy result for broken mptables. 1137 */ 1138 if (best_guess < 0) { 1139 set_io_apic_irq_attr(irq_attr, apic, 1140 mp_irqs[i].dstirq, 1141 irq_trigger(i), 1142 irq_polarity(i)); 1143 best_guess = irq; 1144 } 1145 } 1146 } 1147 return best_guess; 1148 } 1149 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1150 1151 void lock_vector_lock(void) 1152 { 1153 /* Used to the online set of cpus does not change 1154 * during assign_irq_vector. 1155 */ 1156 spin_lock(&vector_lock); 1157 } 1158 1159 void unlock_vector_lock(void) 1160 { 1161 spin_unlock(&vector_lock); 1162 } 1163 1164 static int 1165 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1166 { 1167 /* 1168 * NOTE! The local APIC isn't very good at handling 1169 * multiple interrupts at the same interrupt level. 1170 * As the interrupt level is determined by taking the 1171 * vector number and shifting that right by 4, we 1172 * want to spread these out a bit so that they don't 1173 * all fall in the same interrupt level. 1174 * 1175 * Also, we've got to be careful not to trash gate 1176 * 0x80, because int 0x80 is hm, kind of importantish. ;) 1177 */ 1178 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0; 1179 unsigned int old_vector; 1180 int cpu, err; 1181 cpumask_var_t tmp_mask; 1182 1183 if ((cfg->move_in_progress) || cfg->move_cleanup_count) 1184 return -EBUSY; 1185 1186 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC)) 1187 return -ENOMEM; 1188 1189 old_vector = cfg->vector; 1190 if (old_vector) { 1191 cpumask_and(tmp_mask, mask, cpu_online_mask); 1192 cpumask_and(tmp_mask, cfg->domain, tmp_mask); 1193 if (!cpumask_empty(tmp_mask)) { 1194 free_cpumask_var(tmp_mask); 1195 return 0; 1196 } 1197 } 1198 1199 /* Only try and allocate irqs on cpus that are present */ 1200 err = -ENOSPC; 1201 for_each_cpu_and(cpu, mask, cpu_online_mask) { 1202 int new_cpu; 1203 int vector, offset; 1204 1205 apic->vector_allocation_domain(cpu, tmp_mask); 1206 1207 vector = current_vector; 1208 offset = current_offset; 1209 next: 1210 vector += 8; 1211 if (vector >= first_system_vector) { 1212 /* If out of vectors on large boxen, must share them. */ 1213 offset = (offset + 1) % 8; 1214 vector = FIRST_DEVICE_VECTOR + offset; 1215 } 1216 if (unlikely(current_vector == vector)) 1217 continue; 1218 1219 if (test_bit(vector, used_vectors)) 1220 goto next; 1221 1222 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1223 if (per_cpu(vector_irq, new_cpu)[vector] != -1) 1224 goto next; 1225 /* Found one! */ 1226 current_vector = vector; 1227 current_offset = offset; 1228 if (old_vector) { 1229 cfg->move_in_progress = 1; 1230 cpumask_copy(cfg->old_domain, cfg->domain); 1231 } 1232 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1233 per_cpu(vector_irq, new_cpu)[vector] = irq; 1234 cfg->vector = vector; 1235 cpumask_copy(cfg->domain, tmp_mask); 1236 err = 0; 1237 break; 1238 } 1239 free_cpumask_var(tmp_mask); 1240 return err; 1241 } 1242 1243 static int 1244 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1245 { 1246 int err; 1247 unsigned long flags; 1248 1249 spin_lock_irqsave(&vector_lock, flags); 1250 err = __assign_irq_vector(irq, cfg, mask); 1251 spin_unlock_irqrestore(&vector_lock, flags); 1252 return err; 1253 } 1254 1255 static void __clear_irq_vector(int irq, struct irq_cfg *cfg) 1256 { 1257 int cpu, vector; 1258 1259 BUG_ON(!cfg->vector); 1260 1261 vector = cfg->vector; 1262 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask) 1263 per_cpu(vector_irq, cpu)[vector] = -1; 1264 1265 cfg->vector = 0; 1266 cpumask_clear(cfg->domain); 1267 1268 if (likely(!cfg->move_in_progress)) 1269 return; 1270 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) { 1271 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 1272 vector++) { 1273 if (per_cpu(vector_irq, cpu)[vector] != irq) 1274 continue; 1275 per_cpu(vector_irq, cpu)[vector] = -1; 1276 break; 1277 } 1278 } 1279 cfg->move_in_progress = 0; 1280 } 1281 1282 void __setup_vector_irq(int cpu) 1283 { 1284 /* Initialize vector_irq on a new cpu */ 1285 /* This function must be called with vector_lock held */ 1286 int irq, vector; 1287 struct irq_cfg *cfg; 1288 struct irq_desc *desc; 1289 1290 /* Mark the inuse vectors */ 1291 for_each_irq_desc(irq, desc) { 1292 cfg = desc->chip_data; 1293 if (!cpumask_test_cpu(cpu, cfg->domain)) 1294 continue; 1295 vector = cfg->vector; 1296 per_cpu(vector_irq, cpu)[vector] = irq; 1297 } 1298 /* Mark the free vectors */ 1299 for (vector = 0; vector < NR_VECTORS; ++vector) { 1300 irq = per_cpu(vector_irq, cpu)[vector]; 1301 if (irq < 0) 1302 continue; 1303 1304 cfg = irq_cfg(irq); 1305 if (!cpumask_test_cpu(cpu, cfg->domain)) 1306 per_cpu(vector_irq, cpu)[vector] = -1; 1307 } 1308 } 1309 1310 static struct irq_chip ioapic_chip; 1311 static struct irq_chip ir_ioapic_chip; 1312 1313 #define IOAPIC_AUTO -1 1314 #define IOAPIC_EDGE 0 1315 #define IOAPIC_LEVEL 1 1316 1317 #ifdef CONFIG_X86_32 1318 static inline int IO_APIC_irq_trigger(int irq) 1319 { 1320 int apic, idx, pin; 1321 1322 for (apic = 0; apic < nr_ioapics; apic++) { 1323 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1324 idx = find_irq_entry(apic, pin, mp_INT); 1325 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin))) 1326 return irq_trigger(idx); 1327 } 1328 } 1329 /* 1330 * nonexistent IRQs are edge default 1331 */ 1332 return 0; 1333 } 1334 #else 1335 static inline int IO_APIC_irq_trigger(int irq) 1336 { 1337 return 1; 1338 } 1339 #endif 1340 1341 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger) 1342 { 1343 1344 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1345 trigger == IOAPIC_LEVEL) 1346 desc->status |= IRQ_LEVEL; 1347 else 1348 desc->status &= ~IRQ_LEVEL; 1349 1350 if (irq_remapped(irq)) { 1351 desc->status |= IRQ_MOVE_PCNTXT; 1352 if (trigger) 1353 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1354 handle_fasteoi_irq, 1355 "fasteoi"); 1356 else 1357 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1358 handle_edge_irq, "edge"); 1359 return; 1360 } 1361 1362 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1363 trigger == IOAPIC_LEVEL) 1364 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1365 handle_fasteoi_irq, 1366 "fasteoi"); 1367 else 1368 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1369 handle_edge_irq, "edge"); 1370 } 1371 1372 int setup_ioapic_entry(int apic_id, int irq, 1373 struct IO_APIC_route_entry *entry, 1374 unsigned int destination, int trigger, 1375 int polarity, int vector, int pin) 1376 { 1377 /* 1378 * add it to the IO-APIC irq-routing table: 1379 */ 1380 memset(entry,0,sizeof(*entry)); 1381 1382 if (intr_remapping_enabled) { 1383 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id); 1384 struct irte irte; 1385 struct IR_IO_APIC_route_entry *ir_entry = 1386 (struct IR_IO_APIC_route_entry *) entry; 1387 int index; 1388 1389 if (!iommu) 1390 panic("No mapping iommu for ioapic %d\n", apic_id); 1391 1392 index = alloc_irte(iommu, irq, 1); 1393 if (index < 0) 1394 panic("Failed to allocate IRTE for ioapic %d\n", apic_id); 1395 1396 memset(&irte, 0, sizeof(irte)); 1397 1398 irte.present = 1; 1399 irte.dst_mode = apic->irq_dest_mode; 1400 /* 1401 * Trigger mode in the IRTE will always be edge, and the 1402 * actual level or edge trigger will be setup in the IO-APIC 1403 * RTE. This will help simplify level triggered irq migration. 1404 * For more details, see the comments above explainig IO-APIC 1405 * irq migration in the presence of interrupt-remapping. 1406 */ 1407 irte.trigger_mode = 0; 1408 irte.dlvry_mode = apic->irq_delivery_mode; 1409 irte.vector = vector; 1410 irte.dest_id = IRTE_DEST(destination); 1411 1412 /* Set source-id of interrupt request */ 1413 set_ioapic_sid(&irte, apic_id); 1414 1415 modify_irte(irq, &irte); 1416 1417 ir_entry->index2 = (index >> 15) & 0x1; 1418 ir_entry->zero = 0; 1419 ir_entry->format = 1; 1420 ir_entry->index = (index & 0x7fff); 1421 /* 1422 * IO-APIC RTE will be configured with virtual vector. 1423 * irq handler will do the explicit EOI to the io-apic. 1424 */ 1425 ir_entry->vector = pin; 1426 } else { 1427 entry->delivery_mode = apic->irq_delivery_mode; 1428 entry->dest_mode = apic->irq_dest_mode; 1429 entry->dest = destination; 1430 entry->vector = vector; 1431 } 1432 1433 entry->mask = 0; /* enable IRQ */ 1434 entry->trigger = trigger; 1435 entry->polarity = polarity; 1436 1437 /* Mask level triggered irqs. 1438 * Use IRQ_DELAYED_DISABLE for edge triggered irqs. 1439 */ 1440 if (trigger) 1441 entry->mask = 1; 1442 return 0; 1443 } 1444 1445 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc, 1446 int trigger, int polarity) 1447 { 1448 struct irq_cfg *cfg; 1449 struct IO_APIC_route_entry entry; 1450 unsigned int dest; 1451 1452 if (!IO_APIC_IRQ(irq)) 1453 return; 1454 1455 cfg = desc->chip_data; 1456 1457 if (assign_irq_vector(irq, cfg, apic->target_cpus())) 1458 return; 1459 1460 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 1461 1462 apic_printk(APIC_VERBOSE,KERN_DEBUG 1463 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " 1464 "IRQ %d Mode:%i Active:%i)\n", 1465 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector, 1466 irq, trigger, polarity); 1467 1468 1469 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry, 1470 dest, trigger, polarity, cfg->vector, pin)) { 1471 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n", 1472 mp_ioapics[apic_id].apicid, pin); 1473 __clear_irq_vector(irq, cfg); 1474 return; 1475 } 1476 1477 ioapic_register_intr(irq, desc, trigger); 1478 if (irq < nr_legacy_irqs) 1479 disable_8259A_irq(irq); 1480 1481 ioapic_write_entry(apic_id, pin, entry); 1482 } 1483 1484 static struct { 1485 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1); 1486 } mp_ioapic_routing[MAX_IO_APICS]; 1487 1488 static void __init setup_IO_APIC_irqs(void) 1489 { 1490 int apic_id = 0, pin, idx, irq; 1491 int notcon = 0; 1492 struct irq_desc *desc; 1493 struct irq_cfg *cfg; 1494 int node = cpu_to_node(boot_cpu_id); 1495 1496 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1497 1498 #ifdef CONFIG_ACPI 1499 if (!acpi_disabled && acpi_ioapic) { 1500 apic_id = mp_find_ioapic(0); 1501 if (apic_id < 0) 1502 apic_id = 0; 1503 } 1504 #endif 1505 1506 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) { 1507 idx = find_irq_entry(apic_id, pin, mp_INT); 1508 if (idx == -1) { 1509 if (!notcon) { 1510 notcon = 1; 1511 apic_printk(APIC_VERBOSE, 1512 KERN_DEBUG " %d-%d", 1513 mp_ioapics[apic_id].apicid, pin); 1514 } else 1515 apic_printk(APIC_VERBOSE, " %d-%d", 1516 mp_ioapics[apic_id].apicid, pin); 1517 continue; 1518 } 1519 if (notcon) { 1520 apic_printk(APIC_VERBOSE, 1521 " (apicid-pin) not connected\n"); 1522 notcon = 0; 1523 } 1524 1525 irq = pin_2_irq(idx, apic_id, pin); 1526 1527 /* 1528 * Skip the timer IRQ if there's a quirk handler 1529 * installed and if it returns 1: 1530 */ 1531 if (apic->multi_timer_check && 1532 apic->multi_timer_check(apic_id, irq)) 1533 continue; 1534 1535 desc = irq_to_desc_alloc_node(irq, node); 1536 if (!desc) { 1537 printk(KERN_INFO "can not get irq_desc for %d\n", irq); 1538 continue; 1539 } 1540 cfg = desc->chip_data; 1541 add_pin_to_irq_node(cfg, node, apic_id, pin); 1542 /* 1543 * don't mark it in pin_programmed, so later acpi could 1544 * set it correctly when irq < 16 1545 */ 1546 setup_IO_APIC_irq(apic_id, pin, irq, desc, 1547 irq_trigger(idx), irq_polarity(idx)); 1548 } 1549 1550 if (notcon) 1551 apic_printk(APIC_VERBOSE, 1552 " (apicid-pin) not connected\n"); 1553 } 1554 1555 /* 1556 * Set up the timer pin, possibly with the 8259A-master behind. 1557 */ 1558 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin, 1559 int vector) 1560 { 1561 struct IO_APIC_route_entry entry; 1562 1563 if (intr_remapping_enabled) 1564 return; 1565 1566 memset(&entry, 0, sizeof(entry)); 1567 1568 /* 1569 * We use logical delivery to get the timer IRQ 1570 * to the first CPU. 1571 */ 1572 entry.dest_mode = apic->irq_dest_mode; 1573 entry.mask = 0; /* don't mask IRQ for edge */ 1574 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus()); 1575 entry.delivery_mode = apic->irq_delivery_mode; 1576 entry.polarity = 0; 1577 entry.trigger = 0; 1578 entry.vector = vector; 1579 1580 /* 1581 * The timer IRQ doesn't have to know that behind the 1582 * scene we may have a 8259A-master in AEOI mode ... 1583 */ 1584 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); 1585 1586 /* 1587 * Add it to the IO-APIC irq-routing table: 1588 */ 1589 ioapic_write_entry(apic_id, pin, entry); 1590 } 1591 1592 1593 __apicdebuginit(void) print_IO_APIC(void) 1594 { 1595 int apic, i; 1596 union IO_APIC_reg_00 reg_00; 1597 union IO_APIC_reg_01 reg_01; 1598 union IO_APIC_reg_02 reg_02; 1599 union IO_APIC_reg_03 reg_03; 1600 unsigned long flags; 1601 struct irq_cfg *cfg; 1602 struct irq_desc *desc; 1603 unsigned int irq; 1604 1605 if (apic_verbosity == APIC_QUIET) 1606 return; 1607 1608 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1609 for (i = 0; i < nr_ioapics; i++) 1610 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1611 mp_ioapics[i].apicid, nr_ioapic_registers[i]); 1612 1613 /* 1614 * We are a bit conservative about what we expect. We have to 1615 * know about every hardware change ASAP. 1616 */ 1617 printk(KERN_INFO "testing the IO APIC.......................\n"); 1618 1619 for (apic = 0; apic < nr_ioapics; apic++) { 1620 1621 spin_lock_irqsave(&ioapic_lock, flags); 1622 reg_00.raw = io_apic_read(apic, 0); 1623 reg_01.raw = io_apic_read(apic, 1); 1624 if (reg_01.bits.version >= 0x10) 1625 reg_02.raw = io_apic_read(apic, 2); 1626 if (reg_01.bits.version >= 0x20) 1627 reg_03.raw = io_apic_read(apic, 3); 1628 spin_unlock_irqrestore(&ioapic_lock, flags); 1629 1630 printk("\n"); 1631 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid); 1632 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1633 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1634 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1635 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1636 1637 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1638 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries); 1639 1640 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1641 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version); 1642 1643 /* 1644 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1645 * but the value of reg_02 is read as the previous read register 1646 * value, so ignore it if reg_02 == reg_01. 1647 */ 1648 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1649 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1650 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1651 } 1652 1653 /* 1654 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1655 * or reg_03, but the value of reg_0[23] is read as the previous read 1656 * register value, so ignore it if reg_03 == reg_0[12]. 1657 */ 1658 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1659 reg_03.raw != reg_01.raw) { 1660 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1661 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1662 } 1663 1664 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1665 1666 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" 1667 " Stat Dmod Deli Vect: \n"); 1668 1669 for (i = 0; i <= reg_01.bits.entries; i++) { 1670 struct IO_APIC_route_entry entry; 1671 1672 entry = ioapic_read_entry(apic, i); 1673 1674 printk(KERN_DEBUG " %02x %03X ", 1675 i, 1676 entry.dest 1677 ); 1678 1679 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", 1680 entry.mask, 1681 entry.trigger, 1682 entry.irr, 1683 entry.polarity, 1684 entry.delivery_status, 1685 entry.dest_mode, 1686 entry.delivery_mode, 1687 entry.vector 1688 ); 1689 } 1690 } 1691 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1692 for_each_irq_desc(irq, desc) { 1693 struct irq_pin_list *entry; 1694 1695 cfg = desc->chip_data; 1696 entry = cfg->irq_2_pin; 1697 if (!entry) 1698 continue; 1699 printk(KERN_DEBUG "IRQ%d ", irq); 1700 for_each_irq_pin(entry, cfg->irq_2_pin) 1701 printk("-> %d:%d", entry->apic, entry->pin); 1702 printk("\n"); 1703 } 1704 1705 printk(KERN_INFO ".................................... done.\n"); 1706 1707 return; 1708 } 1709 1710 __apicdebuginit(void) print_APIC_field(int base) 1711 { 1712 int i; 1713 1714 if (apic_verbosity == APIC_QUIET) 1715 return; 1716 1717 printk(KERN_DEBUG); 1718 1719 for (i = 0; i < 8; i++) 1720 printk(KERN_CONT "%08x", apic_read(base + i*0x10)); 1721 1722 printk(KERN_CONT "\n"); 1723 } 1724 1725 __apicdebuginit(void) print_local_APIC(void *dummy) 1726 { 1727 unsigned int i, v, ver, maxlvt; 1728 u64 icr; 1729 1730 if (apic_verbosity == APIC_QUIET) 1731 return; 1732 1733 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", 1734 smp_processor_id(), hard_smp_processor_id()); 1735 v = apic_read(APIC_ID); 1736 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1737 v = apic_read(APIC_LVR); 1738 printk(KERN_INFO "... APIC VERSION: %08x\n", v); 1739 ver = GET_APIC_VERSION(v); 1740 maxlvt = lapic_get_maxlvt(); 1741 1742 v = apic_read(APIC_TASKPRI); 1743 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1744 1745 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1746 if (!APIC_XAPIC(ver)) { 1747 v = apic_read(APIC_ARBPRI); 1748 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, 1749 v & APIC_ARBPRI_MASK); 1750 } 1751 v = apic_read(APIC_PROCPRI); 1752 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); 1753 } 1754 1755 /* 1756 * Remote read supported only in the 82489DX and local APIC for 1757 * Pentium processors. 1758 */ 1759 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1760 v = apic_read(APIC_RRR); 1761 printk(KERN_DEBUG "... APIC RRR: %08x\n", v); 1762 } 1763 1764 v = apic_read(APIC_LDR); 1765 printk(KERN_DEBUG "... APIC LDR: %08x\n", v); 1766 if (!x2apic_enabled()) { 1767 v = apic_read(APIC_DFR); 1768 printk(KERN_DEBUG "... APIC DFR: %08x\n", v); 1769 } 1770 v = apic_read(APIC_SPIV); 1771 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); 1772 1773 printk(KERN_DEBUG "... APIC ISR field:\n"); 1774 print_APIC_field(APIC_ISR); 1775 printk(KERN_DEBUG "... APIC TMR field:\n"); 1776 print_APIC_field(APIC_TMR); 1777 printk(KERN_DEBUG "... APIC IRR field:\n"); 1778 print_APIC_field(APIC_IRR); 1779 1780 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1781 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1782 apic_write(APIC_ESR, 0); 1783 1784 v = apic_read(APIC_ESR); 1785 printk(KERN_DEBUG "... APIC ESR: %08x\n", v); 1786 } 1787 1788 icr = apic_icr_read(); 1789 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr); 1790 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1791 1792 v = apic_read(APIC_LVTT); 1793 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); 1794 1795 if (maxlvt > 3) { /* PC is LVT#4. */ 1796 v = apic_read(APIC_LVTPC); 1797 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); 1798 } 1799 v = apic_read(APIC_LVT0); 1800 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); 1801 v = apic_read(APIC_LVT1); 1802 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); 1803 1804 if (maxlvt > 2) { /* ERR is LVT#3. */ 1805 v = apic_read(APIC_LVTERR); 1806 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); 1807 } 1808 1809 v = apic_read(APIC_TMICT); 1810 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); 1811 v = apic_read(APIC_TMCCT); 1812 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); 1813 v = apic_read(APIC_TDCR); 1814 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); 1815 1816 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1817 v = apic_read(APIC_EFEAT); 1818 maxlvt = (v >> 16) & 0xff; 1819 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v); 1820 v = apic_read(APIC_ECTRL); 1821 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v); 1822 for (i = 0; i < maxlvt; i++) { 1823 v = apic_read(APIC_EILVTn(i)); 1824 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v); 1825 } 1826 } 1827 printk("\n"); 1828 } 1829 1830 __apicdebuginit(void) print_all_local_APICs(void) 1831 { 1832 int cpu; 1833 1834 preempt_disable(); 1835 for_each_online_cpu(cpu) 1836 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1837 preempt_enable(); 1838 } 1839 1840 __apicdebuginit(void) print_PIC(void) 1841 { 1842 unsigned int v; 1843 unsigned long flags; 1844 1845 if (apic_verbosity == APIC_QUIET || !nr_legacy_irqs) 1846 return; 1847 1848 printk(KERN_DEBUG "\nprinting PIC contents\n"); 1849 1850 spin_lock_irqsave(&i8259A_lock, flags); 1851 1852 v = inb(0xa1) << 8 | inb(0x21); 1853 printk(KERN_DEBUG "... PIC IMR: %04x\n", v); 1854 1855 v = inb(0xa0) << 8 | inb(0x20); 1856 printk(KERN_DEBUG "... PIC IRR: %04x\n", v); 1857 1858 outb(0x0b,0xa0); 1859 outb(0x0b,0x20); 1860 v = inb(0xa0) << 8 | inb(0x20); 1861 outb(0x0a,0xa0); 1862 outb(0x0a,0x20); 1863 1864 spin_unlock_irqrestore(&i8259A_lock, flags); 1865 1866 printk(KERN_DEBUG "... PIC ISR: %04x\n", v); 1867 1868 v = inb(0x4d1) << 8 | inb(0x4d0); 1869 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); 1870 } 1871 1872 __apicdebuginit(int) print_all_ICs(void) 1873 { 1874 print_PIC(); 1875 1876 /* don't print out if apic is not there */ 1877 if (!cpu_has_apic || disable_apic) 1878 return 0; 1879 1880 print_all_local_APICs(); 1881 print_IO_APIC(); 1882 1883 return 0; 1884 } 1885 1886 fs_initcall(print_all_ICs); 1887 1888 1889 /* Where if anywhere is the i8259 connect in external int mode */ 1890 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1891 1892 void __init enable_IO_APIC(void) 1893 { 1894 union IO_APIC_reg_01 reg_01; 1895 int i8259_apic, i8259_pin; 1896 int apic; 1897 unsigned long flags; 1898 1899 /* 1900 * The number of IO-APIC IRQ registers (== #pins): 1901 */ 1902 for (apic = 0; apic < nr_ioapics; apic++) { 1903 spin_lock_irqsave(&ioapic_lock, flags); 1904 reg_01.raw = io_apic_read(apic, 1); 1905 spin_unlock_irqrestore(&ioapic_lock, flags); 1906 nr_ioapic_registers[apic] = reg_01.bits.entries+1; 1907 } 1908 1909 if (!nr_legacy_irqs) 1910 return; 1911 1912 for(apic = 0; apic < nr_ioapics; apic++) { 1913 int pin; 1914 /* See if any of the pins is in ExtINT mode */ 1915 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1916 struct IO_APIC_route_entry entry; 1917 entry = ioapic_read_entry(apic, pin); 1918 1919 /* If the interrupt line is enabled and in ExtInt mode 1920 * I have found the pin where the i8259 is connected. 1921 */ 1922 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { 1923 ioapic_i8259.apic = apic; 1924 ioapic_i8259.pin = pin; 1925 goto found_i8259; 1926 } 1927 } 1928 } 1929 found_i8259: 1930 /* Look to see what if the MP table has reported the ExtINT */ 1931 /* If we could not find the appropriate pin by looking at the ioapic 1932 * the i8259 probably is not connected the ioapic but give the 1933 * mptable a chance anyway. 1934 */ 1935 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1936 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1937 /* Trust the MP table if nothing is setup in the hardware */ 1938 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1939 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 1940 ioapic_i8259.pin = i8259_pin; 1941 ioapic_i8259.apic = i8259_apic; 1942 } 1943 /* Complain if the MP table and the hardware disagree */ 1944 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1945 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1946 { 1947 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 1948 } 1949 1950 /* 1951 * Do not trust the IO-APIC being empty at bootup 1952 */ 1953 clear_IO_APIC(); 1954 } 1955 1956 /* 1957 * Not an __init, needed by the reboot code 1958 */ 1959 void disable_IO_APIC(void) 1960 { 1961 /* 1962 * Clear the IO-APIC before rebooting: 1963 */ 1964 clear_IO_APIC(); 1965 1966 if (!nr_legacy_irqs) 1967 return; 1968 1969 /* 1970 * If the i8259 is routed through an IOAPIC 1971 * Put that IOAPIC in virtual wire mode 1972 * so legacy interrupts can be delivered. 1973 * 1974 * With interrupt-remapping, for now we will use virtual wire A mode, 1975 * as virtual wire B is little complex (need to configure both 1976 * IOAPIC RTE aswell as interrupt-remapping table entry). 1977 * As this gets called during crash dump, keep this simple for now. 1978 */ 1979 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) { 1980 struct IO_APIC_route_entry entry; 1981 1982 memset(&entry, 0, sizeof(entry)); 1983 entry.mask = 0; /* Enabled */ 1984 entry.trigger = 0; /* Edge */ 1985 entry.irr = 0; 1986 entry.polarity = 0; /* High */ 1987 entry.delivery_status = 0; 1988 entry.dest_mode = 0; /* Physical */ 1989 entry.delivery_mode = dest_ExtINT; /* ExtInt */ 1990 entry.vector = 0; 1991 entry.dest = read_apic_id(); 1992 1993 /* 1994 * Add it to the IO-APIC irq-routing table: 1995 */ 1996 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 1997 } 1998 1999 /* 2000 * Use virtual wire A mode when interrupt remapping is enabled. 2001 */ 2002 if (cpu_has_apic) 2003 disconnect_bsp_APIC(!intr_remapping_enabled && 2004 ioapic_i8259.pin != -1); 2005 } 2006 2007 #ifdef CONFIG_X86_32 2008 /* 2009 * function to set the IO-APIC physical IDs based on the 2010 * values stored in the MPC table. 2011 * 2012 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 2013 */ 2014 2015 void __init setup_ioapic_ids_from_mpc(void) 2016 { 2017 union IO_APIC_reg_00 reg_00; 2018 physid_mask_t phys_id_present_map; 2019 int apic_id; 2020 int i; 2021 unsigned char old_id; 2022 unsigned long flags; 2023 2024 if (acpi_ioapic) 2025 return; 2026 /* 2027 * Don't check I/O APIC IDs for xAPIC systems. They have 2028 * no meaning without the serial APIC bus. 2029 */ 2030 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2031 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 2032 return; 2033 /* 2034 * This is broken; anything with a real cpu count has to 2035 * circumvent this idiocy regardless. 2036 */ 2037 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map); 2038 2039 /* 2040 * Set the IOAPIC ID to the value stored in the MPC table. 2041 */ 2042 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { 2043 2044 /* Read the register 0 value */ 2045 spin_lock_irqsave(&ioapic_lock, flags); 2046 reg_00.raw = io_apic_read(apic_id, 0); 2047 spin_unlock_irqrestore(&ioapic_lock, flags); 2048 2049 old_id = mp_ioapics[apic_id].apicid; 2050 2051 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) { 2052 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 2053 apic_id, mp_ioapics[apic_id].apicid); 2054 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2055 reg_00.bits.ID); 2056 mp_ioapics[apic_id].apicid = reg_00.bits.ID; 2057 } 2058 2059 /* 2060 * Sanity check, is the ID really free? Every APIC in a 2061 * system must have a unique ID or we get lots of nice 2062 * 'stuck on smp_invalidate_needed IPI wait' messages. 2063 */ 2064 if (apic->check_apicid_used(phys_id_present_map, 2065 mp_ioapics[apic_id].apicid)) { 2066 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 2067 apic_id, mp_ioapics[apic_id].apicid); 2068 for (i = 0; i < get_physical_broadcast(); i++) 2069 if (!physid_isset(i, phys_id_present_map)) 2070 break; 2071 if (i >= get_physical_broadcast()) 2072 panic("Max APIC ID exceeded!\n"); 2073 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2074 i); 2075 physid_set(i, phys_id_present_map); 2076 mp_ioapics[apic_id].apicid = i; 2077 } else { 2078 physid_mask_t tmp; 2079 tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid); 2080 apic_printk(APIC_VERBOSE, "Setting %d in the " 2081 "phys_id_present_map\n", 2082 mp_ioapics[apic_id].apicid); 2083 physids_or(phys_id_present_map, phys_id_present_map, tmp); 2084 } 2085 2086 2087 /* 2088 * We need to adjust the IRQ routing table 2089 * if the ID changed. 2090 */ 2091 if (old_id != mp_ioapics[apic_id].apicid) 2092 for (i = 0; i < mp_irq_entries; i++) 2093 if (mp_irqs[i].dstapic == old_id) 2094 mp_irqs[i].dstapic 2095 = mp_ioapics[apic_id].apicid; 2096 2097 /* 2098 * Read the right value from the MPC table and 2099 * write it into the ID register. 2100 */ 2101 apic_printk(APIC_VERBOSE, KERN_INFO 2102 "...changing IO-APIC physical APIC ID to %d ...", 2103 mp_ioapics[apic_id].apicid); 2104 2105 reg_00.bits.ID = mp_ioapics[apic_id].apicid; 2106 spin_lock_irqsave(&ioapic_lock, flags); 2107 io_apic_write(apic_id, 0, reg_00.raw); 2108 spin_unlock_irqrestore(&ioapic_lock, flags); 2109 2110 /* 2111 * Sanity check 2112 */ 2113 spin_lock_irqsave(&ioapic_lock, flags); 2114 reg_00.raw = io_apic_read(apic_id, 0); 2115 spin_unlock_irqrestore(&ioapic_lock, flags); 2116 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid) 2117 printk("could not set ID!\n"); 2118 else 2119 apic_printk(APIC_VERBOSE, " ok.\n"); 2120 } 2121 } 2122 #endif 2123 2124 int no_timer_check __initdata; 2125 2126 static int __init notimercheck(char *s) 2127 { 2128 no_timer_check = 1; 2129 return 1; 2130 } 2131 __setup("no_timer_check", notimercheck); 2132 2133 /* 2134 * There is a nasty bug in some older SMP boards, their mptable lies 2135 * about the timer IRQ. We do the following to work around the situation: 2136 * 2137 * - timer IRQ defaults to IO-APIC IRQ 2138 * - if this function detects that timer IRQs are defunct, then we fall 2139 * back to ISA timer IRQs 2140 */ 2141 static int __init timer_irq_works(void) 2142 { 2143 unsigned long t1 = jiffies; 2144 unsigned long flags; 2145 2146 if (no_timer_check) 2147 return 1; 2148 2149 local_save_flags(flags); 2150 local_irq_enable(); 2151 /* Let ten ticks pass... */ 2152 mdelay((10 * 1000) / HZ); 2153 local_irq_restore(flags); 2154 2155 /* 2156 * Expect a few ticks at least, to be sure some possible 2157 * glue logic does not lock up after one or two first 2158 * ticks in a non-ExtINT mode. Also the local APIC 2159 * might have cached one ExtINT interrupt. Finally, at 2160 * least one tick may be lost due to delays. 2161 */ 2162 2163 /* jiffies wrap? */ 2164 if (time_after(jiffies, t1 + 4)) 2165 return 1; 2166 return 0; 2167 } 2168 2169 /* 2170 * In the SMP+IOAPIC case it might happen that there are an unspecified 2171 * number of pending IRQ events unhandled. These cases are very rare, 2172 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 2173 * better to do it this way as thus we do not have to be aware of 2174 * 'pending' interrupts in the IRQ path, except at this point. 2175 */ 2176 /* 2177 * Edge triggered needs to resend any interrupt 2178 * that was delayed but this is now handled in the device 2179 * independent code. 2180 */ 2181 2182 /* 2183 * Starting up a edge-triggered IO-APIC interrupt is 2184 * nasty - we need to make sure that we get the edge. 2185 * If it is already asserted for some reason, we need 2186 * return 1 to indicate that is was pending. 2187 * 2188 * This is not complete - we should be able to fake 2189 * an edge even if it isn't on the 8259A... 2190 */ 2191 2192 static unsigned int startup_ioapic_irq(unsigned int irq) 2193 { 2194 int was_pending = 0; 2195 unsigned long flags; 2196 struct irq_cfg *cfg; 2197 2198 spin_lock_irqsave(&ioapic_lock, flags); 2199 if (irq < nr_legacy_irqs) { 2200 disable_8259A_irq(irq); 2201 if (i8259A_irq_pending(irq)) 2202 was_pending = 1; 2203 } 2204 cfg = irq_cfg(irq); 2205 __unmask_IO_APIC_irq(cfg); 2206 spin_unlock_irqrestore(&ioapic_lock, flags); 2207 2208 return was_pending; 2209 } 2210 2211 static int ioapic_retrigger_irq(unsigned int irq) 2212 { 2213 2214 struct irq_cfg *cfg = irq_cfg(irq); 2215 unsigned long flags; 2216 2217 spin_lock_irqsave(&vector_lock, flags); 2218 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector); 2219 spin_unlock_irqrestore(&vector_lock, flags); 2220 2221 return 1; 2222 } 2223 2224 /* 2225 * Level and edge triggered IO-APIC interrupts need different handling, 2226 * so we use two separate IRQ descriptors. Edge triggered IRQs can be 2227 * handled with the level-triggered descriptor, but that one has slightly 2228 * more overhead. Level-triggered interrupts cannot be handled with the 2229 * edge-triggered handler, without risking IRQ storms and other ugly 2230 * races. 2231 */ 2232 2233 #ifdef CONFIG_SMP 2234 static void send_cleanup_vector(struct irq_cfg *cfg) 2235 { 2236 cpumask_var_t cleanup_mask; 2237 2238 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { 2239 unsigned int i; 2240 cfg->move_cleanup_count = 0; 2241 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) 2242 cfg->move_cleanup_count++; 2243 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) 2244 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); 2245 } else { 2246 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask); 2247 cfg->move_cleanup_count = cpumask_weight(cleanup_mask); 2248 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); 2249 free_cpumask_var(cleanup_mask); 2250 } 2251 cfg->move_in_progress = 0; 2252 } 2253 2254 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg) 2255 { 2256 int apic, pin; 2257 struct irq_pin_list *entry; 2258 u8 vector = cfg->vector; 2259 2260 for_each_irq_pin(entry, cfg->irq_2_pin) { 2261 unsigned int reg; 2262 2263 apic = entry->apic; 2264 pin = entry->pin; 2265 /* 2266 * With interrupt-remapping, destination information comes 2267 * from interrupt-remapping table entry. 2268 */ 2269 if (!irq_remapped(irq)) 2270 io_apic_write(apic, 0x11 + pin*2, dest); 2271 reg = io_apic_read(apic, 0x10 + pin*2); 2272 reg &= ~IO_APIC_REDIR_VECTOR_MASK; 2273 reg |= vector; 2274 io_apic_modify(apic, 0x10 + pin*2, reg); 2275 } 2276 } 2277 2278 static int 2279 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask); 2280 2281 /* 2282 * Either sets desc->affinity to a valid value, and returns 2283 * ->cpu_mask_to_apicid of that, or returns BAD_APICID and 2284 * leaves desc->affinity untouched. 2285 */ 2286 static unsigned int 2287 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask) 2288 { 2289 struct irq_cfg *cfg; 2290 unsigned int irq; 2291 2292 if (!cpumask_intersects(mask, cpu_online_mask)) 2293 return BAD_APICID; 2294 2295 irq = desc->irq; 2296 cfg = desc->chip_data; 2297 if (assign_irq_vector(irq, cfg, mask)) 2298 return BAD_APICID; 2299 2300 cpumask_copy(desc->affinity, mask); 2301 2302 return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain); 2303 } 2304 2305 static int 2306 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2307 { 2308 struct irq_cfg *cfg; 2309 unsigned long flags; 2310 unsigned int dest; 2311 unsigned int irq; 2312 int ret = -1; 2313 2314 irq = desc->irq; 2315 cfg = desc->chip_data; 2316 2317 spin_lock_irqsave(&ioapic_lock, flags); 2318 dest = set_desc_affinity(desc, mask); 2319 if (dest != BAD_APICID) { 2320 /* Only the high 8 bits are valid. */ 2321 dest = SET_APIC_LOGICAL_ID(dest); 2322 __target_IO_APIC_irq(irq, dest, cfg); 2323 ret = 0; 2324 } 2325 spin_unlock_irqrestore(&ioapic_lock, flags); 2326 2327 return ret; 2328 } 2329 2330 static int 2331 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask) 2332 { 2333 struct irq_desc *desc; 2334 2335 desc = irq_to_desc(irq); 2336 2337 return set_ioapic_affinity_irq_desc(desc, mask); 2338 } 2339 2340 #ifdef CONFIG_INTR_REMAP 2341 2342 /* 2343 * Migrate the IO-APIC irq in the presence of intr-remapping. 2344 * 2345 * For both level and edge triggered, irq migration is a simple atomic 2346 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 2347 * 2348 * For level triggered, we eliminate the io-apic RTE modification (with the 2349 * updated vector information), by using a virtual vector (io-apic pin number). 2350 * Real vector that is used for interrupting cpu will be coming from 2351 * the interrupt-remapping table entry. 2352 */ 2353 static int 2354 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2355 { 2356 struct irq_cfg *cfg; 2357 struct irte irte; 2358 unsigned int dest; 2359 unsigned int irq; 2360 int ret = -1; 2361 2362 if (!cpumask_intersects(mask, cpu_online_mask)) 2363 return ret; 2364 2365 irq = desc->irq; 2366 if (get_irte(irq, &irte)) 2367 return ret; 2368 2369 cfg = desc->chip_data; 2370 if (assign_irq_vector(irq, cfg, mask)) 2371 return ret; 2372 2373 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask); 2374 2375 irte.vector = cfg->vector; 2376 irte.dest_id = IRTE_DEST(dest); 2377 2378 /* 2379 * Modified the IRTE and flushes the Interrupt entry cache. 2380 */ 2381 modify_irte(irq, &irte); 2382 2383 if (cfg->move_in_progress) 2384 send_cleanup_vector(cfg); 2385 2386 cpumask_copy(desc->affinity, mask); 2387 2388 return 0; 2389 } 2390 2391 /* 2392 * Migrates the IRQ destination in the process context. 2393 */ 2394 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2395 const struct cpumask *mask) 2396 { 2397 return migrate_ioapic_irq_desc(desc, mask); 2398 } 2399 static int set_ir_ioapic_affinity_irq(unsigned int irq, 2400 const struct cpumask *mask) 2401 { 2402 struct irq_desc *desc = irq_to_desc(irq); 2403 2404 return set_ir_ioapic_affinity_irq_desc(desc, mask); 2405 } 2406 #else 2407 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2408 const struct cpumask *mask) 2409 { 2410 return 0; 2411 } 2412 #endif 2413 2414 asmlinkage void smp_irq_move_cleanup_interrupt(void) 2415 { 2416 unsigned vector, me; 2417 2418 ack_APIC_irq(); 2419 exit_idle(); 2420 irq_enter(); 2421 2422 me = smp_processor_id(); 2423 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 2424 unsigned int irq; 2425 unsigned int irr; 2426 struct irq_desc *desc; 2427 struct irq_cfg *cfg; 2428 irq = __get_cpu_var(vector_irq)[vector]; 2429 2430 if (irq == -1) 2431 continue; 2432 2433 desc = irq_to_desc(irq); 2434 if (!desc) 2435 continue; 2436 2437 cfg = irq_cfg(irq); 2438 spin_lock(&desc->lock); 2439 if (!cfg->move_cleanup_count) 2440 goto unlock; 2441 2442 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2443 goto unlock; 2444 2445 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 2446 /* 2447 * Check if the vector that needs to be cleanedup is 2448 * registered at the cpu's IRR. If so, then this is not 2449 * the best time to clean it up. Lets clean it up in the 2450 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 2451 * to myself. 2452 */ 2453 if (irr & (1 << (vector % 32))) { 2454 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 2455 goto unlock; 2456 } 2457 __get_cpu_var(vector_irq)[vector] = -1; 2458 cfg->move_cleanup_count--; 2459 unlock: 2460 spin_unlock(&desc->lock); 2461 } 2462 2463 irq_exit(); 2464 } 2465 2466 static void irq_complete_move(struct irq_desc **descp) 2467 { 2468 struct irq_desc *desc = *descp; 2469 struct irq_cfg *cfg = desc->chip_data; 2470 unsigned vector, me; 2471 2472 if (likely(!cfg->move_in_progress)) 2473 return; 2474 2475 vector = ~get_irq_regs()->orig_ax; 2476 me = smp_processor_id(); 2477 2478 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2479 send_cleanup_vector(cfg); 2480 } 2481 #else 2482 static inline void irq_complete_move(struct irq_desc **descp) {} 2483 #endif 2484 2485 static void ack_apic_edge(unsigned int irq) 2486 { 2487 struct irq_desc *desc = irq_to_desc(irq); 2488 2489 irq_complete_move(&desc); 2490 move_native_irq(irq); 2491 ack_APIC_irq(); 2492 } 2493 2494 atomic_t irq_mis_count; 2495 2496 static void ack_apic_level(unsigned int irq) 2497 { 2498 struct irq_desc *desc = irq_to_desc(irq); 2499 unsigned long v; 2500 int i; 2501 struct irq_cfg *cfg; 2502 int do_unmask_irq = 0; 2503 2504 irq_complete_move(&desc); 2505 #ifdef CONFIG_GENERIC_PENDING_IRQ 2506 /* If we are moving the irq we need to mask it */ 2507 if (unlikely(desc->status & IRQ_MOVE_PENDING)) { 2508 do_unmask_irq = 1; 2509 mask_IO_APIC_irq_desc(desc); 2510 } 2511 #endif 2512 2513 /* 2514 * It appears there is an erratum which affects at least version 0x11 2515 * of I/O APIC (that's the 82093AA and cores integrated into various 2516 * chipsets). Under certain conditions a level-triggered interrupt is 2517 * erroneously delivered as edge-triggered one but the respective IRR 2518 * bit gets set nevertheless. As a result the I/O unit expects an EOI 2519 * message but it will never arrive and further interrupts are blocked 2520 * from the source. The exact reason is so far unknown, but the 2521 * phenomenon was observed when two consecutive interrupt requests 2522 * from a given source get delivered to the same CPU and the source is 2523 * temporarily disabled in between. 2524 * 2525 * A workaround is to simulate an EOI message manually. We achieve it 2526 * by setting the trigger mode to edge and then to level when the edge 2527 * trigger mode gets detected in the TMR of a local APIC for a 2528 * level-triggered interrupt. We mask the source for the time of the 2529 * operation to prevent an edge-triggered interrupt escaping meanwhile. 2530 * The idea is from Manfred Spraul. --macro 2531 */ 2532 cfg = desc->chip_data; 2533 i = cfg->vector; 2534 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 2535 2536 /* 2537 * We must acknowledge the irq before we move it or the acknowledge will 2538 * not propagate properly. 2539 */ 2540 ack_APIC_irq(); 2541 2542 /* Now we can move and renable the irq */ 2543 if (unlikely(do_unmask_irq)) { 2544 /* Only migrate the irq if the ack has been received. 2545 * 2546 * On rare occasions the broadcast level triggered ack gets 2547 * delayed going to ioapics, and if we reprogram the 2548 * vector while Remote IRR is still set the irq will never 2549 * fire again. 2550 * 2551 * To prevent this scenario we read the Remote IRR bit 2552 * of the ioapic. This has two effects. 2553 * - On any sane system the read of the ioapic will 2554 * flush writes (and acks) going to the ioapic from 2555 * this cpu. 2556 * - We get to see if the ACK has actually been delivered. 2557 * 2558 * Based on failed experiments of reprogramming the 2559 * ioapic entry from outside of irq context starting 2560 * with masking the ioapic entry and then polling until 2561 * Remote IRR was clear before reprogramming the 2562 * ioapic I don't trust the Remote IRR bit to be 2563 * completey accurate. 2564 * 2565 * However there appears to be no other way to plug 2566 * this race, so if the Remote IRR bit is not 2567 * accurate and is causing problems then it is a hardware bug 2568 * and you can go talk to the chipset vendor about it. 2569 */ 2570 cfg = desc->chip_data; 2571 if (!io_apic_level_ack_pending(cfg)) 2572 move_masked_irq(irq); 2573 unmask_IO_APIC_irq_desc(desc); 2574 } 2575 2576 /* Tail end of version 0x11 I/O APIC bug workaround */ 2577 if (!(v & (1 << (i & 0x1f)))) { 2578 atomic_inc(&irq_mis_count); 2579 spin_lock(&ioapic_lock); 2580 __mask_and_edge_IO_APIC_irq(cfg); 2581 __unmask_and_level_IO_APIC_irq(cfg); 2582 spin_unlock(&ioapic_lock); 2583 } 2584 } 2585 2586 #ifdef CONFIG_INTR_REMAP 2587 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg) 2588 { 2589 struct irq_pin_list *entry; 2590 2591 for_each_irq_pin(entry, cfg->irq_2_pin) 2592 io_apic_eoi(entry->apic, entry->pin); 2593 } 2594 2595 static void 2596 eoi_ioapic_irq(struct irq_desc *desc) 2597 { 2598 struct irq_cfg *cfg; 2599 unsigned long flags; 2600 unsigned int irq; 2601 2602 irq = desc->irq; 2603 cfg = desc->chip_data; 2604 2605 spin_lock_irqsave(&ioapic_lock, flags); 2606 __eoi_ioapic_irq(irq, cfg); 2607 spin_unlock_irqrestore(&ioapic_lock, flags); 2608 } 2609 2610 static void ir_ack_apic_edge(unsigned int irq) 2611 { 2612 ack_APIC_irq(); 2613 } 2614 2615 static void ir_ack_apic_level(unsigned int irq) 2616 { 2617 struct irq_desc *desc = irq_to_desc(irq); 2618 2619 ack_APIC_irq(); 2620 eoi_ioapic_irq(desc); 2621 } 2622 #endif /* CONFIG_INTR_REMAP */ 2623 2624 static struct irq_chip ioapic_chip __read_mostly = { 2625 .name = "IO-APIC", 2626 .startup = startup_ioapic_irq, 2627 .mask = mask_IO_APIC_irq, 2628 .unmask = unmask_IO_APIC_irq, 2629 .ack = ack_apic_edge, 2630 .eoi = ack_apic_level, 2631 #ifdef CONFIG_SMP 2632 .set_affinity = set_ioapic_affinity_irq, 2633 #endif 2634 .retrigger = ioapic_retrigger_irq, 2635 }; 2636 2637 static struct irq_chip ir_ioapic_chip __read_mostly = { 2638 .name = "IR-IO-APIC", 2639 .startup = startup_ioapic_irq, 2640 .mask = mask_IO_APIC_irq, 2641 .unmask = unmask_IO_APIC_irq, 2642 #ifdef CONFIG_INTR_REMAP 2643 .ack = ir_ack_apic_edge, 2644 .eoi = ir_ack_apic_level, 2645 #ifdef CONFIG_SMP 2646 .set_affinity = set_ir_ioapic_affinity_irq, 2647 #endif 2648 #endif 2649 .retrigger = ioapic_retrigger_irq, 2650 }; 2651 2652 static inline void init_IO_APIC_traps(void) 2653 { 2654 int irq; 2655 struct irq_desc *desc; 2656 struct irq_cfg *cfg; 2657 2658 /* 2659 * NOTE! The local APIC isn't very good at handling 2660 * multiple interrupts at the same interrupt level. 2661 * As the interrupt level is determined by taking the 2662 * vector number and shifting that right by 4, we 2663 * want to spread these out a bit so that they don't 2664 * all fall in the same interrupt level. 2665 * 2666 * Also, we've got to be careful not to trash gate 2667 * 0x80, because int 0x80 is hm, kind of importantish. ;) 2668 */ 2669 for_each_irq_desc(irq, desc) { 2670 cfg = desc->chip_data; 2671 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2672 /* 2673 * Hmm.. We don't have an entry for this, 2674 * so default to an old-fashioned 8259 2675 * interrupt if we can.. 2676 */ 2677 if (irq < nr_legacy_irqs) 2678 make_8259A_irq(irq); 2679 else 2680 /* Strange. Oh, well.. */ 2681 desc->chip = &no_irq_chip; 2682 } 2683 } 2684 } 2685 2686 /* 2687 * The local APIC irq-chip implementation: 2688 */ 2689 2690 static void mask_lapic_irq(unsigned int irq) 2691 { 2692 unsigned long v; 2693 2694 v = apic_read(APIC_LVT0); 2695 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2696 } 2697 2698 static void unmask_lapic_irq(unsigned int irq) 2699 { 2700 unsigned long v; 2701 2702 v = apic_read(APIC_LVT0); 2703 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2704 } 2705 2706 static void ack_lapic_irq(unsigned int irq) 2707 { 2708 ack_APIC_irq(); 2709 } 2710 2711 static struct irq_chip lapic_chip __read_mostly = { 2712 .name = "local-APIC", 2713 .mask = mask_lapic_irq, 2714 .unmask = unmask_lapic_irq, 2715 .ack = ack_lapic_irq, 2716 }; 2717 2718 static void lapic_register_intr(int irq, struct irq_desc *desc) 2719 { 2720 desc->status &= ~IRQ_LEVEL; 2721 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2722 "edge"); 2723 } 2724 2725 static void __init setup_nmi(void) 2726 { 2727 /* 2728 * Dirty trick to enable the NMI watchdog ... 2729 * We put the 8259A master into AEOI mode and 2730 * unmask on all local APICs LVT0 as NMI. 2731 * 2732 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') 2733 * is from Maciej W. Rozycki - so we do not have to EOI from 2734 * the NMI handler or the timer interrupt. 2735 */ 2736 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ..."); 2737 2738 enable_NMI_through_LVT0(); 2739 2740 apic_printk(APIC_VERBOSE, " done.\n"); 2741 } 2742 2743 /* 2744 * This looks a bit hackish but it's about the only one way of sending 2745 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2746 * not support the ExtINT mode, unfortunately. We need to send these 2747 * cycles as some i82489DX-based boards have glue logic that keeps the 2748 * 8259A interrupt line asserted until INTA. --macro 2749 */ 2750 static inline void __init unlock_ExtINT_logic(void) 2751 { 2752 int apic, pin, i; 2753 struct IO_APIC_route_entry entry0, entry1; 2754 unsigned char save_control, save_freq_select; 2755 2756 pin = find_isa_irq_pin(8, mp_INT); 2757 if (pin == -1) { 2758 WARN_ON_ONCE(1); 2759 return; 2760 } 2761 apic = find_isa_irq_apic(8, mp_INT); 2762 if (apic == -1) { 2763 WARN_ON_ONCE(1); 2764 return; 2765 } 2766 2767 entry0 = ioapic_read_entry(apic, pin); 2768 clear_IO_APIC_pin(apic, pin); 2769 2770 memset(&entry1, 0, sizeof(entry1)); 2771 2772 entry1.dest_mode = 0; /* physical delivery */ 2773 entry1.mask = 0; /* unmask IRQ now */ 2774 entry1.dest = hard_smp_processor_id(); 2775 entry1.delivery_mode = dest_ExtINT; 2776 entry1.polarity = entry0.polarity; 2777 entry1.trigger = 0; 2778 entry1.vector = 0; 2779 2780 ioapic_write_entry(apic, pin, entry1); 2781 2782 save_control = CMOS_READ(RTC_CONTROL); 2783 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2784 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2785 RTC_FREQ_SELECT); 2786 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2787 2788 i = 100; 2789 while (i-- > 0) { 2790 mdelay(10); 2791 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2792 i -= 10; 2793 } 2794 2795 CMOS_WRITE(save_control, RTC_CONTROL); 2796 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2797 clear_IO_APIC_pin(apic, pin); 2798 2799 ioapic_write_entry(apic, pin, entry0); 2800 } 2801 2802 static int disable_timer_pin_1 __initdata; 2803 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2804 static int __init disable_timer_pin_setup(char *arg) 2805 { 2806 disable_timer_pin_1 = 1; 2807 return 0; 2808 } 2809 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2810 2811 int timer_through_8259 __initdata; 2812 2813 /* 2814 * This code may look a bit paranoid, but it's supposed to cooperate with 2815 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2816 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2817 * fanatically on his truly buggy board. 2818 * 2819 * FIXME: really need to revamp this for all platforms. 2820 */ 2821 static inline void __init check_timer(void) 2822 { 2823 struct irq_desc *desc = irq_to_desc(0); 2824 struct irq_cfg *cfg = desc->chip_data; 2825 int node = cpu_to_node(boot_cpu_id); 2826 int apic1, pin1, apic2, pin2; 2827 unsigned long flags; 2828 int no_pin1 = 0; 2829 2830 local_irq_save(flags); 2831 2832 /* 2833 * get/set the timer IRQ vector: 2834 */ 2835 disable_8259A_irq(0); 2836 assign_irq_vector(0, cfg, apic->target_cpus()); 2837 2838 /* 2839 * As IRQ0 is to be enabled in the 8259A, the virtual 2840 * wire has to be disabled in the local APIC. Also 2841 * timer interrupts need to be acknowledged manually in 2842 * the 8259A for the i82489DX when using the NMI 2843 * watchdog as that APIC treats NMIs as level-triggered. 2844 * The AEOI mode will finish them in the 8259A 2845 * automatically. 2846 */ 2847 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2848 init_8259A(1); 2849 #ifdef CONFIG_X86_32 2850 { 2851 unsigned int ver; 2852 2853 ver = apic_read(APIC_LVR); 2854 ver = GET_APIC_VERSION(ver); 2855 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver)); 2856 } 2857 #endif 2858 2859 pin1 = find_isa_irq_pin(0, mp_INT); 2860 apic1 = find_isa_irq_apic(0, mp_INT); 2861 pin2 = ioapic_i8259.pin; 2862 apic2 = ioapic_i8259.apic; 2863 2864 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2865 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2866 cfg->vector, apic1, pin1, apic2, pin2); 2867 2868 /* 2869 * Some BIOS writers are clueless and report the ExtINTA 2870 * I/O APIC input from the cascaded 8259A as the timer 2871 * interrupt input. So just in case, if only one pin 2872 * was found above, try it both directly and through the 2873 * 8259A. 2874 */ 2875 if (pin1 == -1) { 2876 if (intr_remapping_enabled) 2877 panic("BIOS bug: timer not connected to IO-APIC"); 2878 pin1 = pin2; 2879 apic1 = apic2; 2880 no_pin1 = 1; 2881 } else if (pin2 == -1) { 2882 pin2 = pin1; 2883 apic2 = apic1; 2884 } 2885 2886 if (pin1 != -1) { 2887 /* 2888 * Ok, does IRQ0 through the IOAPIC work? 2889 */ 2890 if (no_pin1) { 2891 add_pin_to_irq_node(cfg, node, apic1, pin1); 2892 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); 2893 } else { 2894 /* for edge trigger, setup_IO_APIC_irq already 2895 * leave it unmasked. 2896 * so only need to unmask if it is level-trigger 2897 * do we really have level trigger timer? 2898 */ 2899 int idx; 2900 idx = find_irq_entry(apic1, pin1, mp_INT); 2901 if (idx != -1 && irq_trigger(idx)) 2902 unmask_IO_APIC_irq_desc(desc); 2903 } 2904 if (timer_irq_works()) { 2905 if (nmi_watchdog == NMI_IO_APIC) { 2906 setup_nmi(); 2907 enable_8259A_irq(0); 2908 } 2909 if (disable_timer_pin_1 > 0) 2910 clear_IO_APIC_pin(0, pin1); 2911 goto out; 2912 } 2913 if (intr_remapping_enabled) 2914 panic("timer doesn't work through Interrupt-remapped IO-APIC"); 2915 local_irq_disable(); 2916 clear_IO_APIC_pin(apic1, pin1); 2917 if (!no_pin1) 2918 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 2919 "8254 timer not connected to IO-APIC\n"); 2920 2921 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 2922 "(IRQ0) through the 8259A ...\n"); 2923 apic_printk(APIC_QUIET, KERN_INFO 2924 "..... (found apic %d pin %d) ...\n", apic2, pin2); 2925 /* 2926 * legacy devices should be connected to IO APIC #0 2927 */ 2928 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2); 2929 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); 2930 enable_8259A_irq(0); 2931 if (timer_irq_works()) { 2932 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 2933 timer_through_8259 = 1; 2934 if (nmi_watchdog == NMI_IO_APIC) { 2935 disable_8259A_irq(0); 2936 setup_nmi(); 2937 enable_8259A_irq(0); 2938 } 2939 goto out; 2940 } 2941 /* 2942 * Cleanup, just in case ... 2943 */ 2944 local_irq_disable(); 2945 disable_8259A_irq(0); 2946 clear_IO_APIC_pin(apic2, pin2); 2947 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 2948 } 2949 2950 if (nmi_watchdog == NMI_IO_APIC) { 2951 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work " 2952 "through the IO-APIC - disabling NMI Watchdog!\n"); 2953 nmi_watchdog = NMI_NONE; 2954 } 2955 #ifdef CONFIG_X86_32 2956 timer_ack = 0; 2957 #endif 2958 2959 apic_printk(APIC_QUIET, KERN_INFO 2960 "...trying to set up timer as Virtual Wire IRQ...\n"); 2961 2962 lapic_register_intr(0, desc); 2963 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 2964 enable_8259A_irq(0); 2965 2966 if (timer_irq_works()) { 2967 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2968 goto out; 2969 } 2970 local_irq_disable(); 2971 disable_8259A_irq(0); 2972 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 2973 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 2974 2975 apic_printk(APIC_QUIET, KERN_INFO 2976 "...trying to set up timer as ExtINT IRQ...\n"); 2977 2978 init_8259A(0); 2979 make_8259A_irq(0); 2980 apic_write(APIC_LVT0, APIC_DM_EXTINT); 2981 2982 unlock_ExtINT_logic(); 2983 2984 if (timer_irq_works()) { 2985 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2986 goto out; 2987 } 2988 local_irq_disable(); 2989 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 2990 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 2991 "report. Then try booting with the 'noapic' option.\n"); 2992 out: 2993 local_irq_restore(flags); 2994 } 2995 2996 /* 2997 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 2998 * to devices. However there may be an I/O APIC pin available for 2999 * this interrupt regardless. The pin may be left unconnected, but 3000 * typically it will be reused as an ExtINT cascade interrupt for 3001 * the master 8259A. In the MPS case such a pin will normally be 3002 * reported as an ExtINT interrupt in the MP table. With ACPI 3003 * there is no provision for ExtINT interrupts, and in the absence 3004 * of an override it would be treated as an ordinary ISA I/O APIC 3005 * interrupt, that is edge-triggered and unmasked by default. We 3006 * used to do this, but it caused problems on some systems because 3007 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 3008 * the same ExtINT cascade interrupt to drive the local APIC of the 3009 * bootstrap processor. Therefore we refrain from routing IRQ2 to 3010 * the I/O APIC in all cases now. No actual device should request 3011 * it anyway. --macro 3012 */ 3013 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 3014 3015 void __init setup_IO_APIC(void) 3016 { 3017 3018 /* 3019 * calling enable_IO_APIC() is moved to setup_local_APIC for BP 3020 */ 3021 io_apic_irqs = nr_legacy_irqs ? ~PIC_IRQS : ~0UL; 3022 3023 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 3024 /* 3025 * Set up IO-APIC IRQ routing. 3026 */ 3027 x86_init.mpparse.setup_ioapic_ids(); 3028 3029 sync_Arb_IDs(); 3030 setup_IO_APIC_irqs(); 3031 init_IO_APIC_traps(); 3032 if (nr_legacy_irqs) 3033 check_timer(); 3034 } 3035 3036 /* 3037 * Called after all the initialization is done. If we didnt find any 3038 * APIC bugs then we can allow the modify fast path 3039 */ 3040 3041 static int __init io_apic_bug_finalize(void) 3042 { 3043 if (sis_apic_bug == -1) 3044 sis_apic_bug = 0; 3045 return 0; 3046 } 3047 3048 late_initcall(io_apic_bug_finalize); 3049 3050 struct sysfs_ioapic_data { 3051 struct sys_device dev; 3052 struct IO_APIC_route_entry entry[0]; 3053 }; 3054 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS]; 3055 3056 static int ioapic_suspend(struct sys_device *dev, pm_message_t state) 3057 { 3058 struct IO_APIC_route_entry *entry; 3059 struct sysfs_ioapic_data *data; 3060 int i; 3061 3062 data = container_of(dev, struct sysfs_ioapic_data, dev); 3063 entry = data->entry; 3064 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ ) 3065 *entry = ioapic_read_entry(dev->id, i); 3066 3067 return 0; 3068 } 3069 3070 static int ioapic_resume(struct sys_device *dev) 3071 { 3072 struct IO_APIC_route_entry *entry; 3073 struct sysfs_ioapic_data *data; 3074 unsigned long flags; 3075 union IO_APIC_reg_00 reg_00; 3076 int i; 3077 3078 data = container_of(dev, struct sysfs_ioapic_data, dev); 3079 entry = data->entry; 3080 3081 spin_lock_irqsave(&ioapic_lock, flags); 3082 reg_00.raw = io_apic_read(dev->id, 0); 3083 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) { 3084 reg_00.bits.ID = mp_ioapics[dev->id].apicid; 3085 io_apic_write(dev->id, 0, reg_00.raw); 3086 } 3087 spin_unlock_irqrestore(&ioapic_lock, flags); 3088 for (i = 0; i < nr_ioapic_registers[dev->id]; i++) 3089 ioapic_write_entry(dev->id, i, entry[i]); 3090 3091 return 0; 3092 } 3093 3094 static struct sysdev_class ioapic_sysdev_class = { 3095 .name = "ioapic", 3096 .suspend = ioapic_suspend, 3097 .resume = ioapic_resume, 3098 }; 3099 3100 static int __init ioapic_init_sysfs(void) 3101 { 3102 struct sys_device * dev; 3103 int i, size, error; 3104 3105 error = sysdev_class_register(&ioapic_sysdev_class); 3106 if (error) 3107 return error; 3108 3109 for (i = 0; i < nr_ioapics; i++ ) { 3110 size = sizeof(struct sys_device) + nr_ioapic_registers[i] 3111 * sizeof(struct IO_APIC_route_entry); 3112 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL); 3113 if (!mp_ioapic_data[i]) { 3114 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3115 continue; 3116 } 3117 dev = &mp_ioapic_data[i]->dev; 3118 dev->id = i; 3119 dev->cls = &ioapic_sysdev_class; 3120 error = sysdev_register(dev); 3121 if (error) { 3122 kfree(mp_ioapic_data[i]); 3123 mp_ioapic_data[i] = NULL; 3124 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3125 continue; 3126 } 3127 } 3128 3129 return 0; 3130 } 3131 3132 device_initcall(ioapic_init_sysfs); 3133 3134 /* 3135 * Dynamic irq allocate and deallocation 3136 */ 3137 unsigned int create_irq_nr(unsigned int irq_want, int node) 3138 { 3139 /* Allocate an unused irq */ 3140 unsigned int irq; 3141 unsigned int new; 3142 unsigned long flags; 3143 struct irq_cfg *cfg_new = NULL; 3144 struct irq_desc *desc_new = NULL; 3145 3146 irq = 0; 3147 if (irq_want < nr_irqs_gsi) 3148 irq_want = nr_irqs_gsi; 3149 3150 spin_lock_irqsave(&vector_lock, flags); 3151 for (new = irq_want; new < nr_irqs; new++) { 3152 desc_new = irq_to_desc_alloc_node(new, node); 3153 if (!desc_new) { 3154 printk(KERN_INFO "can not get irq_desc for %d\n", new); 3155 continue; 3156 } 3157 cfg_new = desc_new->chip_data; 3158 3159 if (cfg_new->vector != 0) 3160 continue; 3161 3162 desc_new = move_irq_desc(desc_new, node); 3163 3164 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0) 3165 irq = new; 3166 break; 3167 } 3168 spin_unlock_irqrestore(&vector_lock, flags); 3169 3170 if (irq > 0) { 3171 dynamic_irq_init(irq); 3172 /* restore it, in case dynamic_irq_init clear it */ 3173 if (desc_new) 3174 desc_new->chip_data = cfg_new; 3175 } 3176 return irq; 3177 } 3178 3179 int create_irq(void) 3180 { 3181 int node = cpu_to_node(boot_cpu_id); 3182 unsigned int irq_want; 3183 int irq; 3184 3185 irq_want = nr_irqs_gsi; 3186 irq = create_irq_nr(irq_want, node); 3187 3188 if (irq == 0) 3189 irq = -1; 3190 3191 return irq; 3192 } 3193 3194 void destroy_irq(unsigned int irq) 3195 { 3196 unsigned long flags; 3197 struct irq_cfg *cfg; 3198 struct irq_desc *desc; 3199 3200 /* store it, in case dynamic_irq_cleanup clear it */ 3201 desc = irq_to_desc(irq); 3202 cfg = desc->chip_data; 3203 dynamic_irq_cleanup(irq); 3204 /* connect back irq_cfg */ 3205 desc->chip_data = cfg; 3206 3207 free_irte(irq); 3208 spin_lock_irqsave(&vector_lock, flags); 3209 __clear_irq_vector(irq, cfg); 3210 spin_unlock_irqrestore(&vector_lock, flags); 3211 } 3212 3213 /* 3214 * MSI message composition 3215 */ 3216 #ifdef CONFIG_PCI_MSI 3217 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg) 3218 { 3219 struct irq_cfg *cfg; 3220 int err; 3221 unsigned dest; 3222 3223 if (disable_apic) 3224 return -ENXIO; 3225 3226 cfg = irq_cfg(irq); 3227 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3228 if (err) 3229 return err; 3230 3231 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 3232 3233 if (irq_remapped(irq)) { 3234 struct irte irte; 3235 int ir_index; 3236 u16 sub_handle; 3237 3238 ir_index = map_irq_to_irte_handle(irq, &sub_handle); 3239 BUG_ON(ir_index == -1); 3240 3241 memset (&irte, 0, sizeof(irte)); 3242 3243 irte.present = 1; 3244 irte.dst_mode = apic->irq_dest_mode; 3245 irte.trigger_mode = 0; /* edge */ 3246 irte.dlvry_mode = apic->irq_delivery_mode; 3247 irte.vector = cfg->vector; 3248 irte.dest_id = IRTE_DEST(dest); 3249 3250 /* Set source-id of interrupt request */ 3251 set_msi_sid(&irte, pdev); 3252 3253 modify_irte(irq, &irte); 3254 3255 msg->address_hi = MSI_ADDR_BASE_HI; 3256 msg->data = sub_handle; 3257 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | 3258 MSI_ADDR_IR_SHV | 3259 MSI_ADDR_IR_INDEX1(ir_index) | 3260 MSI_ADDR_IR_INDEX2(ir_index); 3261 } else { 3262 if (x2apic_enabled()) 3263 msg->address_hi = MSI_ADDR_BASE_HI | 3264 MSI_ADDR_EXT_DEST_ID(dest); 3265 else 3266 msg->address_hi = MSI_ADDR_BASE_HI; 3267 3268 msg->address_lo = 3269 MSI_ADDR_BASE_LO | 3270 ((apic->irq_dest_mode == 0) ? 3271 MSI_ADDR_DEST_MODE_PHYSICAL: 3272 MSI_ADDR_DEST_MODE_LOGICAL) | 3273 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3274 MSI_ADDR_REDIRECTION_CPU: 3275 MSI_ADDR_REDIRECTION_LOWPRI) | 3276 MSI_ADDR_DEST_ID(dest); 3277 3278 msg->data = 3279 MSI_DATA_TRIGGER_EDGE | 3280 MSI_DATA_LEVEL_ASSERT | 3281 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3282 MSI_DATA_DELIVERY_FIXED: 3283 MSI_DATA_DELIVERY_LOWPRI) | 3284 MSI_DATA_VECTOR(cfg->vector); 3285 } 3286 return err; 3287 } 3288 3289 #ifdef CONFIG_SMP 3290 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3291 { 3292 struct irq_desc *desc = irq_to_desc(irq); 3293 struct irq_cfg *cfg; 3294 struct msi_msg msg; 3295 unsigned int dest; 3296 3297 dest = set_desc_affinity(desc, mask); 3298 if (dest == BAD_APICID) 3299 return -1; 3300 3301 cfg = desc->chip_data; 3302 3303 read_msi_msg_desc(desc, &msg); 3304 3305 msg.data &= ~MSI_DATA_VECTOR_MASK; 3306 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3307 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3308 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3309 3310 write_msi_msg_desc(desc, &msg); 3311 3312 return 0; 3313 } 3314 #ifdef CONFIG_INTR_REMAP 3315 /* 3316 * Migrate the MSI irq to another cpumask. This migration is 3317 * done in the process context using interrupt-remapping hardware. 3318 */ 3319 static int 3320 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3321 { 3322 struct irq_desc *desc = irq_to_desc(irq); 3323 struct irq_cfg *cfg = desc->chip_data; 3324 unsigned int dest; 3325 struct irte irte; 3326 3327 if (get_irte(irq, &irte)) 3328 return -1; 3329 3330 dest = set_desc_affinity(desc, mask); 3331 if (dest == BAD_APICID) 3332 return -1; 3333 3334 irte.vector = cfg->vector; 3335 irte.dest_id = IRTE_DEST(dest); 3336 3337 /* 3338 * atomically update the IRTE with the new destination and vector. 3339 */ 3340 modify_irte(irq, &irte); 3341 3342 /* 3343 * After this point, all the interrupts will start arriving 3344 * at the new destination. So, time to cleanup the previous 3345 * vector allocation. 3346 */ 3347 if (cfg->move_in_progress) 3348 send_cleanup_vector(cfg); 3349 3350 return 0; 3351 } 3352 3353 #endif 3354 #endif /* CONFIG_SMP */ 3355 3356 /* 3357 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, 3358 * which implement the MSI or MSI-X Capability Structure. 3359 */ 3360 static struct irq_chip msi_chip = { 3361 .name = "PCI-MSI", 3362 .unmask = unmask_msi_irq, 3363 .mask = mask_msi_irq, 3364 .ack = ack_apic_edge, 3365 #ifdef CONFIG_SMP 3366 .set_affinity = set_msi_irq_affinity, 3367 #endif 3368 .retrigger = ioapic_retrigger_irq, 3369 }; 3370 3371 static struct irq_chip msi_ir_chip = { 3372 .name = "IR-PCI-MSI", 3373 .unmask = unmask_msi_irq, 3374 .mask = mask_msi_irq, 3375 #ifdef CONFIG_INTR_REMAP 3376 .ack = ir_ack_apic_edge, 3377 #ifdef CONFIG_SMP 3378 .set_affinity = ir_set_msi_irq_affinity, 3379 #endif 3380 #endif 3381 .retrigger = ioapic_retrigger_irq, 3382 }; 3383 3384 /* 3385 * Map the PCI dev to the corresponding remapping hardware unit 3386 * and allocate 'nvec' consecutive interrupt-remapping table entries 3387 * in it. 3388 */ 3389 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) 3390 { 3391 struct intel_iommu *iommu; 3392 int index; 3393 3394 iommu = map_dev_to_ir(dev); 3395 if (!iommu) { 3396 printk(KERN_ERR 3397 "Unable to map PCI %s to iommu\n", pci_name(dev)); 3398 return -ENOENT; 3399 } 3400 3401 index = alloc_irte(iommu, irq, nvec); 3402 if (index < 0) { 3403 printk(KERN_ERR 3404 "Unable to allocate %d IRTE for PCI %s\n", nvec, 3405 pci_name(dev)); 3406 return -ENOSPC; 3407 } 3408 return index; 3409 } 3410 3411 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq) 3412 { 3413 int ret; 3414 struct msi_msg msg; 3415 3416 ret = msi_compose_msg(dev, irq, &msg); 3417 if (ret < 0) 3418 return ret; 3419 3420 set_irq_msi(irq, msidesc); 3421 write_msi_msg(irq, &msg); 3422 3423 if (irq_remapped(irq)) { 3424 struct irq_desc *desc = irq_to_desc(irq); 3425 /* 3426 * irq migration in process context 3427 */ 3428 desc->status |= IRQ_MOVE_PCNTXT; 3429 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge"); 3430 } else 3431 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge"); 3432 3433 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq); 3434 3435 return 0; 3436 } 3437 3438 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) 3439 { 3440 unsigned int irq; 3441 int ret, sub_handle; 3442 struct msi_desc *msidesc; 3443 unsigned int irq_want; 3444 struct intel_iommu *iommu = NULL; 3445 int index = 0; 3446 int node; 3447 3448 /* x86 doesn't support multiple MSI yet */ 3449 if (type == PCI_CAP_ID_MSI && nvec > 1) 3450 return 1; 3451 3452 node = dev_to_node(&dev->dev); 3453 irq_want = nr_irqs_gsi; 3454 sub_handle = 0; 3455 list_for_each_entry(msidesc, &dev->msi_list, list) { 3456 irq = create_irq_nr(irq_want, node); 3457 if (irq == 0) 3458 return -1; 3459 irq_want = irq + 1; 3460 if (!intr_remapping_enabled) 3461 goto no_ir; 3462 3463 if (!sub_handle) { 3464 /* 3465 * allocate the consecutive block of IRTE's 3466 * for 'nvec' 3467 */ 3468 index = msi_alloc_irte(dev, irq, nvec); 3469 if (index < 0) { 3470 ret = index; 3471 goto error; 3472 } 3473 } else { 3474 iommu = map_dev_to_ir(dev); 3475 if (!iommu) { 3476 ret = -ENOENT; 3477 goto error; 3478 } 3479 /* 3480 * setup the mapping between the irq and the IRTE 3481 * base index, the sub_handle pointing to the 3482 * appropriate interrupt remap table entry. 3483 */ 3484 set_irte_irq(irq, iommu, index, sub_handle); 3485 } 3486 no_ir: 3487 ret = setup_msi_irq(dev, msidesc, irq); 3488 if (ret < 0) 3489 goto error; 3490 sub_handle++; 3491 } 3492 return 0; 3493 3494 error: 3495 destroy_irq(irq); 3496 return ret; 3497 } 3498 3499 void arch_teardown_msi_irq(unsigned int irq) 3500 { 3501 destroy_irq(irq); 3502 } 3503 3504 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP) 3505 #ifdef CONFIG_SMP 3506 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3507 { 3508 struct irq_desc *desc = irq_to_desc(irq); 3509 struct irq_cfg *cfg; 3510 struct msi_msg msg; 3511 unsigned int dest; 3512 3513 dest = set_desc_affinity(desc, mask); 3514 if (dest == BAD_APICID) 3515 return -1; 3516 3517 cfg = desc->chip_data; 3518 3519 dmar_msi_read(irq, &msg); 3520 3521 msg.data &= ~MSI_DATA_VECTOR_MASK; 3522 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3523 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3524 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3525 3526 dmar_msi_write(irq, &msg); 3527 3528 return 0; 3529 } 3530 3531 #endif /* CONFIG_SMP */ 3532 3533 static struct irq_chip dmar_msi_type = { 3534 .name = "DMAR_MSI", 3535 .unmask = dmar_msi_unmask, 3536 .mask = dmar_msi_mask, 3537 .ack = ack_apic_edge, 3538 #ifdef CONFIG_SMP 3539 .set_affinity = dmar_msi_set_affinity, 3540 #endif 3541 .retrigger = ioapic_retrigger_irq, 3542 }; 3543 3544 int arch_setup_dmar_msi(unsigned int irq) 3545 { 3546 int ret; 3547 struct msi_msg msg; 3548 3549 ret = msi_compose_msg(NULL, irq, &msg); 3550 if (ret < 0) 3551 return ret; 3552 dmar_msi_write(irq, &msg); 3553 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, 3554 "edge"); 3555 return 0; 3556 } 3557 #endif 3558 3559 #ifdef CONFIG_HPET_TIMER 3560 3561 #ifdef CONFIG_SMP 3562 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3563 { 3564 struct irq_desc *desc = irq_to_desc(irq); 3565 struct irq_cfg *cfg; 3566 struct msi_msg msg; 3567 unsigned int dest; 3568 3569 dest = set_desc_affinity(desc, mask); 3570 if (dest == BAD_APICID) 3571 return -1; 3572 3573 cfg = desc->chip_data; 3574 3575 hpet_msi_read(irq, &msg); 3576 3577 msg.data &= ~MSI_DATA_VECTOR_MASK; 3578 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3579 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3580 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3581 3582 hpet_msi_write(irq, &msg); 3583 3584 return 0; 3585 } 3586 3587 #endif /* CONFIG_SMP */ 3588 3589 static struct irq_chip hpet_msi_type = { 3590 .name = "HPET_MSI", 3591 .unmask = hpet_msi_unmask, 3592 .mask = hpet_msi_mask, 3593 .ack = ack_apic_edge, 3594 #ifdef CONFIG_SMP 3595 .set_affinity = hpet_msi_set_affinity, 3596 #endif 3597 .retrigger = ioapic_retrigger_irq, 3598 }; 3599 3600 int arch_setup_hpet_msi(unsigned int irq) 3601 { 3602 int ret; 3603 struct msi_msg msg; 3604 struct irq_desc *desc = irq_to_desc(irq); 3605 3606 ret = msi_compose_msg(NULL, irq, &msg); 3607 if (ret < 0) 3608 return ret; 3609 3610 hpet_msi_write(irq, &msg); 3611 desc->status |= IRQ_MOVE_PCNTXT; 3612 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq, 3613 "edge"); 3614 3615 return 0; 3616 } 3617 #endif 3618 3619 #endif /* CONFIG_PCI_MSI */ 3620 /* 3621 * Hypertransport interrupt support 3622 */ 3623 #ifdef CONFIG_HT_IRQ 3624 3625 #ifdef CONFIG_SMP 3626 3627 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) 3628 { 3629 struct ht_irq_msg msg; 3630 fetch_ht_irq_msg(irq, &msg); 3631 3632 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); 3633 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); 3634 3635 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); 3636 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); 3637 3638 write_ht_irq_msg(irq, &msg); 3639 } 3640 3641 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask) 3642 { 3643 struct irq_desc *desc = irq_to_desc(irq); 3644 struct irq_cfg *cfg; 3645 unsigned int dest; 3646 3647 dest = set_desc_affinity(desc, mask); 3648 if (dest == BAD_APICID) 3649 return -1; 3650 3651 cfg = desc->chip_data; 3652 3653 target_ht_irq(irq, dest, cfg->vector); 3654 3655 return 0; 3656 } 3657 3658 #endif 3659 3660 static struct irq_chip ht_irq_chip = { 3661 .name = "PCI-HT", 3662 .mask = mask_ht_irq, 3663 .unmask = unmask_ht_irq, 3664 .ack = ack_apic_edge, 3665 #ifdef CONFIG_SMP 3666 .set_affinity = set_ht_irq_affinity, 3667 #endif 3668 .retrigger = ioapic_retrigger_irq, 3669 }; 3670 3671 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) 3672 { 3673 struct irq_cfg *cfg; 3674 int err; 3675 3676 if (disable_apic) 3677 return -ENXIO; 3678 3679 cfg = irq_cfg(irq); 3680 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3681 if (!err) { 3682 struct ht_irq_msg msg; 3683 unsigned dest; 3684 3685 dest = apic->cpu_mask_to_apicid_and(cfg->domain, 3686 apic->target_cpus()); 3687 3688 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); 3689 3690 msg.address_lo = 3691 HT_IRQ_LOW_BASE | 3692 HT_IRQ_LOW_DEST_ID(dest) | 3693 HT_IRQ_LOW_VECTOR(cfg->vector) | 3694 ((apic->irq_dest_mode == 0) ? 3695 HT_IRQ_LOW_DM_PHYSICAL : 3696 HT_IRQ_LOW_DM_LOGICAL) | 3697 HT_IRQ_LOW_RQEOI_EDGE | 3698 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3699 HT_IRQ_LOW_MT_FIXED : 3700 HT_IRQ_LOW_MT_ARBITRATED) | 3701 HT_IRQ_LOW_IRQ_MASKED; 3702 3703 write_ht_irq_msg(irq, &msg); 3704 3705 set_irq_chip_and_handler_name(irq, &ht_irq_chip, 3706 handle_edge_irq, "edge"); 3707 3708 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq); 3709 } 3710 return err; 3711 } 3712 #endif /* CONFIG_HT_IRQ */ 3713 3714 #ifdef CONFIG_X86_UV 3715 /* 3716 * Re-target the irq to the specified CPU and enable the specified MMR located 3717 * on the specified blade to allow the sending of MSIs to the specified CPU. 3718 */ 3719 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade, 3720 unsigned long mmr_offset) 3721 { 3722 const struct cpumask *eligible_cpu = cpumask_of(cpu); 3723 struct irq_cfg *cfg; 3724 int mmr_pnode; 3725 unsigned long mmr_value; 3726 struct uv_IO_APIC_route_entry *entry; 3727 unsigned long flags; 3728 int err; 3729 3730 BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long)); 3731 3732 cfg = irq_cfg(irq); 3733 3734 err = assign_irq_vector(irq, cfg, eligible_cpu); 3735 if (err != 0) 3736 return err; 3737 3738 spin_lock_irqsave(&vector_lock, flags); 3739 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq, 3740 irq_name); 3741 spin_unlock_irqrestore(&vector_lock, flags); 3742 3743 mmr_value = 0; 3744 entry = (struct uv_IO_APIC_route_entry *)&mmr_value; 3745 entry->vector = cfg->vector; 3746 entry->delivery_mode = apic->irq_delivery_mode; 3747 entry->dest_mode = apic->irq_dest_mode; 3748 entry->polarity = 0; 3749 entry->trigger = 0; 3750 entry->mask = 0; 3751 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu); 3752 3753 mmr_pnode = uv_blade_to_pnode(mmr_blade); 3754 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value); 3755 3756 if (cfg->move_in_progress) 3757 send_cleanup_vector(cfg); 3758 3759 return irq; 3760 } 3761 3762 /* 3763 * Disable the specified MMR located on the specified blade so that MSIs are 3764 * longer allowed to be sent. 3765 */ 3766 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset) 3767 { 3768 unsigned long mmr_value; 3769 struct uv_IO_APIC_route_entry *entry; 3770 int mmr_pnode; 3771 3772 BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long)); 3773 3774 mmr_value = 0; 3775 entry = (struct uv_IO_APIC_route_entry *)&mmr_value; 3776 entry->mask = 1; 3777 3778 mmr_pnode = uv_blade_to_pnode(mmr_blade); 3779 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value); 3780 } 3781 #endif /* CONFIG_X86_64 */ 3782 3783 int __init io_apic_get_redir_entries (int ioapic) 3784 { 3785 union IO_APIC_reg_01 reg_01; 3786 unsigned long flags; 3787 3788 spin_lock_irqsave(&ioapic_lock, flags); 3789 reg_01.raw = io_apic_read(ioapic, 1); 3790 spin_unlock_irqrestore(&ioapic_lock, flags); 3791 3792 return reg_01.bits.entries; 3793 } 3794 3795 void __init probe_nr_irqs_gsi(void) 3796 { 3797 int nr = 0; 3798 3799 nr = acpi_probe_gsi(); 3800 if (nr > nr_irqs_gsi) { 3801 nr_irqs_gsi = nr; 3802 } else { 3803 /* for acpi=off or acpi is not compiled in */ 3804 int idx; 3805 3806 nr = 0; 3807 for (idx = 0; idx < nr_ioapics; idx++) 3808 nr += io_apic_get_redir_entries(idx) + 1; 3809 3810 if (nr > nr_irqs_gsi) 3811 nr_irqs_gsi = nr; 3812 } 3813 3814 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi); 3815 } 3816 3817 #ifdef CONFIG_SPARSE_IRQ 3818 int __init arch_probe_nr_irqs(void) 3819 { 3820 int nr; 3821 3822 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 3823 nr_irqs = NR_VECTORS * nr_cpu_ids; 3824 3825 nr = nr_irqs_gsi + 8 * nr_cpu_ids; 3826 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 3827 /* 3828 * for MSI and HT dyn irq 3829 */ 3830 nr += nr_irqs_gsi * 16; 3831 #endif 3832 if (nr < nr_irqs) 3833 nr_irqs = nr; 3834 3835 return 0; 3836 } 3837 #endif 3838 3839 static int __io_apic_set_pci_routing(struct device *dev, int irq, 3840 struct io_apic_irq_attr *irq_attr) 3841 { 3842 struct irq_desc *desc; 3843 struct irq_cfg *cfg; 3844 int node; 3845 int ioapic, pin; 3846 int trigger, polarity; 3847 3848 ioapic = irq_attr->ioapic; 3849 if (!IO_APIC_IRQ(irq)) { 3850 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", 3851 ioapic); 3852 return -EINVAL; 3853 } 3854 3855 if (dev) 3856 node = dev_to_node(dev); 3857 else 3858 node = cpu_to_node(boot_cpu_id); 3859 3860 desc = irq_to_desc_alloc_node(irq, node); 3861 if (!desc) { 3862 printk(KERN_INFO "can not get irq_desc %d\n", irq); 3863 return 0; 3864 } 3865 3866 pin = irq_attr->ioapic_pin; 3867 trigger = irq_attr->trigger; 3868 polarity = irq_attr->polarity; 3869 3870 /* 3871 * IRQs < 16 are already in the irq_2_pin[] map 3872 */ 3873 if (irq >= nr_legacy_irqs) { 3874 cfg = desc->chip_data; 3875 if (add_pin_to_irq_node_nopanic(cfg, node, ioapic, pin)) { 3876 printk(KERN_INFO "can not add pin %d for irq %d\n", 3877 pin, irq); 3878 return 0; 3879 } 3880 } 3881 3882 setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity); 3883 3884 return 0; 3885 } 3886 3887 int io_apic_set_pci_routing(struct device *dev, int irq, 3888 struct io_apic_irq_attr *irq_attr) 3889 { 3890 int ioapic, pin; 3891 /* 3892 * Avoid pin reprogramming. PRTs typically include entries 3893 * with redundant pin->gsi mappings (but unique PCI devices); 3894 * we only program the IOAPIC on the first. 3895 */ 3896 ioapic = irq_attr->ioapic; 3897 pin = irq_attr->ioapic_pin; 3898 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) { 3899 pr_debug("Pin %d-%d already programmed\n", 3900 mp_ioapics[ioapic].apicid, pin); 3901 return 0; 3902 } 3903 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed); 3904 3905 return __io_apic_set_pci_routing(dev, irq, irq_attr); 3906 } 3907 3908 u8 __init io_apic_unique_id(u8 id) 3909 { 3910 #ifdef CONFIG_X86_32 3911 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 3912 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 3913 return io_apic_get_unique_id(nr_ioapics, id); 3914 else 3915 return id; 3916 #else 3917 int i; 3918 DECLARE_BITMAP(used, 256); 3919 3920 bitmap_zero(used, 256); 3921 for (i = 0; i < nr_ioapics; i++) { 3922 struct mpc_ioapic *ia = &mp_ioapics[i]; 3923 __set_bit(ia->apicid, used); 3924 } 3925 if (!test_bit(id, used)) 3926 return id; 3927 return find_first_zero_bit(used, 256); 3928 #endif 3929 } 3930 3931 #ifdef CONFIG_X86_32 3932 int __init io_apic_get_unique_id(int ioapic, int apic_id) 3933 { 3934 union IO_APIC_reg_00 reg_00; 3935 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 3936 physid_mask_t tmp; 3937 unsigned long flags; 3938 int i = 0; 3939 3940 /* 3941 * The P4 platform supports up to 256 APIC IDs on two separate APIC 3942 * buses (one for LAPICs, one for IOAPICs), where predecessors only 3943 * supports up to 16 on one shared APIC bus. 3944 * 3945 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 3946 * advantage of new APIC bus architecture. 3947 */ 3948 3949 if (physids_empty(apic_id_map)) 3950 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map); 3951 3952 spin_lock_irqsave(&ioapic_lock, flags); 3953 reg_00.raw = io_apic_read(ioapic, 0); 3954 spin_unlock_irqrestore(&ioapic_lock, flags); 3955 3956 if (apic_id >= get_physical_broadcast()) { 3957 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 3958 "%d\n", ioapic, apic_id, reg_00.bits.ID); 3959 apic_id = reg_00.bits.ID; 3960 } 3961 3962 /* 3963 * Every APIC in a system must have a unique ID or we get lots of nice 3964 * 'stuck on smp_invalidate_needed IPI wait' messages. 3965 */ 3966 if (apic->check_apicid_used(apic_id_map, apic_id)) { 3967 3968 for (i = 0; i < get_physical_broadcast(); i++) { 3969 if (!apic->check_apicid_used(apic_id_map, i)) 3970 break; 3971 } 3972 3973 if (i == get_physical_broadcast()) 3974 panic("Max apic_id exceeded!\n"); 3975 3976 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 3977 "trying %d\n", ioapic, apic_id, i); 3978 3979 apic_id = i; 3980 } 3981 3982 tmp = apic->apicid_to_cpu_present(apic_id); 3983 physids_or(apic_id_map, apic_id_map, tmp); 3984 3985 if (reg_00.bits.ID != apic_id) { 3986 reg_00.bits.ID = apic_id; 3987 3988 spin_lock_irqsave(&ioapic_lock, flags); 3989 io_apic_write(ioapic, 0, reg_00.raw); 3990 reg_00.raw = io_apic_read(ioapic, 0); 3991 spin_unlock_irqrestore(&ioapic_lock, flags); 3992 3993 /* Sanity check */ 3994 if (reg_00.bits.ID != apic_id) { 3995 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); 3996 return -1; 3997 } 3998 } 3999 4000 apic_printk(APIC_VERBOSE, KERN_INFO 4001 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 4002 4003 return apic_id; 4004 } 4005 #endif 4006 4007 int __init io_apic_get_version(int ioapic) 4008 { 4009 union IO_APIC_reg_01 reg_01; 4010 unsigned long flags; 4011 4012 spin_lock_irqsave(&ioapic_lock, flags); 4013 reg_01.raw = io_apic_read(ioapic, 1); 4014 spin_unlock_irqrestore(&ioapic_lock, flags); 4015 4016 return reg_01.bits.version; 4017 } 4018 4019 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity) 4020 { 4021 int i; 4022 4023 if (skip_ioapic_setup) 4024 return -1; 4025 4026 for (i = 0; i < mp_irq_entries; i++) 4027 if (mp_irqs[i].irqtype == mp_INT && 4028 mp_irqs[i].srcbusirq == bus_irq) 4029 break; 4030 if (i >= mp_irq_entries) 4031 return -1; 4032 4033 *trigger = irq_trigger(i); 4034 *polarity = irq_polarity(i); 4035 return 0; 4036 } 4037 4038 /* 4039 * This function currently is only a helper for the i386 smp boot process where 4040 * we need to reprogram the ioredtbls to cater for the cpus which have come online 4041 * so mask in all cases should simply be apic->target_cpus() 4042 */ 4043 #ifdef CONFIG_SMP 4044 void __init setup_ioapic_dest(void) 4045 { 4046 int pin, ioapic = 0, irq, irq_entry; 4047 struct irq_desc *desc; 4048 const struct cpumask *mask; 4049 4050 if (skip_ioapic_setup == 1) 4051 return; 4052 4053 #ifdef CONFIG_ACPI 4054 if (!acpi_disabled && acpi_ioapic) { 4055 ioapic = mp_find_ioapic(0); 4056 if (ioapic < 0) 4057 ioapic = 0; 4058 } 4059 #endif 4060 4061 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { 4062 irq_entry = find_irq_entry(ioapic, pin, mp_INT); 4063 if (irq_entry == -1) 4064 continue; 4065 irq = pin_2_irq(irq_entry, ioapic, pin); 4066 4067 desc = irq_to_desc(irq); 4068 4069 /* 4070 * Honour affinities which have been set in early boot 4071 */ 4072 if (desc->status & 4073 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET)) 4074 mask = desc->affinity; 4075 else 4076 mask = apic->target_cpus(); 4077 4078 if (intr_remapping_enabled) 4079 set_ir_ioapic_affinity_irq_desc(desc, mask); 4080 else 4081 set_ioapic_affinity_irq_desc(desc, mask); 4082 } 4083 4084 } 4085 #endif 4086 4087 #define IOAPIC_RESOURCE_NAME_SIZE 11 4088 4089 static struct resource *ioapic_resources; 4090 4091 static struct resource * __init ioapic_setup_resources(int nr_ioapics) 4092 { 4093 unsigned long n; 4094 struct resource *res; 4095 char *mem; 4096 int i; 4097 4098 if (nr_ioapics <= 0) 4099 return NULL; 4100 4101 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 4102 n *= nr_ioapics; 4103 4104 mem = alloc_bootmem(n); 4105 res = (void *)mem; 4106 4107 mem += sizeof(struct resource) * nr_ioapics; 4108 4109 for (i = 0; i < nr_ioapics; i++) { 4110 res[i].name = mem; 4111 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 4112 sprintf(mem, "IOAPIC %u", i); 4113 mem += IOAPIC_RESOURCE_NAME_SIZE; 4114 } 4115 4116 ioapic_resources = res; 4117 4118 return res; 4119 } 4120 4121 void __init ioapic_init_mappings(void) 4122 { 4123 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 4124 struct resource *ioapic_res; 4125 int i; 4126 4127 ioapic_res = ioapic_setup_resources(nr_ioapics); 4128 for (i = 0; i < nr_ioapics; i++) { 4129 if (smp_found_config) { 4130 ioapic_phys = mp_ioapics[i].apicaddr; 4131 #ifdef CONFIG_X86_32 4132 if (!ioapic_phys) { 4133 printk(KERN_ERR 4134 "WARNING: bogus zero IO-APIC " 4135 "address found in MPTABLE, " 4136 "disabling IO/APIC support!\n"); 4137 smp_found_config = 0; 4138 skip_ioapic_setup = 1; 4139 goto fake_ioapic_page; 4140 } 4141 #endif 4142 } else { 4143 #ifdef CONFIG_X86_32 4144 fake_ioapic_page: 4145 #endif 4146 ioapic_phys = (unsigned long) 4147 alloc_bootmem_pages(PAGE_SIZE); 4148 ioapic_phys = __pa(ioapic_phys); 4149 } 4150 set_fixmap_nocache(idx, ioapic_phys); 4151 apic_printk(APIC_VERBOSE, 4152 "mapped IOAPIC to %08lx (%08lx)\n", 4153 __fix_to_virt(idx), ioapic_phys); 4154 idx++; 4155 4156 ioapic_res->start = ioapic_phys; 4157 ioapic_res->end = ioapic_phys + (4 * 1024) - 1; 4158 ioapic_res++; 4159 } 4160 } 4161 4162 void __init ioapic_insert_resources(void) 4163 { 4164 int i; 4165 struct resource *r = ioapic_resources; 4166 4167 if (!r) { 4168 if (nr_ioapics > 0) 4169 printk(KERN_ERR 4170 "IO APIC resources couldn't be allocated.\n"); 4171 return; 4172 } 4173 4174 for (i = 0; i < nr_ioapics; i++) { 4175 insert_resource(&iomem_resource, r); 4176 r++; 4177 } 4178 } 4179 4180 int mp_find_ioapic(int gsi) 4181 { 4182 int i = 0; 4183 4184 /* Find the IOAPIC that manages this GSI. */ 4185 for (i = 0; i < nr_ioapics; i++) { 4186 if ((gsi >= mp_gsi_routing[i].gsi_base) 4187 && (gsi <= mp_gsi_routing[i].gsi_end)) 4188 return i; 4189 } 4190 4191 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 4192 return -1; 4193 } 4194 4195 int mp_find_ioapic_pin(int ioapic, int gsi) 4196 { 4197 if (WARN_ON(ioapic == -1)) 4198 return -1; 4199 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end)) 4200 return -1; 4201 4202 return gsi - mp_gsi_routing[ioapic].gsi_base; 4203 } 4204 4205 static int bad_ioapic(unsigned long address) 4206 { 4207 if (nr_ioapics >= MAX_IO_APICS) { 4208 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded " 4209 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics); 4210 return 1; 4211 } 4212 if (!address) { 4213 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address" 4214 " found in table, skipping!\n"); 4215 return 1; 4216 } 4217 return 0; 4218 } 4219 4220 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base) 4221 { 4222 int idx = 0; 4223 4224 if (bad_ioapic(address)) 4225 return; 4226 4227 idx = nr_ioapics; 4228 4229 mp_ioapics[idx].type = MP_IOAPIC; 4230 mp_ioapics[idx].flags = MPC_APIC_USABLE; 4231 mp_ioapics[idx].apicaddr = address; 4232 4233 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address); 4234 mp_ioapics[idx].apicid = io_apic_unique_id(id); 4235 mp_ioapics[idx].apicver = io_apic_get_version(idx); 4236 4237 /* 4238 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 4239 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 4240 */ 4241 mp_gsi_routing[idx].gsi_base = gsi_base; 4242 mp_gsi_routing[idx].gsi_end = gsi_base + 4243 io_apic_get_redir_entries(idx); 4244 4245 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, " 4246 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid, 4247 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr, 4248 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end); 4249 4250 nr_ioapics++; 4251 } 4252