1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Intel IO-APIC support for multi-Pentium hosts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * 7 * Many thanks to Stig Venaas for trying out countless experimental 8 * patches and reporting/debugging problems patiently! 9 * 10 * (c) 1999, Multiple IO-APIC support, developed by 11 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 12 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 13 * further tested and cleaned up by Zach Brown <zab@redhat.com> 14 * and Ingo Molnar <mingo@redhat.com> 15 * 16 * Fixes 17 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 18 * thanks to Eric Gilmore 19 * and Rolf G. Tews 20 * for testing these extensively 21 * Paul Diefenbaugh : Added full ACPI support 22 * 23 * Historical information which is worth to be preserved: 24 * 25 * - SiS APIC rmw bug: 26 * 27 * We used to have a workaround for a bug in SiS chips which 28 * required to rewrite the index register for a read-modify-write 29 * operation as the chip lost the index information which was 30 * setup for the read already. We cache the data now, so that 31 * workaround has been removed. 32 */ 33 34 #include <linux/mm.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> 37 #include <linux/init.h> 38 #include <linux/delay.h> 39 #include <linux/sched.h> 40 #include <linux/pci.h> 41 #include <linux/mc146818rtc.h> 42 #include <linux/compiler.h> 43 #include <linux/acpi.h> 44 #include <linux/export.h> 45 #include <linux/syscore_ops.h> 46 #include <linux/freezer.h> 47 #include <linux/kthread.h> 48 #include <linux/jiffies.h> /* time_after() */ 49 #include <linux/slab.h> 50 #include <linux/memblock.h> 51 #include <linux/msi.h> 52 53 #include <asm/irqdomain.h> 54 #include <asm/io.h> 55 #include <asm/smp.h> 56 #include <asm/cpu.h> 57 #include <asm/desc.h> 58 #include <asm/proto.h> 59 #include <asm/acpi.h> 60 #include <asm/dma.h> 61 #include <asm/timer.h> 62 #include <asm/time.h> 63 #include <asm/i8259.h> 64 #include <asm/setup.h> 65 #include <asm/irq_remapping.h> 66 #include <asm/hw_irq.h> 67 #include <asm/apic.h> 68 69 #define for_each_ioapic(idx) \ 70 for ((idx) = 0; (idx) < nr_ioapics; (idx)++) 71 #define for_each_ioapic_reverse(idx) \ 72 for ((idx) = nr_ioapics - 1; (idx) >= 0; (idx)--) 73 #define for_each_pin(idx, pin) \ 74 for ((pin) = 0; (pin) < ioapics[(idx)].nr_registers; (pin)++) 75 #define for_each_ioapic_pin(idx, pin) \ 76 for_each_ioapic((idx)) \ 77 for_each_pin((idx), (pin)) 78 #define for_each_irq_pin(entry, head) \ 79 list_for_each_entry(entry, &head, list) 80 81 static DEFINE_RAW_SPINLOCK(ioapic_lock); 82 static DEFINE_MUTEX(ioapic_mutex); 83 static unsigned int ioapic_dynirq_base; 84 static int ioapic_initialized; 85 86 struct irq_pin_list { 87 struct list_head list; 88 int apic, pin; 89 }; 90 91 struct mp_chip_data { 92 struct list_head irq_2_pin; 93 struct IO_APIC_route_entry entry; 94 bool is_level; 95 bool active_low; 96 bool isa_irq; 97 u32 count; 98 }; 99 100 struct mp_ioapic_gsi { 101 u32 gsi_base; 102 u32 gsi_end; 103 }; 104 105 static struct ioapic { 106 /* 107 * # of IRQ routing registers 108 */ 109 int nr_registers; 110 /* 111 * Saved state during suspend/resume, or while enabling intr-remap. 112 */ 113 struct IO_APIC_route_entry *saved_registers; 114 /* I/O APIC config */ 115 struct mpc_ioapic mp_config; 116 /* IO APIC gsi routing info */ 117 struct mp_ioapic_gsi gsi_config; 118 struct ioapic_domain_cfg irqdomain_cfg; 119 struct irq_domain *irqdomain; 120 struct resource *iomem_res; 121 } ioapics[MAX_IO_APICS]; 122 123 #define mpc_ioapic_ver(ioapic_idx) ioapics[ioapic_idx].mp_config.apicver 124 125 int mpc_ioapic_id(int ioapic_idx) 126 { 127 return ioapics[ioapic_idx].mp_config.apicid; 128 } 129 130 unsigned int mpc_ioapic_addr(int ioapic_idx) 131 { 132 return ioapics[ioapic_idx].mp_config.apicaddr; 133 } 134 135 static inline struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int ioapic_idx) 136 { 137 return &ioapics[ioapic_idx].gsi_config; 138 } 139 140 static inline int mp_ioapic_pin_count(int ioapic) 141 { 142 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 143 144 return gsi_cfg->gsi_end - gsi_cfg->gsi_base + 1; 145 } 146 147 static inline u32 mp_pin_to_gsi(int ioapic, int pin) 148 { 149 return mp_ioapic_gsi_routing(ioapic)->gsi_base + pin; 150 } 151 152 static inline bool mp_is_legacy_irq(int irq) 153 { 154 return irq >= 0 && irq < nr_legacy_irqs(); 155 } 156 157 static inline struct irq_domain *mp_ioapic_irqdomain(int ioapic) 158 { 159 return ioapics[ioapic].irqdomain; 160 } 161 162 int nr_ioapics; 163 164 /* The one past the highest gsi number used */ 165 u32 gsi_top; 166 167 /* MP IRQ source entries */ 168 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 169 170 /* # of MP IRQ source entries */ 171 int mp_irq_entries; 172 173 #ifdef CONFIG_EISA 174 int mp_bus_id_to_type[MAX_MP_BUSSES]; 175 #endif 176 177 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 178 179 int skip_ioapic_setup; 180 181 /** 182 * disable_ioapic_support() - disables ioapic support at runtime 183 */ 184 void disable_ioapic_support(void) 185 { 186 #ifdef CONFIG_PCI 187 noioapicquirk = 1; 188 noioapicreroute = -1; 189 #endif 190 skip_ioapic_setup = 1; 191 } 192 193 static int __init parse_noapic(char *str) 194 { 195 /* disable IO-APIC */ 196 disable_ioapic_support(); 197 return 0; 198 } 199 early_param("noapic", parse_noapic); 200 201 /* Will be called in mpparse/ACPI codes for saving IRQ info */ 202 void mp_save_irq(struct mpc_intsrc *m) 203 { 204 int i; 205 206 apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x," 207 " IRQ %02x, APIC ID %x, APIC INT %02x\n", 208 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus, 209 m->srcbusirq, m->dstapic, m->dstirq); 210 211 for (i = 0; i < mp_irq_entries; i++) { 212 if (!memcmp(&mp_irqs[i], m, sizeof(*m))) 213 return; 214 } 215 216 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m)); 217 if (++mp_irq_entries == MAX_IRQ_SOURCES) 218 panic("Max # of irq sources exceeded!!\n"); 219 } 220 221 static void alloc_ioapic_saved_registers(int idx) 222 { 223 size_t size; 224 225 if (ioapics[idx].saved_registers) 226 return; 227 228 size = sizeof(struct IO_APIC_route_entry) * ioapics[idx].nr_registers; 229 ioapics[idx].saved_registers = kzalloc(size, GFP_KERNEL); 230 if (!ioapics[idx].saved_registers) 231 pr_err("IOAPIC %d: suspend/resume impossible!\n", idx); 232 } 233 234 static void free_ioapic_saved_registers(int idx) 235 { 236 kfree(ioapics[idx].saved_registers); 237 ioapics[idx].saved_registers = NULL; 238 } 239 240 int __init arch_early_ioapic_init(void) 241 { 242 int i; 243 244 if (!nr_legacy_irqs()) 245 io_apic_irqs = ~0UL; 246 247 for_each_ioapic(i) 248 alloc_ioapic_saved_registers(i); 249 250 return 0; 251 } 252 253 struct io_apic { 254 unsigned int index; 255 unsigned int unused[3]; 256 unsigned int data; 257 unsigned int unused2[11]; 258 unsigned int eoi; 259 }; 260 261 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 262 { 263 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 264 + (mpc_ioapic_addr(idx) & ~PAGE_MASK); 265 } 266 267 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 268 { 269 struct io_apic __iomem *io_apic = io_apic_base(apic); 270 writel(vector, &io_apic->eoi); 271 } 272 273 unsigned int native_io_apic_read(unsigned int apic, unsigned int reg) 274 { 275 struct io_apic __iomem *io_apic = io_apic_base(apic); 276 writel(reg, &io_apic->index); 277 return readl(&io_apic->data); 278 } 279 280 static void io_apic_write(unsigned int apic, unsigned int reg, 281 unsigned int value) 282 { 283 struct io_apic __iomem *io_apic = io_apic_base(apic); 284 285 writel(reg, &io_apic->index); 286 writel(value, &io_apic->data); 287 } 288 289 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin) 290 { 291 struct IO_APIC_route_entry entry; 292 293 entry.w1 = io_apic_read(apic, 0x10 + 2 * pin); 294 entry.w2 = io_apic_read(apic, 0x11 + 2 * pin); 295 296 return entry; 297 } 298 299 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 300 { 301 struct IO_APIC_route_entry entry; 302 unsigned long flags; 303 304 raw_spin_lock_irqsave(&ioapic_lock, flags); 305 entry = __ioapic_read_entry(apic, pin); 306 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 307 308 return entry; 309 } 310 311 /* 312 * When we write a new IO APIC routing entry, we need to write the high 313 * word first! If the mask bit in the low word is clear, we will enable 314 * the interrupt, and we need to make sure the entry is fully populated 315 * before that happens. 316 */ 317 static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 318 { 319 io_apic_write(apic, 0x11 + 2*pin, e.w2); 320 io_apic_write(apic, 0x10 + 2*pin, e.w1); 321 } 322 323 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 324 { 325 unsigned long flags; 326 327 raw_spin_lock_irqsave(&ioapic_lock, flags); 328 __ioapic_write_entry(apic, pin, e); 329 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 330 } 331 332 /* 333 * When we mask an IO APIC routing entry, we need to write the low 334 * word first, in order to set the mask bit before we change the 335 * high bits! 336 */ 337 static void ioapic_mask_entry(int apic, int pin) 338 { 339 struct IO_APIC_route_entry e = { .masked = true }; 340 unsigned long flags; 341 342 raw_spin_lock_irqsave(&ioapic_lock, flags); 343 io_apic_write(apic, 0x10 + 2*pin, e.w1); 344 io_apic_write(apic, 0x11 + 2*pin, e.w2); 345 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 346 } 347 348 /* 349 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 350 * shared ISA-space IRQs, so we have to support them. We are super 351 * fast in the common case, and fast for shared ISA-space IRQs. 352 */ 353 static int __add_pin_to_irq_node(struct mp_chip_data *data, 354 int node, int apic, int pin) 355 { 356 struct irq_pin_list *entry; 357 358 /* don't allow duplicates */ 359 for_each_irq_pin(entry, data->irq_2_pin) 360 if (entry->apic == apic && entry->pin == pin) 361 return 0; 362 363 entry = kzalloc_node(sizeof(struct irq_pin_list), GFP_ATOMIC, node); 364 if (!entry) { 365 pr_err("can not alloc irq_pin_list (%d,%d,%d)\n", 366 node, apic, pin); 367 return -ENOMEM; 368 } 369 entry->apic = apic; 370 entry->pin = pin; 371 list_add_tail(&entry->list, &data->irq_2_pin); 372 373 return 0; 374 } 375 376 static void __remove_pin_from_irq(struct mp_chip_data *data, int apic, int pin) 377 { 378 struct irq_pin_list *tmp, *entry; 379 380 list_for_each_entry_safe(entry, tmp, &data->irq_2_pin, list) 381 if (entry->apic == apic && entry->pin == pin) { 382 list_del(&entry->list); 383 kfree(entry); 384 return; 385 } 386 } 387 388 static void add_pin_to_irq_node(struct mp_chip_data *data, 389 int node, int apic, int pin) 390 { 391 if (__add_pin_to_irq_node(data, node, apic, pin)) 392 panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); 393 } 394 395 /* 396 * Reroute an IRQ to a different pin. 397 */ 398 static void __init replace_pin_at_irq_node(struct mp_chip_data *data, int node, 399 int oldapic, int oldpin, 400 int newapic, int newpin) 401 { 402 struct irq_pin_list *entry; 403 404 for_each_irq_pin(entry, data->irq_2_pin) { 405 if (entry->apic == oldapic && entry->pin == oldpin) { 406 entry->apic = newapic; 407 entry->pin = newpin; 408 /* every one is different, right? */ 409 return; 410 } 411 } 412 413 /* old apic/pin didn't exist, so just add new ones */ 414 add_pin_to_irq_node(data, node, newapic, newpin); 415 } 416 417 static void io_apic_modify_irq(struct mp_chip_data *data, bool masked, 418 void (*final)(struct irq_pin_list *entry)) 419 { 420 struct irq_pin_list *entry; 421 422 data->entry.masked = masked; 423 424 for_each_irq_pin(entry, data->irq_2_pin) { 425 io_apic_write(entry->apic, 0x10 + 2 * entry->pin, data->entry.w1); 426 if (final) 427 final(entry); 428 } 429 } 430 431 static void io_apic_sync(struct irq_pin_list *entry) 432 { 433 /* 434 * Synchronize the IO-APIC and the CPU by doing 435 * a dummy read from the IO-APIC 436 */ 437 struct io_apic __iomem *io_apic; 438 439 io_apic = io_apic_base(entry->apic); 440 readl(&io_apic->data); 441 } 442 443 static void mask_ioapic_irq(struct irq_data *irq_data) 444 { 445 struct mp_chip_data *data = irq_data->chip_data; 446 unsigned long flags; 447 448 raw_spin_lock_irqsave(&ioapic_lock, flags); 449 io_apic_modify_irq(data, true, &io_apic_sync); 450 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 451 } 452 453 static void __unmask_ioapic(struct mp_chip_data *data) 454 { 455 io_apic_modify_irq(data, false, NULL); 456 } 457 458 static void unmask_ioapic_irq(struct irq_data *irq_data) 459 { 460 struct mp_chip_data *data = irq_data->chip_data; 461 unsigned long flags; 462 463 raw_spin_lock_irqsave(&ioapic_lock, flags); 464 __unmask_ioapic(data); 465 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 466 } 467 468 /* 469 * IO-APIC versions below 0x20 don't support EOI register. 470 * For the record, here is the information about various versions: 471 * 0Xh 82489DX 472 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant 473 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant 474 * 30h-FFh Reserved 475 * 476 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic 477 * version as 0x2. This is an error with documentation and these ICH chips 478 * use io-apic's of version 0x20. 479 * 480 * For IO-APIC's with EOI register, we use that to do an explicit EOI. 481 * Otherwise, we simulate the EOI message manually by changing the trigger 482 * mode to edge and then back to level, with RTE being masked during this. 483 */ 484 static void __eoi_ioapic_pin(int apic, int pin, int vector) 485 { 486 if (mpc_ioapic_ver(apic) >= 0x20) { 487 io_apic_eoi(apic, vector); 488 } else { 489 struct IO_APIC_route_entry entry, entry1; 490 491 entry = entry1 = __ioapic_read_entry(apic, pin); 492 493 /* 494 * Mask the entry and change the trigger mode to edge. 495 */ 496 entry1.masked = true; 497 entry1.is_level = false; 498 499 __ioapic_write_entry(apic, pin, entry1); 500 501 /* 502 * Restore the previous level triggered entry. 503 */ 504 __ioapic_write_entry(apic, pin, entry); 505 } 506 } 507 508 static void eoi_ioapic_pin(int vector, struct mp_chip_data *data) 509 { 510 unsigned long flags; 511 struct irq_pin_list *entry; 512 513 raw_spin_lock_irqsave(&ioapic_lock, flags); 514 for_each_irq_pin(entry, data->irq_2_pin) 515 __eoi_ioapic_pin(entry->apic, entry->pin, vector); 516 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 517 } 518 519 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 520 { 521 struct IO_APIC_route_entry entry; 522 523 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 524 entry = ioapic_read_entry(apic, pin); 525 if (entry.delivery_mode == APIC_DELIVERY_MODE_SMI) 526 return; 527 528 /* 529 * Make sure the entry is masked and re-read the contents to check 530 * if it is a level triggered pin and if the remote-IRR is set. 531 */ 532 if (!entry.masked) { 533 entry.masked = true; 534 ioapic_write_entry(apic, pin, entry); 535 entry = ioapic_read_entry(apic, pin); 536 } 537 538 if (entry.irr) { 539 unsigned long flags; 540 541 /* 542 * Make sure the trigger mode is set to level. Explicit EOI 543 * doesn't clear the remote-IRR if the trigger mode is not 544 * set to level. 545 */ 546 if (!entry.is_level) { 547 entry.is_level = true; 548 ioapic_write_entry(apic, pin, entry); 549 } 550 raw_spin_lock_irqsave(&ioapic_lock, flags); 551 __eoi_ioapic_pin(apic, pin, entry.vector); 552 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 553 } 554 555 /* 556 * Clear the rest of the bits in the IO-APIC RTE except for the mask 557 * bit. 558 */ 559 ioapic_mask_entry(apic, pin); 560 entry = ioapic_read_entry(apic, pin); 561 if (entry.irr) 562 pr_err("Unable to reset IRR for apic: %d, pin :%d\n", 563 mpc_ioapic_id(apic), pin); 564 } 565 566 void clear_IO_APIC (void) 567 { 568 int apic, pin; 569 570 for_each_ioapic_pin(apic, pin) 571 clear_IO_APIC_pin(apic, pin); 572 } 573 574 #ifdef CONFIG_X86_32 575 /* 576 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 577 * specific CPU-side IRQs. 578 */ 579 580 #define MAX_PIRQS 8 581 static int pirq_entries[MAX_PIRQS] = { 582 [0 ... MAX_PIRQS - 1] = -1 583 }; 584 585 static int __init ioapic_pirq_setup(char *str) 586 { 587 int i, max; 588 int ints[MAX_PIRQS+1]; 589 590 get_options(str, ARRAY_SIZE(ints), ints); 591 592 apic_printk(APIC_VERBOSE, KERN_INFO 593 "PIRQ redirection, working around broken MP-BIOS.\n"); 594 max = MAX_PIRQS; 595 if (ints[0] < MAX_PIRQS) 596 max = ints[0]; 597 598 for (i = 0; i < max; i++) { 599 apic_printk(APIC_VERBOSE, KERN_DEBUG 600 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 601 /* 602 * PIRQs are mapped upside down, usually. 603 */ 604 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 605 } 606 return 1; 607 } 608 609 __setup("pirq=", ioapic_pirq_setup); 610 #endif /* CONFIG_X86_32 */ 611 612 /* 613 * Saves all the IO-APIC RTE's 614 */ 615 int save_ioapic_entries(void) 616 { 617 int apic, pin; 618 int err = 0; 619 620 for_each_ioapic(apic) { 621 if (!ioapics[apic].saved_registers) { 622 err = -ENOMEM; 623 continue; 624 } 625 626 for_each_pin(apic, pin) 627 ioapics[apic].saved_registers[pin] = 628 ioapic_read_entry(apic, pin); 629 } 630 631 return err; 632 } 633 634 /* 635 * Mask all IO APIC entries. 636 */ 637 void mask_ioapic_entries(void) 638 { 639 int apic, pin; 640 641 for_each_ioapic(apic) { 642 if (!ioapics[apic].saved_registers) 643 continue; 644 645 for_each_pin(apic, pin) { 646 struct IO_APIC_route_entry entry; 647 648 entry = ioapics[apic].saved_registers[pin]; 649 if (!entry.masked) { 650 entry.masked = true; 651 ioapic_write_entry(apic, pin, entry); 652 } 653 } 654 } 655 } 656 657 /* 658 * Restore IO APIC entries which was saved in the ioapic structure. 659 */ 660 int restore_ioapic_entries(void) 661 { 662 int apic, pin; 663 664 for_each_ioapic(apic) { 665 if (!ioapics[apic].saved_registers) 666 continue; 667 668 for_each_pin(apic, pin) 669 ioapic_write_entry(apic, pin, 670 ioapics[apic].saved_registers[pin]); 671 } 672 return 0; 673 } 674 675 /* 676 * Find the IRQ entry number of a certain pin. 677 */ 678 static int find_irq_entry(int ioapic_idx, int pin, int type) 679 { 680 int i; 681 682 for (i = 0; i < mp_irq_entries; i++) 683 if (mp_irqs[i].irqtype == type && 684 (mp_irqs[i].dstapic == mpc_ioapic_id(ioapic_idx) || 685 mp_irqs[i].dstapic == MP_APIC_ALL) && 686 mp_irqs[i].dstirq == pin) 687 return i; 688 689 return -1; 690 } 691 692 /* 693 * Find the pin to which IRQ[irq] (ISA) is connected 694 */ 695 static int __init find_isa_irq_pin(int irq, int type) 696 { 697 int i; 698 699 for (i = 0; i < mp_irq_entries; i++) { 700 int lbus = mp_irqs[i].srcbus; 701 702 if (test_bit(lbus, mp_bus_not_pci) && 703 (mp_irqs[i].irqtype == type) && 704 (mp_irqs[i].srcbusirq == irq)) 705 706 return mp_irqs[i].dstirq; 707 } 708 return -1; 709 } 710 711 static int __init find_isa_irq_apic(int irq, int type) 712 { 713 int i; 714 715 for (i = 0; i < mp_irq_entries; i++) { 716 int lbus = mp_irqs[i].srcbus; 717 718 if (test_bit(lbus, mp_bus_not_pci) && 719 (mp_irqs[i].irqtype == type) && 720 (mp_irqs[i].srcbusirq == irq)) 721 break; 722 } 723 724 if (i < mp_irq_entries) { 725 int ioapic_idx; 726 727 for_each_ioapic(ioapic_idx) 728 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic) 729 return ioapic_idx; 730 } 731 732 return -1; 733 } 734 735 static bool irq_active_low(int idx) 736 { 737 int bus = mp_irqs[idx].srcbus; 738 739 /* 740 * Determine IRQ line polarity (high active or low active): 741 */ 742 switch (mp_irqs[idx].irqflag & MP_IRQPOL_MASK) { 743 case MP_IRQPOL_DEFAULT: 744 /* 745 * Conforms to spec, ie. bus-type dependent polarity. PCI 746 * defaults to low active. [E]ISA defaults to high active. 747 */ 748 return !test_bit(bus, mp_bus_not_pci); 749 case MP_IRQPOL_ACTIVE_HIGH: 750 return false; 751 case MP_IRQPOL_RESERVED: 752 pr_warn("IOAPIC: Invalid polarity: 2, defaulting to low\n"); 753 fallthrough; 754 case MP_IRQPOL_ACTIVE_LOW: 755 default: /* Pointless default required due to do gcc stupidity */ 756 return true; 757 } 758 } 759 760 #ifdef CONFIG_EISA 761 /* 762 * EISA Edge/Level control register, ELCR 763 */ 764 static bool EISA_ELCR(unsigned int irq) 765 { 766 if (irq < nr_legacy_irqs()) { 767 unsigned int port = PIC_ELCR1 + (irq >> 3); 768 return (inb(port) >> (irq & 7)) & 1; 769 } 770 apic_printk(APIC_VERBOSE, KERN_INFO 771 "Broken MPtable reports ISA irq %d\n", irq); 772 return false; 773 } 774 775 /* 776 * EISA interrupts are always active high and can be edge or level 777 * triggered depending on the ELCR value. If an interrupt is listed as 778 * EISA conforming in the MP table, that means its trigger type must be 779 * read in from the ELCR. 780 */ 781 static bool eisa_irq_is_level(int idx, int bus, bool level) 782 { 783 switch (mp_bus_id_to_type[bus]) { 784 case MP_BUS_PCI: 785 case MP_BUS_ISA: 786 return level; 787 case MP_BUS_EISA: 788 return EISA_ELCR(mp_irqs[idx].srcbusirq); 789 } 790 pr_warn("IOAPIC: Invalid srcbus: %d defaulting to level\n", bus); 791 return true; 792 } 793 #else 794 static inline int eisa_irq_is_level(int idx, int bus, bool level) 795 { 796 return level; 797 } 798 #endif 799 800 static bool irq_is_level(int idx) 801 { 802 int bus = mp_irqs[idx].srcbus; 803 bool level; 804 805 /* 806 * Determine IRQ trigger mode (edge or level sensitive): 807 */ 808 switch (mp_irqs[idx].irqflag & MP_IRQTRIG_MASK) { 809 case MP_IRQTRIG_DEFAULT: 810 /* 811 * Conforms to spec, ie. bus-type dependent trigger 812 * mode. PCI defaults to level, ISA to edge. 813 */ 814 level = !test_bit(bus, mp_bus_not_pci); 815 /* Take EISA into account */ 816 return eisa_irq_is_level(idx, bus, level); 817 case MP_IRQTRIG_EDGE: 818 return false; 819 case MP_IRQTRIG_RESERVED: 820 pr_warn("IOAPIC: Invalid trigger mode 2 defaulting to level\n"); 821 fallthrough; 822 case MP_IRQTRIG_LEVEL: 823 default: /* Pointless default required due to do gcc stupidity */ 824 return true; 825 } 826 } 827 828 static int __acpi_get_override_irq(u32 gsi, bool *trigger, bool *polarity) 829 { 830 int ioapic, pin, idx; 831 832 if (skip_ioapic_setup) 833 return -1; 834 835 ioapic = mp_find_ioapic(gsi); 836 if (ioapic < 0) 837 return -1; 838 839 pin = mp_find_ioapic_pin(ioapic, gsi); 840 if (pin < 0) 841 return -1; 842 843 idx = find_irq_entry(ioapic, pin, mp_INT); 844 if (idx < 0) 845 return -1; 846 847 *trigger = irq_is_level(idx); 848 *polarity = irq_active_low(idx); 849 return 0; 850 } 851 852 #ifdef CONFIG_ACPI 853 int acpi_get_override_irq(u32 gsi, int *is_level, int *active_low) 854 { 855 *is_level = *active_low = 0; 856 return __acpi_get_override_irq(gsi, (bool *)is_level, 857 (bool *)active_low); 858 } 859 #endif 860 861 void ioapic_set_alloc_attr(struct irq_alloc_info *info, int node, 862 int trigger, int polarity) 863 { 864 init_irq_alloc_info(info, NULL); 865 info->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 866 info->ioapic.node = node; 867 info->ioapic.is_level = trigger; 868 info->ioapic.active_low = polarity; 869 info->ioapic.valid = 1; 870 } 871 872 static void ioapic_copy_alloc_attr(struct irq_alloc_info *dst, 873 struct irq_alloc_info *src, 874 u32 gsi, int ioapic_idx, int pin) 875 { 876 bool level, pol_low; 877 878 copy_irq_alloc_info(dst, src); 879 dst->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 880 dst->devid = mpc_ioapic_id(ioapic_idx); 881 dst->ioapic.pin = pin; 882 dst->ioapic.valid = 1; 883 if (src && src->ioapic.valid) { 884 dst->ioapic.node = src->ioapic.node; 885 dst->ioapic.is_level = src->ioapic.is_level; 886 dst->ioapic.active_low = src->ioapic.active_low; 887 } else { 888 dst->ioapic.node = NUMA_NO_NODE; 889 if (__acpi_get_override_irq(gsi, &level, &pol_low) >= 0) { 890 dst->ioapic.is_level = level; 891 dst->ioapic.active_low = pol_low; 892 } else { 893 /* 894 * PCI interrupts are always active low level 895 * triggered. 896 */ 897 dst->ioapic.is_level = true; 898 dst->ioapic.active_low = true; 899 } 900 } 901 } 902 903 static int ioapic_alloc_attr_node(struct irq_alloc_info *info) 904 { 905 return (info && info->ioapic.valid) ? info->ioapic.node : NUMA_NO_NODE; 906 } 907 908 static void mp_register_handler(unsigned int irq, bool level) 909 { 910 irq_flow_handler_t hdl; 911 bool fasteoi; 912 913 if (level) { 914 irq_set_status_flags(irq, IRQ_LEVEL); 915 fasteoi = true; 916 } else { 917 irq_clear_status_flags(irq, IRQ_LEVEL); 918 fasteoi = false; 919 } 920 921 hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq; 922 __irq_set_handler(irq, hdl, 0, fasteoi ? "fasteoi" : "edge"); 923 } 924 925 static bool mp_check_pin_attr(int irq, struct irq_alloc_info *info) 926 { 927 struct mp_chip_data *data = irq_get_chip_data(irq); 928 929 /* 930 * setup_IO_APIC_irqs() programs all legacy IRQs with default trigger 931 * and polarity attributes. So allow the first user to reprogram the 932 * pin with real trigger and polarity attributes. 933 */ 934 if (irq < nr_legacy_irqs() && data->count == 1) { 935 if (info->ioapic.is_level != data->is_level) 936 mp_register_handler(irq, info->ioapic.is_level); 937 data->entry.is_level = data->is_level = info->ioapic.is_level; 938 data->entry.active_low = data->active_low = info->ioapic.active_low; 939 } 940 941 return data->is_level == info->ioapic.is_level && 942 data->active_low == info->ioapic.active_low; 943 } 944 945 static int alloc_irq_from_domain(struct irq_domain *domain, int ioapic, u32 gsi, 946 struct irq_alloc_info *info) 947 { 948 bool legacy = false; 949 int irq = -1; 950 int type = ioapics[ioapic].irqdomain_cfg.type; 951 952 switch (type) { 953 case IOAPIC_DOMAIN_LEGACY: 954 /* 955 * Dynamically allocate IRQ number for non-ISA IRQs in the first 956 * 16 GSIs on some weird platforms. 957 */ 958 if (!ioapic_initialized || gsi >= nr_legacy_irqs()) 959 irq = gsi; 960 legacy = mp_is_legacy_irq(irq); 961 break; 962 case IOAPIC_DOMAIN_STRICT: 963 irq = gsi; 964 break; 965 case IOAPIC_DOMAIN_DYNAMIC: 966 break; 967 default: 968 WARN(1, "ioapic: unknown irqdomain type %d\n", type); 969 return -1; 970 } 971 972 return __irq_domain_alloc_irqs(domain, irq, 1, 973 ioapic_alloc_attr_node(info), 974 info, legacy, NULL); 975 } 976 977 /* 978 * Need special handling for ISA IRQs because there may be multiple IOAPIC pins 979 * sharing the same ISA IRQ number and irqdomain only supports 1:1 mapping 980 * between IOAPIC pin and IRQ number. A typical IOAPIC has 24 pins, pin 0-15 are 981 * used for legacy IRQs and pin 16-23 are used for PCI IRQs (PIRQ A-H). 982 * When ACPI is disabled, only legacy IRQ numbers (IRQ0-15) are available, and 983 * some BIOSes may use MP Interrupt Source records to override IRQ numbers for 984 * PIRQs instead of reprogramming the interrupt routing logic. Thus there may be 985 * multiple pins sharing the same legacy IRQ number when ACPI is disabled. 986 */ 987 static int alloc_isa_irq_from_domain(struct irq_domain *domain, 988 int irq, int ioapic, int pin, 989 struct irq_alloc_info *info) 990 { 991 struct mp_chip_data *data; 992 struct irq_data *irq_data = irq_get_irq_data(irq); 993 int node = ioapic_alloc_attr_node(info); 994 995 /* 996 * Legacy ISA IRQ has already been allocated, just add pin to 997 * the pin list associated with this IRQ and program the IOAPIC 998 * entry. The IOAPIC entry 999 */ 1000 if (irq_data && irq_data->parent_data) { 1001 if (!mp_check_pin_attr(irq, info)) 1002 return -EBUSY; 1003 if (__add_pin_to_irq_node(irq_data->chip_data, node, ioapic, 1004 info->ioapic.pin)) 1005 return -ENOMEM; 1006 } else { 1007 info->flags |= X86_IRQ_ALLOC_LEGACY; 1008 irq = __irq_domain_alloc_irqs(domain, irq, 1, node, info, true, 1009 NULL); 1010 if (irq >= 0) { 1011 irq_data = irq_domain_get_irq_data(domain, irq); 1012 data = irq_data->chip_data; 1013 data->isa_irq = true; 1014 } 1015 } 1016 1017 return irq; 1018 } 1019 1020 static int mp_map_pin_to_irq(u32 gsi, int idx, int ioapic, int pin, 1021 unsigned int flags, struct irq_alloc_info *info) 1022 { 1023 int irq; 1024 bool legacy = false; 1025 struct irq_alloc_info tmp; 1026 struct mp_chip_data *data; 1027 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 1028 1029 if (!domain) 1030 return -ENOSYS; 1031 1032 if (idx >= 0 && test_bit(mp_irqs[idx].srcbus, mp_bus_not_pci)) { 1033 irq = mp_irqs[idx].srcbusirq; 1034 legacy = mp_is_legacy_irq(irq); 1035 /* 1036 * IRQ2 is unusable for historical reasons on systems which 1037 * have a legacy PIC. See the comment vs. IRQ2 further down. 1038 * 1039 * If this gets removed at some point then the related code 1040 * in lapic_assign_system_vectors() needs to be adjusted as 1041 * well. 1042 */ 1043 if (legacy && irq == PIC_CASCADE_IR) 1044 return -EINVAL; 1045 } 1046 1047 mutex_lock(&ioapic_mutex); 1048 if (!(flags & IOAPIC_MAP_ALLOC)) { 1049 if (!legacy) { 1050 irq = irq_find_mapping(domain, pin); 1051 if (irq == 0) 1052 irq = -ENOENT; 1053 } 1054 } else { 1055 ioapic_copy_alloc_attr(&tmp, info, gsi, ioapic, pin); 1056 if (legacy) 1057 irq = alloc_isa_irq_from_domain(domain, irq, 1058 ioapic, pin, &tmp); 1059 else if ((irq = irq_find_mapping(domain, pin)) == 0) 1060 irq = alloc_irq_from_domain(domain, ioapic, gsi, &tmp); 1061 else if (!mp_check_pin_attr(irq, &tmp)) 1062 irq = -EBUSY; 1063 if (irq >= 0) { 1064 data = irq_get_chip_data(irq); 1065 data->count++; 1066 } 1067 } 1068 mutex_unlock(&ioapic_mutex); 1069 1070 return irq; 1071 } 1072 1073 static int pin_2_irq(int idx, int ioapic, int pin, unsigned int flags) 1074 { 1075 u32 gsi = mp_pin_to_gsi(ioapic, pin); 1076 1077 /* 1078 * Debugging check, we are in big trouble if this message pops up! 1079 */ 1080 if (mp_irqs[idx].dstirq != pin) 1081 pr_err("broken BIOS or MPTABLE parser, ayiee!!\n"); 1082 1083 #ifdef CONFIG_X86_32 1084 /* 1085 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1086 */ 1087 if ((pin >= 16) && (pin <= 23)) { 1088 if (pirq_entries[pin-16] != -1) { 1089 if (!pirq_entries[pin-16]) { 1090 apic_printk(APIC_VERBOSE, KERN_DEBUG 1091 "disabling PIRQ%d\n", pin-16); 1092 } else { 1093 int irq = pirq_entries[pin-16]; 1094 apic_printk(APIC_VERBOSE, KERN_DEBUG 1095 "using PIRQ%d -> IRQ %d\n", 1096 pin-16, irq); 1097 return irq; 1098 } 1099 } 1100 } 1101 #endif 1102 1103 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, NULL); 1104 } 1105 1106 int mp_map_gsi_to_irq(u32 gsi, unsigned int flags, struct irq_alloc_info *info) 1107 { 1108 int ioapic, pin, idx; 1109 1110 ioapic = mp_find_ioapic(gsi); 1111 if (ioapic < 0) 1112 return -ENODEV; 1113 1114 pin = mp_find_ioapic_pin(ioapic, gsi); 1115 idx = find_irq_entry(ioapic, pin, mp_INT); 1116 if ((flags & IOAPIC_MAP_CHECK) && idx < 0) 1117 return -ENODEV; 1118 1119 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, info); 1120 } 1121 1122 void mp_unmap_irq(int irq) 1123 { 1124 struct irq_data *irq_data = irq_get_irq_data(irq); 1125 struct mp_chip_data *data; 1126 1127 if (!irq_data || !irq_data->domain) 1128 return; 1129 1130 data = irq_data->chip_data; 1131 if (!data || data->isa_irq) 1132 return; 1133 1134 mutex_lock(&ioapic_mutex); 1135 if (--data->count == 0) 1136 irq_domain_free_irqs(irq, 1); 1137 mutex_unlock(&ioapic_mutex); 1138 } 1139 1140 /* 1141 * Find a specific PCI IRQ entry. 1142 * Not an __init, possibly needed by modules 1143 */ 1144 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) 1145 { 1146 int irq, i, best_ioapic = -1, best_idx = -1; 1147 1148 apic_printk(APIC_DEBUG, 1149 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1150 bus, slot, pin); 1151 if (test_bit(bus, mp_bus_not_pci)) { 1152 apic_printk(APIC_VERBOSE, 1153 "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1154 return -1; 1155 } 1156 1157 for (i = 0; i < mp_irq_entries; i++) { 1158 int lbus = mp_irqs[i].srcbus; 1159 int ioapic_idx, found = 0; 1160 1161 if (bus != lbus || mp_irqs[i].irqtype != mp_INT || 1162 slot != ((mp_irqs[i].srcbusirq >> 2) & 0x1f)) 1163 continue; 1164 1165 for_each_ioapic(ioapic_idx) 1166 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic || 1167 mp_irqs[i].dstapic == MP_APIC_ALL) { 1168 found = 1; 1169 break; 1170 } 1171 if (!found) 1172 continue; 1173 1174 /* Skip ISA IRQs */ 1175 irq = pin_2_irq(i, ioapic_idx, mp_irqs[i].dstirq, 0); 1176 if (irq > 0 && !IO_APIC_IRQ(irq)) 1177 continue; 1178 1179 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1180 best_idx = i; 1181 best_ioapic = ioapic_idx; 1182 goto out; 1183 } 1184 1185 /* 1186 * Use the first all-but-pin matching entry as a 1187 * best-guess fuzzy result for broken mptables. 1188 */ 1189 if (best_idx < 0) { 1190 best_idx = i; 1191 best_ioapic = ioapic_idx; 1192 } 1193 } 1194 if (best_idx < 0) 1195 return -1; 1196 1197 out: 1198 return pin_2_irq(best_idx, best_ioapic, mp_irqs[best_idx].dstirq, 1199 IOAPIC_MAP_ALLOC); 1200 } 1201 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1202 1203 static struct irq_chip ioapic_chip, ioapic_ir_chip; 1204 1205 static void __init setup_IO_APIC_irqs(void) 1206 { 1207 unsigned int ioapic, pin; 1208 int idx; 1209 1210 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1211 1212 for_each_ioapic_pin(ioapic, pin) { 1213 idx = find_irq_entry(ioapic, pin, mp_INT); 1214 if (idx < 0) 1215 apic_printk(APIC_VERBOSE, 1216 KERN_DEBUG " apic %d pin %d not connected\n", 1217 mpc_ioapic_id(ioapic), pin); 1218 else 1219 pin_2_irq(idx, ioapic, pin, 1220 ioapic ? 0 : IOAPIC_MAP_ALLOC); 1221 } 1222 } 1223 1224 void ioapic_zap_locks(void) 1225 { 1226 raw_spin_lock_init(&ioapic_lock); 1227 } 1228 1229 static void io_apic_print_entries(unsigned int apic, unsigned int nr_entries) 1230 { 1231 struct IO_APIC_route_entry entry; 1232 char buf[256]; 1233 int i; 1234 1235 printk(KERN_DEBUG "IOAPIC %d:\n", apic); 1236 for (i = 0; i <= nr_entries; i++) { 1237 entry = ioapic_read_entry(apic, i); 1238 snprintf(buf, sizeof(buf), 1239 " pin%02x, %s, %s, %s, V(%02X), IRR(%1d), S(%1d)", 1240 i, 1241 entry.masked ? "disabled" : "enabled ", 1242 entry.is_level ? "level" : "edge ", 1243 entry.active_low ? "low " : "high", 1244 entry.vector, entry.irr, entry.delivery_status); 1245 if (entry.ir_format) { 1246 printk(KERN_DEBUG "%s, remapped, I(%04X), Z(%X)\n", 1247 buf, 1248 (entry.ir_index_15 << 15) | entry.ir_index_0_14, 1249 entry.ir_zero); 1250 } else { 1251 printk(KERN_DEBUG "%s, %s, D(%02X%02X), M(%1d)\n", buf, 1252 entry.dest_mode_logical ? "logical " : "physical", 1253 entry.virt_destid_8_14, entry.destid_0_7, 1254 entry.delivery_mode); 1255 } 1256 } 1257 } 1258 1259 static void __init print_IO_APIC(int ioapic_idx) 1260 { 1261 union IO_APIC_reg_00 reg_00; 1262 union IO_APIC_reg_01 reg_01; 1263 union IO_APIC_reg_02 reg_02; 1264 union IO_APIC_reg_03 reg_03; 1265 unsigned long flags; 1266 1267 raw_spin_lock_irqsave(&ioapic_lock, flags); 1268 reg_00.raw = io_apic_read(ioapic_idx, 0); 1269 reg_01.raw = io_apic_read(ioapic_idx, 1); 1270 if (reg_01.bits.version >= 0x10) 1271 reg_02.raw = io_apic_read(ioapic_idx, 2); 1272 if (reg_01.bits.version >= 0x20) 1273 reg_03.raw = io_apic_read(ioapic_idx, 3); 1274 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1275 1276 printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(ioapic_idx)); 1277 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1278 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1279 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1280 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1281 1282 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1283 printk(KERN_DEBUG "....... : max redirection entries: %02X\n", 1284 reg_01.bits.entries); 1285 1286 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1287 printk(KERN_DEBUG "....... : IO APIC version: %02X\n", 1288 reg_01.bits.version); 1289 1290 /* 1291 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1292 * but the value of reg_02 is read as the previous read register 1293 * value, so ignore it if reg_02 == reg_01. 1294 */ 1295 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1296 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1297 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1298 } 1299 1300 /* 1301 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1302 * or reg_03, but the value of reg_0[23] is read as the previous read 1303 * register value, so ignore it if reg_03 == reg_0[12]. 1304 */ 1305 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1306 reg_03.raw != reg_01.raw) { 1307 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1308 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1309 } 1310 1311 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1312 io_apic_print_entries(ioapic_idx, reg_01.bits.entries); 1313 } 1314 1315 void __init print_IO_APICs(void) 1316 { 1317 int ioapic_idx; 1318 unsigned int irq; 1319 1320 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1321 for_each_ioapic(ioapic_idx) 1322 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1323 mpc_ioapic_id(ioapic_idx), 1324 ioapics[ioapic_idx].nr_registers); 1325 1326 /* 1327 * We are a bit conservative about what we expect. We have to 1328 * know about every hardware change ASAP. 1329 */ 1330 printk(KERN_INFO "testing the IO APIC.......................\n"); 1331 1332 for_each_ioapic(ioapic_idx) 1333 print_IO_APIC(ioapic_idx); 1334 1335 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1336 for_each_active_irq(irq) { 1337 struct irq_pin_list *entry; 1338 struct irq_chip *chip; 1339 struct mp_chip_data *data; 1340 1341 chip = irq_get_chip(irq); 1342 if (chip != &ioapic_chip && chip != &ioapic_ir_chip) 1343 continue; 1344 data = irq_get_chip_data(irq); 1345 if (!data) 1346 continue; 1347 if (list_empty(&data->irq_2_pin)) 1348 continue; 1349 1350 printk(KERN_DEBUG "IRQ%d ", irq); 1351 for_each_irq_pin(entry, data->irq_2_pin) 1352 pr_cont("-> %d:%d", entry->apic, entry->pin); 1353 pr_cont("\n"); 1354 } 1355 1356 printk(KERN_INFO ".................................... done.\n"); 1357 } 1358 1359 /* Where if anywhere is the i8259 connect in external int mode */ 1360 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1361 1362 void __init enable_IO_APIC(void) 1363 { 1364 int i8259_apic, i8259_pin; 1365 int apic, pin; 1366 1367 if (skip_ioapic_setup) 1368 nr_ioapics = 0; 1369 1370 if (!nr_legacy_irqs() || !nr_ioapics) 1371 return; 1372 1373 for_each_ioapic_pin(apic, pin) { 1374 /* See if any of the pins is in ExtINT mode */ 1375 struct IO_APIC_route_entry entry = ioapic_read_entry(apic, pin); 1376 1377 /* If the interrupt line is enabled and in ExtInt mode 1378 * I have found the pin where the i8259 is connected. 1379 */ 1380 if (!entry.masked && 1381 entry.delivery_mode == APIC_DELIVERY_MODE_EXTINT) { 1382 ioapic_i8259.apic = apic; 1383 ioapic_i8259.pin = pin; 1384 goto found_i8259; 1385 } 1386 } 1387 found_i8259: 1388 /* Look to see what if the MP table has reported the ExtINT */ 1389 /* If we could not find the appropriate pin by looking at the ioapic 1390 * the i8259 probably is not connected the ioapic but give the 1391 * mptable a chance anyway. 1392 */ 1393 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1394 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1395 /* Trust the MP table if nothing is setup in the hardware */ 1396 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1397 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 1398 ioapic_i8259.pin = i8259_pin; 1399 ioapic_i8259.apic = i8259_apic; 1400 } 1401 /* Complain if the MP table and the hardware disagree */ 1402 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1403 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1404 { 1405 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 1406 } 1407 1408 /* 1409 * Do not trust the IO-APIC being empty at bootup 1410 */ 1411 clear_IO_APIC(); 1412 } 1413 1414 void native_restore_boot_irq_mode(void) 1415 { 1416 /* 1417 * If the i8259 is routed through an IOAPIC 1418 * Put that IOAPIC in virtual wire mode 1419 * so legacy interrupts can be delivered. 1420 */ 1421 if (ioapic_i8259.pin != -1) { 1422 struct IO_APIC_route_entry entry; 1423 u32 apic_id = read_apic_id(); 1424 1425 memset(&entry, 0, sizeof(entry)); 1426 entry.masked = false; 1427 entry.is_level = false; 1428 entry.active_low = false; 1429 entry.dest_mode_logical = false; 1430 entry.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 1431 entry.destid_0_7 = apic_id & 0xFF; 1432 entry.virt_destid_8_14 = apic_id >> 8; 1433 1434 /* 1435 * Add it to the IO-APIC irq-routing table: 1436 */ 1437 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 1438 } 1439 1440 if (boot_cpu_has(X86_FEATURE_APIC) || apic_from_smp_config()) 1441 disconnect_bsp_APIC(ioapic_i8259.pin != -1); 1442 } 1443 1444 void restore_boot_irq_mode(void) 1445 { 1446 if (!nr_legacy_irqs()) 1447 return; 1448 1449 x86_apic_ops.restore(); 1450 } 1451 1452 #ifdef CONFIG_X86_32 1453 /* 1454 * function to set the IO-APIC physical IDs based on the 1455 * values stored in the MPC table. 1456 * 1457 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 1458 */ 1459 void __init setup_ioapic_ids_from_mpc_nocheck(void) 1460 { 1461 union IO_APIC_reg_00 reg_00; 1462 physid_mask_t phys_id_present_map; 1463 int ioapic_idx; 1464 int i; 1465 unsigned char old_id; 1466 unsigned long flags; 1467 1468 /* 1469 * This is broken; anything with a real cpu count has to 1470 * circumvent this idiocy regardless. 1471 */ 1472 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map); 1473 1474 /* 1475 * Set the IOAPIC ID to the value stored in the MPC table. 1476 */ 1477 for_each_ioapic(ioapic_idx) { 1478 /* Read the register 0 value */ 1479 raw_spin_lock_irqsave(&ioapic_lock, flags); 1480 reg_00.raw = io_apic_read(ioapic_idx, 0); 1481 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1482 1483 old_id = mpc_ioapic_id(ioapic_idx); 1484 1485 if (mpc_ioapic_id(ioapic_idx) >= get_physical_broadcast()) { 1486 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 1487 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1488 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 1489 reg_00.bits.ID); 1490 ioapics[ioapic_idx].mp_config.apicid = reg_00.bits.ID; 1491 } 1492 1493 /* 1494 * Sanity check, is the ID really free? Every APIC in a 1495 * system must have a unique ID or we get lots of nice 1496 * 'stuck on smp_invalidate_needed IPI wait' messages. 1497 */ 1498 if (apic->check_apicid_used(&phys_id_present_map, 1499 mpc_ioapic_id(ioapic_idx))) { 1500 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 1501 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1502 for (i = 0; i < get_physical_broadcast(); i++) 1503 if (!physid_isset(i, phys_id_present_map)) 1504 break; 1505 if (i >= get_physical_broadcast()) 1506 panic("Max APIC ID exceeded!\n"); 1507 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 1508 i); 1509 physid_set(i, phys_id_present_map); 1510 ioapics[ioapic_idx].mp_config.apicid = i; 1511 } else { 1512 physid_mask_t tmp; 1513 apic->apicid_to_cpu_present(mpc_ioapic_id(ioapic_idx), 1514 &tmp); 1515 apic_printk(APIC_VERBOSE, "Setting %d in the " 1516 "phys_id_present_map\n", 1517 mpc_ioapic_id(ioapic_idx)); 1518 physids_or(phys_id_present_map, phys_id_present_map, tmp); 1519 } 1520 1521 /* 1522 * We need to adjust the IRQ routing table 1523 * if the ID changed. 1524 */ 1525 if (old_id != mpc_ioapic_id(ioapic_idx)) 1526 for (i = 0; i < mp_irq_entries; i++) 1527 if (mp_irqs[i].dstapic == old_id) 1528 mp_irqs[i].dstapic 1529 = mpc_ioapic_id(ioapic_idx); 1530 1531 /* 1532 * Update the ID register according to the right value 1533 * from the MPC table if they are different. 1534 */ 1535 if (mpc_ioapic_id(ioapic_idx) == reg_00.bits.ID) 1536 continue; 1537 1538 apic_printk(APIC_VERBOSE, KERN_INFO 1539 "...changing IO-APIC physical APIC ID to %d ...", 1540 mpc_ioapic_id(ioapic_idx)); 1541 1542 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 1543 raw_spin_lock_irqsave(&ioapic_lock, flags); 1544 io_apic_write(ioapic_idx, 0, reg_00.raw); 1545 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1546 1547 /* 1548 * Sanity check 1549 */ 1550 raw_spin_lock_irqsave(&ioapic_lock, flags); 1551 reg_00.raw = io_apic_read(ioapic_idx, 0); 1552 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1553 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) 1554 pr_cont("could not set ID!\n"); 1555 else 1556 apic_printk(APIC_VERBOSE, " ok.\n"); 1557 } 1558 } 1559 1560 void __init setup_ioapic_ids_from_mpc(void) 1561 { 1562 1563 if (acpi_ioapic) 1564 return; 1565 /* 1566 * Don't check I/O APIC IDs for xAPIC systems. They have 1567 * no meaning without the serial APIC bus. 1568 */ 1569 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1570 || APIC_XAPIC(boot_cpu_apic_version)) 1571 return; 1572 setup_ioapic_ids_from_mpc_nocheck(); 1573 } 1574 #endif 1575 1576 int no_timer_check __initdata; 1577 1578 static int __init notimercheck(char *s) 1579 { 1580 no_timer_check = 1; 1581 return 1; 1582 } 1583 __setup("no_timer_check", notimercheck); 1584 1585 static void __init delay_with_tsc(void) 1586 { 1587 unsigned long long start, now; 1588 unsigned long end = jiffies + 4; 1589 1590 start = rdtsc(); 1591 1592 /* 1593 * We don't know the TSC frequency yet, but waiting for 1594 * 40000000000/HZ TSC cycles is safe: 1595 * 4 GHz == 10 jiffies 1596 * 1 GHz == 40 jiffies 1597 */ 1598 do { 1599 rep_nop(); 1600 now = rdtsc(); 1601 } while ((now - start) < 40000000000ULL / HZ && 1602 time_before_eq(jiffies, end)); 1603 } 1604 1605 static void __init delay_without_tsc(void) 1606 { 1607 unsigned long end = jiffies + 4; 1608 int band = 1; 1609 1610 /* 1611 * We don't know any frequency yet, but waiting for 1612 * 40940000000/HZ cycles is safe: 1613 * 4 GHz == 10 jiffies 1614 * 1 GHz == 40 jiffies 1615 * 1 << 1 + 1 << 2 +...+ 1 << 11 = 4094 1616 */ 1617 do { 1618 __delay(((1U << band++) * 10000000UL) / HZ); 1619 } while (band < 12 && time_before_eq(jiffies, end)); 1620 } 1621 1622 /* 1623 * There is a nasty bug in some older SMP boards, their mptable lies 1624 * about the timer IRQ. We do the following to work around the situation: 1625 * 1626 * - timer IRQ defaults to IO-APIC IRQ 1627 * - if this function detects that timer IRQs are defunct, then we fall 1628 * back to ISA timer IRQs 1629 */ 1630 static int __init timer_irq_works(void) 1631 { 1632 unsigned long t1 = jiffies; 1633 1634 if (no_timer_check) 1635 return 1; 1636 1637 local_irq_enable(); 1638 if (boot_cpu_has(X86_FEATURE_TSC)) 1639 delay_with_tsc(); 1640 else 1641 delay_without_tsc(); 1642 1643 /* 1644 * Expect a few ticks at least, to be sure some possible 1645 * glue logic does not lock up after one or two first 1646 * ticks in a non-ExtINT mode. Also the local APIC 1647 * might have cached one ExtINT interrupt. Finally, at 1648 * least one tick may be lost due to delays. 1649 */ 1650 1651 local_irq_disable(); 1652 1653 /* Did jiffies advance? */ 1654 return time_after(jiffies, t1 + 4); 1655 } 1656 1657 /* 1658 * In the SMP+IOAPIC case it might happen that there are an unspecified 1659 * number of pending IRQ events unhandled. These cases are very rare, 1660 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 1661 * better to do it this way as thus we do not have to be aware of 1662 * 'pending' interrupts in the IRQ path, except at this point. 1663 */ 1664 /* 1665 * Edge triggered needs to resend any interrupt 1666 * that was delayed but this is now handled in the device 1667 * independent code. 1668 */ 1669 1670 /* 1671 * Starting up a edge-triggered IO-APIC interrupt is 1672 * nasty - we need to make sure that we get the edge. 1673 * If it is already asserted for some reason, we need 1674 * return 1 to indicate that is was pending. 1675 * 1676 * This is not complete - we should be able to fake 1677 * an edge even if it isn't on the 8259A... 1678 */ 1679 static unsigned int startup_ioapic_irq(struct irq_data *data) 1680 { 1681 int was_pending = 0, irq = data->irq; 1682 unsigned long flags; 1683 1684 raw_spin_lock_irqsave(&ioapic_lock, flags); 1685 if (irq < nr_legacy_irqs()) { 1686 legacy_pic->mask(irq); 1687 if (legacy_pic->irq_pending(irq)) 1688 was_pending = 1; 1689 } 1690 __unmask_ioapic(data->chip_data); 1691 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1692 1693 return was_pending; 1694 } 1695 1696 atomic_t irq_mis_count; 1697 1698 #ifdef CONFIG_GENERIC_PENDING_IRQ 1699 static bool io_apic_level_ack_pending(struct mp_chip_data *data) 1700 { 1701 struct irq_pin_list *entry; 1702 unsigned long flags; 1703 1704 raw_spin_lock_irqsave(&ioapic_lock, flags); 1705 for_each_irq_pin(entry, data->irq_2_pin) { 1706 struct IO_APIC_route_entry e; 1707 int pin; 1708 1709 pin = entry->pin; 1710 e.w1 = io_apic_read(entry->apic, 0x10 + pin*2); 1711 /* Is the remote IRR bit set? */ 1712 if (e.irr) { 1713 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1714 return true; 1715 } 1716 } 1717 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1718 1719 return false; 1720 } 1721 1722 static inline bool ioapic_prepare_move(struct irq_data *data) 1723 { 1724 /* If we are moving the IRQ we need to mask it */ 1725 if (unlikely(irqd_is_setaffinity_pending(data))) { 1726 if (!irqd_irq_masked(data)) 1727 mask_ioapic_irq(data); 1728 return true; 1729 } 1730 return false; 1731 } 1732 1733 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1734 { 1735 if (unlikely(moveit)) { 1736 /* Only migrate the irq if the ack has been received. 1737 * 1738 * On rare occasions the broadcast level triggered ack gets 1739 * delayed going to ioapics, and if we reprogram the 1740 * vector while Remote IRR is still set the irq will never 1741 * fire again. 1742 * 1743 * To prevent this scenario we read the Remote IRR bit 1744 * of the ioapic. This has two effects. 1745 * - On any sane system the read of the ioapic will 1746 * flush writes (and acks) going to the ioapic from 1747 * this cpu. 1748 * - We get to see if the ACK has actually been delivered. 1749 * 1750 * Based on failed experiments of reprogramming the 1751 * ioapic entry from outside of irq context starting 1752 * with masking the ioapic entry and then polling until 1753 * Remote IRR was clear before reprogramming the 1754 * ioapic I don't trust the Remote IRR bit to be 1755 * completely accurate. 1756 * 1757 * However there appears to be no other way to plug 1758 * this race, so if the Remote IRR bit is not 1759 * accurate and is causing problems then it is a hardware bug 1760 * and you can go talk to the chipset vendor about it. 1761 */ 1762 if (!io_apic_level_ack_pending(data->chip_data)) 1763 irq_move_masked_irq(data); 1764 /* If the IRQ is masked in the core, leave it: */ 1765 if (!irqd_irq_masked(data)) 1766 unmask_ioapic_irq(data); 1767 } 1768 } 1769 #else 1770 static inline bool ioapic_prepare_move(struct irq_data *data) 1771 { 1772 return false; 1773 } 1774 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1775 { 1776 } 1777 #endif 1778 1779 static void ioapic_ack_level(struct irq_data *irq_data) 1780 { 1781 struct irq_cfg *cfg = irqd_cfg(irq_data); 1782 unsigned long v; 1783 bool moveit; 1784 int i; 1785 1786 irq_complete_move(cfg); 1787 moveit = ioapic_prepare_move(irq_data); 1788 1789 /* 1790 * It appears there is an erratum which affects at least version 0x11 1791 * of I/O APIC (that's the 82093AA and cores integrated into various 1792 * chipsets). Under certain conditions a level-triggered interrupt is 1793 * erroneously delivered as edge-triggered one but the respective IRR 1794 * bit gets set nevertheless. As a result the I/O unit expects an EOI 1795 * message but it will never arrive and further interrupts are blocked 1796 * from the source. The exact reason is so far unknown, but the 1797 * phenomenon was observed when two consecutive interrupt requests 1798 * from a given source get delivered to the same CPU and the source is 1799 * temporarily disabled in between. 1800 * 1801 * A workaround is to simulate an EOI message manually. We achieve it 1802 * by setting the trigger mode to edge and then to level when the edge 1803 * trigger mode gets detected in the TMR of a local APIC for a 1804 * level-triggered interrupt. We mask the source for the time of the 1805 * operation to prevent an edge-triggered interrupt escaping meanwhile. 1806 * The idea is from Manfred Spraul. --macro 1807 * 1808 * Also in the case when cpu goes offline, fixup_irqs() will forward 1809 * any unhandled interrupt on the offlined cpu to the new cpu 1810 * destination that is handling the corresponding interrupt. This 1811 * interrupt forwarding is done via IPI's. Hence, in this case also 1812 * level-triggered io-apic interrupt will be seen as an edge 1813 * interrupt in the IRR. And we can't rely on the cpu's EOI 1814 * to be broadcasted to the IO-APIC's which will clear the remoteIRR 1815 * corresponding to the level-triggered interrupt. Hence on IO-APIC's 1816 * supporting EOI register, we do an explicit EOI to clear the 1817 * remote IRR and on IO-APIC's which don't have an EOI register, 1818 * we use the above logic (mask+edge followed by unmask+level) from 1819 * Manfred Spraul to clear the remote IRR. 1820 */ 1821 i = cfg->vector; 1822 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 1823 1824 /* 1825 * We must acknowledge the irq before we move it or the acknowledge will 1826 * not propagate properly. 1827 */ 1828 ack_APIC_irq(); 1829 1830 /* 1831 * Tail end of clearing remote IRR bit (either by delivering the EOI 1832 * message via io-apic EOI register write or simulating it using 1833 * mask+edge followed by unmask+level logic) manually when the 1834 * level triggered interrupt is seen as the edge triggered interrupt 1835 * at the cpu. 1836 */ 1837 if (!(v & (1 << (i & 0x1f)))) { 1838 atomic_inc(&irq_mis_count); 1839 eoi_ioapic_pin(cfg->vector, irq_data->chip_data); 1840 } 1841 1842 ioapic_finish_move(irq_data, moveit); 1843 } 1844 1845 static void ioapic_ir_ack_level(struct irq_data *irq_data) 1846 { 1847 struct mp_chip_data *data = irq_data->chip_data; 1848 1849 /* 1850 * Intr-remapping uses pin number as the virtual vector 1851 * in the RTE. Actual vector is programmed in 1852 * intr-remapping table entry. Hence for the io-apic 1853 * EOI we use the pin number. 1854 */ 1855 apic_ack_irq(irq_data); 1856 eoi_ioapic_pin(data->entry.vector, data); 1857 } 1858 1859 /* 1860 * The I/OAPIC is just a device for generating MSI messages from legacy 1861 * interrupt pins. Various fields of the RTE translate into bits of the 1862 * resulting MSI which had a historical meaning. 1863 * 1864 * With interrupt remapping, many of those bits have different meanings 1865 * in the underlying MSI, but the way that the I/OAPIC transforms them 1866 * from its RTE to the MSI message is the same. This function allows 1867 * the parent IRQ domain to compose the MSI message, then takes the 1868 * relevant bits to put them in the appropriate places in the RTE in 1869 * order to generate that message when the IRQ happens. 1870 * 1871 * The setup here relies on a preconfigured route entry (is_level, 1872 * active_low, masked) because the parent domain is merely composing the 1873 * generic message routing information which is used for the MSI. 1874 */ 1875 static void ioapic_setup_msg_from_msi(struct irq_data *irq_data, 1876 struct IO_APIC_route_entry *entry) 1877 { 1878 struct msi_msg msg; 1879 1880 /* Let the parent domain compose the MSI message */ 1881 irq_chip_compose_msi_msg(irq_data, &msg); 1882 1883 /* 1884 * - Real vector 1885 * - DMAR/IR: 8bit subhandle (ioapic.pin) 1886 * - AMD/IR: 8bit IRTE index 1887 */ 1888 entry->vector = msg.arch_data.vector; 1889 /* Delivery mode (for DMAR/IR all 0) */ 1890 entry->delivery_mode = msg.arch_data.delivery_mode; 1891 /* Destination mode or DMAR/IR index bit 15 */ 1892 entry->dest_mode_logical = msg.arch_addr_lo.dest_mode_logical; 1893 /* DMAR/IR: 1, 0 for all other modes */ 1894 entry->ir_format = msg.arch_addr_lo.dmar_format; 1895 /* 1896 * - DMAR/IR: index bit 0-14. 1897 * 1898 * - Virt: If the host supports x2apic without a virtualized IR 1899 * unit then bit 0-6 of dmar_index_0_14 are providing bit 1900 * 8-14 of the destination id. 1901 * 1902 * All other modes have bit 0-6 of dmar_index_0_14 cleared and the 1903 * topmost 8 bits are destination id bit 0-7 (entry::destid_0_7). 1904 */ 1905 entry->ir_index_0_14 = msg.arch_addr_lo.dmar_index_0_14; 1906 } 1907 1908 static void ioapic_configure_entry(struct irq_data *irqd) 1909 { 1910 struct mp_chip_data *mpd = irqd->chip_data; 1911 struct irq_pin_list *entry; 1912 1913 ioapic_setup_msg_from_msi(irqd, &mpd->entry); 1914 1915 for_each_irq_pin(entry, mpd->irq_2_pin) 1916 __ioapic_write_entry(entry->apic, entry->pin, mpd->entry); 1917 } 1918 1919 static int ioapic_set_affinity(struct irq_data *irq_data, 1920 const struct cpumask *mask, bool force) 1921 { 1922 struct irq_data *parent = irq_data->parent_data; 1923 unsigned long flags; 1924 int ret; 1925 1926 ret = parent->chip->irq_set_affinity(parent, mask, force); 1927 raw_spin_lock_irqsave(&ioapic_lock, flags); 1928 if (ret >= 0 && ret != IRQ_SET_MASK_OK_DONE) 1929 ioapic_configure_entry(irq_data); 1930 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1931 1932 return ret; 1933 } 1934 1935 /* 1936 * Interrupt shutdown masks the ioapic pin, but the interrupt might already 1937 * be in flight, but not yet serviced by the target CPU. That means 1938 * __synchronize_hardirq() would return and claim that everything is calmed 1939 * down. So free_irq() would proceed and deactivate the interrupt and free 1940 * resources. 1941 * 1942 * Once the target CPU comes around to service it it will find a cleared 1943 * vector and complain. While the spurious interrupt is harmless, the full 1944 * release of resources might prevent the interrupt from being acknowledged 1945 * which keeps the hardware in a weird state. 1946 * 1947 * Verify that the corresponding Remote-IRR bits are clear. 1948 */ 1949 static int ioapic_irq_get_chip_state(struct irq_data *irqd, 1950 enum irqchip_irq_state which, 1951 bool *state) 1952 { 1953 struct mp_chip_data *mcd = irqd->chip_data; 1954 struct IO_APIC_route_entry rentry; 1955 struct irq_pin_list *p; 1956 1957 if (which != IRQCHIP_STATE_ACTIVE) 1958 return -EINVAL; 1959 1960 *state = false; 1961 raw_spin_lock(&ioapic_lock); 1962 for_each_irq_pin(p, mcd->irq_2_pin) { 1963 rentry = __ioapic_read_entry(p->apic, p->pin); 1964 /* 1965 * The remote IRR is only valid in level trigger mode. It's 1966 * meaning is undefined for edge triggered interrupts and 1967 * irrelevant because the IO-APIC treats them as fire and 1968 * forget. 1969 */ 1970 if (rentry.irr && rentry.is_level) { 1971 *state = true; 1972 break; 1973 } 1974 } 1975 raw_spin_unlock(&ioapic_lock); 1976 return 0; 1977 } 1978 1979 static struct irq_chip ioapic_chip __read_mostly = { 1980 .name = "IO-APIC", 1981 .irq_startup = startup_ioapic_irq, 1982 .irq_mask = mask_ioapic_irq, 1983 .irq_unmask = unmask_ioapic_irq, 1984 .irq_ack = irq_chip_ack_parent, 1985 .irq_eoi = ioapic_ack_level, 1986 .irq_set_affinity = ioapic_set_affinity, 1987 .irq_retrigger = irq_chip_retrigger_hierarchy, 1988 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 1989 .flags = IRQCHIP_SKIP_SET_WAKE | 1990 IRQCHIP_AFFINITY_PRE_STARTUP, 1991 }; 1992 1993 static struct irq_chip ioapic_ir_chip __read_mostly = { 1994 .name = "IR-IO-APIC", 1995 .irq_startup = startup_ioapic_irq, 1996 .irq_mask = mask_ioapic_irq, 1997 .irq_unmask = unmask_ioapic_irq, 1998 .irq_ack = irq_chip_ack_parent, 1999 .irq_eoi = ioapic_ir_ack_level, 2000 .irq_set_affinity = ioapic_set_affinity, 2001 .irq_retrigger = irq_chip_retrigger_hierarchy, 2002 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 2003 .flags = IRQCHIP_SKIP_SET_WAKE | 2004 IRQCHIP_AFFINITY_PRE_STARTUP, 2005 }; 2006 2007 static inline void init_IO_APIC_traps(void) 2008 { 2009 struct irq_cfg *cfg; 2010 unsigned int irq; 2011 2012 for_each_active_irq(irq) { 2013 cfg = irq_cfg(irq); 2014 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2015 /* 2016 * Hmm.. We don't have an entry for this, 2017 * so default to an old-fashioned 8259 2018 * interrupt if we can.. 2019 */ 2020 if (irq < nr_legacy_irqs()) 2021 legacy_pic->make_irq(irq); 2022 else 2023 /* Strange. Oh, well.. */ 2024 irq_set_chip(irq, &no_irq_chip); 2025 } 2026 } 2027 } 2028 2029 /* 2030 * The local APIC irq-chip implementation: 2031 */ 2032 2033 static void mask_lapic_irq(struct irq_data *data) 2034 { 2035 unsigned long v; 2036 2037 v = apic_read(APIC_LVT0); 2038 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2039 } 2040 2041 static void unmask_lapic_irq(struct irq_data *data) 2042 { 2043 unsigned long v; 2044 2045 v = apic_read(APIC_LVT0); 2046 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2047 } 2048 2049 static void ack_lapic_irq(struct irq_data *data) 2050 { 2051 ack_APIC_irq(); 2052 } 2053 2054 static struct irq_chip lapic_chip __read_mostly = { 2055 .name = "local-APIC", 2056 .irq_mask = mask_lapic_irq, 2057 .irq_unmask = unmask_lapic_irq, 2058 .irq_ack = ack_lapic_irq, 2059 }; 2060 2061 static void lapic_register_intr(int irq) 2062 { 2063 irq_clear_status_flags(irq, IRQ_LEVEL); 2064 irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2065 "edge"); 2066 } 2067 2068 /* 2069 * This looks a bit hackish but it's about the only one way of sending 2070 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2071 * not support the ExtINT mode, unfortunately. We need to send these 2072 * cycles as some i82489DX-based boards have glue logic that keeps the 2073 * 8259A interrupt line asserted until INTA. --macro 2074 */ 2075 static inline void __init unlock_ExtINT_logic(void) 2076 { 2077 int apic, pin, i; 2078 struct IO_APIC_route_entry entry0, entry1; 2079 unsigned char save_control, save_freq_select; 2080 u32 apic_id; 2081 2082 pin = find_isa_irq_pin(8, mp_INT); 2083 if (pin == -1) { 2084 WARN_ON_ONCE(1); 2085 return; 2086 } 2087 apic = find_isa_irq_apic(8, mp_INT); 2088 if (apic == -1) { 2089 WARN_ON_ONCE(1); 2090 return; 2091 } 2092 2093 entry0 = ioapic_read_entry(apic, pin); 2094 clear_IO_APIC_pin(apic, pin); 2095 2096 apic_id = hard_smp_processor_id(); 2097 memset(&entry1, 0, sizeof(entry1)); 2098 2099 entry1.dest_mode_logical = true; 2100 entry1.masked = false; 2101 entry1.destid_0_7 = apic_id & 0xFF; 2102 entry1.virt_destid_8_14 = apic_id >> 8; 2103 entry1.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 2104 entry1.active_low = entry0.active_low; 2105 entry1.is_level = false; 2106 entry1.vector = 0; 2107 2108 ioapic_write_entry(apic, pin, entry1); 2109 2110 save_control = CMOS_READ(RTC_CONTROL); 2111 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2112 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2113 RTC_FREQ_SELECT); 2114 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2115 2116 i = 100; 2117 while (i-- > 0) { 2118 mdelay(10); 2119 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2120 i -= 10; 2121 } 2122 2123 CMOS_WRITE(save_control, RTC_CONTROL); 2124 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2125 clear_IO_APIC_pin(apic, pin); 2126 2127 ioapic_write_entry(apic, pin, entry0); 2128 } 2129 2130 static int disable_timer_pin_1 __initdata; 2131 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2132 static int __init disable_timer_pin_setup(char *arg) 2133 { 2134 disable_timer_pin_1 = 1; 2135 return 0; 2136 } 2137 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2138 2139 static int mp_alloc_timer_irq(int ioapic, int pin) 2140 { 2141 int irq = -1; 2142 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 2143 2144 if (domain) { 2145 struct irq_alloc_info info; 2146 2147 ioapic_set_alloc_attr(&info, NUMA_NO_NODE, 0, 0); 2148 info.devid = mpc_ioapic_id(ioapic); 2149 info.ioapic.pin = pin; 2150 mutex_lock(&ioapic_mutex); 2151 irq = alloc_isa_irq_from_domain(domain, 0, ioapic, pin, &info); 2152 mutex_unlock(&ioapic_mutex); 2153 } 2154 2155 return irq; 2156 } 2157 2158 /* 2159 * This code may look a bit paranoid, but it's supposed to cooperate with 2160 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2161 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2162 * fanatically on his truly buggy board. 2163 * 2164 * FIXME: really need to revamp this for all platforms. 2165 */ 2166 static inline void __init check_timer(void) 2167 { 2168 struct irq_data *irq_data = irq_get_irq_data(0); 2169 struct mp_chip_data *data = irq_data->chip_data; 2170 struct irq_cfg *cfg = irqd_cfg(irq_data); 2171 int node = cpu_to_node(0); 2172 int apic1, pin1, apic2, pin2; 2173 int no_pin1 = 0; 2174 2175 if (!global_clock_event) 2176 return; 2177 2178 local_irq_disable(); 2179 2180 /* 2181 * get/set the timer IRQ vector: 2182 */ 2183 legacy_pic->mask(0); 2184 2185 /* 2186 * As IRQ0 is to be enabled in the 8259A, the virtual 2187 * wire has to be disabled in the local APIC. Also 2188 * timer interrupts need to be acknowledged manually in 2189 * the 8259A for the i82489DX when using the NMI 2190 * watchdog as that APIC treats NMIs as level-triggered. 2191 * The AEOI mode will finish them in the 8259A 2192 * automatically. 2193 */ 2194 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2195 legacy_pic->init(1); 2196 2197 pin1 = find_isa_irq_pin(0, mp_INT); 2198 apic1 = find_isa_irq_apic(0, mp_INT); 2199 pin2 = ioapic_i8259.pin; 2200 apic2 = ioapic_i8259.apic; 2201 2202 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2203 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2204 cfg->vector, apic1, pin1, apic2, pin2); 2205 2206 /* 2207 * Some BIOS writers are clueless and report the ExtINTA 2208 * I/O APIC input from the cascaded 8259A as the timer 2209 * interrupt input. So just in case, if only one pin 2210 * was found above, try it both directly and through the 2211 * 8259A. 2212 */ 2213 if (pin1 == -1) { 2214 panic_if_irq_remap("BIOS bug: timer not connected to IO-APIC"); 2215 pin1 = pin2; 2216 apic1 = apic2; 2217 no_pin1 = 1; 2218 } else if (pin2 == -1) { 2219 pin2 = pin1; 2220 apic2 = apic1; 2221 } 2222 2223 if (pin1 != -1) { 2224 /* Ok, does IRQ0 through the IOAPIC work? */ 2225 if (no_pin1) { 2226 mp_alloc_timer_irq(apic1, pin1); 2227 } else { 2228 /* 2229 * for edge trigger, it's already unmasked, 2230 * so only need to unmask if it is level-trigger 2231 * do we really have level trigger timer? 2232 */ 2233 int idx = find_irq_entry(apic1, pin1, mp_INT); 2234 2235 if (idx != -1 && irq_is_level(idx)) 2236 unmask_ioapic_irq(irq_get_irq_data(0)); 2237 } 2238 irq_domain_deactivate_irq(irq_data); 2239 irq_domain_activate_irq(irq_data, false); 2240 if (timer_irq_works()) { 2241 if (disable_timer_pin_1 > 0) 2242 clear_IO_APIC_pin(0, pin1); 2243 goto out; 2244 } 2245 panic_if_irq_remap("timer doesn't work through Interrupt-remapped IO-APIC"); 2246 clear_IO_APIC_pin(apic1, pin1); 2247 if (!no_pin1) 2248 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 2249 "8254 timer not connected to IO-APIC\n"); 2250 2251 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 2252 "(IRQ0) through the 8259A ...\n"); 2253 apic_printk(APIC_QUIET, KERN_INFO 2254 "..... (found apic %d pin %d) ...\n", apic2, pin2); 2255 /* 2256 * legacy devices should be connected to IO APIC #0 2257 */ 2258 replace_pin_at_irq_node(data, node, apic1, pin1, apic2, pin2); 2259 irq_domain_deactivate_irq(irq_data); 2260 irq_domain_activate_irq(irq_data, false); 2261 legacy_pic->unmask(0); 2262 if (timer_irq_works()) { 2263 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 2264 goto out; 2265 } 2266 /* 2267 * Cleanup, just in case ... 2268 */ 2269 legacy_pic->mask(0); 2270 clear_IO_APIC_pin(apic2, pin2); 2271 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 2272 } 2273 2274 apic_printk(APIC_QUIET, KERN_INFO 2275 "...trying to set up timer as Virtual Wire IRQ...\n"); 2276 2277 lapic_register_intr(0); 2278 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 2279 legacy_pic->unmask(0); 2280 2281 if (timer_irq_works()) { 2282 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2283 goto out; 2284 } 2285 legacy_pic->mask(0); 2286 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 2287 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 2288 2289 apic_printk(APIC_QUIET, KERN_INFO 2290 "...trying to set up timer as ExtINT IRQ...\n"); 2291 2292 legacy_pic->init(0); 2293 legacy_pic->make_irq(0); 2294 apic_write(APIC_LVT0, APIC_DM_EXTINT); 2295 legacy_pic->unmask(0); 2296 2297 unlock_ExtINT_logic(); 2298 2299 if (timer_irq_works()) { 2300 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2301 goto out; 2302 } 2303 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 2304 if (apic_is_x2apic_enabled()) 2305 apic_printk(APIC_QUIET, KERN_INFO 2306 "Perhaps problem with the pre-enabled x2apic mode\n" 2307 "Try booting with x2apic and interrupt-remapping disabled in the bios.\n"); 2308 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 2309 "report. Then try booting with the 'noapic' option.\n"); 2310 out: 2311 local_irq_enable(); 2312 } 2313 2314 /* 2315 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 2316 * to devices. However there may be an I/O APIC pin available for 2317 * this interrupt regardless. The pin may be left unconnected, but 2318 * typically it will be reused as an ExtINT cascade interrupt for 2319 * the master 8259A. In the MPS case such a pin will normally be 2320 * reported as an ExtINT interrupt in the MP table. With ACPI 2321 * there is no provision for ExtINT interrupts, and in the absence 2322 * of an override it would be treated as an ordinary ISA I/O APIC 2323 * interrupt, that is edge-triggered and unmasked by default. We 2324 * used to do this, but it caused problems on some systems because 2325 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 2326 * the same ExtINT cascade interrupt to drive the local APIC of the 2327 * bootstrap processor. Therefore we refrain from routing IRQ2 to 2328 * the I/O APIC in all cases now. No actual device should request 2329 * it anyway. --macro 2330 */ 2331 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 2332 2333 static int mp_irqdomain_create(int ioapic) 2334 { 2335 struct irq_domain *parent; 2336 int hwirqs = mp_ioapic_pin_count(ioapic); 2337 struct ioapic *ip = &ioapics[ioapic]; 2338 struct ioapic_domain_cfg *cfg = &ip->irqdomain_cfg; 2339 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2340 struct fwnode_handle *fn; 2341 struct irq_fwspec fwspec; 2342 2343 if (cfg->type == IOAPIC_DOMAIN_INVALID) 2344 return 0; 2345 2346 /* Handle device tree enumerated APICs proper */ 2347 if (cfg->dev) { 2348 fn = of_node_to_fwnode(cfg->dev); 2349 } else { 2350 fn = irq_domain_alloc_named_id_fwnode("IO-APIC", mpc_ioapic_id(ioapic)); 2351 if (!fn) 2352 return -ENOMEM; 2353 } 2354 2355 fwspec.fwnode = fn; 2356 fwspec.param_count = 1; 2357 fwspec.param[0] = mpc_ioapic_id(ioapic); 2358 2359 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY); 2360 if (!parent) { 2361 if (!cfg->dev) 2362 irq_domain_free_fwnode(fn); 2363 return -ENODEV; 2364 } 2365 2366 ip->irqdomain = irq_domain_create_linear(fn, hwirqs, cfg->ops, 2367 (void *)(long)ioapic); 2368 2369 if (!ip->irqdomain) { 2370 /* Release fw handle if it was allocated above */ 2371 if (!cfg->dev) 2372 irq_domain_free_fwnode(fn); 2373 return -ENOMEM; 2374 } 2375 2376 ip->irqdomain->parent = parent; 2377 2378 if (cfg->type == IOAPIC_DOMAIN_LEGACY || 2379 cfg->type == IOAPIC_DOMAIN_STRICT) 2380 ioapic_dynirq_base = max(ioapic_dynirq_base, 2381 gsi_cfg->gsi_end + 1); 2382 2383 return 0; 2384 } 2385 2386 static void ioapic_destroy_irqdomain(int idx) 2387 { 2388 struct ioapic_domain_cfg *cfg = &ioapics[idx].irqdomain_cfg; 2389 struct fwnode_handle *fn = ioapics[idx].irqdomain->fwnode; 2390 2391 if (ioapics[idx].irqdomain) { 2392 irq_domain_remove(ioapics[idx].irqdomain); 2393 if (!cfg->dev) 2394 irq_domain_free_fwnode(fn); 2395 ioapics[idx].irqdomain = NULL; 2396 } 2397 } 2398 2399 void __init setup_IO_APIC(void) 2400 { 2401 int ioapic; 2402 2403 if (skip_ioapic_setup || !nr_ioapics) 2404 return; 2405 2406 io_apic_irqs = nr_legacy_irqs() ? ~PIC_IRQS : ~0UL; 2407 2408 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 2409 for_each_ioapic(ioapic) 2410 BUG_ON(mp_irqdomain_create(ioapic)); 2411 2412 /* 2413 * Set up IO-APIC IRQ routing. 2414 */ 2415 x86_init.mpparse.setup_ioapic_ids(); 2416 2417 sync_Arb_IDs(); 2418 setup_IO_APIC_irqs(); 2419 init_IO_APIC_traps(); 2420 if (nr_legacy_irqs()) 2421 check_timer(); 2422 2423 ioapic_initialized = 1; 2424 } 2425 2426 static void resume_ioapic_id(int ioapic_idx) 2427 { 2428 unsigned long flags; 2429 union IO_APIC_reg_00 reg_00; 2430 2431 raw_spin_lock_irqsave(&ioapic_lock, flags); 2432 reg_00.raw = io_apic_read(ioapic_idx, 0); 2433 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) { 2434 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 2435 io_apic_write(ioapic_idx, 0, reg_00.raw); 2436 } 2437 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2438 } 2439 2440 static void ioapic_resume(void) 2441 { 2442 int ioapic_idx; 2443 2444 for_each_ioapic_reverse(ioapic_idx) 2445 resume_ioapic_id(ioapic_idx); 2446 2447 restore_ioapic_entries(); 2448 } 2449 2450 static struct syscore_ops ioapic_syscore_ops = { 2451 .suspend = save_ioapic_entries, 2452 .resume = ioapic_resume, 2453 }; 2454 2455 static int __init ioapic_init_ops(void) 2456 { 2457 register_syscore_ops(&ioapic_syscore_ops); 2458 2459 return 0; 2460 } 2461 2462 device_initcall(ioapic_init_ops); 2463 2464 static int io_apic_get_redir_entries(int ioapic) 2465 { 2466 union IO_APIC_reg_01 reg_01; 2467 unsigned long flags; 2468 2469 raw_spin_lock_irqsave(&ioapic_lock, flags); 2470 reg_01.raw = io_apic_read(ioapic, 1); 2471 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2472 2473 /* The register returns the maximum index redir index 2474 * supported, which is one less than the total number of redir 2475 * entries. 2476 */ 2477 return reg_01.bits.entries + 1; 2478 } 2479 2480 unsigned int arch_dynirq_lower_bound(unsigned int from) 2481 { 2482 /* 2483 * dmar_alloc_hwirq() may be called before setup_IO_APIC(), so use 2484 * gsi_top if ioapic_dynirq_base hasn't been initialized yet. 2485 */ 2486 if (!ioapic_initialized) 2487 return gsi_top; 2488 /* 2489 * For DT enabled machines ioapic_dynirq_base is irrelevant and not 2490 * updated. So simply return @from if ioapic_dynirq_base == 0. 2491 */ 2492 return ioapic_dynirq_base ? : from; 2493 } 2494 2495 #ifdef CONFIG_X86_32 2496 static int io_apic_get_unique_id(int ioapic, int apic_id) 2497 { 2498 union IO_APIC_reg_00 reg_00; 2499 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 2500 physid_mask_t tmp; 2501 unsigned long flags; 2502 int i = 0; 2503 2504 /* 2505 * The P4 platform supports up to 256 APIC IDs on two separate APIC 2506 * buses (one for LAPICs, one for IOAPICs), where predecessors only 2507 * supports up to 16 on one shared APIC bus. 2508 * 2509 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 2510 * advantage of new APIC bus architecture. 2511 */ 2512 2513 if (physids_empty(apic_id_map)) 2514 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map); 2515 2516 raw_spin_lock_irqsave(&ioapic_lock, flags); 2517 reg_00.raw = io_apic_read(ioapic, 0); 2518 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2519 2520 if (apic_id >= get_physical_broadcast()) { 2521 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 2522 "%d\n", ioapic, apic_id, reg_00.bits.ID); 2523 apic_id = reg_00.bits.ID; 2524 } 2525 2526 /* 2527 * Every APIC in a system must have a unique ID or we get lots of nice 2528 * 'stuck on smp_invalidate_needed IPI wait' messages. 2529 */ 2530 if (apic->check_apicid_used(&apic_id_map, apic_id)) { 2531 2532 for (i = 0; i < get_physical_broadcast(); i++) { 2533 if (!apic->check_apicid_used(&apic_id_map, i)) 2534 break; 2535 } 2536 2537 if (i == get_physical_broadcast()) 2538 panic("Max apic_id exceeded!\n"); 2539 2540 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 2541 "trying %d\n", ioapic, apic_id, i); 2542 2543 apic_id = i; 2544 } 2545 2546 apic->apicid_to_cpu_present(apic_id, &tmp); 2547 physids_or(apic_id_map, apic_id_map, tmp); 2548 2549 if (reg_00.bits.ID != apic_id) { 2550 reg_00.bits.ID = apic_id; 2551 2552 raw_spin_lock_irqsave(&ioapic_lock, flags); 2553 io_apic_write(ioapic, 0, reg_00.raw); 2554 reg_00.raw = io_apic_read(ioapic, 0); 2555 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2556 2557 /* Sanity check */ 2558 if (reg_00.bits.ID != apic_id) { 2559 pr_err("IOAPIC[%d]: Unable to change apic_id!\n", 2560 ioapic); 2561 return -1; 2562 } 2563 } 2564 2565 apic_printk(APIC_VERBOSE, KERN_INFO 2566 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 2567 2568 return apic_id; 2569 } 2570 2571 static u8 io_apic_unique_id(int idx, u8 id) 2572 { 2573 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 2574 !APIC_XAPIC(boot_cpu_apic_version)) 2575 return io_apic_get_unique_id(idx, id); 2576 else 2577 return id; 2578 } 2579 #else 2580 static u8 io_apic_unique_id(int idx, u8 id) 2581 { 2582 union IO_APIC_reg_00 reg_00; 2583 DECLARE_BITMAP(used, 256); 2584 unsigned long flags; 2585 u8 new_id; 2586 int i; 2587 2588 bitmap_zero(used, 256); 2589 for_each_ioapic(i) 2590 __set_bit(mpc_ioapic_id(i), used); 2591 2592 /* Hand out the requested id if available */ 2593 if (!test_bit(id, used)) 2594 return id; 2595 2596 /* 2597 * Read the current id from the ioapic and keep it if 2598 * available. 2599 */ 2600 raw_spin_lock_irqsave(&ioapic_lock, flags); 2601 reg_00.raw = io_apic_read(idx, 0); 2602 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2603 new_id = reg_00.bits.ID; 2604 if (!test_bit(new_id, used)) { 2605 apic_printk(APIC_VERBOSE, KERN_INFO 2606 "IOAPIC[%d]: Using reg apic_id %d instead of %d\n", 2607 idx, new_id, id); 2608 return new_id; 2609 } 2610 2611 /* 2612 * Get the next free id and write it to the ioapic. 2613 */ 2614 new_id = find_first_zero_bit(used, 256); 2615 reg_00.bits.ID = new_id; 2616 raw_spin_lock_irqsave(&ioapic_lock, flags); 2617 io_apic_write(idx, 0, reg_00.raw); 2618 reg_00.raw = io_apic_read(idx, 0); 2619 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2620 /* Sanity check */ 2621 BUG_ON(reg_00.bits.ID != new_id); 2622 2623 return new_id; 2624 } 2625 #endif 2626 2627 static int io_apic_get_version(int ioapic) 2628 { 2629 union IO_APIC_reg_01 reg_01; 2630 unsigned long flags; 2631 2632 raw_spin_lock_irqsave(&ioapic_lock, flags); 2633 reg_01.raw = io_apic_read(ioapic, 1); 2634 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2635 2636 return reg_01.bits.version; 2637 } 2638 2639 /* 2640 * This function updates target affinity of IOAPIC interrupts to include 2641 * the CPUs which came online during SMP bringup. 2642 */ 2643 #define IOAPIC_RESOURCE_NAME_SIZE 11 2644 2645 static struct resource *ioapic_resources; 2646 2647 static struct resource * __init ioapic_setup_resources(void) 2648 { 2649 unsigned long n; 2650 struct resource *res; 2651 char *mem; 2652 int i; 2653 2654 if (nr_ioapics == 0) 2655 return NULL; 2656 2657 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 2658 n *= nr_ioapics; 2659 2660 mem = memblock_alloc(n, SMP_CACHE_BYTES); 2661 if (!mem) 2662 panic("%s: Failed to allocate %lu bytes\n", __func__, n); 2663 res = (void *)mem; 2664 2665 mem += sizeof(struct resource) * nr_ioapics; 2666 2667 for_each_ioapic(i) { 2668 res[i].name = mem; 2669 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 2670 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); 2671 mem += IOAPIC_RESOURCE_NAME_SIZE; 2672 ioapics[i].iomem_res = &res[i]; 2673 } 2674 2675 ioapic_resources = res; 2676 2677 return res; 2678 } 2679 2680 void __init io_apic_init_mappings(void) 2681 { 2682 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 2683 struct resource *ioapic_res; 2684 int i; 2685 2686 ioapic_res = ioapic_setup_resources(); 2687 for_each_ioapic(i) { 2688 if (smp_found_config) { 2689 ioapic_phys = mpc_ioapic_addr(i); 2690 #ifdef CONFIG_X86_32 2691 if (!ioapic_phys) { 2692 printk(KERN_ERR 2693 "WARNING: bogus zero IO-APIC " 2694 "address found in MPTABLE, " 2695 "disabling IO/APIC support!\n"); 2696 smp_found_config = 0; 2697 skip_ioapic_setup = 1; 2698 goto fake_ioapic_page; 2699 } 2700 #endif 2701 } else { 2702 #ifdef CONFIG_X86_32 2703 fake_ioapic_page: 2704 #endif 2705 ioapic_phys = (unsigned long)memblock_alloc(PAGE_SIZE, 2706 PAGE_SIZE); 2707 if (!ioapic_phys) 2708 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 2709 __func__, PAGE_SIZE, PAGE_SIZE); 2710 ioapic_phys = __pa(ioapic_phys); 2711 } 2712 set_fixmap_nocache(idx, ioapic_phys); 2713 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", 2714 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), 2715 ioapic_phys); 2716 idx++; 2717 2718 ioapic_res->start = ioapic_phys; 2719 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; 2720 ioapic_res++; 2721 } 2722 } 2723 2724 void __init ioapic_insert_resources(void) 2725 { 2726 int i; 2727 struct resource *r = ioapic_resources; 2728 2729 if (!r) { 2730 if (nr_ioapics > 0) 2731 printk(KERN_ERR 2732 "IO APIC resources couldn't be allocated.\n"); 2733 return; 2734 } 2735 2736 for_each_ioapic(i) { 2737 insert_resource(&iomem_resource, r); 2738 r++; 2739 } 2740 } 2741 2742 int mp_find_ioapic(u32 gsi) 2743 { 2744 int i; 2745 2746 if (nr_ioapics == 0) 2747 return -1; 2748 2749 /* Find the IOAPIC that manages this GSI. */ 2750 for_each_ioapic(i) { 2751 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i); 2752 if (gsi >= gsi_cfg->gsi_base && gsi <= gsi_cfg->gsi_end) 2753 return i; 2754 } 2755 2756 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 2757 return -1; 2758 } 2759 2760 int mp_find_ioapic_pin(int ioapic, u32 gsi) 2761 { 2762 struct mp_ioapic_gsi *gsi_cfg; 2763 2764 if (WARN_ON(ioapic < 0)) 2765 return -1; 2766 2767 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2768 if (WARN_ON(gsi > gsi_cfg->gsi_end)) 2769 return -1; 2770 2771 return gsi - gsi_cfg->gsi_base; 2772 } 2773 2774 static int bad_ioapic_register(int idx) 2775 { 2776 union IO_APIC_reg_00 reg_00; 2777 union IO_APIC_reg_01 reg_01; 2778 union IO_APIC_reg_02 reg_02; 2779 2780 reg_00.raw = io_apic_read(idx, 0); 2781 reg_01.raw = io_apic_read(idx, 1); 2782 reg_02.raw = io_apic_read(idx, 2); 2783 2784 if (reg_00.raw == -1 && reg_01.raw == -1 && reg_02.raw == -1) { 2785 pr_warn("I/O APIC 0x%x registers return all ones, skipping!\n", 2786 mpc_ioapic_addr(idx)); 2787 return 1; 2788 } 2789 2790 return 0; 2791 } 2792 2793 static int find_free_ioapic_entry(void) 2794 { 2795 int idx; 2796 2797 for (idx = 0; idx < MAX_IO_APICS; idx++) 2798 if (ioapics[idx].nr_registers == 0) 2799 return idx; 2800 2801 return MAX_IO_APICS; 2802 } 2803 2804 /** 2805 * mp_register_ioapic - Register an IOAPIC device 2806 * @id: hardware IOAPIC ID 2807 * @address: physical address of IOAPIC register area 2808 * @gsi_base: base of GSI associated with the IOAPIC 2809 * @cfg: configuration information for the IOAPIC 2810 */ 2811 int mp_register_ioapic(int id, u32 address, u32 gsi_base, 2812 struct ioapic_domain_cfg *cfg) 2813 { 2814 bool hotplug = !!ioapic_initialized; 2815 struct mp_ioapic_gsi *gsi_cfg; 2816 int idx, ioapic, entries; 2817 u32 gsi_end; 2818 2819 if (!address) { 2820 pr_warn("Bogus (zero) I/O APIC address found, skipping!\n"); 2821 return -EINVAL; 2822 } 2823 for_each_ioapic(ioapic) 2824 if (ioapics[ioapic].mp_config.apicaddr == address) { 2825 pr_warn("address 0x%x conflicts with IOAPIC%d\n", 2826 address, ioapic); 2827 return -EEXIST; 2828 } 2829 2830 idx = find_free_ioapic_entry(); 2831 if (idx >= MAX_IO_APICS) { 2832 pr_warn("Max # of I/O APICs (%d) exceeded (found %d), skipping\n", 2833 MAX_IO_APICS, idx); 2834 return -ENOSPC; 2835 } 2836 2837 ioapics[idx].mp_config.type = MP_IOAPIC; 2838 ioapics[idx].mp_config.flags = MPC_APIC_USABLE; 2839 ioapics[idx].mp_config.apicaddr = address; 2840 2841 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address); 2842 if (bad_ioapic_register(idx)) { 2843 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2844 return -ENODEV; 2845 } 2846 2847 ioapics[idx].mp_config.apicid = io_apic_unique_id(idx, id); 2848 ioapics[idx].mp_config.apicver = io_apic_get_version(idx); 2849 2850 /* 2851 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 2852 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 2853 */ 2854 entries = io_apic_get_redir_entries(idx); 2855 gsi_end = gsi_base + entries - 1; 2856 for_each_ioapic(ioapic) { 2857 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2858 if ((gsi_base >= gsi_cfg->gsi_base && 2859 gsi_base <= gsi_cfg->gsi_end) || 2860 (gsi_end >= gsi_cfg->gsi_base && 2861 gsi_end <= gsi_cfg->gsi_end)) { 2862 pr_warn("GSI range [%u-%u] for new IOAPIC conflicts with GSI[%u-%u]\n", 2863 gsi_base, gsi_end, 2864 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2865 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2866 return -ENOSPC; 2867 } 2868 } 2869 gsi_cfg = mp_ioapic_gsi_routing(idx); 2870 gsi_cfg->gsi_base = gsi_base; 2871 gsi_cfg->gsi_end = gsi_end; 2872 2873 ioapics[idx].irqdomain = NULL; 2874 ioapics[idx].irqdomain_cfg = *cfg; 2875 2876 /* 2877 * If mp_register_ioapic() is called during early boot stage when 2878 * walking ACPI/DT tables, it's too early to create irqdomain, 2879 * we are still using bootmem allocator. So delay it to setup_IO_APIC(). 2880 */ 2881 if (hotplug) { 2882 if (mp_irqdomain_create(idx)) { 2883 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2884 return -ENOMEM; 2885 } 2886 alloc_ioapic_saved_registers(idx); 2887 } 2888 2889 if (gsi_cfg->gsi_end >= gsi_top) 2890 gsi_top = gsi_cfg->gsi_end + 1; 2891 if (nr_ioapics <= idx) 2892 nr_ioapics = idx + 1; 2893 2894 /* Set nr_registers to mark entry present */ 2895 ioapics[idx].nr_registers = entries; 2896 2897 pr_info("IOAPIC[%d]: apic_id %d, version %d, address 0x%x, GSI %d-%d\n", 2898 idx, mpc_ioapic_id(idx), 2899 mpc_ioapic_ver(idx), mpc_ioapic_addr(idx), 2900 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2901 2902 return 0; 2903 } 2904 2905 int mp_unregister_ioapic(u32 gsi_base) 2906 { 2907 int ioapic, pin; 2908 int found = 0; 2909 2910 for_each_ioapic(ioapic) 2911 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) { 2912 found = 1; 2913 break; 2914 } 2915 if (!found) { 2916 pr_warn("can't find IOAPIC for GSI %d\n", gsi_base); 2917 return -ENODEV; 2918 } 2919 2920 for_each_pin(ioapic, pin) { 2921 u32 gsi = mp_pin_to_gsi(ioapic, pin); 2922 int irq = mp_map_gsi_to_irq(gsi, 0, NULL); 2923 struct mp_chip_data *data; 2924 2925 if (irq >= 0) { 2926 data = irq_get_chip_data(irq); 2927 if (data && data->count) { 2928 pr_warn("pin%d on IOAPIC%d is still in use.\n", 2929 pin, ioapic); 2930 return -EBUSY; 2931 } 2932 } 2933 } 2934 2935 /* Mark entry not present */ 2936 ioapics[ioapic].nr_registers = 0; 2937 ioapic_destroy_irqdomain(ioapic); 2938 free_ioapic_saved_registers(ioapic); 2939 if (ioapics[ioapic].iomem_res) 2940 release_resource(ioapics[ioapic].iomem_res); 2941 clear_fixmap(FIX_IO_APIC_BASE_0 + ioapic); 2942 memset(&ioapics[ioapic], 0, sizeof(ioapics[ioapic])); 2943 2944 return 0; 2945 } 2946 2947 int mp_ioapic_registered(u32 gsi_base) 2948 { 2949 int ioapic; 2950 2951 for_each_ioapic(ioapic) 2952 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) 2953 return 1; 2954 2955 return 0; 2956 } 2957 2958 static void mp_irqdomain_get_attr(u32 gsi, struct mp_chip_data *data, 2959 struct irq_alloc_info *info) 2960 { 2961 if (info && info->ioapic.valid) { 2962 data->is_level = info->ioapic.is_level; 2963 data->active_low = info->ioapic.active_low; 2964 } else if (__acpi_get_override_irq(gsi, &data->is_level, 2965 &data->active_low) < 0) { 2966 /* PCI interrupts are always active low level triggered. */ 2967 data->is_level = true; 2968 data->active_low = true; 2969 } 2970 } 2971 2972 /* 2973 * Configure the I/O-APIC specific fields in the routing entry. 2974 * 2975 * This is important to setup the I/O-APIC specific bits (is_level, 2976 * active_low, masked) because the underlying parent domain will only 2977 * provide the routing information and is oblivious of the I/O-APIC 2978 * specific bits. 2979 * 2980 * The entry is just preconfigured at this point and not written into the 2981 * RTE. This happens later during activation which will fill in the actual 2982 * routing information. 2983 */ 2984 static void mp_preconfigure_entry(struct mp_chip_data *data) 2985 { 2986 struct IO_APIC_route_entry *entry = &data->entry; 2987 2988 memset(entry, 0, sizeof(*entry)); 2989 entry->is_level = data->is_level; 2990 entry->active_low = data->active_low; 2991 /* 2992 * Mask level triggered irqs. Edge triggered irqs are masked 2993 * by the irq core code in case they fire. 2994 */ 2995 entry->masked = data->is_level; 2996 } 2997 2998 int mp_irqdomain_alloc(struct irq_domain *domain, unsigned int virq, 2999 unsigned int nr_irqs, void *arg) 3000 { 3001 struct irq_alloc_info *info = arg; 3002 struct mp_chip_data *data; 3003 struct irq_data *irq_data; 3004 int ret, ioapic, pin; 3005 unsigned long flags; 3006 3007 if (!info || nr_irqs > 1) 3008 return -EINVAL; 3009 irq_data = irq_domain_get_irq_data(domain, virq); 3010 if (!irq_data) 3011 return -EINVAL; 3012 3013 ioapic = mp_irqdomain_ioapic_idx(domain); 3014 pin = info->ioapic.pin; 3015 if (irq_find_mapping(domain, (irq_hw_number_t)pin) > 0) 3016 return -EEXIST; 3017 3018 data = kzalloc(sizeof(*data), GFP_KERNEL); 3019 if (!data) 3020 return -ENOMEM; 3021 3022 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, info); 3023 if (ret < 0) { 3024 kfree(data); 3025 return ret; 3026 } 3027 3028 INIT_LIST_HEAD(&data->irq_2_pin); 3029 irq_data->hwirq = info->ioapic.pin; 3030 irq_data->chip = (domain->parent == x86_vector_domain) ? 3031 &ioapic_chip : &ioapic_ir_chip; 3032 irq_data->chip_data = data; 3033 mp_irqdomain_get_attr(mp_pin_to_gsi(ioapic, pin), data, info); 3034 3035 add_pin_to_irq_node(data, ioapic_alloc_attr_node(info), ioapic, pin); 3036 3037 mp_preconfigure_entry(data); 3038 mp_register_handler(virq, data->is_level); 3039 3040 local_irq_save(flags); 3041 if (virq < nr_legacy_irqs()) 3042 legacy_pic->mask(virq); 3043 local_irq_restore(flags); 3044 3045 apic_printk(APIC_VERBOSE, KERN_DEBUG 3046 "IOAPIC[%d]: Preconfigured routing entry (%d-%d -> IRQ %d Level:%i ActiveLow:%i)\n", 3047 ioapic, mpc_ioapic_id(ioapic), pin, virq, 3048 data->is_level, data->active_low); 3049 return 0; 3050 } 3051 3052 void mp_irqdomain_free(struct irq_domain *domain, unsigned int virq, 3053 unsigned int nr_irqs) 3054 { 3055 struct irq_data *irq_data; 3056 struct mp_chip_data *data; 3057 3058 BUG_ON(nr_irqs != 1); 3059 irq_data = irq_domain_get_irq_data(domain, virq); 3060 if (irq_data && irq_data->chip_data) { 3061 data = irq_data->chip_data; 3062 __remove_pin_from_irq(data, mp_irqdomain_ioapic_idx(domain), 3063 (int)irq_data->hwirq); 3064 WARN_ON(!list_empty(&data->irq_2_pin)); 3065 kfree(irq_data->chip_data); 3066 } 3067 irq_domain_free_irqs_top(domain, virq, nr_irqs); 3068 } 3069 3070 int mp_irqdomain_activate(struct irq_domain *domain, 3071 struct irq_data *irq_data, bool reserve) 3072 { 3073 unsigned long flags; 3074 3075 raw_spin_lock_irqsave(&ioapic_lock, flags); 3076 ioapic_configure_entry(irq_data); 3077 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 3078 return 0; 3079 } 3080 3081 void mp_irqdomain_deactivate(struct irq_domain *domain, 3082 struct irq_data *irq_data) 3083 { 3084 /* It won't be called for IRQ with multiple IOAPIC pins associated */ 3085 ioapic_mask_entry(mp_irqdomain_ioapic_idx(domain), 3086 (int)irq_data->hwirq); 3087 } 3088 3089 int mp_irqdomain_ioapic_idx(struct irq_domain *domain) 3090 { 3091 return (int)(long)domain->host_data; 3092 } 3093 3094 const struct irq_domain_ops mp_ioapic_irqdomain_ops = { 3095 .alloc = mp_irqdomain_alloc, 3096 .free = mp_irqdomain_free, 3097 .activate = mp_irqdomain_activate, 3098 .deactivate = mp_irqdomain_deactivate, 3099 }; 3100