xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision e57253a8)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46 
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 
64 #include <asm/apic.h>
65 
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 	for (entry = head; entry; entry = entry->next)
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
78 
79 static struct ioapic {
80 	/*
81 	 * # of IRQ routing registers
82 	 */
83 	int nr_registers;
84 	/*
85 	 * Saved state during suspend/resume, or while enabling intr-remap.
86 	 */
87 	struct IO_APIC_route_entry *saved_registers;
88 	/* I/O APIC config */
89 	struct mpc_ioapic mp_config;
90 	/* IO APIC gsi routing info */
91 	struct mp_ioapic_gsi  gsi_config;
92 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
93 } ioapics[MAX_IO_APICS];
94 
95 #define mpc_ioapic_ver(id)		ioapics[id].mp_config.apicver
96 
97 int mpc_ioapic_id(int id)
98 {
99 	return ioapics[id].mp_config.apicid;
100 }
101 
102 unsigned int mpc_ioapic_addr(int id)
103 {
104 	return ioapics[id].mp_config.apicaddr;
105 }
106 
107 struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int id)
108 {
109 	return &ioapics[id].gsi_config;
110 }
111 
112 int nr_ioapics;
113 
114 /* The one past the highest gsi number used */
115 u32 gsi_top;
116 
117 /* MP IRQ source entries */
118 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
119 
120 /* # of MP IRQ source entries */
121 int mp_irq_entries;
122 
123 /* GSI interrupts */
124 static int nr_irqs_gsi = NR_IRQS_LEGACY;
125 
126 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
127 int mp_bus_id_to_type[MAX_MP_BUSSES];
128 #endif
129 
130 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
131 
132 int skip_ioapic_setup;
133 
134 /**
135  * disable_ioapic_support() - disables ioapic support at runtime
136  */
137 void disable_ioapic_support(void)
138 {
139 #ifdef CONFIG_PCI
140 	noioapicquirk = 1;
141 	noioapicreroute = -1;
142 #endif
143 	skip_ioapic_setup = 1;
144 }
145 
146 static int __init parse_noapic(char *str)
147 {
148 	/* disable IO-APIC */
149 	disable_ioapic_support();
150 	return 0;
151 }
152 early_param("noapic", parse_noapic);
153 
154 static int io_apic_setup_irq_pin(unsigned int irq, int node,
155 				 struct io_apic_irq_attr *attr);
156 
157 /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
158 void mp_save_irq(struct mpc_intsrc *m)
159 {
160 	int i;
161 
162 	apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
163 		" IRQ %02x, APIC ID %x, APIC INT %02x\n",
164 		m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
165 		m->srcbusirq, m->dstapic, m->dstirq);
166 
167 	for (i = 0; i < mp_irq_entries; i++) {
168 		if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
169 			return;
170 	}
171 
172 	memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
173 	if (++mp_irq_entries == MAX_IRQ_SOURCES)
174 		panic("Max # of irq sources exceeded!!\n");
175 }
176 
177 struct irq_pin_list {
178 	int apic, pin;
179 	struct irq_pin_list *next;
180 };
181 
182 static struct irq_pin_list *alloc_irq_pin_list(int node)
183 {
184 	return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
185 }
186 
187 
188 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
189 #ifdef CONFIG_SPARSE_IRQ
190 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
191 #else
192 static struct irq_cfg irq_cfgx[NR_IRQS];
193 #endif
194 
195 int __init arch_early_irq_init(void)
196 {
197 	struct irq_cfg *cfg;
198 	int count, node, i;
199 
200 	if (!legacy_pic->nr_legacy_irqs) {
201 		nr_irqs_gsi = 0;
202 		io_apic_irqs = ~0UL;
203 	}
204 
205 	for (i = 0; i < nr_ioapics; i++) {
206 		ioapics[i].saved_registers =
207 			kzalloc(sizeof(struct IO_APIC_route_entry) *
208 				ioapics[i].nr_registers, GFP_KERNEL);
209 		if (!ioapics[i].saved_registers)
210 			pr_err("IOAPIC %d: suspend/resume impossible!\n", i);
211 	}
212 
213 	cfg = irq_cfgx;
214 	count = ARRAY_SIZE(irq_cfgx);
215 	node = cpu_to_node(0);
216 
217 	/* Make sure the legacy interrupts are marked in the bitmap */
218 	irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
219 
220 	for (i = 0; i < count; i++) {
221 		irq_set_chip_data(i, &cfg[i]);
222 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
223 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
224 		/*
225 		 * For legacy IRQ's, start with assigning irq0 to irq15 to
226 		 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
227 		 */
228 		if (i < legacy_pic->nr_legacy_irqs) {
229 			cfg[i].vector = IRQ0_VECTOR + i;
230 			cpumask_set_cpu(0, cfg[i].domain);
231 		}
232 	}
233 
234 	return 0;
235 }
236 
237 #ifdef CONFIG_SPARSE_IRQ
238 static struct irq_cfg *irq_cfg(unsigned int irq)
239 {
240 	return irq_get_chip_data(irq);
241 }
242 
243 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
244 {
245 	struct irq_cfg *cfg;
246 
247 	cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
248 	if (!cfg)
249 		return NULL;
250 	if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
251 		goto out_cfg;
252 	if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
253 		goto out_domain;
254 	return cfg;
255 out_domain:
256 	free_cpumask_var(cfg->domain);
257 out_cfg:
258 	kfree(cfg);
259 	return NULL;
260 }
261 
262 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
263 {
264 	if (!cfg)
265 		return;
266 	irq_set_chip_data(at, NULL);
267 	free_cpumask_var(cfg->domain);
268 	free_cpumask_var(cfg->old_domain);
269 	kfree(cfg);
270 }
271 
272 #else
273 
274 struct irq_cfg *irq_cfg(unsigned int irq)
275 {
276 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
277 }
278 
279 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
280 {
281 	return irq_cfgx + irq;
282 }
283 
284 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
285 
286 #endif
287 
288 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
289 {
290 	int res = irq_alloc_desc_at(at, node);
291 	struct irq_cfg *cfg;
292 
293 	if (res < 0) {
294 		if (res != -EEXIST)
295 			return NULL;
296 		cfg = irq_get_chip_data(at);
297 		if (cfg)
298 			return cfg;
299 	}
300 
301 	cfg = alloc_irq_cfg(at, node);
302 	if (cfg)
303 		irq_set_chip_data(at, cfg);
304 	else
305 		irq_free_desc(at);
306 	return cfg;
307 }
308 
309 static int alloc_irq_from(unsigned int from, int node)
310 {
311 	return irq_alloc_desc_from(from, node);
312 }
313 
314 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
315 {
316 	free_irq_cfg(at, cfg);
317 	irq_free_desc(at);
318 }
319 
320 struct io_apic {
321 	unsigned int index;
322 	unsigned int unused[3];
323 	unsigned int data;
324 	unsigned int unused2[11];
325 	unsigned int eoi;
326 };
327 
328 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
329 {
330 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
331 		+ (mpc_ioapic_addr(idx) & ~PAGE_MASK);
332 }
333 
334 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
335 {
336 	struct io_apic __iomem *io_apic = io_apic_base(apic);
337 	writel(vector, &io_apic->eoi);
338 }
339 
340 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
341 {
342 	struct io_apic __iomem *io_apic = io_apic_base(apic);
343 	writel(reg, &io_apic->index);
344 	return readl(&io_apic->data);
345 }
346 
347 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
348 {
349 	struct io_apic __iomem *io_apic = io_apic_base(apic);
350 	writel(reg, &io_apic->index);
351 	writel(value, &io_apic->data);
352 }
353 
354 /*
355  * Re-write a value: to be used for read-modify-write
356  * cycles where the read already set up the index register.
357  *
358  * Older SiS APIC requires we rewrite the index register
359  */
360 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
361 {
362 	struct io_apic __iomem *io_apic = io_apic_base(apic);
363 
364 	if (sis_apic_bug)
365 		writel(reg, &io_apic->index);
366 	writel(value, &io_apic->data);
367 }
368 
369 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
370 {
371 	struct irq_pin_list *entry;
372 	unsigned long flags;
373 
374 	raw_spin_lock_irqsave(&ioapic_lock, flags);
375 	for_each_irq_pin(entry, cfg->irq_2_pin) {
376 		unsigned int reg;
377 		int pin;
378 
379 		pin = entry->pin;
380 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
381 		/* Is the remote IRR bit set? */
382 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
383 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
384 			return true;
385 		}
386 	}
387 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
388 
389 	return false;
390 }
391 
392 union entry_union {
393 	struct { u32 w1, w2; };
394 	struct IO_APIC_route_entry entry;
395 };
396 
397 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin)
398 {
399 	union entry_union eu;
400 
401 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
402 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
403 	return eu.entry;
404 }
405 
406 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
407 {
408 	union entry_union eu;
409 	unsigned long flags;
410 	raw_spin_lock_irqsave(&ioapic_lock, flags);
411 	eu.entry = __ioapic_read_entry(apic, pin);
412 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
413 	return eu.entry;
414 }
415 
416 /*
417  * When we write a new IO APIC routing entry, we need to write the high
418  * word first! If the mask bit in the low word is clear, we will enable
419  * the interrupt, and we need to make sure the entry is fully populated
420  * before that happens.
421  */
422 static void
423 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
424 {
425 	union entry_union eu = {{0, 0}};
426 
427 	eu.entry = e;
428 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
429 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
430 }
431 
432 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
433 {
434 	unsigned long flags;
435 	raw_spin_lock_irqsave(&ioapic_lock, flags);
436 	__ioapic_write_entry(apic, pin, e);
437 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
438 }
439 
440 /*
441  * When we mask an IO APIC routing entry, we need to write the low
442  * word first, in order to set the mask bit before we change the
443  * high bits!
444  */
445 static void ioapic_mask_entry(int apic, int pin)
446 {
447 	unsigned long flags;
448 	union entry_union eu = { .entry.mask = 1 };
449 
450 	raw_spin_lock_irqsave(&ioapic_lock, flags);
451 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
452 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
453 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
454 }
455 
456 /*
457  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
458  * shared ISA-space IRQs, so we have to support them. We are super
459  * fast in the common case, and fast for shared ISA-space IRQs.
460  */
461 static int
462 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
463 {
464 	struct irq_pin_list **last, *entry;
465 
466 	/* don't allow duplicates */
467 	last = &cfg->irq_2_pin;
468 	for_each_irq_pin(entry, cfg->irq_2_pin) {
469 		if (entry->apic == apic && entry->pin == pin)
470 			return 0;
471 		last = &entry->next;
472 	}
473 
474 	entry = alloc_irq_pin_list(node);
475 	if (!entry) {
476 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
477 				node, apic, pin);
478 		return -ENOMEM;
479 	}
480 	entry->apic = apic;
481 	entry->pin = pin;
482 
483 	*last = entry;
484 	return 0;
485 }
486 
487 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
488 {
489 	if (__add_pin_to_irq_node(cfg, node, apic, pin))
490 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
491 }
492 
493 /*
494  * Reroute an IRQ to a different pin.
495  */
496 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
497 					   int oldapic, int oldpin,
498 					   int newapic, int newpin)
499 {
500 	struct irq_pin_list *entry;
501 
502 	for_each_irq_pin(entry, cfg->irq_2_pin) {
503 		if (entry->apic == oldapic && entry->pin == oldpin) {
504 			entry->apic = newapic;
505 			entry->pin = newpin;
506 			/* every one is different, right? */
507 			return;
508 		}
509 	}
510 
511 	/* old apic/pin didn't exist, so just add new ones */
512 	add_pin_to_irq_node(cfg, node, newapic, newpin);
513 }
514 
515 static void __io_apic_modify_irq(struct irq_pin_list *entry,
516 				 int mask_and, int mask_or,
517 				 void (*final)(struct irq_pin_list *entry))
518 {
519 	unsigned int reg, pin;
520 
521 	pin = entry->pin;
522 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
523 	reg &= mask_and;
524 	reg |= mask_or;
525 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
526 	if (final)
527 		final(entry);
528 }
529 
530 static void io_apic_modify_irq(struct irq_cfg *cfg,
531 			       int mask_and, int mask_or,
532 			       void (*final)(struct irq_pin_list *entry))
533 {
534 	struct irq_pin_list *entry;
535 
536 	for_each_irq_pin(entry, cfg->irq_2_pin)
537 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
538 }
539 
540 static void io_apic_sync(struct irq_pin_list *entry)
541 {
542 	/*
543 	 * Synchronize the IO-APIC and the CPU by doing
544 	 * a dummy read from the IO-APIC
545 	 */
546 	struct io_apic __iomem *io_apic;
547 	io_apic = io_apic_base(entry->apic);
548 	readl(&io_apic->data);
549 }
550 
551 static void mask_ioapic(struct irq_cfg *cfg)
552 {
553 	unsigned long flags;
554 
555 	raw_spin_lock_irqsave(&ioapic_lock, flags);
556 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
557 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
558 }
559 
560 static void mask_ioapic_irq(struct irq_data *data)
561 {
562 	mask_ioapic(data->chip_data);
563 }
564 
565 static void __unmask_ioapic(struct irq_cfg *cfg)
566 {
567 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
568 }
569 
570 static void unmask_ioapic(struct irq_cfg *cfg)
571 {
572 	unsigned long flags;
573 
574 	raw_spin_lock_irqsave(&ioapic_lock, flags);
575 	__unmask_ioapic(cfg);
576 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
577 }
578 
579 static void unmask_ioapic_irq(struct irq_data *data)
580 {
581 	unmask_ioapic(data->chip_data);
582 }
583 
584 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
585 {
586 	struct IO_APIC_route_entry entry;
587 
588 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
589 	entry = ioapic_read_entry(apic, pin);
590 	if (entry.delivery_mode == dest_SMI)
591 		return;
592 
593 	/*
594 	 * Make sure the entry is masked and re-read the contents to check
595 	 * if it is a level triggered pin and if the remote-IRR is set.
596 	 */
597 	if (!entry.mask) {
598 		entry.mask = 1;
599 		ioapic_write_entry(apic, pin, entry);
600 		entry = ioapic_read_entry(apic, pin);
601 	}
602 
603 	if (entry.irr) {
604 		/*
605 		 * Make sure the trigger mode is set to level. Explicit EOI
606 		 * doesn't clear the remote-IRR if the trigger mode is not
607 		 * set to level.
608 		 */
609 		if (!entry.trigger) {
610 			entry.trigger = IOAPIC_LEVEL;
611 			ioapic_write_entry(apic, pin, entry);
612 		}
613 
614 		if (mpc_ioapic_ver(apic) >= 0x20) {
615 			unsigned long flags;
616 
617 			raw_spin_lock_irqsave(&ioapic_lock, flags);
618 			io_apic_eoi(apic, entry.vector);
619 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
620 		} else {
621 			/*
622 			 * Mechanism by which we clear remote-IRR in this
623 			 * case is by changing the trigger mode to edge and
624 			 * back to level.
625 			 */
626 			entry.trigger = IOAPIC_EDGE;
627 			ioapic_write_entry(apic, pin, entry);
628 			entry.trigger = IOAPIC_LEVEL;
629 			ioapic_write_entry(apic, pin, entry);
630 		}
631 	}
632 
633 	/*
634 	 * Clear the rest of the bits in the IO-APIC RTE except for the mask
635 	 * bit.
636 	 */
637 	ioapic_mask_entry(apic, pin);
638 	entry = ioapic_read_entry(apic, pin);
639 	if (entry.irr)
640 		printk(KERN_ERR "Unable to reset IRR for apic: %d, pin :%d\n",
641 		       mpc_ioapic_id(apic), pin);
642 }
643 
644 static void clear_IO_APIC (void)
645 {
646 	int apic, pin;
647 
648 	for (apic = 0; apic < nr_ioapics; apic++)
649 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
650 			clear_IO_APIC_pin(apic, pin);
651 }
652 
653 #ifdef CONFIG_X86_32
654 /*
655  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
656  * specific CPU-side IRQs.
657  */
658 
659 #define MAX_PIRQS 8
660 static int pirq_entries[MAX_PIRQS] = {
661 	[0 ... MAX_PIRQS - 1] = -1
662 };
663 
664 static int __init ioapic_pirq_setup(char *str)
665 {
666 	int i, max;
667 	int ints[MAX_PIRQS+1];
668 
669 	get_options(str, ARRAY_SIZE(ints), ints);
670 
671 	apic_printk(APIC_VERBOSE, KERN_INFO
672 			"PIRQ redirection, working around broken MP-BIOS.\n");
673 	max = MAX_PIRQS;
674 	if (ints[0] < MAX_PIRQS)
675 		max = ints[0];
676 
677 	for (i = 0; i < max; i++) {
678 		apic_printk(APIC_VERBOSE, KERN_DEBUG
679 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
680 		/*
681 		 * PIRQs are mapped upside down, usually.
682 		 */
683 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
684 	}
685 	return 1;
686 }
687 
688 __setup("pirq=", ioapic_pirq_setup);
689 #endif /* CONFIG_X86_32 */
690 
691 /*
692  * Saves all the IO-APIC RTE's
693  */
694 int save_ioapic_entries(void)
695 {
696 	int apic, pin;
697 	int err = 0;
698 
699 	for (apic = 0; apic < nr_ioapics; apic++) {
700 		if (!ioapics[apic].saved_registers) {
701 			err = -ENOMEM;
702 			continue;
703 		}
704 
705 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
706 			ioapics[apic].saved_registers[pin] =
707 				ioapic_read_entry(apic, pin);
708 	}
709 
710 	return err;
711 }
712 
713 /*
714  * Mask all IO APIC entries.
715  */
716 void mask_ioapic_entries(void)
717 {
718 	int apic, pin;
719 
720 	for (apic = 0; apic < nr_ioapics; apic++) {
721 		if (!ioapics[apic].saved_registers)
722 			continue;
723 
724 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
725 			struct IO_APIC_route_entry entry;
726 
727 			entry = ioapics[apic].saved_registers[pin];
728 			if (!entry.mask) {
729 				entry.mask = 1;
730 				ioapic_write_entry(apic, pin, entry);
731 			}
732 		}
733 	}
734 }
735 
736 /*
737  * Restore IO APIC entries which was saved in the ioapic structure.
738  */
739 int restore_ioapic_entries(void)
740 {
741 	int apic, pin;
742 
743 	for (apic = 0; apic < nr_ioapics; apic++) {
744 		if (!ioapics[apic].saved_registers)
745 			continue;
746 
747 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
748 			ioapic_write_entry(apic, pin,
749 					   ioapics[apic].saved_registers[pin]);
750 	}
751 	return 0;
752 }
753 
754 /*
755  * Find the IRQ entry number of a certain pin.
756  */
757 static int find_irq_entry(int apic, int pin, int type)
758 {
759 	int i;
760 
761 	for (i = 0; i < mp_irq_entries; i++)
762 		if (mp_irqs[i].irqtype == type &&
763 		    (mp_irqs[i].dstapic == mpc_ioapic_id(apic) ||
764 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
765 		    mp_irqs[i].dstirq == pin)
766 			return i;
767 
768 	return -1;
769 }
770 
771 /*
772  * Find the pin to which IRQ[irq] (ISA) is connected
773  */
774 static int __init find_isa_irq_pin(int irq, int type)
775 {
776 	int i;
777 
778 	for (i = 0; i < mp_irq_entries; i++) {
779 		int lbus = mp_irqs[i].srcbus;
780 
781 		if (test_bit(lbus, mp_bus_not_pci) &&
782 		    (mp_irqs[i].irqtype == type) &&
783 		    (mp_irqs[i].srcbusirq == irq))
784 
785 			return mp_irqs[i].dstirq;
786 	}
787 	return -1;
788 }
789 
790 static int __init find_isa_irq_apic(int irq, int type)
791 {
792 	int i;
793 
794 	for (i = 0; i < mp_irq_entries; i++) {
795 		int lbus = mp_irqs[i].srcbus;
796 
797 		if (test_bit(lbus, mp_bus_not_pci) &&
798 		    (mp_irqs[i].irqtype == type) &&
799 		    (mp_irqs[i].srcbusirq == irq))
800 			break;
801 	}
802 	if (i < mp_irq_entries) {
803 		int apic;
804 		for(apic = 0; apic < nr_ioapics; apic++) {
805 			if (mpc_ioapic_id(apic) == mp_irqs[i].dstapic)
806 				return apic;
807 		}
808 	}
809 
810 	return -1;
811 }
812 
813 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
814 /*
815  * EISA Edge/Level control register, ELCR
816  */
817 static int EISA_ELCR(unsigned int irq)
818 {
819 	if (irq < legacy_pic->nr_legacy_irqs) {
820 		unsigned int port = 0x4d0 + (irq >> 3);
821 		return (inb(port) >> (irq & 7)) & 1;
822 	}
823 	apic_printk(APIC_VERBOSE, KERN_INFO
824 			"Broken MPtable reports ISA irq %d\n", irq);
825 	return 0;
826 }
827 
828 #endif
829 
830 /* ISA interrupts are always polarity zero edge triggered,
831  * when listed as conforming in the MP table. */
832 
833 #define default_ISA_trigger(idx)	(0)
834 #define default_ISA_polarity(idx)	(0)
835 
836 /* EISA interrupts are always polarity zero and can be edge or level
837  * trigger depending on the ELCR value.  If an interrupt is listed as
838  * EISA conforming in the MP table, that means its trigger type must
839  * be read in from the ELCR */
840 
841 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
842 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
843 
844 /* PCI interrupts are always polarity one level triggered,
845  * when listed as conforming in the MP table. */
846 
847 #define default_PCI_trigger(idx)	(1)
848 #define default_PCI_polarity(idx)	(1)
849 
850 /* MCA interrupts are always polarity zero level triggered,
851  * when listed as conforming in the MP table. */
852 
853 #define default_MCA_trigger(idx)	(1)
854 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
855 
856 static int irq_polarity(int idx)
857 {
858 	int bus = mp_irqs[idx].srcbus;
859 	int polarity;
860 
861 	/*
862 	 * Determine IRQ line polarity (high active or low active):
863 	 */
864 	switch (mp_irqs[idx].irqflag & 3)
865 	{
866 		case 0: /* conforms, ie. bus-type dependent polarity */
867 			if (test_bit(bus, mp_bus_not_pci))
868 				polarity = default_ISA_polarity(idx);
869 			else
870 				polarity = default_PCI_polarity(idx);
871 			break;
872 		case 1: /* high active */
873 		{
874 			polarity = 0;
875 			break;
876 		}
877 		case 2: /* reserved */
878 		{
879 			printk(KERN_WARNING "broken BIOS!!\n");
880 			polarity = 1;
881 			break;
882 		}
883 		case 3: /* low active */
884 		{
885 			polarity = 1;
886 			break;
887 		}
888 		default: /* invalid */
889 		{
890 			printk(KERN_WARNING "broken BIOS!!\n");
891 			polarity = 1;
892 			break;
893 		}
894 	}
895 	return polarity;
896 }
897 
898 static int irq_trigger(int idx)
899 {
900 	int bus = mp_irqs[idx].srcbus;
901 	int trigger;
902 
903 	/*
904 	 * Determine IRQ trigger mode (edge or level sensitive):
905 	 */
906 	switch ((mp_irqs[idx].irqflag>>2) & 3)
907 	{
908 		case 0: /* conforms, ie. bus-type dependent */
909 			if (test_bit(bus, mp_bus_not_pci))
910 				trigger = default_ISA_trigger(idx);
911 			else
912 				trigger = default_PCI_trigger(idx);
913 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
914 			switch (mp_bus_id_to_type[bus]) {
915 				case MP_BUS_ISA: /* ISA pin */
916 				{
917 					/* set before the switch */
918 					break;
919 				}
920 				case MP_BUS_EISA: /* EISA pin */
921 				{
922 					trigger = default_EISA_trigger(idx);
923 					break;
924 				}
925 				case MP_BUS_PCI: /* PCI pin */
926 				{
927 					/* set before the switch */
928 					break;
929 				}
930 				case MP_BUS_MCA: /* MCA pin */
931 				{
932 					trigger = default_MCA_trigger(idx);
933 					break;
934 				}
935 				default:
936 				{
937 					printk(KERN_WARNING "broken BIOS!!\n");
938 					trigger = 1;
939 					break;
940 				}
941 			}
942 #endif
943 			break;
944 		case 1: /* edge */
945 		{
946 			trigger = 0;
947 			break;
948 		}
949 		case 2: /* reserved */
950 		{
951 			printk(KERN_WARNING "broken BIOS!!\n");
952 			trigger = 1;
953 			break;
954 		}
955 		case 3: /* level */
956 		{
957 			trigger = 1;
958 			break;
959 		}
960 		default: /* invalid */
961 		{
962 			printk(KERN_WARNING "broken BIOS!!\n");
963 			trigger = 0;
964 			break;
965 		}
966 	}
967 	return trigger;
968 }
969 
970 static int pin_2_irq(int idx, int apic, int pin)
971 {
972 	int irq;
973 	int bus = mp_irqs[idx].srcbus;
974 	struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(apic);
975 
976 	/*
977 	 * Debugging check, we are in big trouble if this message pops up!
978 	 */
979 	if (mp_irqs[idx].dstirq != pin)
980 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
981 
982 	if (test_bit(bus, mp_bus_not_pci)) {
983 		irq = mp_irqs[idx].srcbusirq;
984 	} else {
985 		u32 gsi = gsi_cfg->gsi_base + pin;
986 
987 		if (gsi >= NR_IRQS_LEGACY)
988 			irq = gsi;
989 		else
990 			irq = gsi_top + gsi;
991 	}
992 
993 #ifdef CONFIG_X86_32
994 	/*
995 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
996 	 */
997 	if ((pin >= 16) && (pin <= 23)) {
998 		if (pirq_entries[pin-16] != -1) {
999 			if (!pirq_entries[pin-16]) {
1000 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1001 						"disabling PIRQ%d\n", pin-16);
1002 			} else {
1003 				irq = pirq_entries[pin-16];
1004 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1005 						"using PIRQ%d -> IRQ %d\n",
1006 						pin-16, irq);
1007 			}
1008 		}
1009 	}
1010 #endif
1011 
1012 	return irq;
1013 }
1014 
1015 /*
1016  * Find a specific PCI IRQ entry.
1017  * Not an __init, possibly needed by modules
1018  */
1019 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1020 				struct io_apic_irq_attr *irq_attr)
1021 {
1022 	int apic, i, best_guess = -1;
1023 
1024 	apic_printk(APIC_DEBUG,
1025 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1026 		    bus, slot, pin);
1027 	if (test_bit(bus, mp_bus_not_pci)) {
1028 		apic_printk(APIC_VERBOSE,
1029 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1030 		return -1;
1031 	}
1032 	for (i = 0; i < mp_irq_entries; i++) {
1033 		int lbus = mp_irqs[i].srcbus;
1034 
1035 		for (apic = 0; apic < nr_ioapics; apic++)
1036 			if (mpc_ioapic_id(apic) == mp_irqs[i].dstapic ||
1037 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1038 				break;
1039 
1040 		if (!test_bit(lbus, mp_bus_not_pci) &&
1041 		    !mp_irqs[i].irqtype &&
1042 		    (bus == lbus) &&
1043 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1044 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1045 
1046 			if (!(apic || IO_APIC_IRQ(irq)))
1047 				continue;
1048 
1049 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1050 				set_io_apic_irq_attr(irq_attr, apic,
1051 						     mp_irqs[i].dstirq,
1052 						     irq_trigger(i),
1053 						     irq_polarity(i));
1054 				return irq;
1055 			}
1056 			/*
1057 			 * Use the first all-but-pin matching entry as a
1058 			 * best-guess fuzzy result for broken mptables.
1059 			 */
1060 			if (best_guess < 0) {
1061 				set_io_apic_irq_attr(irq_attr, apic,
1062 						     mp_irqs[i].dstirq,
1063 						     irq_trigger(i),
1064 						     irq_polarity(i));
1065 				best_guess = irq;
1066 			}
1067 		}
1068 	}
1069 	return best_guess;
1070 }
1071 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1072 
1073 void lock_vector_lock(void)
1074 {
1075 	/* Used to the online set of cpus does not change
1076 	 * during assign_irq_vector.
1077 	 */
1078 	raw_spin_lock(&vector_lock);
1079 }
1080 
1081 void unlock_vector_lock(void)
1082 {
1083 	raw_spin_unlock(&vector_lock);
1084 }
1085 
1086 static int
1087 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1088 {
1089 	/*
1090 	 * NOTE! The local APIC isn't very good at handling
1091 	 * multiple interrupts at the same interrupt level.
1092 	 * As the interrupt level is determined by taking the
1093 	 * vector number and shifting that right by 4, we
1094 	 * want to spread these out a bit so that they don't
1095 	 * all fall in the same interrupt level.
1096 	 *
1097 	 * Also, we've got to be careful not to trash gate
1098 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1099 	 */
1100 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1101 	static int current_offset = VECTOR_OFFSET_START % 8;
1102 	unsigned int old_vector;
1103 	int cpu, err;
1104 	cpumask_var_t tmp_mask;
1105 
1106 	if (cfg->move_in_progress)
1107 		return -EBUSY;
1108 
1109 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1110 		return -ENOMEM;
1111 
1112 	old_vector = cfg->vector;
1113 	if (old_vector) {
1114 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1115 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1116 		if (!cpumask_empty(tmp_mask)) {
1117 			free_cpumask_var(tmp_mask);
1118 			return 0;
1119 		}
1120 	}
1121 
1122 	/* Only try and allocate irqs on cpus that are present */
1123 	err = -ENOSPC;
1124 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1125 		int new_cpu;
1126 		int vector, offset;
1127 
1128 		apic->vector_allocation_domain(cpu, tmp_mask);
1129 
1130 		vector = current_vector;
1131 		offset = current_offset;
1132 next:
1133 		vector += 8;
1134 		if (vector >= first_system_vector) {
1135 			/* If out of vectors on large boxen, must share them. */
1136 			offset = (offset + 1) % 8;
1137 			vector = FIRST_EXTERNAL_VECTOR + offset;
1138 		}
1139 		if (unlikely(current_vector == vector))
1140 			continue;
1141 
1142 		if (test_bit(vector, used_vectors))
1143 			goto next;
1144 
1145 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1146 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1147 				goto next;
1148 		/* Found one! */
1149 		current_vector = vector;
1150 		current_offset = offset;
1151 		if (old_vector) {
1152 			cfg->move_in_progress = 1;
1153 			cpumask_copy(cfg->old_domain, cfg->domain);
1154 		}
1155 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1156 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1157 		cfg->vector = vector;
1158 		cpumask_copy(cfg->domain, tmp_mask);
1159 		err = 0;
1160 		break;
1161 	}
1162 	free_cpumask_var(tmp_mask);
1163 	return err;
1164 }
1165 
1166 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1167 {
1168 	int err;
1169 	unsigned long flags;
1170 
1171 	raw_spin_lock_irqsave(&vector_lock, flags);
1172 	err = __assign_irq_vector(irq, cfg, mask);
1173 	raw_spin_unlock_irqrestore(&vector_lock, flags);
1174 	return err;
1175 }
1176 
1177 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1178 {
1179 	int cpu, vector;
1180 
1181 	BUG_ON(!cfg->vector);
1182 
1183 	vector = cfg->vector;
1184 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1185 		per_cpu(vector_irq, cpu)[vector] = -1;
1186 
1187 	cfg->vector = 0;
1188 	cpumask_clear(cfg->domain);
1189 
1190 	if (likely(!cfg->move_in_progress))
1191 		return;
1192 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1193 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1194 								vector++) {
1195 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1196 				continue;
1197 			per_cpu(vector_irq, cpu)[vector] = -1;
1198 			break;
1199 		}
1200 	}
1201 	cfg->move_in_progress = 0;
1202 }
1203 
1204 void __setup_vector_irq(int cpu)
1205 {
1206 	/* Initialize vector_irq on a new cpu */
1207 	int irq, vector;
1208 	struct irq_cfg *cfg;
1209 
1210 	/*
1211 	 * vector_lock will make sure that we don't run into irq vector
1212 	 * assignments that might be happening on another cpu in parallel,
1213 	 * while we setup our initial vector to irq mappings.
1214 	 */
1215 	raw_spin_lock(&vector_lock);
1216 	/* Mark the inuse vectors */
1217 	for_each_active_irq(irq) {
1218 		cfg = irq_get_chip_data(irq);
1219 		if (!cfg)
1220 			continue;
1221 		/*
1222 		 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1223 		 * will be part of the irq_cfg's domain.
1224 		 */
1225 		if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1226 			cpumask_set_cpu(cpu, cfg->domain);
1227 
1228 		if (!cpumask_test_cpu(cpu, cfg->domain))
1229 			continue;
1230 		vector = cfg->vector;
1231 		per_cpu(vector_irq, cpu)[vector] = irq;
1232 	}
1233 	/* Mark the free vectors */
1234 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1235 		irq = per_cpu(vector_irq, cpu)[vector];
1236 		if (irq < 0)
1237 			continue;
1238 
1239 		cfg = irq_cfg(irq);
1240 		if (!cpumask_test_cpu(cpu, cfg->domain))
1241 			per_cpu(vector_irq, cpu)[vector] = -1;
1242 	}
1243 	raw_spin_unlock(&vector_lock);
1244 }
1245 
1246 static struct irq_chip ioapic_chip;
1247 
1248 #ifdef CONFIG_X86_32
1249 static inline int IO_APIC_irq_trigger(int irq)
1250 {
1251 	int apic, idx, pin;
1252 
1253 	for (apic = 0; apic < nr_ioapics; apic++) {
1254 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
1255 			idx = find_irq_entry(apic, pin, mp_INT);
1256 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1257 				return irq_trigger(idx);
1258 		}
1259 	}
1260 	/*
1261          * nonexistent IRQs are edge default
1262          */
1263 	return 0;
1264 }
1265 #else
1266 static inline int IO_APIC_irq_trigger(int irq)
1267 {
1268 	return 1;
1269 }
1270 #endif
1271 
1272 static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg,
1273 				 unsigned long trigger)
1274 {
1275 	struct irq_chip *chip = &ioapic_chip;
1276 	irq_flow_handler_t hdl;
1277 	bool fasteoi;
1278 
1279 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1280 	    trigger == IOAPIC_LEVEL) {
1281 		irq_set_status_flags(irq, IRQ_LEVEL);
1282 		fasteoi = true;
1283 	} else {
1284 		irq_clear_status_flags(irq, IRQ_LEVEL);
1285 		fasteoi = false;
1286 	}
1287 
1288 	if (irq_remapped(cfg)) {
1289 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1290 		irq_remap_modify_chip_defaults(chip);
1291 		fasteoi = trigger != 0;
1292 	}
1293 
1294 	hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
1295 	irq_set_chip_and_handler_name(irq, chip, hdl,
1296 				      fasteoi ? "fasteoi" : "edge");
1297 }
1298 
1299 static int setup_ioapic_entry(int apic_id, int irq,
1300 			      struct IO_APIC_route_entry *entry,
1301 			      unsigned int destination, int trigger,
1302 			      int polarity, int vector, int pin)
1303 {
1304 	/*
1305 	 * add it to the IO-APIC irq-routing table:
1306 	 */
1307 	memset(entry,0,sizeof(*entry));
1308 
1309 	if (intr_remapping_enabled) {
1310 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1311 		struct irte irte;
1312 		struct IR_IO_APIC_route_entry *ir_entry =
1313 			(struct IR_IO_APIC_route_entry *) entry;
1314 		int index;
1315 
1316 		if (!iommu)
1317 			panic("No mapping iommu for ioapic %d\n", apic_id);
1318 
1319 		index = alloc_irte(iommu, irq, 1);
1320 		if (index < 0)
1321 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1322 
1323 		prepare_irte(&irte, vector, destination);
1324 
1325 		/* Set source-id of interrupt request */
1326 		set_ioapic_sid(&irte, apic_id);
1327 
1328 		modify_irte(irq, &irte);
1329 
1330 		ir_entry->index2 = (index >> 15) & 0x1;
1331 		ir_entry->zero = 0;
1332 		ir_entry->format = 1;
1333 		ir_entry->index = (index & 0x7fff);
1334 		/*
1335 		 * IO-APIC RTE will be configured with virtual vector.
1336 		 * irq handler will do the explicit EOI to the io-apic.
1337 		 */
1338 		ir_entry->vector = pin;
1339 
1340 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
1341 			"Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
1342 			"Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
1343 			"Avail:%X Vector:%02X Dest:%08X "
1344 			"SID:%04X SQ:%X SVT:%X)\n",
1345 			apic_id, irte.present, irte.fpd, irte.dst_mode,
1346 			irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
1347 			irte.avail, irte.vector, irte.dest_id,
1348 			irte.sid, irte.sq, irte.svt);
1349 	} else {
1350 		entry->delivery_mode = apic->irq_delivery_mode;
1351 		entry->dest_mode = apic->irq_dest_mode;
1352 		entry->dest = destination;
1353 		entry->vector = vector;
1354 	}
1355 
1356 	entry->mask = 0;				/* enable IRQ */
1357 	entry->trigger = trigger;
1358 	entry->polarity = polarity;
1359 
1360 	/* Mask level triggered irqs.
1361 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1362 	 */
1363 	if (trigger)
1364 		entry->mask = 1;
1365 	return 0;
1366 }
1367 
1368 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1369 			     struct irq_cfg *cfg, int trigger, int polarity)
1370 {
1371 	struct IO_APIC_route_entry entry;
1372 	unsigned int dest;
1373 
1374 	if (!IO_APIC_IRQ(irq))
1375 		return;
1376 	/*
1377 	 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1378 	 * controllers like 8259. Now that IO-APIC can handle this irq, update
1379 	 * the cfg->domain.
1380 	 */
1381 	if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1382 		apic->vector_allocation_domain(0, cfg->domain);
1383 
1384 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1385 		return;
1386 
1387 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1388 
1389 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1390 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1391 		    "IRQ %d Mode:%i Active:%i Dest:%d)\n",
1392 		    apic_id, mpc_ioapic_id(apic_id), pin, cfg->vector,
1393 		    irq, trigger, polarity, dest);
1394 
1395 
1396 	if (setup_ioapic_entry(mpc_ioapic_id(apic_id), irq, &entry,
1397 			       dest, trigger, polarity, cfg->vector, pin)) {
1398 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1399 		       mpc_ioapic_id(apic_id), pin);
1400 		__clear_irq_vector(irq, cfg);
1401 		return;
1402 	}
1403 
1404 	ioapic_register_intr(irq, cfg, trigger);
1405 	if (irq < legacy_pic->nr_legacy_irqs)
1406 		legacy_pic->mask(irq);
1407 
1408 	ioapic_write_entry(apic_id, pin, entry);
1409 }
1410 
1411 static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin)
1412 {
1413 	if (idx != -1)
1414 		return false;
1415 
1416 	apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
1417 		    mpc_ioapic_id(apic_id), pin);
1418 	return true;
1419 }
1420 
1421 static void __init __io_apic_setup_irqs(unsigned int apic_id)
1422 {
1423 	int idx, node = cpu_to_node(0);
1424 	struct io_apic_irq_attr attr;
1425 	unsigned int pin, irq;
1426 
1427 	for (pin = 0; pin < ioapics[apic_id].nr_registers; pin++) {
1428 		idx = find_irq_entry(apic_id, pin, mp_INT);
1429 		if (io_apic_pin_not_connected(idx, apic_id, pin))
1430 			continue;
1431 
1432 		irq = pin_2_irq(idx, apic_id, pin);
1433 
1434 		if ((apic_id > 0) && (irq > 16))
1435 			continue;
1436 
1437 		/*
1438 		 * Skip the timer IRQ if there's a quirk handler
1439 		 * installed and if it returns 1:
1440 		 */
1441 		if (apic->multi_timer_check &&
1442 		    apic->multi_timer_check(apic_id, irq))
1443 			continue;
1444 
1445 		set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1446 				     irq_polarity(idx));
1447 
1448 		io_apic_setup_irq_pin(irq, node, &attr);
1449 	}
1450 }
1451 
1452 static void __init setup_IO_APIC_irqs(void)
1453 {
1454 	unsigned int apic_id;
1455 
1456 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1457 
1458 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1459 		__io_apic_setup_irqs(apic_id);
1460 }
1461 
1462 /*
1463  * for the gsit that is not in first ioapic
1464  * but could not use acpi_register_gsi()
1465  * like some special sci in IBM x3330
1466  */
1467 void setup_IO_APIC_irq_extra(u32 gsi)
1468 {
1469 	int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1470 	struct io_apic_irq_attr attr;
1471 
1472 	/*
1473 	 * Convert 'gsi' to 'ioapic.pin'.
1474 	 */
1475 	apic_id = mp_find_ioapic(gsi);
1476 	if (apic_id < 0)
1477 		return;
1478 
1479 	pin = mp_find_ioapic_pin(apic_id, gsi);
1480 	idx = find_irq_entry(apic_id, pin, mp_INT);
1481 	if (idx == -1)
1482 		return;
1483 
1484 	irq = pin_2_irq(idx, apic_id, pin);
1485 
1486 	/* Only handle the non legacy irqs on secondary ioapics */
1487 	if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1488 		return;
1489 
1490 	set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1491 			     irq_polarity(idx));
1492 
1493 	io_apic_setup_irq_pin_once(irq, node, &attr);
1494 }
1495 
1496 /*
1497  * Set up the timer pin, possibly with the 8259A-master behind.
1498  */
1499 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1500 					int vector)
1501 {
1502 	struct IO_APIC_route_entry entry;
1503 
1504 	if (intr_remapping_enabled)
1505 		return;
1506 
1507 	memset(&entry, 0, sizeof(entry));
1508 
1509 	/*
1510 	 * We use logical delivery to get the timer IRQ
1511 	 * to the first CPU.
1512 	 */
1513 	entry.dest_mode = apic->irq_dest_mode;
1514 	entry.mask = 0;			/* don't mask IRQ for edge */
1515 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1516 	entry.delivery_mode = apic->irq_delivery_mode;
1517 	entry.polarity = 0;
1518 	entry.trigger = 0;
1519 	entry.vector = vector;
1520 
1521 	/*
1522 	 * The timer IRQ doesn't have to know that behind the
1523 	 * scene we may have a 8259A-master in AEOI mode ...
1524 	 */
1525 	irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
1526 				      "edge");
1527 
1528 	/*
1529 	 * Add it to the IO-APIC irq-routing table:
1530 	 */
1531 	ioapic_write_entry(apic_id, pin, entry);
1532 }
1533 
1534 
1535 __apicdebuginit(void) print_IO_APIC(void)
1536 {
1537 	int apic, i;
1538 	union IO_APIC_reg_00 reg_00;
1539 	union IO_APIC_reg_01 reg_01;
1540 	union IO_APIC_reg_02 reg_02;
1541 	union IO_APIC_reg_03 reg_03;
1542 	unsigned long flags;
1543 	struct irq_cfg *cfg;
1544 	unsigned int irq;
1545 
1546 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1547 	for (i = 0; i < nr_ioapics; i++)
1548 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1549 		       mpc_ioapic_id(i), ioapics[i].nr_registers);
1550 
1551 	/*
1552 	 * We are a bit conservative about what we expect.  We have to
1553 	 * know about every hardware change ASAP.
1554 	 */
1555 	printk(KERN_INFO "testing the IO APIC.......................\n");
1556 
1557 	for (apic = 0; apic < nr_ioapics; apic++) {
1558 
1559 	raw_spin_lock_irqsave(&ioapic_lock, flags);
1560 	reg_00.raw = io_apic_read(apic, 0);
1561 	reg_01.raw = io_apic_read(apic, 1);
1562 	if (reg_01.bits.version >= 0x10)
1563 		reg_02.raw = io_apic_read(apic, 2);
1564 	if (reg_01.bits.version >= 0x20)
1565 		reg_03.raw = io_apic_read(apic, 3);
1566 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1567 
1568 	printk("\n");
1569 	printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(apic));
1570 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1571 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1572 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1573 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1574 
1575 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1576 	printk(KERN_DEBUG ".......     : max redirection entries: %02X\n",
1577 		reg_01.bits.entries);
1578 
1579 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1580 	printk(KERN_DEBUG ".......     : IO APIC version: %02X\n",
1581 		reg_01.bits.version);
1582 
1583 	/*
1584 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1585 	 * but the value of reg_02 is read as the previous read register
1586 	 * value, so ignore it if reg_02 == reg_01.
1587 	 */
1588 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1589 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1590 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1591 	}
1592 
1593 	/*
1594 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1595 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1596 	 * register value, so ignore it if reg_03 == reg_0[12].
1597 	 */
1598 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1599 	    reg_03.raw != reg_01.raw) {
1600 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1601 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1602 	}
1603 
1604 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1605 
1606 	if (intr_remapping_enabled) {
1607 		printk(KERN_DEBUG " NR Indx Fmt Mask Trig IRR"
1608 			" Pol Stat Indx2 Zero Vect:\n");
1609 	} else {
1610 		printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1611 			" Stat Dmod Deli Vect:\n");
1612 	}
1613 
1614 	for (i = 0; i <= reg_01.bits.entries; i++) {
1615 		if (intr_remapping_enabled) {
1616 			struct IO_APIC_route_entry entry;
1617 			struct IR_IO_APIC_route_entry *ir_entry;
1618 
1619 			entry = ioapic_read_entry(apic, i);
1620 			ir_entry = (struct IR_IO_APIC_route_entry *) &entry;
1621 			printk(KERN_DEBUG " %02x %04X ",
1622 				i,
1623 				ir_entry->index
1624 			);
1625 			printk("%1d   %1d    %1d    %1d   %1d   "
1626 				"%1d    %1d     %X    %02X\n",
1627 				ir_entry->format,
1628 				ir_entry->mask,
1629 				ir_entry->trigger,
1630 				ir_entry->irr,
1631 				ir_entry->polarity,
1632 				ir_entry->delivery_status,
1633 				ir_entry->index2,
1634 				ir_entry->zero,
1635 				ir_entry->vector
1636 			);
1637 		} else {
1638 			struct IO_APIC_route_entry entry;
1639 
1640 			entry = ioapic_read_entry(apic, i);
1641 			printk(KERN_DEBUG " %02x %02X  ",
1642 				i,
1643 				entry.dest
1644 			);
1645 			printk("%1d    %1d    %1d   %1d   %1d    "
1646 				"%1d    %1d    %02X\n",
1647 				entry.mask,
1648 				entry.trigger,
1649 				entry.irr,
1650 				entry.polarity,
1651 				entry.delivery_status,
1652 				entry.dest_mode,
1653 				entry.delivery_mode,
1654 				entry.vector
1655 			);
1656 		}
1657 	}
1658 	}
1659 
1660 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1661 	for_each_active_irq(irq) {
1662 		struct irq_pin_list *entry;
1663 
1664 		cfg = irq_get_chip_data(irq);
1665 		if (!cfg)
1666 			continue;
1667 		entry = cfg->irq_2_pin;
1668 		if (!entry)
1669 			continue;
1670 		printk(KERN_DEBUG "IRQ%d ", irq);
1671 		for_each_irq_pin(entry, cfg->irq_2_pin)
1672 			printk("-> %d:%d", entry->apic, entry->pin);
1673 		printk("\n");
1674 	}
1675 
1676 	printk(KERN_INFO ".................................... done.\n");
1677 
1678 	return;
1679 }
1680 
1681 __apicdebuginit(void) print_APIC_field(int base)
1682 {
1683 	int i;
1684 
1685 	printk(KERN_DEBUG);
1686 
1687 	for (i = 0; i < 8; i++)
1688 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1689 
1690 	printk(KERN_CONT "\n");
1691 }
1692 
1693 __apicdebuginit(void) print_local_APIC(void *dummy)
1694 {
1695 	unsigned int i, v, ver, maxlvt;
1696 	u64 icr;
1697 
1698 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1699 		smp_processor_id(), hard_smp_processor_id());
1700 	v = apic_read(APIC_ID);
1701 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1702 	v = apic_read(APIC_LVR);
1703 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1704 	ver = GET_APIC_VERSION(v);
1705 	maxlvt = lapic_get_maxlvt();
1706 
1707 	v = apic_read(APIC_TASKPRI);
1708 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1709 
1710 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1711 		if (!APIC_XAPIC(ver)) {
1712 			v = apic_read(APIC_ARBPRI);
1713 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1714 			       v & APIC_ARBPRI_MASK);
1715 		}
1716 		v = apic_read(APIC_PROCPRI);
1717 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1718 	}
1719 
1720 	/*
1721 	 * Remote read supported only in the 82489DX and local APIC for
1722 	 * Pentium processors.
1723 	 */
1724 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1725 		v = apic_read(APIC_RRR);
1726 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1727 	}
1728 
1729 	v = apic_read(APIC_LDR);
1730 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1731 	if (!x2apic_enabled()) {
1732 		v = apic_read(APIC_DFR);
1733 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1734 	}
1735 	v = apic_read(APIC_SPIV);
1736 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1737 
1738 	printk(KERN_DEBUG "... APIC ISR field:\n");
1739 	print_APIC_field(APIC_ISR);
1740 	printk(KERN_DEBUG "... APIC TMR field:\n");
1741 	print_APIC_field(APIC_TMR);
1742 	printk(KERN_DEBUG "... APIC IRR field:\n");
1743 	print_APIC_field(APIC_IRR);
1744 
1745 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1746 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1747 			apic_write(APIC_ESR, 0);
1748 
1749 		v = apic_read(APIC_ESR);
1750 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1751 	}
1752 
1753 	icr = apic_icr_read();
1754 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1755 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1756 
1757 	v = apic_read(APIC_LVTT);
1758 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1759 
1760 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1761 		v = apic_read(APIC_LVTPC);
1762 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1763 	}
1764 	v = apic_read(APIC_LVT0);
1765 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1766 	v = apic_read(APIC_LVT1);
1767 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1768 
1769 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1770 		v = apic_read(APIC_LVTERR);
1771 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1772 	}
1773 
1774 	v = apic_read(APIC_TMICT);
1775 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1776 	v = apic_read(APIC_TMCCT);
1777 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1778 	v = apic_read(APIC_TDCR);
1779 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1780 
1781 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1782 		v = apic_read(APIC_EFEAT);
1783 		maxlvt = (v >> 16) & 0xff;
1784 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1785 		v = apic_read(APIC_ECTRL);
1786 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1787 		for (i = 0; i < maxlvt; i++) {
1788 			v = apic_read(APIC_EILVTn(i));
1789 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1790 		}
1791 	}
1792 	printk("\n");
1793 }
1794 
1795 __apicdebuginit(void) print_local_APICs(int maxcpu)
1796 {
1797 	int cpu;
1798 
1799 	if (!maxcpu)
1800 		return;
1801 
1802 	preempt_disable();
1803 	for_each_online_cpu(cpu) {
1804 		if (cpu >= maxcpu)
1805 			break;
1806 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1807 	}
1808 	preempt_enable();
1809 }
1810 
1811 __apicdebuginit(void) print_PIC(void)
1812 {
1813 	unsigned int v;
1814 	unsigned long flags;
1815 
1816 	if (!legacy_pic->nr_legacy_irqs)
1817 		return;
1818 
1819 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1820 
1821 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1822 
1823 	v = inb(0xa1) << 8 | inb(0x21);
1824 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1825 
1826 	v = inb(0xa0) << 8 | inb(0x20);
1827 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1828 
1829 	outb(0x0b,0xa0);
1830 	outb(0x0b,0x20);
1831 	v = inb(0xa0) << 8 | inb(0x20);
1832 	outb(0x0a,0xa0);
1833 	outb(0x0a,0x20);
1834 
1835 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1836 
1837 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1838 
1839 	v = inb(0x4d1) << 8 | inb(0x4d0);
1840 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1841 }
1842 
1843 static int __initdata show_lapic = 1;
1844 static __init int setup_show_lapic(char *arg)
1845 {
1846 	int num = -1;
1847 
1848 	if (strcmp(arg, "all") == 0) {
1849 		show_lapic = CONFIG_NR_CPUS;
1850 	} else {
1851 		get_option(&arg, &num);
1852 		if (num >= 0)
1853 			show_lapic = num;
1854 	}
1855 
1856 	return 1;
1857 }
1858 __setup("show_lapic=", setup_show_lapic);
1859 
1860 __apicdebuginit(int) print_ICs(void)
1861 {
1862 	if (apic_verbosity == APIC_QUIET)
1863 		return 0;
1864 
1865 	print_PIC();
1866 
1867 	/* don't print out if apic is not there */
1868 	if (!cpu_has_apic && !apic_from_smp_config())
1869 		return 0;
1870 
1871 	print_local_APICs(show_lapic);
1872 	print_IO_APIC();
1873 
1874 	return 0;
1875 }
1876 
1877 late_initcall(print_ICs);
1878 
1879 
1880 /* Where if anywhere is the i8259 connect in external int mode */
1881 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1882 
1883 void __init enable_IO_APIC(void)
1884 {
1885 	int i8259_apic, i8259_pin;
1886 	int apic;
1887 
1888 	if (!legacy_pic->nr_legacy_irqs)
1889 		return;
1890 
1891 	for(apic = 0; apic < nr_ioapics; apic++) {
1892 		int pin;
1893 		/* See if any of the pins is in ExtINT mode */
1894 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
1895 			struct IO_APIC_route_entry entry;
1896 			entry = ioapic_read_entry(apic, pin);
1897 
1898 			/* If the interrupt line is enabled and in ExtInt mode
1899 			 * I have found the pin where the i8259 is connected.
1900 			 */
1901 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1902 				ioapic_i8259.apic = apic;
1903 				ioapic_i8259.pin  = pin;
1904 				goto found_i8259;
1905 			}
1906 		}
1907 	}
1908  found_i8259:
1909 	/* Look to see what if the MP table has reported the ExtINT */
1910 	/* If we could not find the appropriate pin by looking at the ioapic
1911 	 * the i8259 probably is not connected the ioapic but give the
1912 	 * mptable a chance anyway.
1913 	 */
1914 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1915 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1916 	/* Trust the MP table if nothing is setup in the hardware */
1917 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1918 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1919 		ioapic_i8259.pin  = i8259_pin;
1920 		ioapic_i8259.apic = i8259_apic;
1921 	}
1922 	/* Complain if the MP table and the hardware disagree */
1923 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1924 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1925 	{
1926 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1927 	}
1928 
1929 	/*
1930 	 * Do not trust the IO-APIC being empty at bootup
1931 	 */
1932 	clear_IO_APIC();
1933 }
1934 
1935 /*
1936  * Not an __init, needed by the reboot code
1937  */
1938 void disable_IO_APIC(void)
1939 {
1940 	/*
1941 	 * Clear the IO-APIC before rebooting:
1942 	 */
1943 	clear_IO_APIC();
1944 
1945 	if (!legacy_pic->nr_legacy_irqs)
1946 		return;
1947 
1948 	/*
1949 	 * If the i8259 is routed through an IOAPIC
1950 	 * Put that IOAPIC in virtual wire mode
1951 	 * so legacy interrupts can be delivered.
1952 	 *
1953 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1954 	 * as virtual wire B is little complex (need to configure both
1955 	 * IOAPIC RTE as well as interrupt-remapping table entry).
1956 	 * As this gets called during crash dump, keep this simple for now.
1957 	 */
1958 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1959 		struct IO_APIC_route_entry entry;
1960 
1961 		memset(&entry, 0, sizeof(entry));
1962 		entry.mask            = 0; /* Enabled */
1963 		entry.trigger         = 0; /* Edge */
1964 		entry.irr             = 0;
1965 		entry.polarity        = 0; /* High */
1966 		entry.delivery_status = 0;
1967 		entry.dest_mode       = 0; /* Physical */
1968 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1969 		entry.vector          = 0;
1970 		entry.dest            = read_apic_id();
1971 
1972 		/*
1973 		 * Add it to the IO-APIC irq-routing table:
1974 		 */
1975 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1976 	}
1977 
1978 	/*
1979 	 * Use virtual wire A mode when interrupt remapping is enabled.
1980 	 */
1981 	if (cpu_has_apic || apic_from_smp_config())
1982 		disconnect_bsp_APIC(!intr_remapping_enabled &&
1983 				ioapic_i8259.pin != -1);
1984 }
1985 
1986 #ifdef CONFIG_X86_32
1987 /*
1988  * function to set the IO-APIC physical IDs based on the
1989  * values stored in the MPC table.
1990  *
1991  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
1992  */
1993 void __init setup_ioapic_ids_from_mpc_nocheck(void)
1994 {
1995 	union IO_APIC_reg_00 reg_00;
1996 	physid_mask_t phys_id_present_map;
1997 	int apic_id;
1998 	int i;
1999 	unsigned char old_id;
2000 	unsigned long flags;
2001 
2002 	/*
2003 	 * This is broken; anything with a real cpu count has to
2004 	 * circumvent this idiocy regardless.
2005 	 */
2006 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
2007 
2008 	/*
2009 	 * Set the IOAPIC ID to the value stored in the MPC table.
2010 	 */
2011 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2012 
2013 		/* Read the register 0 value */
2014 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2015 		reg_00.raw = io_apic_read(apic_id, 0);
2016 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2017 
2018 		old_id = mpc_ioapic_id(apic_id);
2019 
2020 		if (mpc_ioapic_id(apic_id) >= get_physical_broadcast()) {
2021 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2022 				apic_id, mpc_ioapic_id(apic_id));
2023 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2024 				reg_00.bits.ID);
2025 			ioapics[apic_id].mp_config.apicid = reg_00.bits.ID;
2026 		}
2027 
2028 		/*
2029 		 * Sanity check, is the ID really free? Every APIC in a
2030 		 * system must have a unique ID or we get lots of nice
2031 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2032 		 */
2033 		if (apic->check_apicid_used(&phys_id_present_map,
2034 					    mpc_ioapic_id(apic_id))) {
2035 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2036 				apic_id, mpc_ioapic_id(apic_id));
2037 			for (i = 0; i < get_physical_broadcast(); i++)
2038 				if (!physid_isset(i, phys_id_present_map))
2039 					break;
2040 			if (i >= get_physical_broadcast())
2041 				panic("Max APIC ID exceeded!\n");
2042 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2043 				i);
2044 			physid_set(i, phys_id_present_map);
2045 			ioapics[apic_id].mp_config.apicid = i;
2046 		} else {
2047 			physid_mask_t tmp;
2048 			apic->apicid_to_cpu_present(mpc_ioapic_id(apic_id),
2049 						    &tmp);
2050 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2051 					"phys_id_present_map\n",
2052 					mpc_ioapic_id(apic_id));
2053 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2054 		}
2055 
2056 		/*
2057 		 * We need to adjust the IRQ routing table
2058 		 * if the ID changed.
2059 		 */
2060 		if (old_id != mpc_ioapic_id(apic_id))
2061 			for (i = 0; i < mp_irq_entries; i++)
2062 				if (mp_irqs[i].dstapic == old_id)
2063 					mp_irqs[i].dstapic
2064 						= mpc_ioapic_id(apic_id);
2065 
2066 		/*
2067 		 * Update the ID register according to the right value
2068 		 * from the MPC table if they are different.
2069 		 */
2070 		if (mpc_ioapic_id(apic_id) == reg_00.bits.ID)
2071 			continue;
2072 
2073 		apic_printk(APIC_VERBOSE, KERN_INFO
2074 			"...changing IO-APIC physical APIC ID to %d ...",
2075 			mpc_ioapic_id(apic_id));
2076 
2077 		reg_00.bits.ID = mpc_ioapic_id(apic_id);
2078 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2079 		io_apic_write(apic_id, 0, reg_00.raw);
2080 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2081 
2082 		/*
2083 		 * Sanity check
2084 		 */
2085 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2086 		reg_00.raw = io_apic_read(apic_id, 0);
2087 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2088 		if (reg_00.bits.ID != mpc_ioapic_id(apic_id))
2089 			printk("could not set ID!\n");
2090 		else
2091 			apic_printk(APIC_VERBOSE, " ok.\n");
2092 	}
2093 }
2094 
2095 void __init setup_ioapic_ids_from_mpc(void)
2096 {
2097 
2098 	if (acpi_ioapic)
2099 		return;
2100 	/*
2101 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2102 	 * no meaning without the serial APIC bus.
2103 	 */
2104 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2105 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2106 		return;
2107 	setup_ioapic_ids_from_mpc_nocheck();
2108 }
2109 #endif
2110 
2111 int no_timer_check __initdata;
2112 
2113 static int __init notimercheck(char *s)
2114 {
2115 	no_timer_check = 1;
2116 	return 1;
2117 }
2118 __setup("no_timer_check", notimercheck);
2119 
2120 /*
2121  * There is a nasty bug in some older SMP boards, their mptable lies
2122  * about the timer IRQ. We do the following to work around the situation:
2123  *
2124  *	- timer IRQ defaults to IO-APIC IRQ
2125  *	- if this function detects that timer IRQs are defunct, then we fall
2126  *	  back to ISA timer IRQs
2127  */
2128 static int __init timer_irq_works(void)
2129 {
2130 	unsigned long t1 = jiffies;
2131 	unsigned long flags;
2132 
2133 	if (no_timer_check)
2134 		return 1;
2135 
2136 	local_save_flags(flags);
2137 	local_irq_enable();
2138 	/* Let ten ticks pass... */
2139 	mdelay((10 * 1000) / HZ);
2140 	local_irq_restore(flags);
2141 
2142 	/*
2143 	 * Expect a few ticks at least, to be sure some possible
2144 	 * glue logic does not lock up after one or two first
2145 	 * ticks in a non-ExtINT mode.  Also the local APIC
2146 	 * might have cached one ExtINT interrupt.  Finally, at
2147 	 * least one tick may be lost due to delays.
2148 	 */
2149 
2150 	/* jiffies wrap? */
2151 	if (time_after(jiffies, t1 + 4))
2152 		return 1;
2153 	return 0;
2154 }
2155 
2156 /*
2157  * In the SMP+IOAPIC case it might happen that there are an unspecified
2158  * number of pending IRQ events unhandled. These cases are very rare,
2159  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2160  * better to do it this way as thus we do not have to be aware of
2161  * 'pending' interrupts in the IRQ path, except at this point.
2162  */
2163 /*
2164  * Edge triggered needs to resend any interrupt
2165  * that was delayed but this is now handled in the device
2166  * independent code.
2167  */
2168 
2169 /*
2170  * Starting up a edge-triggered IO-APIC interrupt is
2171  * nasty - we need to make sure that we get the edge.
2172  * If it is already asserted for some reason, we need
2173  * return 1 to indicate that is was pending.
2174  *
2175  * This is not complete - we should be able to fake
2176  * an edge even if it isn't on the 8259A...
2177  */
2178 
2179 static unsigned int startup_ioapic_irq(struct irq_data *data)
2180 {
2181 	int was_pending = 0, irq = data->irq;
2182 	unsigned long flags;
2183 
2184 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2185 	if (irq < legacy_pic->nr_legacy_irqs) {
2186 		legacy_pic->mask(irq);
2187 		if (legacy_pic->irq_pending(irq))
2188 			was_pending = 1;
2189 	}
2190 	__unmask_ioapic(data->chip_data);
2191 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2192 
2193 	return was_pending;
2194 }
2195 
2196 static int ioapic_retrigger_irq(struct irq_data *data)
2197 {
2198 	struct irq_cfg *cfg = data->chip_data;
2199 	unsigned long flags;
2200 
2201 	raw_spin_lock_irqsave(&vector_lock, flags);
2202 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2203 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2204 
2205 	return 1;
2206 }
2207 
2208 /*
2209  * Level and edge triggered IO-APIC interrupts need different handling,
2210  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2211  * handled with the level-triggered descriptor, but that one has slightly
2212  * more overhead. Level-triggered interrupts cannot be handled with the
2213  * edge-triggered handler, without risking IRQ storms and other ugly
2214  * races.
2215  */
2216 
2217 #ifdef CONFIG_SMP
2218 void send_cleanup_vector(struct irq_cfg *cfg)
2219 {
2220 	cpumask_var_t cleanup_mask;
2221 
2222 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2223 		unsigned int i;
2224 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2225 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2226 	} else {
2227 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2228 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2229 		free_cpumask_var(cleanup_mask);
2230 	}
2231 	cfg->move_in_progress = 0;
2232 }
2233 
2234 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2235 {
2236 	int apic, pin;
2237 	struct irq_pin_list *entry;
2238 	u8 vector = cfg->vector;
2239 
2240 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2241 		unsigned int reg;
2242 
2243 		apic = entry->apic;
2244 		pin = entry->pin;
2245 		/*
2246 		 * With interrupt-remapping, destination information comes
2247 		 * from interrupt-remapping table entry.
2248 		 */
2249 		if (!irq_remapped(cfg))
2250 			io_apic_write(apic, 0x11 + pin*2, dest);
2251 		reg = io_apic_read(apic, 0x10 + pin*2);
2252 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2253 		reg |= vector;
2254 		io_apic_modify(apic, 0x10 + pin*2, reg);
2255 	}
2256 }
2257 
2258 /*
2259  * Either sets data->affinity to a valid value, and returns
2260  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2261  * leaves data->affinity untouched.
2262  */
2263 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2264 			  unsigned int *dest_id)
2265 {
2266 	struct irq_cfg *cfg = data->chip_data;
2267 
2268 	if (!cpumask_intersects(mask, cpu_online_mask))
2269 		return -1;
2270 
2271 	if (assign_irq_vector(data->irq, data->chip_data, mask))
2272 		return -1;
2273 
2274 	cpumask_copy(data->affinity, mask);
2275 
2276 	*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2277 	return 0;
2278 }
2279 
2280 static int
2281 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2282 		    bool force)
2283 {
2284 	unsigned int dest, irq = data->irq;
2285 	unsigned long flags;
2286 	int ret;
2287 
2288 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2289 	ret = __ioapic_set_affinity(data, mask, &dest);
2290 	if (!ret) {
2291 		/* Only the high 8 bits are valid. */
2292 		dest = SET_APIC_LOGICAL_ID(dest);
2293 		__target_IO_APIC_irq(irq, dest, data->chip_data);
2294 	}
2295 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2296 	return ret;
2297 }
2298 
2299 #ifdef CONFIG_IRQ_REMAP
2300 
2301 /*
2302  * Migrate the IO-APIC irq in the presence of intr-remapping.
2303  *
2304  * For both level and edge triggered, irq migration is a simple atomic
2305  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2306  *
2307  * For level triggered, we eliminate the io-apic RTE modification (with the
2308  * updated vector information), by using a virtual vector (io-apic pin number).
2309  * Real vector that is used for interrupting cpu will be coming from
2310  * the interrupt-remapping table entry.
2311  *
2312  * As the migration is a simple atomic update of IRTE, the same mechanism
2313  * is used to migrate MSI irq's in the presence of interrupt-remapping.
2314  */
2315 static int
2316 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2317 		       bool force)
2318 {
2319 	struct irq_cfg *cfg = data->chip_data;
2320 	unsigned int dest, irq = data->irq;
2321 	struct irte irte;
2322 
2323 	if (!cpumask_intersects(mask, cpu_online_mask))
2324 		return -EINVAL;
2325 
2326 	if (get_irte(irq, &irte))
2327 		return -EBUSY;
2328 
2329 	if (assign_irq_vector(irq, cfg, mask))
2330 		return -EBUSY;
2331 
2332 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2333 
2334 	irte.vector = cfg->vector;
2335 	irte.dest_id = IRTE_DEST(dest);
2336 
2337 	/*
2338 	 * Atomically updates the IRTE with the new destination, vector
2339 	 * and flushes the interrupt entry cache.
2340 	 */
2341 	modify_irte(irq, &irte);
2342 
2343 	/*
2344 	 * After this point, all the interrupts will start arriving
2345 	 * at the new destination. So, time to cleanup the previous
2346 	 * vector allocation.
2347 	 */
2348 	if (cfg->move_in_progress)
2349 		send_cleanup_vector(cfg);
2350 
2351 	cpumask_copy(data->affinity, mask);
2352 	return 0;
2353 }
2354 
2355 #else
2356 static inline int
2357 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2358 		       bool force)
2359 {
2360 	return 0;
2361 }
2362 #endif
2363 
2364 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2365 {
2366 	unsigned vector, me;
2367 
2368 	ack_APIC_irq();
2369 	exit_idle();
2370 	irq_enter();
2371 
2372 	me = smp_processor_id();
2373 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2374 		unsigned int irq;
2375 		unsigned int irr;
2376 		struct irq_desc *desc;
2377 		struct irq_cfg *cfg;
2378 		irq = __this_cpu_read(vector_irq[vector]);
2379 
2380 		if (irq == -1)
2381 			continue;
2382 
2383 		desc = irq_to_desc(irq);
2384 		if (!desc)
2385 			continue;
2386 
2387 		cfg = irq_cfg(irq);
2388 		raw_spin_lock(&desc->lock);
2389 
2390 		/*
2391 		 * Check if the irq migration is in progress. If so, we
2392 		 * haven't received the cleanup request yet for this irq.
2393 		 */
2394 		if (cfg->move_in_progress)
2395 			goto unlock;
2396 
2397 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2398 			goto unlock;
2399 
2400 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2401 		/*
2402 		 * Check if the vector that needs to be cleanedup is
2403 		 * registered at the cpu's IRR. If so, then this is not
2404 		 * the best time to clean it up. Lets clean it up in the
2405 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2406 		 * to myself.
2407 		 */
2408 		if (irr  & (1 << (vector % 32))) {
2409 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2410 			goto unlock;
2411 		}
2412 		__this_cpu_write(vector_irq[vector], -1);
2413 unlock:
2414 		raw_spin_unlock(&desc->lock);
2415 	}
2416 
2417 	irq_exit();
2418 }
2419 
2420 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2421 {
2422 	unsigned me;
2423 
2424 	if (likely(!cfg->move_in_progress))
2425 		return;
2426 
2427 	me = smp_processor_id();
2428 
2429 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2430 		send_cleanup_vector(cfg);
2431 }
2432 
2433 static void irq_complete_move(struct irq_cfg *cfg)
2434 {
2435 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2436 }
2437 
2438 void irq_force_complete_move(int irq)
2439 {
2440 	struct irq_cfg *cfg = irq_get_chip_data(irq);
2441 
2442 	if (!cfg)
2443 		return;
2444 
2445 	__irq_complete_move(cfg, cfg->vector);
2446 }
2447 #else
2448 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2449 #endif
2450 
2451 static void ack_apic_edge(struct irq_data *data)
2452 {
2453 	irq_complete_move(data->chip_data);
2454 	irq_move_irq(data);
2455 	ack_APIC_irq();
2456 }
2457 
2458 atomic_t irq_mis_count;
2459 
2460 /*
2461  * IO-APIC versions below 0x20 don't support EOI register.
2462  * For the record, here is the information about various versions:
2463  *     0Xh     82489DX
2464  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2465  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
2466  *     30h-FFh Reserved
2467  *
2468  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2469  * version as 0x2. This is an error with documentation and these ICH chips
2470  * use io-apic's of version 0x20.
2471  *
2472  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2473  * Otherwise, we simulate the EOI message manually by changing the trigger
2474  * mode to edge and then back to level, with RTE being masked during this.
2475 */
2476 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2477 {
2478 	struct irq_pin_list *entry;
2479 	unsigned long flags;
2480 
2481 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2482 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2483 		if (mpc_ioapic_ver(entry->apic) >= 0x20) {
2484 			/*
2485 			 * Intr-remapping uses pin number as the virtual vector
2486 			 * in the RTE. Actual vector is programmed in
2487 			 * intr-remapping table entry. Hence for the io-apic
2488 			 * EOI we use the pin number.
2489 			 */
2490 			if (irq_remapped(cfg))
2491 				io_apic_eoi(entry->apic, entry->pin);
2492 			else
2493 				io_apic_eoi(entry->apic, cfg->vector);
2494 		} else {
2495 			struct IO_APIC_route_entry rte, rte1;
2496 
2497 			rte = rte1 =
2498 				__ioapic_read_entry(entry->apic, entry->pin);
2499 
2500 			/*
2501 			 * Mask the entry and change the trigger mode to edge.
2502 			 */
2503 			rte1.mask = 1;
2504 			rte1.trigger = IOAPIC_EDGE;
2505 
2506 			__ioapic_write_entry(apic, pin, rte1);
2507 
2508 			/*
2509 			 * Restore the previous level triggered entry.
2510 			 */
2511 			__ioapic_write_entry(apic, pin, rte);
2512 		}
2513 	}
2514 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2515 }
2516 
2517 static void ack_apic_level(struct irq_data *data)
2518 {
2519 	struct irq_cfg *cfg = data->chip_data;
2520 	int i, do_unmask_irq = 0, irq = data->irq;
2521 	unsigned long v;
2522 
2523 	irq_complete_move(cfg);
2524 #ifdef CONFIG_GENERIC_PENDING_IRQ
2525 	/* If we are moving the irq we need to mask it */
2526 	if (unlikely(irqd_is_setaffinity_pending(data))) {
2527 		do_unmask_irq = 1;
2528 		mask_ioapic(cfg);
2529 	}
2530 #endif
2531 
2532 	/*
2533 	 * It appears there is an erratum which affects at least version 0x11
2534 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2535 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2536 	 * erroneously delivered as edge-triggered one but the respective IRR
2537 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2538 	 * message but it will never arrive and further interrupts are blocked
2539 	 * from the source.  The exact reason is so far unknown, but the
2540 	 * phenomenon was observed when two consecutive interrupt requests
2541 	 * from a given source get delivered to the same CPU and the source is
2542 	 * temporarily disabled in between.
2543 	 *
2544 	 * A workaround is to simulate an EOI message manually.  We achieve it
2545 	 * by setting the trigger mode to edge and then to level when the edge
2546 	 * trigger mode gets detected in the TMR of a local APIC for a
2547 	 * level-triggered interrupt.  We mask the source for the time of the
2548 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2549 	 * The idea is from Manfred Spraul.  --macro
2550 	 *
2551 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2552 	 * any unhandled interrupt on the offlined cpu to the new cpu
2553 	 * destination that is handling the corresponding interrupt. This
2554 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2555 	 * level-triggered io-apic interrupt will be seen as an edge
2556 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2557 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2558 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2559 	 * supporting EOI register, we do an explicit EOI to clear the
2560 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2561 	 * we use the above logic (mask+edge followed by unmask+level) from
2562 	 * Manfred Spraul to clear the remote IRR.
2563 	 */
2564 	i = cfg->vector;
2565 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2566 
2567 	/*
2568 	 * We must acknowledge the irq before we move it or the acknowledge will
2569 	 * not propagate properly.
2570 	 */
2571 	ack_APIC_irq();
2572 
2573 	/*
2574 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2575 	 * message via io-apic EOI register write or simulating it using
2576 	 * mask+edge followed by unnask+level logic) manually when the
2577 	 * level triggered interrupt is seen as the edge triggered interrupt
2578 	 * at the cpu.
2579 	 */
2580 	if (!(v & (1 << (i & 0x1f)))) {
2581 		atomic_inc(&irq_mis_count);
2582 
2583 		eoi_ioapic_irq(irq, cfg);
2584 	}
2585 
2586 	/* Now we can move and renable the irq */
2587 	if (unlikely(do_unmask_irq)) {
2588 		/* Only migrate the irq if the ack has been received.
2589 		 *
2590 		 * On rare occasions the broadcast level triggered ack gets
2591 		 * delayed going to ioapics, and if we reprogram the
2592 		 * vector while Remote IRR is still set the irq will never
2593 		 * fire again.
2594 		 *
2595 		 * To prevent this scenario we read the Remote IRR bit
2596 		 * of the ioapic.  This has two effects.
2597 		 * - On any sane system the read of the ioapic will
2598 		 *   flush writes (and acks) going to the ioapic from
2599 		 *   this cpu.
2600 		 * - We get to see if the ACK has actually been delivered.
2601 		 *
2602 		 * Based on failed experiments of reprogramming the
2603 		 * ioapic entry from outside of irq context starting
2604 		 * with masking the ioapic entry and then polling until
2605 		 * Remote IRR was clear before reprogramming the
2606 		 * ioapic I don't trust the Remote IRR bit to be
2607 		 * completey accurate.
2608 		 *
2609 		 * However there appears to be no other way to plug
2610 		 * this race, so if the Remote IRR bit is not
2611 		 * accurate and is causing problems then it is a hardware bug
2612 		 * and you can go talk to the chipset vendor about it.
2613 		 */
2614 		if (!io_apic_level_ack_pending(cfg))
2615 			irq_move_masked_irq(data);
2616 		unmask_ioapic(cfg);
2617 	}
2618 }
2619 
2620 #ifdef CONFIG_IRQ_REMAP
2621 static void ir_ack_apic_edge(struct irq_data *data)
2622 {
2623 	ack_APIC_irq();
2624 }
2625 
2626 static void ir_ack_apic_level(struct irq_data *data)
2627 {
2628 	ack_APIC_irq();
2629 	eoi_ioapic_irq(data->irq, data->chip_data);
2630 }
2631 
2632 static void ir_print_prefix(struct irq_data *data, struct seq_file *p)
2633 {
2634 	seq_printf(p, " IR-%s", data->chip->name);
2635 }
2636 
2637 static void irq_remap_modify_chip_defaults(struct irq_chip *chip)
2638 {
2639 	chip->irq_print_chip = ir_print_prefix;
2640 	chip->irq_ack = ir_ack_apic_edge;
2641 	chip->irq_eoi = ir_ack_apic_level;
2642 
2643 #ifdef CONFIG_SMP
2644 	chip->irq_set_affinity = ir_ioapic_set_affinity;
2645 #endif
2646 }
2647 #endif /* CONFIG_IRQ_REMAP */
2648 
2649 static struct irq_chip ioapic_chip __read_mostly = {
2650 	.name			= "IO-APIC",
2651 	.irq_startup		= startup_ioapic_irq,
2652 	.irq_mask		= mask_ioapic_irq,
2653 	.irq_unmask		= unmask_ioapic_irq,
2654 	.irq_ack		= ack_apic_edge,
2655 	.irq_eoi		= ack_apic_level,
2656 #ifdef CONFIG_SMP
2657 	.irq_set_affinity	= ioapic_set_affinity,
2658 #endif
2659 	.irq_retrigger		= ioapic_retrigger_irq,
2660 };
2661 
2662 static inline void init_IO_APIC_traps(void)
2663 {
2664 	struct irq_cfg *cfg;
2665 	unsigned int irq;
2666 
2667 	/*
2668 	 * NOTE! The local APIC isn't very good at handling
2669 	 * multiple interrupts at the same interrupt level.
2670 	 * As the interrupt level is determined by taking the
2671 	 * vector number and shifting that right by 4, we
2672 	 * want to spread these out a bit so that they don't
2673 	 * all fall in the same interrupt level.
2674 	 *
2675 	 * Also, we've got to be careful not to trash gate
2676 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2677 	 */
2678 	for_each_active_irq(irq) {
2679 		cfg = irq_get_chip_data(irq);
2680 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2681 			/*
2682 			 * Hmm.. We don't have an entry for this,
2683 			 * so default to an old-fashioned 8259
2684 			 * interrupt if we can..
2685 			 */
2686 			if (irq < legacy_pic->nr_legacy_irqs)
2687 				legacy_pic->make_irq(irq);
2688 			else
2689 				/* Strange. Oh, well.. */
2690 				irq_set_chip(irq, &no_irq_chip);
2691 		}
2692 	}
2693 }
2694 
2695 /*
2696  * The local APIC irq-chip implementation:
2697  */
2698 
2699 static void mask_lapic_irq(struct irq_data *data)
2700 {
2701 	unsigned long v;
2702 
2703 	v = apic_read(APIC_LVT0);
2704 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2705 }
2706 
2707 static void unmask_lapic_irq(struct irq_data *data)
2708 {
2709 	unsigned long v;
2710 
2711 	v = apic_read(APIC_LVT0);
2712 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2713 }
2714 
2715 static void ack_lapic_irq(struct irq_data *data)
2716 {
2717 	ack_APIC_irq();
2718 }
2719 
2720 static struct irq_chip lapic_chip __read_mostly = {
2721 	.name		= "local-APIC",
2722 	.irq_mask	= mask_lapic_irq,
2723 	.irq_unmask	= unmask_lapic_irq,
2724 	.irq_ack	= ack_lapic_irq,
2725 };
2726 
2727 static void lapic_register_intr(int irq)
2728 {
2729 	irq_clear_status_flags(irq, IRQ_LEVEL);
2730 	irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2731 				      "edge");
2732 }
2733 
2734 /*
2735  * This looks a bit hackish but it's about the only one way of sending
2736  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2737  * not support the ExtINT mode, unfortunately.  We need to send these
2738  * cycles as some i82489DX-based boards have glue logic that keeps the
2739  * 8259A interrupt line asserted until INTA.  --macro
2740  */
2741 static inline void __init unlock_ExtINT_logic(void)
2742 {
2743 	int apic, pin, i;
2744 	struct IO_APIC_route_entry entry0, entry1;
2745 	unsigned char save_control, save_freq_select;
2746 
2747 	pin  = find_isa_irq_pin(8, mp_INT);
2748 	if (pin == -1) {
2749 		WARN_ON_ONCE(1);
2750 		return;
2751 	}
2752 	apic = find_isa_irq_apic(8, mp_INT);
2753 	if (apic == -1) {
2754 		WARN_ON_ONCE(1);
2755 		return;
2756 	}
2757 
2758 	entry0 = ioapic_read_entry(apic, pin);
2759 	clear_IO_APIC_pin(apic, pin);
2760 
2761 	memset(&entry1, 0, sizeof(entry1));
2762 
2763 	entry1.dest_mode = 0;			/* physical delivery */
2764 	entry1.mask = 0;			/* unmask IRQ now */
2765 	entry1.dest = hard_smp_processor_id();
2766 	entry1.delivery_mode = dest_ExtINT;
2767 	entry1.polarity = entry0.polarity;
2768 	entry1.trigger = 0;
2769 	entry1.vector = 0;
2770 
2771 	ioapic_write_entry(apic, pin, entry1);
2772 
2773 	save_control = CMOS_READ(RTC_CONTROL);
2774 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2775 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2776 		   RTC_FREQ_SELECT);
2777 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2778 
2779 	i = 100;
2780 	while (i-- > 0) {
2781 		mdelay(10);
2782 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2783 			i -= 10;
2784 	}
2785 
2786 	CMOS_WRITE(save_control, RTC_CONTROL);
2787 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2788 	clear_IO_APIC_pin(apic, pin);
2789 
2790 	ioapic_write_entry(apic, pin, entry0);
2791 }
2792 
2793 static int disable_timer_pin_1 __initdata;
2794 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2795 static int __init disable_timer_pin_setup(char *arg)
2796 {
2797 	disable_timer_pin_1 = 1;
2798 	return 0;
2799 }
2800 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2801 
2802 int timer_through_8259 __initdata;
2803 
2804 /*
2805  * This code may look a bit paranoid, but it's supposed to cooperate with
2806  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2807  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2808  * fanatically on his truly buggy board.
2809  *
2810  * FIXME: really need to revamp this for all platforms.
2811  */
2812 static inline void __init check_timer(void)
2813 {
2814 	struct irq_cfg *cfg = irq_get_chip_data(0);
2815 	int node = cpu_to_node(0);
2816 	int apic1, pin1, apic2, pin2;
2817 	unsigned long flags;
2818 	int no_pin1 = 0;
2819 
2820 	local_irq_save(flags);
2821 
2822 	/*
2823 	 * get/set the timer IRQ vector:
2824 	 */
2825 	legacy_pic->mask(0);
2826 	assign_irq_vector(0, cfg, apic->target_cpus());
2827 
2828 	/*
2829 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2830 	 * wire has to be disabled in the local APIC.  Also
2831 	 * timer interrupts need to be acknowledged manually in
2832 	 * the 8259A for the i82489DX when using the NMI
2833 	 * watchdog as that APIC treats NMIs as level-triggered.
2834 	 * The AEOI mode will finish them in the 8259A
2835 	 * automatically.
2836 	 */
2837 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2838 	legacy_pic->init(1);
2839 
2840 	pin1  = find_isa_irq_pin(0, mp_INT);
2841 	apic1 = find_isa_irq_apic(0, mp_INT);
2842 	pin2  = ioapic_i8259.pin;
2843 	apic2 = ioapic_i8259.apic;
2844 
2845 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2846 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2847 		    cfg->vector, apic1, pin1, apic2, pin2);
2848 
2849 	/*
2850 	 * Some BIOS writers are clueless and report the ExtINTA
2851 	 * I/O APIC input from the cascaded 8259A as the timer
2852 	 * interrupt input.  So just in case, if only one pin
2853 	 * was found above, try it both directly and through the
2854 	 * 8259A.
2855 	 */
2856 	if (pin1 == -1) {
2857 		if (intr_remapping_enabled)
2858 			panic("BIOS bug: timer not connected to IO-APIC");
2859 		pin1 = pin2;
2860 		apic1 = apic2;
2861 		no_pin1 = 1;
2862 	} else if (pin2 == -1) {
2863 		pin2 = pin1;
2864 		apic2 = apic1;
2865 	}
2866 
2867 	if (pin1 != -1) {
2868 		/*
2869 		 * Ok, does IRQ0 through the IOAPIC work?
2870 		 */
2871 		if (no_pin1) {
2872 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2873 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2874 		} else {
2875 			/* for edge trigger, setup_ioapic_irq already
2876 			 * leave it unmasked.
2877 			 * so only need to unmask if it is level-trigger
2878 			 * do we really have level trigger timer?
2879 			 */
2880 			int idx;
2881 			idx = find_irq_entry(apic1, pin1, mp_INT);
2882 			if (idx != -1 && irq_trigger(idx))
2883 				unmask_ioapic(cfg);
2884 		}
2885 		if (timer_irq_works()) {
2886 			if (disable_timer_pin_1 > 0)
2887 				clear_IO_APIC_pin(0, pin1);
2888 			goto out;
2889 		}
2890 		if (intr_remapping_enabled)
2891 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2892 		local_irq_disable();
2893 		clear_IO_APIC_pin(apic1, pin1);
2894 		if (!no_pin1)
2895 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2896 				    "8254 timer not connected to IO-APIC\n");
2897 
2898 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2899 			    "(IRQ0) through the 8259A ...\n");
2900 		apic_printk(APIC_QUIET, KERN_INFO
2901 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2902 		/*
2903 		 * legacy devices should be connected to IO APIC #0
2904 		 */
2905 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2906 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2907 		legacy_pic->unmask(0);
2908 		if (timer_irq_works()) {
2909 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2910 			timer_through_8259 = 1;
2911 			goto out;
2912 		}
2913 		/*
2914 		 * Cleanup, just in case ...
2915 		 */
2916 		local_irq_disable();
2917 		legacy_pic->mask(0);
2918 		clear_IO_APIC_pin(apic2, pin2);
2919 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2920 	}
2921 
2922 	apic_printk(APIC_QUIET, KERN_INFO
2923 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2924 
2925 	lapic_register_intr(0);
2926 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
2927 	legacy_pic->unmask(0);
2928 
2929 	if (timer_irq_works()) {
2930 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2931 		goto out;
2932 	}
2933 	local_irq_disable();
2934 	legacy_pic->mask(0);
2935 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2936 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2937 
2938 	apic_printk(APIC_QUIET, KERN_INFO
2939 		    "...trying to set up timer as ExtINT IRQ...\n");
2940 
2941 	legacy_pic->init(0);
2942 	legacy_pic->make_irq(0);
2943 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
2944 
2945 	unlock_ExtINT_logic();
2946 
2947 	if (timer_irq_works()) {
2948 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2949 		goto out;
2950 	}
2951 	local_irq_disable();
2952 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2953 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
2954 		"report.  Then try booting with the 'noapic' option.\n");
2955 out:
2956 	local_irq_restore(flags);
2957 }
2958 
2959 /*
2960  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2961  * to devices.  However there may be an I/O APIC pin available for
2962  * this interrupt regardless.  The pin may be left unconnected, but
2963  * typically it will be reused as an ExtINT cascade interrupt for
2964  * the master 8259A.  In the MPS case such a pin will normally be
2965  * reported as an ExtINT interrupt in the MP table.  With ACPI
2966  * there is no provision for ExtINT interrupts, and in the absence
2967  * of an override it would be treated as an ordinary ISA I/O APIC
2968  * interrupt, that is edge-triggered and unmasked by default.  We
2969  * used to do this, but it caused problems on some systems because
2970  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2971  * the same ExtINT cascade interrupt to drive the local APIC of the
2972  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
2973  * the I/O APIC in all cases now.  No actual device should request
2974  * it anyway.  --macro
2975  */
2976 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
2977 
2978 void __init setup_IO_APIC(void)
2979 {
2980 
2981 	/*
2982 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2983 	 */
2984 	io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2985 
2986 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2987 	/*
2988          * Set up IO-APIC IRQ routing.
2989          */
2990 	x86_init.mpparse.setup_ioapic_ids();
2991 
2992 	sync_Arb_IDs();
2993 	setup_IO_APIC_irqs();
2994 	init_IO_APIC_traps();
2995 	if (legacy_pic->nr_legacy_irqs)
2996 		check_timer();
2997 }
2998 
2999 /*
3000  *      Called after all the initialization is done. If we didn't find any
3001  *      APIC bugs then we can allow the modify fast path
3002  */
3003 
3004 static int __init io_apic_bug_finalize(void)
3005 {
3006 	if (sis_apic_bug == -1)
3007 		sis_apic_bug = 0;
3008 	return 0;
3009 }
3010 
3011 late_initcall(io_apic_bug_finalize);
3012 
3013 static void resume_ioapic_id(int ioapic_id)
3014 {
3015 	unsigned long flags;
3016 	union IO_APIC_reg_00 reg_00;
3017 
3018 
3019 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3020 	reg_00.raw = io_apic_read(ioapic_id, 0);
3021 	if (reg_00.bits.ID != mpc_ioapic_id(ioapic_id)) {
3022 		reg_00.bits.ID = mpc_ioapic_id(ioapic_id);
3023 		io_apic_write(ioapic_id, 0, reg_00.raw);
3024 	}
3025 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3026 }
3027 
3028 static void ioapic_resume(void)
3029 {
3030 	int ioapic_id;
3031 
3032 	for (ioapic_id = nr_ioapics - 1; ioapic_id >= 0; ioapic_id--)
3033 		resume_ioapic_id(ioapic_id);
3034 
3035 	restore_ioapic_entries();
3036 }
3037 
3038 static struct syscore_ops ioapic_syscore_ops = {
3039 	.suspend = save_ioapic_entries,
3040 	.resume = ioapic_resume,
3041 };
3042 
3043 static int __init ioapic_init_ops(void)
3044 {
3045 	register_syscore_ops(&ioapic_syscore_ops);
3046 
3047 	return 0;
3048 }
3049 
3050 device_initcall(ioapic_init_ops);
3051 
3052 /*
3053  * Dynamic irq allocate and deallocation
3054  */
3055 unsigned int create_irq_nr(unsigned int from, int node)
3056 {
3057 	struct irq_cfg *cfg;
3058 	unsigned long flags;
3059 	unsigned int ret = 0;
3060 	int irq;
3061 
3062 	if (from < nr_irqs_gsi)
3063 		from = nr_irqs_gsi;
3064 
3065 	irq = alloc_irq_from(from, node);
3066 	if (irq < 0)
3067 		return 0;
3068 	cfg = alloc_irq_cfg(irq, node);
3069 	if (!cfg) {
3070 		free_irq_at(irq, NULL);
3071 		return 0;
3072 	}
3073 
3074 	raw_spin_lock_irqsave(&vector_lock, flags);
3075 	if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3076 		ret = irq;
3077 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3078 
3079 	if (ret) {
3080 		irq_set_chip_data(irq, cfg);
3081 		irq_clear_status_flags(irq, IRQ_NOREQUEST);
3082 	} else {
3083 		free_irq_at(irq, cfg);
3084 	}
3085 	return ret;
3086 }
3087 
3088 int create_irq(void)
3089 {
3090 	int node = cpu_to_node(0);
3091 	unsigned int irq_want;
3092 	int irq;
3093 
3094 	irq_want = nr_irqs_gsi;
3095 	irq = create_irq_nr(irq_want, node);
3096 
3097 	if (irq == 0)
3098 		irq = -1;
3099 
3100 	return irq;
3101 }
3102 
3103 void destroy_irq(unsigned int irq)
3104 {
3105 	struct irq_cfg *cfg = irq_get_chip_data(irq);
3106 	unsigned long flags;
3107 
3108 	irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3109 
3110 	if (irq_remapped(cfg))
3111 		free_irte(irq);
3112 	raw_spin_lock_irqsave(&vector_lock, flags);
3113 	__clear_irq_vector(irq, cfg);
3114 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3115 	free_irq_at(irq, cfg);
3116 }
3117 
3118 /*
3119  * MSI message composition
3120  */
3121 #ifdef CONFIG_PCI_MSI
3122 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3123 			   struct msi_msg *msg, u8 hpet_id)
3124 {
3125 	struct irq_cfg *cfg;
3126 	int err;
3127 	unsigned dest;
3128 
3129 	if (disable_apic)
3130 		return -ENXIO;
3131 
3132 	cfg = irq_cfg(irq);
3133 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3134 	if (err)
3135 		return err;
3136 
3137 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3138 
3139 	if (irq_remapped(cfg)) {
3140 		struct irte irte;
3141 		int ir_index;
3142 		u16 sub_handle;
3143 
3144 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3145 		BUG_ON(ir_index == -1);
3146 
3147 		prepare_irte(&irte, cfg->vector, dest);
3148 
3149 		/* Set source-id of interrupt request */
3150 		if (pdev)
3151 			set_msi_sid(&irte, pdev);
3152 		else
3153 			set_hpet_sid(&irte, hpet_id);
3154 
3155 		modify_irte(irq, &irte);
3156 
3157 		msg->address_hi = MSI_ADDR_BASE_HI;
3158 		msg->data = sub_handle;
3159 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3160 				  MSI_ADDR_IR_SHV |
3161 				  MSI_ADDR_IR_INDEX1(ir_index) |
3162 				  MSI_ADDR_IR_INDEX2(ir_index);
3163 	} else {
3164 		if (x2apic_enabled())
3165 			msg->address_hi = MSI_ADDR_BASE_HI |
3166 					  MSI_ADDR_EXT_DEST_ID(dest);
3167 		else
3168 			msg->address_hi = MSI_ADDR_BASE_HI;
3169 
3170 		msg->address_lo =
3171 			MSI_ADDR_BASE_LO |
3172 			((apic->irq_dest_mode == 0) ?
3173 				MSI_ADDR_DEST_MODE_PHYSICAL:
3174 				MSI_ADDR_DEST_MODE_LOGICAL) |
3175 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3176 				MSI_ADDR_REDIRECTION_CPU:
3177 				MSI_ADDR_REDIRECTION_LOWPRI) |
3178 			MSI_ADDR_DEST_ID(dest);
3179 
3180 		msg->data =
3181 			MSI_DATA_TRIGGER_EDGE |
3182 			MSI_DATA_LEVEL_ASSERT |
3183 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3184 				MSI_DATA_DELIVERY_FIXED:
3185 				MSI_DATA_DELIVERY_LOWPRI) |
3186 			MSI_DATA_VECTOR(cfg->vector);
3187 	}
3188 	return err;
3189 }
3190 
3191 #ifdef CONFIG_SMP
3192 static int
3193 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3194 {
3195 	struct irq_cfg *cfg = data->chip_data;
3196 	struct msi_msg msg;
3197 	unsigned int dest;
3198 
3199 	if (__ioapic_set_affinity(data, mask, &dest))
3200 		return -1;
3201 
3202 	__get_cached_msi_msg(data->msi_desc, &msg);
3203 
3204 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3205 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3206 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3207 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3208 
3209 	__write_msi_msg(data->msi_desc, &msg);
3210 
3211 	return 0;
3212 }
3213 #endif /* CONFIG_SMP */
3214 
3215 /*
3216  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3217  * which implement the MSI or MSI-X Capability Structure.
3218  */
3219 static struct irq_chip msi_chip = {
3220 	.name			= "PCI-MSI",
3221 	.irq_unmask		= unmask_msi_irq,
3222 	.irq_mask		= mask_msi_irq,
3223 	.irq_ack		= ack_apic_edge,
3224 #ifdef CONFIG_SMP
3225 	.irq_set_affinity	= msi_set_affinity,
3226 #endif
3227 	.irq_retrigger		= ioapic_retrigger_irq,
3228 };
3229 
3230 /*
3231  * Map the PCI dev to the corresponding remapping hardware unit
3232  * and allocate 'nvec' consecutive interrupt-remapping table entries
3233  * in it.
3234  */
3235 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3236 {
3237 	struct intel_iommu *iommu;
3238 	int index;
3239 
3240 	iommu = map_dev_to_ir(dev);
3241 	if (!iommu) {
3242 		printk(KERN_ERR
3243 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3244 		return -ENOENT;
3245 	}
3246 
3247 	index = alloc_irte(iommu, irq, nvec);
3248 	if (index < 0) {
3249 		printk(KERN_ERR
3250 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3251 		       pci_name(dev));
3252 		return -ENOSPC;
3253 	}
3254 	return index;
3255 }
3256 
3257 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3258 {
3259 	struct irq_chip *chip = &msi_chip;
3260 	struct msi_msg msg;
3261 	int ret;
3262 
3263 	ret = msi_compose_msg(dev, irq, &msg, -1);
3264 	if (ret < 0)
3265 		return ret;
3266 
3267 	irq_set_msi_desc(irq, msidesc);
3268 	write_msi_msg(irq, &msg);
3269 
3270 	if (irq_remapped(irq_get_chip_data(irq))) {
3271 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3272 		irq_remap_modify_chip_defaults(chip);
3273 	}
3274 
3275 	irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3276 
3277 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3278 
3279 	return 0;
3280 }
3281 
3282 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3283 {
3284 	int node, ret, sub_handle, index = 0;
3285 	unsigned int irq, irq_want;
3286 	struct msi_desc *msidesc;
3287 	struct intel_iommu *iommu = NULL;
3288 
3289 	/* x86 doesn't support multiple MSI yet */
3290 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3291 		return 1;
3292 
3293 	node = dev_to_node(&dev->dev);
3294 	irq_want = nr_irqs_gsi;
3295 	sub_handle = 0;
3296 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3297 		irq = create_irq_nr(irq_want, node);
3298 		if (irq == 0)
3299 			return -1;
3300 		irq_want = irq + 1;
3301 		if (!intr_remapping_enabled)
3302 			goto no_ir;
3303 
3304 		if (!sub_handle) {
3305 			/*
3306 			 * allocate the consecutive block of IRTE's
3307 			 * for 'nvec'
3308 			 */
3309 			index = msi_alloc_irte(dev, irq, nvec);
3310 			if (index < 0) {
3311 				ret = index;
3312 				goto error;
3313 			}
3314 		} else {
3315 			iommu = map_dev_to_ir(dev);
3316 			if (!iommu) {
3317 				ret = -ENOENT;
3318 				goto error;
3319 			}
3320 			/*
3321 			 * setup the mapping between the irq and the IRTE
3322 			 * base index, the sub_handle pointing to the
3323 			 * appropriate interrupt remap table entry.
3324 			 */
3325 			set_irte_irq(irq, iommu, index, sub_handle);
3326 		}
3327 no_ir:
3328 		ret = setup_msi_irq(dev, msidesc, irq);
3329 		if (ret < 0)
3330 			goto error;
3331 		sub_handle++;
3332 	}
3333 	return 0;
3334 
3335 error:
3336 	destroy_irq(irq);
3337 	return ret;
3338 }
3339 
3340 void native_teardown_msi_irq(unsigned int irq)
3341 {
3342 	destroy_irq(irq);
3343 }
3344 
3345 #ifdef CONFIG_DMAR_TABLE
3346 #ifdef CONFIG_SMP
3347 static int
3348 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3349 		      bool force)
3350 {
3351 	struct irq_cfg *cfg = data->chip_data;
3352 	unsigned int dest, irq = data->irq;
3353 	struct msi_msg msg;
3354 
3355 	if (__ioapic_set_affinity(data, mask, &dest))
3356 		return -1;
3357 
3358 	dmar_msi_read(irq, &msg);
3359 
3360 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3361 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3362 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3363 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3364 	msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3365 
3366 	dmar_msi_write(irq, &msg);
3367 
3368 	return 0;
3369 }
3370 
3371 #endif /* CONFIG_SMP */
3372 
3373 static struct irq_chip dmar_msi_type = {
3374 	.name			= "DMAR_MSI",
3375 	.irq_unmask		= dmar_msi_unmask,
3376 	.irq_mask		= dmar_msi_mask,
3377 	.irq_ack		= ack_apic_edge,
3378 #ifdef CONFIG_SMP
3379 	.irq_set_affinity	= dmar_msi_set_affinity,
3380 #endif
3381 	.irq_retrigger		= ioapic_retrigger_irq,
3382 };
3383 
3384 int arch_setup_dmar_msi(unsigned int irq)
3385 {
3386 	int ret;
3387 	struct msi_msg msg;
3388 
3389 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3390 	if (ret < 0)
3391 		return ret;
3392 	dmar_msi_write(irq, &msg);
3393 	irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3394 				      "edge");
3395 	return 0;
3396 }
3397 #endif
3398 
3399 #ifdef CONFIG_HPET_TIMER
3400 
3401 #ifdef CONFIG_SMP
3402 static int hpet_msi_set_affinity(struct irq_data *data,
3403 				 const struct cpumask *mask, bool force)
3404 {
3405 	struct irq_cfg *cfg = data->chip_data;
3406 	struct msi_msg msg;
3407 	unsigned int dest;
3408 
3409 	if (__ioapic_set_affinity(data, mask, &dest))
3410 		return -1;
3411 
3412 	hpet_msi_read(data->handler_data, &msg);
3413 
3414 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3415 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3416 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3417 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3418 
3419 	hpet_msi_write(data->handler_data, &msg);
3420 
3421 	return 0;
3422 }
3423 
3424 #endif /* CONFIG_SMP */
3425 
3426 static struct irq_chip hpet_msi_type = {
3427 	.name = "HPET_MSI",
3428 	.irq_unmask = hpet_msi_unmask,
3429 	.irq_mask = hpet_msi_mask,
3430 	.irq_ack = ack_apic_edge,
3431 #ifdef CONFIG_SMP
3432 	.irq_set_affinity = hpet_msi_set_affinity,
3433 #endif
3434 	.irq_retrigger = ioapic_retrigger_irq,
3435 };
3436 
3437 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3438 {
3439 	struct irq_chip *chip = &hpet_msi_type;
3440 	struct msi_msg msg;
3441 	int ret;
3442 
3443 	if (intr_remapping_enabled) {
3444 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3445 		int index;
3446 
3447 		if (!iommu)
3448 			return -1;
3449 
3450 		index = alloc_irte(iommu, irq, 1);
3451 		if (index < 0)
3452 			return -1;
3453 	}
3454 
3455 	ret = msi_compose_msg(NULL, irq, &msg, id);
3456 	if (ret < 0)
3457 		return ret;
3458 
3459 	hpet_msi_write(irq_get_handler_data(irq), &msg);
3460 	irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3461 	if (irq_remapped(irq_get_chip_data(irq)))
3462 		irq_remap_modify_chip_defaults(chip);
3463 
3464 	irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3465 	return 0;
3466 }
3467 #endif
3468 
3469 #endif /* CONFIG_PCI_MSI */
3470 /*
3471  * Hypertransport interrupt support
3472  */
3473 #ifdef CONFIG_HT_IRQ
3474 
3475 #ifdef CONFIG_SMP
3476 
3477 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3478 {
3479 	struct ht_irq_msg msg;
3480 	fetch_ht_irq_msg(irq, &msg);
3481 
3482 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3483 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3484 
3485 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3486 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3487 
3488 	write_ht_irq_msg(irq, &msg);
3489 }
3490 
3491 static int
3492 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3493 {
3494 	struct irq_cfg *cfg = data->chip_data;
3495 	unsigned int dest;
3496 
3497 	if (__ioapic_set_affinity(data, mask, &dest))
3498 		return -1;
3499 
3500 	target_ht_irq(data->irq, dest, cfg->vector);
3501 	return 0;
3502 }
3503 
3504 #endif
3505 
3506 static struct irq_chip ht_irq_chip = {
3507 	.name			= "PCI-HT",
3508 	.irq_mask		= mask_ht_irq,
3509 	.irq_unmask		= unmask_ht_irq,
3510 	.irq_ack		= ack_apic_edge,
3511 #ifdef CONFIG_SMP
3512 	.irq_set_affinity	= ht_set_affinity,
3513 #endif
3514 	.irq_retrigger		= ioapic_retrigger_irq,
3515 };
3516 
3517 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3518 {
3519 	struct irq_cfg *cfg;
3520 	int err;
3521 
3522 	if (disable_apic)
3523 		return -ENXIO;
3524 
3525 	cfg = irq_cfg(irq);
3526 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3527 	if (!err) {
3528 		struct ht_irq_msg msg;
3529 		unsigned dest;
3530 
3531 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3532 						    apic->target_cpus());
3533 
3534 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3535 
3536 		msg.address_lo =
3537 			HT_IRQ_LOW_BASE |
3538 			HT_IRQ_LOW_DEST_ID(dest) |
3539 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3540 			((apic->irq_dest_mode == 0) ?
3541 				HT_IRQ_LOW_DM_PHYSICAL :
3542 				HT_IRQ_LOW_DM_LOGICAL) |
3543 			HT_IRQ_LOW_RQEOI_EDGE |
3544 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3545 				HT_IRQ_LOW_MT_FIXED :
3546 				HT_IRQ_LOW_MT_ARBITRATED) |
3547 			HT_IRQ_LOW_IRQ_MASKED;
3548 
3549 		write_ht_irq_msg(irq, &msg);
3550 
3551 		irq_set_chip_and_handler_name(irq, &ht_irq_chip,
3552 					      handle_edge_irq, "edge");
3553 
3554 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3555 	}
3556 	return err;
3557 }
3558 #endif /* CONFIG_HT_IRQ */
3559 
3560 static int
3561 io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
3562 {
3563 	struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
3564 	int ret;
3565 
3566 	if (!cfg)
3567 		return -EINVAL;
3568 	ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
3569 	if (!ret)
3570 		setup_ioapic_irq(attr->ioapic, attr->ioapic_pin, irq, cfg,
3571 				 attr->trigger, attr->polarity);
3572 	return ret;
3573 }
3574 
3575 int io_apic_setup_irq_pin_once(unsigned int irq, int node,
3576 			       struct io_apic_irq_attr *attr)
3577 {
3578 	unsigned int id = attr->ioapic, pin = attr->ioapic_pin;
3579 	int ret;
3580 
3581 	/* Avoid redundant programming */
3582 	if (test_bit(pin, ioapics[id].pin_programmed)) {
3583 		pr_debug("Pin %d-%d already programmed\n",
3584 			 mpc_ioapic_id(id), pin);
3585 		return 0;
3586 	}
3587 	ret = io_apic_setup_irq_pin(irq, node, attr);
3588 	if (!ret)
3589 		set_bit(pin, ioapics[id].pin_programmed);
3590 	return ret;
3591 }
3592 
3593 static int __init io_apic_get_redir_entries(int ioapic)
3594 {
3595 	union IO_APIC_reg_01	reg_01;
3596 	unsigned long flags;
3597 
3598 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3599 	reg_01.raw = io_apic_read(ioapic, 1);
3600 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3601 
3602 	/* The register returns the maximum index redir index
3603 	 * supported, which is one less than the total number of redir
3604 	 * entries.
3605 	 */
3606 	return reg_01.bits.entries + 1;
3607 }
3608 
3609 static void __init probe_nr_irqs_gsi(void)
3610 {
3611 	int nr;
3612 
3613 	nr = gsi_top + NR_IRQS_LEGACY;
3614 	if (nr > nr_irqs_gsi)
3615 		nr_irqs_gsi = nr;
3616 
3617 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3618 }
3619 
3620 int get_nr_irqs_gsi(void)
3621 {
3622 	return nr_irqs_gsi;
3623 }
3624 
3625 #ifdef CONFIG_SPARSE_IRQ
3626 int __init arch_probe_nr_irqs(void)
3627 {
3628 	int nr;
3629 
3630 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3631 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3632 
3633 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3634 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3635 	/*
3636 	 * for MSI and HT dyn irq
3637 	 */
3638 	nr += nr_irqs_gsi * 16;
3639 #endif
3640 	if (nr < nr_irqs)
3641 		nr_irqs = nr;
3642 
3643 	return NR_IRQS_LEGACY;
3644 }
3645 #endif
3646 
3647 int io_apic_set_pci_routing(struct device *dev, int irq,
3648 			    struct io_apic_irq_attr *irq_attr)
3649 {
3650 	int node;
3651 
3652 	if (!IO_APIC_IRQ(irq)) {
3653 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3654 			    irq_attr->ioapic);
3655 		return -EINVAL;
3656 	}
3657 
3658 	node = dev ? dev_to_node(dev) : cpu_to_node(0);
3659 
3660 	return io_apic_setup_irq_pin_once(irq, node, irq_attr);
3661 }
3662 
3663 #ifdef CONFIG_X86_32
3664 static int __init io_apic_get_unique_id(int ioapic, int apic_id)
3665 {
3666 	union IO_APIC_reg_00 reg_00;
3667 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3668 	physid_mask_t tmp;
3669 	unsigned long flags;
3670 	int i = 0;
3671 
3672 	/*
3673 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3674 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3675 	 * supports up to 16 on one shared APIC bus.
3676 	 *
3677 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3678 	 *      advantage of new APIC bus architecture.
3679 	 */
3680 
3681 	if (physids_empty(apic_id_map))
3682 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3683 
3684 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3685 	reg_00.raw = io_apic_read(ioapic, 0);
3686 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3687 
3688 	if (apic_id >= get_physical_broadcast()) {
3689 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3690 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3691 		apic_id = reg_00.bits.ID;
3692 	}
3693 
3694 	/*
3695 	 * Every APIC in a system must have a unique ID or we get lots of nice
3696 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3697 	 */
3698 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3699 
3700 		for (i = 0; i < get_physical_broadcast(); i++) {
3701 			if (!apic->check_apicid_used(&apic_id_map, i))
3702 				break;
3703 		}
3704 
3705 		if (i == get_physical_broadcast())
3706 			panic("Max apic_id exceeded!\n");
3707 
3708 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3709 			"trying %d\n", ioapic, apic_id, i);
3710 
3711 		apic_id = i;
3712 	}
3713 
3714 	apic->apicid_to_cpu_present(apic_id, &tmp);
3715 	physids_or(apic_id_map, apic_id_map, tmp);
3716 
3717 	if (reg_00.bits.ID != apic_id) {
3718 		reg_00.bits.ID = apic_id;
3719 
3720 		raw_spin_lock_irqsave(&ioapic_lock, flags);
3721 		io_apic_write(ioapic, 0, reg_00.raw);
3722 		reg_00.raw = io_apic_read(ioapic, 0);
3723 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3724 
3725 		/* Sanity check */
3726 		if (reg_00.bits.ID != apic_id) {
3727 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3728 			return -1;
3729 		}
3730 	}
3731 
3732 	apic_printk(APIC_VERBOSE, KERN_INFO
3733 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3734 
3735 	return apic_id;
3736 }
3737 
3738 static u8 __init io_apic_unique_id(u8 id)
3739 {
3740 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3741 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3742 		return io_apic_get_unique_id(nr_ioapics, id);
3743 	else
3744 		return id;
3745 }
3746 #else
3747 static u8 __init io_apic_unique_id(u8 id)
3748 {
3749 	int i;
3750 	DECLARE_BITMAP(used, 256);
3751 
3752 	bitmap_zero(used, 256);
3753 	for (i = 0; i < nr_ioapics; i++) {
3754 		__set_bit(mpc_ioapic_id(i), used);
3755 	}
3756 	if (!test_bit(id, used))
3757 		return id;
3758 	return find_first_zero_bit(used, 256);
3759 }
3760 #endif
3761 
3762 static int __init io_apic_get_version(int ioapic)
3763 {
3764 	union IO_APIC_reg_01	reg_01;
3765 	unsigned long flags;
3766 
3767 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3768 	reg_01.raw = io_apic_read(ioapic, 1);
3769 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3770 
3771 	return reg_01.bits.version;
3772 }
3773 
3774 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3775 {
3776 	int ioapic, pin, idx;
3777 
3778 	if (skip_ioapic_setup)
3779 		return -1;
3780 
3781 	ioapic = mp_find_ioapic(gsi);
3782 	if (ioapic < 0)
3783 		return -1;
3784 
3785 	pin = mp_find_ioapic_pin(ioapic, gsi);
3786 	if (pin < 0)
3787 		return -1;
3788 
3789 	idx = find_irq_entry(ioapic, pin, mp_INT);
3790 	if (idx < 0)
3791 		return -1;
3792 
3793 	*trigger = irq_trigger(idx);
3794 	*polarity = irq_polarity(idx);
3795 	return 0;
3796 }
3797 
3798 /*
3799  * This function currently is only a helper for the i386 smp boot process where
3800  * we need to reprogram the ioredtbls to cater for the cpus which have come online
3801  * so mask in all cases should simply be apic->target_cpus()
3802  */
3803 #ifdef CONFIG_SMP
3804 void __init setup_ioapic_dest(void)
3805 {
3806 	int pin, ioapic, irq, irq_entry;
3807 	const struct cpumask *mask;
3808 	struct irq_data *idata;
3809 
3810 	if (skip_ioapic_setup == 1)
3811 		return;
3812 
3813 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3814 	for (pin = 0; pin < ioapics[ioapic].nr_registers; pin++) {
3815 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3816 		if (irq_entry == -1)
3817 			continue;
3818 		irq = pin_2_irq(irq_entry, ioapic, pin);
3819 
3820 		if ((ioapic > 0) && (irq > 16))
3821 			continue;
3822 
3823 		idata = irq_get_irq_data(irq);
3824 
3825 		/*
3826 		 * Honour affinities which have been set in early boot
3827 		 */
3828 		if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata))
3829 			mask = idata->affinity;
3830 		else
3831 			mask = apic->target_cpus();
3832 
3833 		if (intr_remapping_enabled)
3834 			ir_ioapic_set_affinity(idata, mask, false);
3835 		else
3836 			ioapic_set_affinity(idata, mask, false);
3837 	}
3838 
3839 }
3840 #endif
3841 
3842 #define IOAPIC_RESOURCE_NAME_SIZE 11
3843 
3844 static struct resource *ioapic_resources;
3845 
3846 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3847 {
3848 	unsigned long n;
3849 	struct resource *res;
3850 	char *mem;
3851 	int i;
3852 
3853 	if (nr_ioapics <= 0)
3854 		return NULL;
3855 
3856 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3857 	n *= nr_ioapics;
3858 
3859 	mem = alloc_bootmem(n);
3860 	res = (void *)mem;
3861 
3862 	mem += sizeof(struct resource) * nr_ioapics;
3863 
3864 	for (i = 0; i < nr_ioapics; i++) {
3865 		res[i].name = mem;
3866 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3867 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3868 		mem += IOAPIC_RESOURCE_NAME_SIZE;
3869 	}
3870 
3871 	ioapic_resources = res;
3872 
3873 	return res;
3874 }
3875 
3876 void __init ioapic_and_gsi_init(void)
3877 {
3878 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3879 	struct resource *ioapic_res;
3880 	int i;
3881 
3882 	ioapic_res = ioapic_setup_resources(nr_ioapics);
3883 	for (i = 0; i < nr_ioapics; i++) {
3884 		if (smp_found_config) {
3885 			ioapic_phys = mpc_ioapic_addr(i);
3886 #ifdef CONFIG_X86_32
3887 			if (!ioapic_phys) {
3888 				printk(KERN_ERR
3889 				       "WARNING: bogus zero IO-APIC "
3890 				       "address found in MPTABLE, "
3891 				       "disabling IO/APIC support!\n");
3892 				smp_found_config = 0;
3893 				skip_ioapic_setup = 1;
3894 				goto fake_ioapic_page;
3895 			}
3896 #endif
3897 		} else {
3898 #ifdef CONFIG_X86_32
3899 fake_ioapic_page:
3900 #endif
3901 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3902 			ioapic_phys = __pa(ioapic_phys);
3903 		}
3904 		set_fixmap_nocache(idx, ioapic_phys);
3905 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3906 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3907 			ioapic_phys);
3908 		idx++;
3909 
3910 		ioapic_res->start = ioapic_phys;
3911 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3912 		ioapic_res++;
3913 	}
3914 
3915 	probe_nr_irqs_gsi();
3916 }
3917 
3918 void __init ioapic_insert_resources(void)
3919 {
3920 	int i;
3921 	struct resource *r = ioapic_resources;
3922 
3923 	if (!r) {
3924 		if (nr_ioapics > 0)
3925 			printk(KERN_ERR
3926 				"IO APIC resources couldn't be allocated.\n");
3927 		return;
3928 	}
3929 
3930 	for (i = 0; i < nr_ioapics; i++) {
3931 		insert_resource(&iomem_resource, r);
3932 		r++;
3933 	}
3934 }
3935 
3936 int mp_find_ioapic(u32 gsi)
3937 {
3938 	int i = 0;
3939 
3940 	if (nr_ioapics == 0)
3941 		return -1;
3942 
3943 	/* Find the IOAPIC that manages this GSI. */
3944 	for (i = 0; i < nr_ioapics; i++) {
3945 		struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i);
3946 		if ((gsi >= gsi_cfg->gsi_base)
3947 		    && (gsi <= gsi_cfg->gsi_end))
3948 			return i;
3949 	}
3950 
3951 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3952 	return -1;
3953 }
3954 
3955 int mp_find_ioapic_pin(int ioapic, u32 gsi)
3956 {
3957 	struct mp_ioapic_gsi *gsi_cfg;
3958 
3959 	if (WARN_ON(ioapic == -1))
3960 		return -1;
3961 
3962 	gsi_cfg = mp_ioapic_gsi_routing(ioapic);
3963 	if (WARN_ON(gsi > gsi_cfg->gsi_end))
3964 		return -1;
3965 
3966 	return gsi - gsi_cfg->gsi_base;
3967 }
3968 
3969 static __init int bad_ioapic(unsigned long address)
3970 {
3971 	if (nr_ioapics >= MAX_IO_APICS) {
3972 		printk(KERN_WARNING "WARNING: Max # of I/O APICs (%d) exceeded "
3973 		       "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
3974 		return 1;
3975 	}
3976 	if (!address) {
3977 		printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
3978 		       " found in table, skipping!\n");
3979 		return 1;
3980 	}
3981 	return 0;
3982 }
3983 
3984 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
3985 {
3986 	int idx = 0;
3987 	int entries;
3988 	struct mp_ioapic_gsi *gsi_cfg;
3989 
3990 	if (bad_ioapic(address))
3991 		return;
3992 
3993 	idx = nr_ioapics;
3994 
3995 	ioapics[idx].mp_config.type = MP_IOAPIC;
3996 	ioapics[idx].mp_config.flags = MPC_APIC_USABLE;
3997 	ioapics[idx].mp_config.apicaddr = address;
3998 
3999 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4000 	ioapics[idx].mp_config.apicid = io_apic_unique_id(id);
4001 	ioapics[idx].mp_config.apicver = io_apic_get_version(idx);
4002 
4003 	/*
4004 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4005 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4006 	 */
4007 	entries = io_apic_get_redir_entries(idx);
4008 	gsi_cfg = mp_ioapic_gsi_routing(idx);
4009 	gsi_cfg->gsi_base = gsi_base;
4010 	gsi_cfg->gsi_end = gsi_base + entries - 1;
4011 
4012 	/*
4013 	 * The number of IO-APIC IRQ registers (== #pins):
4014 	 */
4015 	ioapics[idx].nr_registers = entries;
4016 
4017 	if (gsi_cfg->gsi_end >= gsi_top)
4018 		gsi_top = gsi_cfg->gsi_end + 1;
4019 
4020 	printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4021 	       "GSI %d-%d\n", idx, mpc_ioapic_id(idx),
4022 	       mpc_ioapic_ver(idx), mpc_ioapic_addr(idx),
4023 	       gsi_cfg->gsi_base, gsi_cfg->gsi_end);
4024 
4025 	nr_ioapics++;
4026 }
4027 
4028 /* Enable IOAPIC early just for system timer */
4029 void __init pre_init_apic_IRQ0(void)
4030 {
4031 	struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
4032 
4033 	printk(KERN_INFO "Early APIC setup for system timer0\n");
4034 #ifndef CONFIG_SMP
4035 	physid_set_mask_of_physid(boot_cpu_physical_apicid,
4036 					 &phys_cpu_present_map);
4037 #endif
4038 	setup_local_APIC();
4039 
4040 	io_apic_setup_irq_pin(0, 0, &attr);
4041 	irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
4042 				      "edge");
4043 }
4044