xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46 
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 
64 #include <asm/apic.h>
65 
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 	for (entry = head; entry; entry = entry->next)
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
78 
79 /*
80  * # of IRQ routing registers
81  */
82 int nr_ioapic_registers[MAX_IO_APICS];
83 
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87 
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi  mp_gsi_routing[MAX_IO_APICS];
90 
91 /* The one past the highest gsi number used */
92 u32 gsi_top;
93 
94 /* MP IRQ source entries */
95 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
96 
97 /* # of MP IRQ source entries */
98 int mp_irq_entries;
99 
100 /* GSI interrupts */
101 static int nr_irqs_gsi = NR_IRQS_LEGACY;
102 
103 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
104 int mp_bus_id_to_type[MAX_MP_BUSSES];
105 #endif
106 
107 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
108 
109 int skip_ioapic_setup;
110 
111 /**
112  * disable_ioapic_support() - disables ioapic support at runtime
113  */
114 void disable_ioapic_support(void)
115 {
116 #ifdef CONFIG_PCI
117 	noioapicquirk = 1;
118 	noioapicreroute = -1;
119 #endif
120 	skip_ioapic_setup = 1;
121 }
122 
123 static int __init parse_noapic(char *str)
124 {
125 	/* disable IO-APIC */
126 	disable_ioapic_support();
127 	return 0;
128 }
129 early_param("noapic", parse_noapic);
130 
131 static int io_apic_setup_irq_pin_once(unsigned int irq, int node,
132 				      struct io_apic_irq_attr *attr);
133 
134 /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
135 void mp_save_irq(struct mpc_intsrc *m)
136 {
137 	int i;
138 
139 	apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
140 		" IRQ %02x, APIC ID %x, APIC INT %02x\n",
141 		m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
142 		m->srcbusirq, m->dstapic, m->dstirq);
143 
144 	for (i = 0; i < mp_irq_entries; i++) {
145 		if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
146 			return;
147 	}
148 
149 	memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
150 	if (++mp_irq_entries == MAX_IRQ_SOURCES)
151 		panic("Max # of irq sources exceeded!!\n");
152 }
153 
154 struct irq_pin_list {
155 	int apic, pin;
156 	struct irq_pin_list *next;
157 };
158 
159 static struct irq_pin_list *alloc_irq_pin_list(int node)
160 {
161 	return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
162 }
163 
164 
165 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
166 #ifdef CONFIG_SPARSE_IRQ
167 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
168 #else
169 static struct irq_cfg irq_cfgx[NR_IRQS];
170 #endif
171 
172 int __init arch_early_irq_init(void)
173 {
174 	struct irq_cfg *cfg;
175 	int count, node, i;
176 
177 	if (!legacy_pic->nr_legacy_irqs) {
178 		nr_irqs_gsi = 0;
179 		io_apic_irqs = ~0UL;
180 	}
181 
182 	cfg = irq_cfgx;
183 	count = ARRAY_SIZE(irq_cfgx);
184 	node = cpu_to_node(0);
185 
186 	/* Make sure the legacy interrupts are marked in the bitmap */
187 	irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
188 
189 	for (i = 0; i < count; i++) {
190 		set_irq_chip_data(i, &cfg[i]);
191 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
192 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
193 		/*
194 		 * For legacy IRQ's, start with assigning irq0 to irq15 to
195 		 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
196 		 */
197 		if (i < legacy_pic->nr_legacy_irqs) {
198 			cfg[i].vector = IRQ0_VECTOR + i;
199 			cpumask_set_cpu(0, cfg[i].domain);
200 		}
201 	}
202 
203 	return 0;
204 }
205 
206 #ifdef CONFIG_SPARSE_IRQ
207 static struct irq_cfg *irq_cfg(unsigned int irq)
208 {
209 	return get_irq_chip_data(irq);
210 }
211 
212 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
213 {
214 	struct irq_cfg *cfg;
215 
216 	cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
217 	if (!cfg)
218 		return NULL;
219 	if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
220 		goto out_cfg;
221 	if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
222 		goto out_domain;
223 	return cfg;
224 out_domain:
225 	free_cpumask_var(cfg->domain);
226 out_cfg:
227 	kfree(cfg);
228 	return NULL;
229 }
230 
231 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
232 {
233 	if (!cfg)
234 		return;
235 	set_irq_chip_data(at, NULL);
236 	free_cpumask_var(cfg->domain);
237 	free_cpumask_var(cfg->old_domain);
238 	kfree(cfg);
239 }
240 
241 #else
242 
243 struct irq_cfg *irq_cfg(unsigned int irq)
244 {
245 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
246 }
247 
248 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
249 {
250 	return irq_cfgx + irq;
251 }
252 
253 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
254 
255 #endif
256 
257 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
258 {
259 	int res = irq_alloc_desc_at(at, node);
260 	struct irq_cfg *cfg;
261 
262 	if (res < 0) {
263 		if (res != -EEXIST)
264 			return NULL;
265 		cfg = get_irq_chip_data(at);
266 		if (cfg)
267 			return cfg;
268 	}
269 
270 	cfg = alloc_irq_cfg(at, node);
271 	if (cfg)
272 		set_irq_chip_data(at, cfg);
273 	else
274 		irq_free_desc(at);
275 	return cfg;
276 }
277 
278 static int alloc_irq_from(unsigned int from, int node)
279 {
280 	return irq_alloc_desc_from(from, node);
281 }
282 
283 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
284 {
285 	free_irq_cfg(at, cfg);
286 	irq_free_desc(at);
287 }
288 
289 struct io_apic {
290 	unsigned int index;
291 	unsigned int unused[3];
292 	unsigned int data;
293 	unsigned int unused2[11];
294 	unsigned int eoi;
295 };
296 
297 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
298 {
299 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
300 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
301 }
302 
303 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
304 {
305 	struct io_apic __iomem *io_apic = io_apic_base(apic);
306 	writel(vector, &io_apic->eoi);
307 }
308 
309 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
310 {
311 	struct io_apic __iomem *io_apic = io_apic_base(apic);
312 	writel(reg, &io_apic->index);
313 	return readl(&io_apic->data);
314 }
315 
316 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
317 {
318 	struct io_apic __iomem *io_apic = io_apic_base(apic);
319 	writel(reg, &io_apic->index);
320 	writel(value, &io_apic->data);
321 }
322 
323 /*
324  * Re-write a value: to be used for read-modify-write
325  * cycles where the read already set up the index register.
326  *
327  * Older SiS APIC requires we rewrite the index register
328  */
329 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
330 {
331 	struct io_apic __iomem *io_apic = io_apic_base(apic);
332 
333 	if (sis_apic_bug)
334 		writel(reg, &io_apic->index);
335 	writel(value, &io_apic->data);
336 }
337 
338 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
339 {
340 	struct irq_pin_list *entry;
341 	unsigned long flags;
342 
343 	raw_spin_lock_irqsave(&ioapic_lock, flags);
344 	for_each_irq_pin(entry, cfg->irq_2_pin) {
345 		unsigned int reg;
346 		int pin;
347 
348 		pin = entry->pin;
349 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
350 		/* Is the remote IRR bit set? */
351 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
352 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
353 			return true;
354 		}
355 	}
356 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
357 
358 	return false;
359 }
360 
361 union entry_union {
362 	struct { u32 w1, w2; };
363 	struct IO_APIC_route_entry entry;
364 };
365 
366 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
367 {
368 	union entry_union eu;
369 	unsigned long flags;
370 	raw_spin_lock_irqsave(&ioapic_lock, flags);
371 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
372 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
373 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
374 	return eu.entry;
375 }
376 
377 /*
378  * When we write a new IO APIC routing entry, we need to write the high
379  * word first! If the mask bit in the low word is clear, we will enable
380  * the interrupt, and we need to make sure the entry is fully populated
381  * before that happens.
382  */
383 static void
384 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
385 {
386 	union entry_union eu = {{0, 0}};
387 
388 	eu.entry = e;
389 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
390 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
391 }
392 
393 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
394 {
395 	unsigned long flags;
396 	raw_spin_lock_irqsave(&ioapic_lock, flags);
397 	__ioapic_write_entry(apic, pin, e);
398 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
399 }
400 
401 /*
402  * When we mask an IO APIC routing entry, we need to write the low
403  * word first, in order to set the mask bit before we change the
404  * high bits!
405  */
406 static void ioapic_mask_entry(int apic, int pin)
407 {
408 	unsigned long flags;
409 	union entry_union eu = { .entry.mask = 1 };
410 
411 	raw_spin_lock_irqsave(&ioapic_lock, flags);
412 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
413 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
414 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
415 }
416 
417 /*
418  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
419  * shared ISA-space IRQs, so we have to support them. We are super
420  * fast in the common case, and fast for shared ISA-space IRQs.
421  */
422 static int
423 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
424 {
425 	struct irq_pin_list **last, *entry;
426 
427 	/* don't allow duplicates */
428 	last = &cfg->irq_2_pin;
429 	for_each_irq_pin(entry, cfg->irq_2_pin) {
430 		if (entry->apic == apic && entry->pin == pin)
431 			return 0;
432 		last = &entry->next;
433 	}
434 
435 	entry = alloc_irq_pin_list(node);
436 	if (!entry) {
437 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
438 				node, apic, pin);
439 		return -ENOMEM;
440 	}
441 	entry->apic = apic;
442 	entry->pin = pin;
443 
444 	*last = entry;
445 	return 0;
446 }
447 
448 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
449 {
450 	if (__add_pin_to_irq_node(cfg, node, apic, pin))
451 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
452 }
453 
454 /*
455  * Reroute an IRQ to a different pin.
456  */
457 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
458 					   int oldapic, int oldpin,
459 					   int newapic, int newpin)
460 {
461 	struct irq_pin_list *entry;
462 
463 	for_each_irq_pin(entry, cfg->irq_2_pin) {
464 		if (entry->apic == oldapic && entry->pin == oldpin) {
465 			entry->apic = newapic;
466 			entry->pin = newpin;
467 			/* every one is different, right? */
468 			return;
469 		}
470 	}
471 
472 	/* old apic/pin didn't exist, so just add new ones */
473 	add_pin_to_irq_node(cfg, node, newapic, newpin);
474 }
475 
476 static void __io_apic_modify_irq(struct irq_pin_list *entry,
477 				 int mask_and, int mask_or,
478 				 void (*final)(struct irq_pin_list *entry))
479 {
480 	unsigned int reg, pin;
481 
482 	pin = entry->pin;
483 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
484 	reg &= mask_and;
485 	reg |= mask_or;
486 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
487 	if (final)
488 		final(entry);
489 }
490 
491 static void io_apic_modify_irq(struct irq_cfg *cfg,
492 			       int mask_and, int mask_or,
493 			       void (*final)(struct irq_pin_list *entry))
494 {
495 	struct irq_pin_list *entry;
496 
497 	for_each_irq_pin(entry, cfg->irq_2_pin)
498 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
499 }
500 
501 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
502 {
503 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
504 			     IO_APIC_REDIR_MASKED, NULL);
505 }
506 
507 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
508 {
509 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
510 			     IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
511 }
512 
513 static void io_apic_sync(struct irq_pin_list *entry)
514 {
515 	/*
516 	 * Synchronize the IO-APIC and the CPU by doing
517 	 * a dummy read from the IO-APIC
518 	 */
519 	struct io_apic __iomem *io_apic;
520 	io_apic = io_apic_base(entry->apic);
521 	readl(&io_apic->data);
522 }
523 
524 static void mask_ioapic(struct irq_cfg *cfg)
525 {
526 	unsigned long flags;
527 
528 	raw_spin_lock_irqsave(&ioapic_lock, flags);
529 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
530 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
531 }
532 
533 static void mask_ioapic_irq(struct irq_data *data)
534 {
535 	mask_ioapic(data->chip_data);
536 }
537 
538 static void __unmask_ioapic(struct irq_cfg *cfg)
539 {
540 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
541 }
542 
543 static void unmask_ioapic(struct irq_cfg *cfg)
544 {
545 	unsigned long flags;
546 
547 	raw_spin_lock_irqsave(&ioapic_lock, flags);
548 	__unmask_ioapic(cfg);
549 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
550 }
551 
552 static void unmask_ioapic_irq(struct irq_data *data)
553 {
554 	unmask_ioapic(data->chip_data);
555 }
556 
557 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
558 {
559 	struct IO_APIC_route_entry entry;
560 
561 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
562 	entry = ioapic_read_entry(apic, pin);
563 	if (entry.delivery_mode == dest_SMI)
564 		return;
565 	/*
566 	 * Disable it in the IO-APIC irq-routing table:
567 	 */
568 	ioapic_mask_entry(apic, pin);
569 }
570 
571 static void clear_IO_APIC (void)
572 {
573 	int apic, pin;
574 
575 	for (apic = 0; apic < nr_ioapics; apic++)
576 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
577 			clear_IO_APIC_pin(apic, pin);
578 }
579 
580 #ifdef CONFIG_X86_32
581 /*
582  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
583  * specific CPU-side IRQs.
584  */
585 
586 #define MAX_PIRQS 8
587 static int pirq_entries[MAX_PIRQS] = {
588 	[0 ... MAX_PIRQS - 1] = -1
589 };
590 
591 static int __init ioapic_pirq_setup(char *str)
592 {
593 	int i, max;
594 	int ints[MAX_PIRQS+1];
595 
596 	get_options(str, ARRAY_SIZE(ints), ints);
597 
598 	apic_printk(APIC_VERBOSE, KERN_INFO
599 			"PIRQ redirection, working around broken MP-BIOS.\n");
600 	max = MAX_PIRQS;
601 	if (ints[0] < MAX_PIRQS)
602 		max = ints[0];
603 
604 	for (i = 0; i < max; i++) {
605 		apic_printk(APIC_VERBOSE, KERN_DEBUG
606 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
607 		/*
608 		 * PIRQs are mapped upside down, usually.
609 		 */
610 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
611 	}
612 	return 1;
613 }
614 
615 __setup("pirq=", ioapic_pirq_setup);
616 #endif /* CONFIG_X86_32 */
617 
618 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
619 {
620 	int apic;
621 	struct IO_APIC_route_entry **ioapic_entries;
622 
623 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
624 				GFP_KERNEL);
625 	if (!ioapic_entries)
626 		return 0;
627 
628 	for (apic = 0; apic < nr_ioapics; apic++) {
629 		ioapic_entries[apic] =
630 			kzalloc(sizeof(struct IO_APIC_route_entry) *
631 				nr_ioapic_registers[apic], GFP_KERNEL);
632 		if (!ioapic_entries[apic])
633 			goto nomem;
634 	}
635 
636 	return ioapic_entries;
637 
638 nomem:
639 	while (--apic >= 0)
640 		kfree(ioapic_entries[apic]);
641 	kfree(ioapic_entries);
642 
643 	return 0;
644 }
645 
646 /*
647  * Saves all the IO-APIC RTE's
648  */
649 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
650 {
651 	int apic, pin;
652 
653 	if (!ioapic_entries)
654 		return -ENOMEM;
655 
656 	for (apic = 0; apic < nr_ioapics; apic++) {
657 		if (!ioapic_entries[apic])
658 			return -ENOMEM;
659 
660 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
661 			ioapic_entries[apic][pin] =
662 				ioapic_read_entry(apic, pin);
663 	}
664 
665 	return 0;
666 }
667 
668 /*
669  * Mask all IO APIC entries.
670  */
671 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
672 {
673 	int apic, pin;
674 
675 	if (!ioapic_entries)
676 		return;
677 
678 	for (apic = 0; apic < nr_ioapics; apic++) {
679 		if (!ioapic_entries[apic])
680 			break;
681 
682 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
683 			struct IO_APIC_route_entry entry;
684 
685 			entry = ioapic_entries[apic][pin];
686 			if (!entry.mask) {
687 				entry.mask = 1;
688 				ioapic_write_entry(apic, pin, entry);
689 			}
690 		}
691 	}
692 }
693 
694 /*
695  * Restore IO APIC entries which was saved in ioapic_entries.
696  */
697 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
698 {
699 	int apic, pin;
700 
701 	if (!ioapic_entries)
702 		return -ENOMEM;
703 
704 	for (apic = 0; apic < nr_ioapics; apic++) {
705 		if (!ioapic_entries[apic])
706 			return -ENOMEM;
707 
708 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
709 			ioapic_write_entry(apic, pin,
710 					ioapic_entries[apic][pin]);
711 	}
712 	return 0;
713 }
714 
715 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
716 {
717 	int apic;
718 
719 	for (apic = 0; apic < nr_ioapics; apic++)
720 		kfree(ioapic_entries[apic]);
721 
722 	kfree(ioapic_entries);
723 }
724 
725 /*
726  * Find the IRQ entry number of a certain pin.
727  */
728 static int find_irq_entry(int apic, int pin, int type)
729 {
730 	int i;
731 
732 	for (i = 0; i < mp_irq_entries; i++)
733 		if (mp_irqs[i].irqtype == type &&
734 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
735 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
736 		    mp_irqs[i].dstirq == pin)
737 			return i;
738 
739 	return -1;
740 }
741 
742 /*
743  * Find the pin to which IRQ[irq] (ISA) is connected
744  */
745 static int __init find_isa_irq_pin(int irq, int type)
746 {
747 	int i;
748 
749 	for (i = 0; i < mp_irq_entries; i++) {
750 		int lbus = mp_irqs[i].srcbus;
751 
752 		if (test_bit(lbus, mp_bus_not_pci) &&
753 		    (mp_irqs[i].irqtype == type) &&
754 		    (mp_irqs[i].srcbusirq == irq))
755 
756 			return mp_irqs[i].dstirq;
757 	}
758 	return -1;
759 }
760 
761 static int __init find_isa_irq_apic(int irq, int type)
762 {
763 	int i;
764 
765 	for (i = 0; i < mp_irq_entries; i++) {
766 		int lbus = mp_irqs[i].srcbus;
767 
768 		if (test_bit(lbus, mp_bus_not_pci) &&
769 		    (mp_irqs[i].irqtype == type) &&
770 		    (mp_irqs[i].srcbusirq == irq))
771 			break;
772 	}
773 	if (i < mp_irq_entries) {
774 		int apic;
775 		for(apic = 0; apic < nr_ioapics; apic++) {
776 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
777 				return apic;
778 		}
779 	}
780 
781 	return -1;
782 }
783 
784 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
785 /*
786  * EISA Edge/Level control register, ELCR
787  */
788 static int EISA_ELCR(unsigned int irq)
789 {
790 	if (irq < legacy_pic->nr_legacy_irqs) {
791 		unsigned int port = 0x4d0 + (irq >> 3);
792 		return (inb(port) >> (irq & 7)) & 1;
793 	}
794 	apic_printk(APIC_VERBOSE, KERN_INFO
795 			"Broken MPtable reports ISA irq %d\n", irq);
796 	return 0;
797 }
798 
799 #endif
800 
801 /* ISA interrupts are always polarity zero edge triggered,
802  * when listed as conforming in the MP table. */
803 
804 #define default_ISA_trigger(idx)	(0)
805 #define default_ISA_polarity(idx)	(0)
806 
807 /* EISA interrupts are always polarity zero and can be edge or level
808  * trigger depending on the ELCR value.  If an interrupt is listed as
809  * EISA conforming in the MP table, that means its trigger type must
810  * be read in from the ELCR */
811 
812 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
813 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
814 
815 /* PCI interrupts are always polarity one level triggered,
816  * when listed as conforming in the MP table. */
817 
818 #define default_PCI_trigger(idx)	(1)
819 #define default_PCI_polarity(idx)	(1)
820 
821 /* MCA interrupts are always polarity zero level triggered,
822  * when listed as conforming in the MP table. */
823 
824 #define default_MCA_trigger(idx)	(1)
825 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
826 
827 static int irq_polarity(int idx)
828 {
829 	int bus = mp_irqs[idx].srcbus;
830 	int polarity;
831 
832 	/*
833 	 * Determine IRQ line polarity (high active or low active):
834 	 */
835 	switch (mp_irqs[idx].irqflag & 3)
836 	{
837 		case 0: /* conforms, ie. bus-type dependent polarity */
838 			if (test_bit(bus, mp_bus_not_pci))
839 				polarity = default_ISA_polarity(idx);
840 			else
841 				polarity = default_PCI_polarity(idx);
842 			break;
843 		case 1: /* high active */
844 		{
845 			polarity = 0;
846 			break;
847 		}
848 		case 2: /* reserved */
849 		{
850 			printk(KERN_WARNING "broken BIOS!!\n");
851 			polarity = 1;
852 			break;
853 		}
854 		case 3: /* low active */
855 		{
856 			polarity = 1;
857 			break;
858 		}
859 		default: /* invalid */
860 		{
861 			printk(KERN_WARNING "broken BIOS!!\n");
862 			polarity = 1;
863 			break;
864 		}
865 	}
866 	return polarity;
867 }
868 
869 static int irq_trigger(int idx)
870 {
871 	int bus = mp_irqs[idx].srcbus;
872 	int trigger;
873 
874 	/*
875 	 * Determine IRQ trigger mode (edge or level sensitive):
876 	 */
877 	switch ((mp_irqs[idx].irqflag>>2) & 3)
878 	{
879 		case 0: /* conforms, ie. bus-type dependent */
880 			if (test_bit(bus, mp_bus_not_pci))
881 				trigger = default_ISA_trigger(idx);
882 			else
883 				trigger = default_PCI_trigger(idx);
884 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
885 			switch (mp_bus_id_to_type[bus]) {
886 				case MP_BUS_ISA: /* ISA pin */
887 				{
888 					/* set before the switch */
889 					break;
890 				}
891 				case MP_BUS_EISA: /* EISA pin */
892 				{
893 					trigger = default_EISA_trigger(idx);
894 					break;
895 				}
896 				case MP_BUS_PCI: /* PCI pin */
897 				{
898 					/* set before the switch */
899 					break;
900 				}
901 				case MP_BUS_MCA: /* MCA pin */
902 				{
903 					trigger = default_MCA_trigger(idx);
904 					break;
905 				}
906 				default:
907 				{
908 					printk(KERN_WARNING "broken BIOS!!\n");
909 					trigger = 1;
910 					break;
911 				}
912 			}
913 #endif
914 			break;
915 		case 1: /* edge */
916 		{
917 			trigger = 0;
918 			break;
919 		}
920 		case 2: /* reserved */
921 		{
922 			printk(KERN_WARNING "broken BIOS!!\n");
923 			trigger = 1;
924 			break;
925 		}
926 		case 3: /* level */
927 		{
928 			trigger = 1;
929 			break;
930 		}
931 		default: /* invalid */
932 		{
933 			printk(KERN_WARNING "broken BIOS!!\n");
934 			trigger = 0;
935 			break;
936 		}
937 	}
938 	return trigger;
939 }
940 
941 static int pin_2_irq(int idx, int apic, int pin)
942 {
943 	int irq;
944 	int bus = mp_irqs[idx].srcbus;
945 
946 	/*
947 	 * Debugging check, we are in big trouble if this message pops up!
948 	 */
949 	if (mp_irqs[idx].dstirq != pin)
950 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
951 
952 	if (test_bit(bus, mp_bus_not_pci)) {
953 		irq = mp_irqs[idx].srcbusirq;
954 	} else {
955 		u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
956 
957 		if (gsi >= NR_IRQS_LEGACY)
958 			irq = gsi;
959 		else
960 			irq = gsi_top + gsi;
961 	}
962 
963 #ifdef CONFIG_X86_32
964 	/*
965 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
966 	 */
967 	if ((pin >= 16) && (pin <= 23)) {
968 		if (pirq_entries[pin-16] != -1) {
969 			if (!pirq_entries[pin-16]) {
970 				apic_printk(APIC_VERBOSE, KERN_DEBUG
971 						"disabling PIRQ%d\n", pin-16);
972 			} else {
973 				irq = pirq_entries[pin-16];
974 				apic_printk(APIC_VERBOSE, KERN_DEBUG
975 						"using PIRQ%d -> IRQ %d\n",
976 						pin-16, irq);
977 			}
978 		}
979 	}
980 #endif
981 
982 	return irq;
983 }
984 
985 /*
986  * Find a specific PCI IRQ entry.
987  * Not an __init, possibly needed by modules
988  */
989 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
990 				struct io_apic_irq_attr *irq_attr)
991 {
992 	int apic, i, best_guess = -1;
993 
994 	apic_printk(APIC_DEBUG,
995 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
996 		    bus, slot, pin);
997 	if (test_bit(bus, mp_bus_not_pci)) {
998 		apic_printk(APIC_VERBOSE,
999 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1000 		return -1;
1001 	}
1002 	for (i = 0; i < mp_irq_entries; i++) {
1003 		int lbus = mp_irqs[i].srcbus;
1004 
1005 		for (apic = 0; apic < nr_ioapics; apic++)
1006 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1007 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1008 				break;
1009 
1010 		if (!test_bit(lbus, mp_bus_not_pci) &&
1011 		    !mp_irqs[i].irqtype &&
1012 		    (bus == lbus) &&
1013 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1014 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1015 
1016 			if (!(apic || IO_APIC_IRQ(irq)))
1017 				continue;
1018 
1019 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1020 				set_io_apic_irq_attr(irq_attr, apic,
1021 						     mp_irqs[i].dstirq,
1022 						     irq_trigger(i),
1023 						     irq_polarity(i));
1024 				return irq;
1025 			}
1026 			/*
1027 			 * Use the first all-but-pin matching entry as a
1028 			 * best-guess fuzzy result for broken mptables.
1029 			 */
1030 			if (best_guess < 0) {
1031 				set_io_apic_irq_attr(irq_attr, apic,
1032 						     mp_irqs[i].dstirq,
1033 						     irq_trigger(i),
1034 						     irq_polarity(i));
1035 				best_guess = irq;
1036 			}
1037 		}
1038 	}
1039 	return best_guess;
1040 }
1041 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1042 
1043 void lock_vector_lock(void)
1044 {
1045 	/* Used to the online set of cpus does not change
1046 	 * during assign_irq_vector.
1047 	 */
1048 	raw_spin_lock(&vector_lock);
1049 }
1050 
1051 void unlock_vector_lock(void)
1052 {
1053 	raw_spin_unlock(&vector_lock);
1054 }
1055 
1056 static int
1057 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1058 {
1059 	/*
1060 	 * NOTE! The local APIC isn't very good at handling
1061 	 * multiple interrupts at the same interrupt level.
1062 	 * As the interrupt level is determined by taking the
1063 	 * vector number and shifting that right by 4, we
1064 	 * want to spread these out a bit so that they don't
1065 	 * all fall in the same interrupt level.
1066 	 *
1067 	 * Also, we've got to be careful not to trash gate
1068 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1069 	 */
1070 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1071 	static int current_offset = VECTOR_OFFSET_START % 8;
1072 	unsigned int old_vector;
1073 	int cpu, err;
1074 	cpumask_var_t tmp_mask;
1075 
1076 	if (cfg->move_in_progress)
1077 		return -EBUSY;
1078 
1079 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1080 		return -ENOMEM;
1081 
1082 	old_vector = cfg->vector;
1083 	if (old_vector) {
1084 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1085 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1086 		if (!cpumask_empty(tmp_mask)) {
1087 			free_cpumask_var(tmp_mask);
1088 			return 0;
1089 		}
1090 	}
1091 
1092 	/* Only try and allocate irqs on cpus that are present */
1093 	err = -ENOSPC;
1094 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1095 		int new_cpu;
1096 		int vector, offset;
1097 
1098 		apic->vector_allocation_domain(cpu, tmp_mask);
1099 
1100 		vector = current_vector;
1101 		offset = current_offset;
1102 next:
1103 		vector += 8;
1104 		if (vector >= first_system_vector) {
1105 			/* If out of vectors on large boxen, must share them. */
1106 			offset = (offset + 1) % 8;
1107 			vector = FIRST_EXTERNAL_VECTOR + offset;
1108 		}
1109 		if (unlikely(current_vector == vector))
1110 			continue;
1111 
1112 		if (test_bit(vector, used_vectors))
1113 			goto next;
1114 
1115 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1116 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1117 				goto next;
1118 		/* Found one! */
1119 		current_vector = vector;
1120 		current_offset = offset;
1121 		if (old_vector) {
1122 			cfg->move_in_progress = 1;
1123 			cpumask_copy(cfg->old_domain, cfg->domain);
1124 		}
1125 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1126 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1127 		cfg->vector = vector;
1128 		cpumask_copy(cfg->domain, tmp_mask);
1129 		err = 0;
1130 		break;
1131 	}
1132 	free_cpumask_var(tmp_mask);
1133 	return err;
1134 }
1135 
1136 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1137 {
1138 	int err;
1139 	unsigned long flags;
1140 
1141 	raw_spin_lock_irqsave(&vector_lock, flags);
1142 	err = __assign_irq_vector(irq, cfg, mask);
1143 	raw_spin_unlock_irqrestore(&vector_lock, flags);
1144 	return err;
1145 }
1146 
1147 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1148 {
1149 	int cpu, vector;
1150 
1151 	BUG_ON(!cfg->vector);
1152 
1153 	vector = cfg->vector;
1154 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1155 		per_cpu(vector_irq, cpu)[vector] = -1;
1156 
1157 	cfg->vector = 0;
1158 	cpumask_clear(cfg->domain);
1159 
1160 	if (likely(!cfg->move_in_progress))
1161 		return;
1162 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1163 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1164 								vector++) {
1165 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1166 				continue;
1167 			per_cpu(vector_irq, cpu)[vector] = -1;
1168 			break;
1169 		}
1170 	}
1171 	cfg->move_in_progress = 0;
1172 }
1173 
1174 void __setup_vector_irq(int cpu)
1175 {
1176 	/* Initialize vector_irq on a new cpu */
1177 	int irq, vector;
1178 	struct irq_cfg *cfg;
1179 
1180 	/*
1181 	 * vector_lock will make sure that we don't run into irq vector
1182 	 * assignments that might be happening on another cpu in parallel,
1183 	 * while we setup our initial vector to irq mappings.
1184 	 */
1185 	raw_spin_lock(&vector_lock);
1186 	/* Mark the inuse vectors */
1187 	for_each_active_irq(irq) {
1188 		cfg = get_irq_chip_data(irq);
1189 		if (!cfg)
1190 			continue;
1191 		/*
1192 		 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1193 		 * will be part of the irq_cfg's domain.
1194 		 */
1195 		if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1196 			cpumask_set_cpu(cpu, cfg->domain);
1197 
1198 		if (!cpumask_test_cpu(cpu, cfg->domain))
1199 			continue;
1200 		vector = cfg->vector;
1201 		per_cpu(vector_irq, cpu)[vector] = irq;
1202 	}
1203 	/* Mark the free vectors */
1204 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1205 		irq = per_cpu(vector_irq, cpu)[vector];
1206 		if (irq < 0)
1207 			continue;
1208 
1209 		cfg = irq_cfg(irq);
1210 		if (!cpumask_test_cpu(cpu, cfg->domain))
1211 			per_cpu(vector_irq, cpu)[vector] = -1;
1212 	}
1213 	raw_spin_unlock(&vector_lock);
1214 }
1215 
1216 static struct irq_chip ioapic_chip;
1217 static struct irq_chip ir_ioapic_chip;
1218 
1219 #ifdef CONFIG_X86_32
1220 static inline int IO_APIC_irq_trigger(int irq)
1221 {
1222 	int apic, idx, pin;
1223 
1224 	for (apic = 0; apic < nr_ioapics; apic++) {
1225 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1226 			idx = find_irq_entry(apic, pin, mp_INT);
1227 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1228 				return irq_trigger(idx);
1229 		}
1230 	}
1231 	/*
1232          * nonexistent IRQs are edge default
1233          */
1234 	return 0;
1235 }
1236 #else
1237 static inline int IO_APIC_irq_trigger(int irq)
1238 {
1239 	return 1;
1240 }
1241 #endif
1242 
1243 static void ioapic_register_intr(unsigned int irq, unsigned long trigger)
1244 {
1245 
1246 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1247 	    trigger == IOAPIC_LEVEL)
1248 		irq_set_status_flags(irq, IRQ_LEVEL);
1249 	else
1250 		irq_clear_status_flags(irq, IRQ_LEVEL);
1251 
1252 	if (irq_remapped(get_irq_chip_data(irq))) {
1253 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1254 		if (trigger)
1255 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1256 						      handle_fasteoi_irq,
1257 						     "fasteoi");
1258 		else
1259 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1260 						      handle_edge_irq, "edge");
1261 		return;
1262 	}
1263 
1264 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1265 	    trigger == IOAPIC_LEVEL)
1266 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1267 					      handle_fasteoi_irq,
1268 					      "fasteoi");
1269 	else
1270 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1271 					      handle_edge_irq, "edge");
1272 }
1273 
1274 static int setup_ioapic_entry(int apic_id, int irq,
1275 			      struct IO_APIC_route_entry *entry,
1276 			      unsigned int destination, int trigger,
1277 			      int polarity, int vector, int pin)
1278 {
1279 	/*
1280 	 * add it to the IO-APIC irq-routing table:
1281 	 */
1282 	memset(entry,0,sizeof(*entry));
1283 
1284 	if (intr_remapping_enabled) {
1285 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1286 		struct irte irte;
1287 		struct IR_IO_APIC_route_entry *ir_entry =
1288 			(struct IR_IO_APIC_route_entry *) entry;
1289 		int index;
1290 
1291 		if (!iommu)
1292 			panic("No mapping iommu for ioapic %d\n", apic_id);
1293 
1294 		index = alloc_irte(iommu, irq, 1);
1295 		if (index < 0)
1296 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1297 
1298 		prepare_irte(&irte, vector, destination);
1299 
1300 		/* Set source-id of interrupt request */
1301 		set_ioapic_sid(&irte, apic_id);
1302 
1303 		modify_irte(irq, &irte);
1304 
1305 		ir_entry->index2 = (index >> 15) & 0x1;
1306 		ir_entry->zero = 0;
1307 		ir_entry->format = 1;
1308 		ir_entry->index = (index & 0x7fff);
1309 		/*
1310 		 * IO-APIC RTE will be configured with virtual vector.
1311 		 * irq handler will do the explicit EOI to the io-apic.
1312 		 */
1313 		ir_entry->vector = pin;
1314 	} else {
1315 		entry->delivery_mode = apic->irq_delivery_mode;
1316 		entry->dest_mode = apic->irq_dest_mode;
1317 		entry->dest = destination;
1318 		entry->vector = vector;
1319 	}
1320 
1321 	entry->mask = 0;				/* enable IRQ */
1322 	entry->trigger = trigger;
1323 	entry->polarity = polarity;
1324 
1325 	/* Mask level triggered irqs.
1326 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1327 	 */
1328 	if (trigger)
1329 		entry->mask = 1;
1330 	return 0;
1331 }
1332 
1333 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1334 			     struct irq_cfg *cfg, int trigger, int polarity)
1335 {
1336 	struct IO_APIC_route_entry entry;
1337 	unsigned int dest;
1338 
1339 	if (!IO_APIC_IRQ(irq))
1340 		return;
1341 	/*
1342 	 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1343 	 * controllers like 8259. Now that IO-APIC can handle this irq, update
1344 	 * the cfg->domain.
1345 	 */
1346 	if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1347 		apic->vector_allocation_domain(0, cfg->domain);
1348 
1349 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1350 		return;
1351 
1352 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1353 
1354 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1355 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1356 		    "IRQ %d Mode:%i Active:%i)\n",
1357 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1358 		    irq, trigger, polarity);
1359 
1360 
1361 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1362 			       dest, trigger, polarity, cfg->vector, pin)) {
1363 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1364 		       mp_ioapics[apic_id].apicid, pin);
1365 		__clear_irq_vector(irq, cfg);
1366 		return;
1367 	}
1368 
1369 	ioapic_register_intr(irq, trigger);
1370 	if (irq < legacy_pic->nr_legacy_irqs)
1371 		legacy_pic->mask(irq);
1372 
1373 	ioapic_write_entry(apic_id, pin, entry);
1374 }
1375 
1376 static struct {
1377 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1378 } mp_ioapic_routing[MAX_IO_APICS];
1379 
1380 static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin)
1381 {
1382 	if (idx != -1)
1383 		return false;
1384 
1385 	apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
1386 		    mp_ioapics[apic_id].apicid, pin);
1387 	return true;
1388 }
1389 
1390 static void __init __io_apic_setup_irqs(unsigned int apic_id)
1391 {
1392 	int idx, node = cpu_to_node(0);
1393 	struct io_apic_irq_attr attr;
1394 	unsigned int pin, irq;
1395 
1396 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1397 		idx = find_irq_entry(apic_id, pin, mp_INT);
1398 		if (io_apic_pin_not_connected(idx, apic_id, pin))
1399 			continue;
1400 
1401 		irq = pin_2_irq(idx, apic_id, pin);
1402 
1403 		if ((apic_id > 0) && (irq > 16))
1404 			continue;
1405 
1406 		/*
1407 		 * Skip the timer IRQ if there's a quirk handler
1408 		 * installed and if it returns 1:
1409 		 */
1410 		if (apic->multi_timer_check &&
1411 		    apic->multi_timer_check(apic_id, irq))
1412 			continue;
1413 
1414 		set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1415 				     irq_polarity(idx));
1416 
1417 		io_apic_setup_irq_pin(irq, node, &attr);
1418 	}
1419 }
1420 
1421 static void __init setup_IO_APIC_irqs(void)
1422 {
1423 	unsigned int apic_id;
1424 
1425 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1426 
1427 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1428 		__io_apic_setup_irqs(apic_id);
1429 }
1430 
1431 /*
1432  * for the gsit that is not in first ioapic
1433  * but could not use acpi_register_gsi()
1434  * like some special sci in IBM x3330
1435  */
1436 void setup_IO_APIC_irq_extra(u32 gsi)
1437 {
1438 	int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1439 	struct io_apic_irq_attr attr;
1440 
1441 	/*
1442 	 * Convert 'gsi' to 'ioapic.pin'.
1443 	 */
1444 	apic_id = mp_find_ioapic(gsi);
1445 	if (apic_id < 0)
1446 		return;
1447 
1448 	pin = mp_find_ioapic_pin(apic_id, gsi);
1449 	idx = find_irq_entry(apic_id, pin, mp_INT);
1450 	if (idx == -1)
1451 		return;
1452 
1453 	irq = pin_2_irq(idx, apic_id, pin);
1454 
1455 	/* Only handle the non legacy irqs on secondary ioapics */
1456 	if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1457 		return;
1458 
1459 	set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1460 			     irq_polarity(idx));
1461 
1462 	io_apic_setup_irq_pin_once(irq, node, &attr);
1463 }
1464 
1465 /*
1466  * Set up the timer pin, possibly with the 8259A-master behind.
1467  */
1468 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1469 					int vector)
1470 {
1471 	struct IO_APIC_route_entry entry;
1472 
1473 	if (intr_remapping_enabled)
1474 		return;
1475 
1476 	memset(&entry, 0, sizeof(entry));
1477 
1478 	/*
1479 	 * We use logical delivery to get the timer IRQ
1480 	 * to the first CPU.
1481 	 */
1482 	entry.dest_mode = apic->irq_dest_mode;
1483 	entry.mask = 0;			/* don't mask IRQ for edge */
1484 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1485 	entry.delivery_mode = apic->irq_delivery_mode;
1486 	entry.polarity = 0;
1487 	entry.trigger = 0;
1488 	entry.vector = vector;
1489 
1490 	/*
1491 	 * The timer IRQ doesn't have to know that behind the
1492 	 * scene we may have a 8259A-master in AEOI mode ...
1493 	 */
1494 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1495 
1496 	/*
1497 	 * Add it to the IO-APIC irq-routing table:
1498 	 */
1499 	ioapic_write_entry(apic_id, pin, entry);
1500 }
1501 
1502 
1503 __apicdebuginit(void) print_IO_APIC(void)
1504 {
1505 	int apic, i;
1506 	union IO_APIC_reg_00 reg_00;
1507 	union IO_APIC_reg_01 reg_01;
1508 	union IO_APIC_reg_02 reg_02;
1509 	union IO_APIC_reg_03 reg_03;
1510 	unsigned long flags;
1511 	struct irq_cfg *cfg;
1512 	unsigned int irq;
1513 
1514 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1515 	for (i = 0; i < nr_ioapics; i++)
1516 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1517 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1518 
1519 	/*
1520 	 * We are a bit conservative about what we expect.  We have to
1521 	 * know about every hardware change ASAP.
1522 	 */
1523 	printk(KERN_INFO "testing the IO APIC.......................\n");
1524 
1525 	for (apic = 0; apic < nr_ioapics; apic++) {
1526 
1527 	raw_spin_lock_irqsave(&ioapic_lock, flags);
1528 	reg_00.raw = io_apic_read(apic, 0);
1529 	reg_01.raw = io_apic_read(apic, 1);
1530 	if (reg_01.bits.version >= 0x10)
1531 		reg_02.raw = io_apic_read(apic, 2);
1532 	if (reg_01.bits.version >= 0x20)
1533 		reg_03.raw = io_apic_read(apic, 3);
1534 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1535 
1536 	printk("\n");
1537 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1538 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1539 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1540 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1541 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1542 
1543 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1544 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1545 
1546 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1547 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1548 
1549 	/*
1550 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1551 	 * but the value of reg_02 is read as the previous read register
1552 	 * value, so ignore it if reg_02 == reg_01.
1553 	 */
1554 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1555 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1556 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1557 	}
1558 
1559 	/*
1560 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1561 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1562 	 * register value, so ignore it if reg_03 == reg_0[12].
1563 	 */
1564 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1565 	    reg_03.raw != reg_01.raw) {
1566 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1567 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1568 	}
1569 
1570 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1571 
1572 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1573 			  " Stat Dmod Deli Vect:\n");
1574 
1575 	for (i = 0; i <= reg_01.bits.entries; i++) {
1576 		struct IO_APIC_route_entry entry;
1577 
1578 		entry = ioapic_read_entry(apic, i);
1579 
1580 		printk(KERN_DEBUG " %02x %03X ",
1581 			i,
1582 			entry.dest
1583 		);
1584 
1585 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1586 			entry.mask,
1587 			entry.trigger,
1588 			entry.irr,
1589 			entry.polarity,
1590 			entry.delivery_status,
1591 			entry.dest_mode,
1592 			entry.delivery_mode,
1593 			entry.vector
1594 		);
1595 	}
1596 	}
1597 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1598 	for_each_active_irq(irq) {
1599 		struct irq_pin_list *entry;
1600 
1601 		cfg = get_irq_chip_data(irq);
1602 		if (!cfg)
1603 			continue;
1604 		entry = cfg->irq_2_pin;
1605 		if (!entry)
1606 			continue;
1607 		printk(KERN_DEBUG "IRQ%d ", irq);
1608 		for_each_irq_pin(entry, cfg->irq_2_pin)
1609 			printk("-> %d:%d", entry->apic, entry->pin);
1610 		printk("\n");
1611 	}
1612 
1613 	printk(KERN_INFO ".................................... done.\n");
1614 
1615 	return;
1616 }
1617 
1618 __apicdebuginit(void) print_APIC_field(int base)
1619 {
1620 	int i;
1621 
1622 	printk(KERN_DEBUG);
1623 
1624 	for (i = 0; i < 8; i++)
1625 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1626 
1627 	printk(KERN_CONT "\n");
1628 }
1629 
1630 __apicdebuginit(void) print_local_APIC(void *dummy)
1631 {
1632 	unsigned int i, v, ver, maxlvt;
1633 	u64 icr;
1634 
1635 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1636 		smp_processor_id(), hard_smp_processor_id());
1637 	v = apic_read(APIC_ID);
1638 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1639 	v = apic_read(APIC_LVR);
1640 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1641 	ver = GET_APIC_VERSION(v);
1642 	maxlvt = lapic_get_maxlvt();
1643 
1644 	v = apic_read(APIC_TASKPRI);
1645 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1646 
1647 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1648 		if (!APIC_XAPIC(ver)) {
1649 			v = apic_read(APIC_ARBPRI);
1650 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1651 			       v & APIC_ARBPRI_MASK);
1652 		}
1653 		v = apic_read(APIC_PROCPRI);
1654 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1655 	}
1656 
1657 	/*
1658 	 * Remote read supported only in the 82489DX and local APIC for
1659 	 * Pentium processors.
1660 	 */
1661 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1662 		v = apic_read(APIC_RRR);
1663 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1664 	}
1665 
1666 	v = apic_read(APIC_LDR);
1667 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1668 	if (!x2apic_enabled()) {
1669 		v = apic_read(APIC_DFR);
1670 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1671 	}
1672 	v = apic_read(APIC_SPIV);
1673 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1674 
1675 	printk(KERN_DEBUG "... APIC ISR field:\n");
1676 	print_APIC_field(APIC_ISR);
1677 	printk(KERN_DEBUG "... APIC TMR field:\n");
1678 	print_APIC_field(APIC_TMR);
1679 	printk(KERN_DEBUG "... APIC IRR field:\n");
1680 	print_APIC_field(APIC_IRR);
1681 
1682 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1683 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1684 			apic_write(APIC_ESR, 0);
1685 
1686 		v = apic_read(APIC_ESR);
1687 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1688 	}
1689 
1690 	icr = apic_icr_read();
1691 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1692 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1693 
1694 	v = apic_read(APIC_LVTT);
1695 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1696 
1697 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1698 		v = apic_read(APIC_LVTPC);
1699 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1700 	}
1701 	v = apic_read(APIC_LVT0);
1702 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1703 	v = apic_read(APIC_LVT1);
1704 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1705 
1706 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1707 		v = apic_read(APIC_LVTERR);
1708 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1709 	}
1710 
1711 	v = apic_read(APIC_TMICT);
1712 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1713 	v = apic_read(APIC_TMCCT);
1714 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1715 	v = apic_read(APIC_TDCR);
1716 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1717 
1718 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1719 		v = apic_read(APIC_EFEAT);
1720 		maxlvt = (v >> 16) & 0xff;
1721 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1722 		v = apic_read(APIC_ECTRL);
1723 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1724 		for (i = 0; i < maxlvt; i++) {
1725 			v = apic_read(APIC_EILVTn(i));
1726 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1727 		}
1728 	}
1729 	printk("\n");
1730 }
1731 
1732 __apicdebuginit(void) print_local_APICs(int maxcpu)
1733 {
1734 	int cpu;
1735 
1736 	if (!maxcpu)
1737 		return;
1738 
1739 	preempt_disable();
1740 	for_each_online_cpu(cpu) {
1741 		if (cpu >= maxcpu)
1742 			break;
1743 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1744 	}
1745 	preempt_enable();
1746 }
1747 
1748 __apicdebuginit(void) print_PIC(void)
1749 {
1750 	unsigned int v;
1751 	unsigned long flags;
1752 
1753 	if (!legacy_pic->nr_legacy_irqs)
1754 		return;
1755 
1756 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1757 
1758 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1759 
1760 	v = inb(0xa1) << 8 | inb(0x21);
1761 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1762 
1763 	v = inb(0xa0) << 8 | inb(0x20);
1764 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1765 
1766 	outb(0x0b,0xa0);
1767 	outb(0x0b,0x20);
1768 	v = inb(0xa0) << 8 | inb(0x20);
1769 	outb(0x0a,0xa0);
1770 	outb(0x0a,0x20);
1771 
1772 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1773 
1774 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1775 
1776 	v = inb(0x4d1) << 8 | inb(0x4d0);
1777 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1778 }
1779 
1780 static int __initdata show_lapic = 1;
1781 static __init int setup_show_lapic(char *arg)
1782 {
1783 	int num = -1;
1784 
1785 	if (strcmp(arg, "all") == 0) {
1786 		show_lapic = CONFIG_NR_CPUS;
1787 	} else {
1788 		get_option(&arg, &num);
1789 		if (num >= 0)
1790 			show_lapic = num;
1791 	}
1792 
1793 	return 1;
1794 }
1795 __setup("show_lapic=", setup_show_lapic);
1796 
1797 __apicdebuginit(int) print_ICs(void)
1798 {
1799 	if (apic_verbosity == APIC_QUIET)
1800 		return 0;
1801 
1802 	print_PIC();
1803 
1804 	/* don't print out if apic is not there */
1805 	if (!cpu_has_apic && !apic_from_smp_config())
1806 		return 0;
1807 
1808 	print_local_APICs(show_lapic);
1809 	print_IO_APIC();
1810 
1811 	return 0;
1812 }
1813 
1814 fs_initcall(print_ICs);
1815 
1816 
1817 /* Where if anywhere is the i8259 connect in external int mode */
1818 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1819 
1820 void __init enable_IO_APIC(void)
1821 {
1822 	int i8259_apic, i8259_pin;
1823 	int apic;
1824 
1825 	if (!legacy_pic->nr_legacy_irqs)
1826 		return;
1827 
1828 	for(apic = 0; apic < nr_ioapics; apic++) {
1829 		int pin;
1830 		/* See if any of the pins is in ExtINT mode */
1831 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1832 			struct IO_APIC_route_entry entry;
1833 			entry = ioapic_read_entry(apic, pin);
1834 
1835 			/* If the interrupt line is enabled and in ExtInt mode
1836 			 * I have found the pin where the i8259 is connected.
1837 			 */
1838 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1839 				ioapic_i8259.apic = apic;
1840 				ioapic_i8259.pin  = pin;
1841 				goto found_i8259;
1842 			}
1843 		}
1844 	}
1845  found_i8259:
1846 	/* Look to see what if the MP table has reported the ExtINT */
1847 	/* If we could not find the appropriate pin by looking at the ioapic
1848 	 * the i8259 probably is not connected the ioapic but give the
1849 	 * mptable a chance anyway.
1850 	 */
1851 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1852 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1853 	/* Trust the MP table if nothing is setup in the hardware */
1854 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1855 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1856 		ioapic_i8259.pin  = i8259_pin;
1857 		ioapic_i8259.apic = i8259_apic;
1858 	}
1859 	/* Complain if the MP table and the hardware disagree */
1860 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1861 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1862 	{
1863 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1864 	}
1865 
1866 	/*
1867 	 * Do not trust the IO-APIC being empty at bootup
1868 	 */
1869 	clear_IO_APIC();
1870 }
1871 
1872 /*
1873  * Not an __init, needed by the reboot code
1874  */
1875 void disable_IO_APIC(void)
1876 {
1877 	/*
1878 	 * Clear the IO-APIC before rebooting:
1879 	 */
1880 	clear_IO_APIC();
1881 
1882 	if (!legacy_pic->nr_legacy_irqs)
1883 		return;
1884 
1885 	/*
1886 	 * If the i8259 is routed through an IOAPIC
1887 	 * Put that IOAPIC in virtual wire mode
1888 	 * so legacy interrupts can be delivered.
1889 	 *
1890 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1891 	 * as virtual wire B is little complex (need to configure both
1892 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
1893 	 * As this gets called during crash dump, keep this simple for now.
1894 	 */
1895 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1896 		struct IO_APIC_route_entry entry;
1897 
1898 		memset(&entry, 0, sizeof(entry));
1899 		entry.mask            = 0; /* Enabled */
1900 		entry.trigger         = 0; /* Edge */
1901 		entry.irr             = 0;
1902 		entry.polarity        = 0; /* High */
1903 		entry.delivery_status = 0;
1904 		entry.dest_mode       = 0; /* Physical */
1905 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1906 		entry.vector          = 0;
1907 		entry.dest            = read_apic_id();
1908 
1909 		/*
1910 		 * Add it to the IO-APIC irq-routing table:
1911 		 */
1912 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1913 	}
1914 
1915 	/*
1916 	 * Use virtual wire A mode when interrupt remapping is enabled.
1917 	 */
1918 	if (cpu_has_apic || apic_from_smp_config())
1919 		disconnect_bsp_APIC(!intr_remapping_enabled &&
1920 				ioapic_i8259.pin != -1);
1921 }
1922 
1923 #ifdef CONFIG_X86_32
1924 /*
1925  * function to set the IO-APIC physical IDs based on the
1926  * values stored in the MPC table.
1927  *
1928  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
1929  */
1930 void __init setup_ioapic_ids_from_mpc_nocheck(void)
1931 {
1932 	union IO_APIC_reg_00 reg_00;
1933 	physid_mask_t phys_id_present_map;
1934 	int apic_id;
1935 	int i;
1936 	unsigned char old_id;
1937 	unsigned long flags;
1938 
1939 	/*
1940 	 * This is broken; anything with a real cpu count has to
1941 	 * circumvent this idiocy regardless.
1942 	 */
1943 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1944 
1945 	/*
1946 	 * Set the IOAPIC ID to the value stored in the MPC table.
1947 	 */
1948 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1949 
1950 		/* Read the register 0 value */
1951 		raw_spin_lock_irqsave(&ioapic_lock, flags);
1952 		reg_00.raw = io_apic_read(apic_id, 0);
1953 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1954 
1955 		old_id = mp_ioapics[apic_id].apicid;
1956 
1957 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1958 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1959 				apic_id, mp_ioapics[apic_id].apicid);
1960 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1961 				reg_00.bits.ID);
1962 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1963 		}
1964 
1965 		/*
1966 		 * Sanity check, is the ID really free? Every APIC in a
1967 		 * system must have a unique ID or we get lots of nice
1968 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
1969 		 */
1970 		if (apic->check_apicid_used(&phys_id_present_map,
1971 					mp_ioapics[apic_id].apicid)) {
1972 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1973 				apic_id, mp_ioapics[apic_id].apicid);
1974 			for (i = 0; i < get_physical_broadcast(); i++)
1975 				if (!physid_isset(i, phys_id_present_map))
1976 					break;
1977 			if (i >= get_physical_broadcast())
1978 				panic("Max APIC ID exceeded!\n");
1979 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1980 				i);
1981 			physid_set(i, phys_id_present_map);
1982 			mp_ioapics[apic_id].apicid = i;
1983 		} else {
1984 			physid_mask_t tmp;
1985 			apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
1986 			apic_printk(APIC_VERBOSE, "Setting %d in the "
1987 					"phys_id_present_map\n",
1988 					mp_ioapics[apic_id].apicid);
1989 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
1990 		}
1991 
1992 		/*
1993 		 * We need to adjust the IRQ routing table
1994 		 * if the ID changed.
1995 		 */
1996 		if (old_id != mp_ioapics[apic_id].apicid)
1997 			for (i = 0; i < mp_irq_entries; i++)
1998 				if (mp_irqs[i].dstapic == old_id)
1999 					mp_irqs[i].dstapic
2000 						= mp_ioapics[apic_id].apicid;
2001 
2002 		/*
2003 		 * Update the ID register according to the right value
2004 		 * from the MPC table if they are different.
2005 		 */
2006 		if (mp_ioapics[apic_id].apicid == reg_00.bits.ID)
2007 			continue;
2008 
2009 		apic_printk(APIC_VERBOSE, KERN_INFO
2010 			"...changing IO-APIC physical APIC ID to %d ...",
2011 			mp_ioapics[apic_id].apicid);
2012 
2013 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2014 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2015 		io_apic_write(apic_id, 0, reg_00.raw);
2016 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2017 
2018 		/*
2019 		 * Sanity check
2020 		 */
2021 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2022 		reg_00.raw = io_apic_read(apic_id, 0);
2023 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2024 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2025 			printk("could not set ID!\n");
2026 		else
2027 			apic_printk(APIC_VERBOSE, " ok.\n");
2028 	}
2029 }
2030 
2031 void __init setup_ioapic_ids_from_mpc(void)
2032 {
2033 
2034 	if (acpi_ioapic)
2035 		return;
2036 	/*
2037 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2038 	 * no meaning without the serial APIC bus.
2039 	 */
2040 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2041 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2042 		return;
2043 	setup_ioapic_ids_from_mpc_nocheck();
2044 }
2045 #endif
2046 
2047 int no_timer_check __initdata;
2048 
2049 static int __init notimercheck(char *s)
2050 {
2051 	no_timer_check = 1;
2052 	return 1;
2053 }
2054 __setup("no_timer_check", notimercheck);
2055 
2056 /*
2057  * There is a nasty bug in some older SMP boards, their mptable lies
2058  * about the timer IRQ. We do the following to work around the situation:
2059  *
2060  *	- timer IRQ defaults to IO-APIC IRQ
2061  *	- if this function detects that timer IRQs are defunct, then we fall
2062  *	  back to ISA timer IRQs
2063  */
2064 static int __init timer_irq_works(void)
2065 {
2066 	unsigned long t1 = jiffies;
2067 	unsigned long flags;
2068 
2069 	if (no_timer_check)
2070 		return 1;
2071 
2072 	local_save_flags(flags);
2073 	local_irq_enable();
2074 	/* Let ten ticks pass... */
2075 	mdelay((10 * 1000) / HZ);
2076 	local_irq_restore(flags);
2077 
2078 	/*
2079 	 * Expect a few ticks at least, to be sure some possible
2080 	 * glue logic does not lock up after one or two first
2081 	 * ticks in a non-ExtINT mode.  Also the local APIC
2082 	 * might have cached one ExtINT interrupt.  Finally, at
2083 	 * least one tick may be lost due to delays.
2084 	 */
2085 
2086 	/* jiffies wrap? */
2087 	if (time_after(jiffies, t1 + 4))
2088 		return 1;
2089 	return 0;
2090 }
2091 
2092 /*
2093  * In the SMP+IOAPIC case it might happen that there are an unspecified
2094  * number of pending IRQ events unhandled. These cases are very rare,
2095  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2096  * better to do it this way as thus we do not have to be aware of
2097  * 'pending' interrupts in the IRQ path, except at this point.
2098  */
2099 /*
2100  * Edge triggered needs to resend any interrupt
2101  * that was delayed but this is now handled in the device
2102  * independent code.
2103  */
2104 
2105 /*
2106  * Starting up a edge-triggered IO-APIC interrupt is
2107  * nasty - we need to make sure that we get the edge.
2108  * If it is already asserted for some reason, we need
2109  * return 1 to indicate that is was pending.
2110  *
2111  * This is not complete - we should be able to fake
2112  * an edge even if it isn't on the 8259A...
2113  */
2114 
2115 static unsigned int startup_ioapic_irq(struct irq_data *data)
2116 {
2117 	int was_pending = 0, irq = data->irq;
2118 	unsigned long flags;
2119 
2120 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2121 	if (irq < legacy_pic->nr_legacy_irqs) {
2122 		legacy_pic->mask(irq);
2123 		if (legacy_pic->irq_pending(irq))
2124 			was_pending = 1;
2125 	}
2126 	__unmask_ioapic(data->chip_data);
2127 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2128 
2129 	return was_pending;
2130 }
2131 
2132 static int ioapic_retrigger_irq(struct irq_data *data)
2133 {
2134 	struct irq_cfg *cfg = data->chip_data;
2135 	unsigned long flags;
2136 
2137 	raw_spin_lock_irqsave(&vector_lock, flags);
2138 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2139 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2140 
2141 	return 1;
2142 }
2143 
2144 /*
2145  * Level and edge triggered IO-APIC interrupts need different handling,
2146  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2147  * handled with the level-triggered descriptor, but that one has slightly
2148  * more overhead. Level-triggered interrupts cannot be handled with the
2149  * edge-triggered handler, without risking IRQ storms and other ugly
2150  * races.
2151  */
2152 
2153 #ifdef CONFIG_SMP
2154 void send_cleanup_vector(struct irq_cfg *cfg)
2155 {
2156 	cpumask_var_t cleanup_mask;
2157 
2158 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2159 		unsigned int i;
2160 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2161 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2162 	} else {
2163 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2164 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2165 		free_cpumask_var(cleanup_mask);
2166 	}
2167 	cfg->move_in_progress = 0;
2168 }
2169 
2170 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2171 {
2172 	int apic, pin;
2173 	struct irq_pin_list *entry;
2174 	u8 vector = cfg->vector;
2175 
2176 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2177 		unsigned int reg;
2178 
2179 		apic = entry->apic;
2180 		pin = entry->pin;
2181 		/*
2182 		 * With interrupt-remapping, destination information comes
2183 		 * from interrupt-remapping table entry.
2184 		 */
2185 		if (!irq_remapped(cfg))
2186 			io_apic_write(apic, 0x11 + pin*2, dest);
2187 		reg = io_apic_read(apic, 0x10 + pin*2);
2188 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2189 		reg |= vector;
2190 		io_apic_modify(apic, 0x10 + pin*2, reg);
2191 	}
2192 }
2193 
2194 /*
2195  * Either sets data->affinity to a valid value, and returns
2196  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2197  * leaves data->affinity untouched.
2198  */
2199 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2200 			  unsigned int *dest_id)
2201 {
2202 	struct irq_cfg *cfg = data->chip_data;
2203 
2204 	if (!cpumask_intersects(mask, cpu_online_mask))
2205 		return -1;
2206 
2207 	if (assign_irq_vector(data->irq, data->chip_data, mask))
2208 		return -1;
2209 
2210 	cpumask_copy(data->affinity, mask);
2211 
2212 	*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2213 	return 0;
2214 }
2215 
2216 static int
2217 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2218 		    bool force)
2219 {
2220 	unsigned int dest, irq = data->irq;
2221 	unsigned long flags;
2222 	int ret;
2223 
2224 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2225 	ret = __ioapic_set_affinity(data, mask, &dest);
2226 	if (!ret) {
2227 		/* Only the high 8 bits are valid. */
2228 		dest = SET_APIC_LOGICAL_ID(dest);
2229 		__target_IO_APIC_irq(irq, dest, data->chip_data);
2230 	}
2231 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2232 	return ret;
2233 }
2234 
2235 #ifdef CONFIG_INTR_REMAP
2236 
2237 /*
2238  * Migrate the IO-APIC irq in the presence of intr-remapping.
2239  *
2240  * For both level and edge triggered, irq migration is a simple atomic
2241  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2242  *
2243  * For level triggered, we eliminate the io-apic RTE modification (with the
2244  * updated vector information), by using a virtual vector (io-apic pin number).
2245  * Real vector that is used for interrupting cpu will be coming from
2246  * the interrupt-remapping table entry.
2247  */
2248 static int
2249 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2250 		       bool force)
2251 {
2252 	struct irq_cfg *cfg = data->chip_data;
2253 	unsigned int dest, irq = data->irq;
2254 	struct irte irte;
2255 
2256 	if (!cpumask_intersects(mask, cpu_online_mask))
2257 		return -EINVAL;
2258 
2259 	if (get_irte(irq, &irte))
2260 		return -EBUSY;
2261 
2262 	if (assign_irq_vector(irq, cfg, mask))
2263 		return -EBUSY;
2264 
2265 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2266 
2267 	irte.vector = cfg->vector;
2268 	irte.dest_id = IRTE_DEST(dest);
2269 
2270 	/*
2271 	 * Modified the IRTE and flushes the Interrupt entry cache.
2272 	 */
2273 	modify_irte(irq, &irte);
2274 
2275 	if (cfg->move_in_progress)
2276 		send_cleanup_vector(cfg);
2277 
2278 	cpumask_copy(data->affinity, mask);
2279 	return 0;
2280 }
2281 
2282 #else
2283 static inline int
2284 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2285 		       bool force)
2286 {
2287 	return 0;
2288 }
2289 #endif
2290 
2291 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2292 {
2293 	unsigned vector, me;
2294 
2295 	ack_APIC_irq();
2296 	exit_idle();
2297 	irq_enter();
2298 
2299 	me = smp_processor_id();
2300 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2301 		unsigned int irq;
2302 		unsigned int irr;
2303 		struct irq_desc *desc;
2304 		struct irq_cfg *cfg;
2305 		irq = __this_cpu_read(vector_irq[vector]);
2306 
2307 		if (irq == -1)
2308 			continue;
2309 
2310 		desc = irq_to_desc(irq);
2311 		if (!desc)
2312 			continue;
2313 
2314 		cfg = irq_cfg(irq);
2315 		raw_spin_lock(&desc->lock);
2316 
2317 		/*
2318 		 * Check if the irq migration is in progress. If so, we
2319 		 * haven't received the cleanup request yet for this irq.
2320 		 */
2321 		if (cfg->move_in_progress)
2322 			goto unlock;
2323 
2324 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2325 			goto unlock;
2326 
2327 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2328 		/*
2329 		 * Check if the vector that needs to be cleanedup is
2330 		 * registered at the cpu's IRR. If so, then this is not
2331 		 * the best time to clean it up. Lets clean it up in the
2332 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2333 		 * to myself.
2334 		 */
2335 		if (irr  & (1 << (vector % 32))) {
2336 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2337 			goto unlock;
2338 		}
2339 		__this_cpu_write(vector_irq[vector], -1);
2340 unlock:
2341 		raw_spin_unlock(&desc->lock);
2342 	}
2343 
2344 	irq_exit();
2345 }
2346 
2347 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2348 {
2349 	unsigned me;
2350 
2351 	if (likely(!cfg->move_in_progress))
2352 		return;
2353 
2354 	me = smp_processor_id();
2355 
2356 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2357 		send_cleanup_vector(cfg);
2358 }
2359 
2360 static void irq_complete_move(struct irq_cfg *cfg)
2361 {
2362 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2363 }
2364 
2365 void irq_force_complete_move(int irq)
2366 {
2367 	struct irq_cfg *cfg = get_irq_chip_data(irq);
2368 
2369 	if (!cfg)
2370 		return;
2371 
2372 	__irq_complete_move(cfg, cfg->vector);
2373 }
2374 #else
2375 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2376 #endif
2377 
2378 static void ack_apic_edge(struct irq_data *data)
2379 {
2380 	irq_complete_move(data->chip_data);
2381 	move_native_irq(data->irq);
2382 	ack_APIC_irq();
2383 }
2384 
2385 atomic_t irq_mis_count;
2386 
2387 /*
2388  * IO-APIC versions below 0x20 don't support EOI register.
2389  * For the record, here is the information about various versions:
2390  *     0Xh     82489DX
2391  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2392  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
2393  *     30h-FFh Reserved
2394  *
2395  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2396  * version as 0x2. This is an error with documentation and these ICH chips
2397  * use io-apic's of version 0x20.
2398  *
2399  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2400  * Otherwise, we simulate the EOI message manually by changing the trigger
2401  * mode to edge and then back to level, with RTE being masked during this.
2402 */
2403 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2404 {
2405 	struct irq_pin_list *entry;
2406 	unsigned long flags;
2407 
2408 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2409 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2410 		if (mp_ioapics[entry->apic].apicver >= 0x20) {
2411 			/*
2412 			 * Intr-remapping uses pin number as the virtual vector
2413 			 * in the RTE. Actual vector is programmed in
2414 			 * intr-remapping table entry. Hence for the io-apic
2415 			 * EOI we use the pin number.
2416 			 */
2417 			if (irq_remapped(cfg))
2418 				io_apic_eoi(entry->apic, entry->pin);
2419 			else
2420 				io_apic_eoi(entry->apic, cfg->vector);
2421 		} else {
2422 			__mask_and_edge_IO_APIC_irq(entry);
2423 			__unmask_and_level_IO_APIC_irq(entry);
2424 		}
2425 	}
2426 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2427 }
2428 
2429 static void ack_apic_level(struct irq_data *data)
2430 {
2431 	struct irq_cfg *cfg = data->chip_data;
2432 	int i, do_unmask_irq = 0, irq = data->irq;
2433 	unsigned long v;
2434 
2435 	irq_complete_move(cfg);
2436 #ifdef CONFIG_GENERIC_PENDING_IRQ
2437 	/* If we are moving the irq we need to mask it */
2438 	if (unlikely(irq_to_desc(irq)->status & IRQ_MOVE_PENDING)) {
2439 		do_unmask_irq = 1;
2440 		mask_ioapic(cfg);
2441 	}
2442 #endif
2443 
2444 	/*
2445 	 * It appears there is an erratum which affects at least version 0x11
2446 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2447 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2448 	 * erroneously delivered as edge-triggered one but the respective IRR
2449 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2450 	 * message but it will never arrive and further interrupts are blocked
2451 	 * from the source.  The exact reason is so far unknown, but the
2452 	 * phenomenon was observed when two consecutive interrupt requests
2453 	 * from a given source get delivered to the same CPU and the source is
2454 	 * temporarily disabled in between.
2455 	 *
2456 	 * A workaround is to simulate an EOI message manually.  We achieve it
2457 	 * by setting the trigger mode to edge and then to level when the edge
2458 	 * trigger mode gets detected in the TMR of a local APIC for a
2459 	 * level-triggered interrupt.  We mask the source for the time of the
2460 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2461 	 * The idea is from Manfred Spraul.  --macro
2462 	 *
2463 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2464 	 * any unhandled interrupt on the offlined cpu to the new cpu
2465 	 * destination that is handling the corresponding interrupt. This
2466 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2467 	 * level-triggered io-apic interrupt will be seen as an edge
2468 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2469 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2470 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2471 	 * supporting EOI register, we do an explicit EOI to clear the
2472 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2473 	 * we use the above logic (mask+edge followed by unmask+level) from
2474 	 * Manfred Spraul to clear the remote IRR.
2475 	 */
2476 	i = cfg->vector;
2477 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2478 
2479 	/*
2480 	 * We must acknowledge the irq before we move it or the acknowledge will
2481 	 * not propagate properly.
2482 	 */
2483 	ack_APIC_irq();
2484 
2485 	/*
2486 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2487 	 * message via io-apic EOI register write or simulating it using
2488 	 * mask+edge followed by unnask+level logic) manually when the
2489 	 * level triggered interrupt is seen as the edge triggered interrupt
2490 	 * at the cpu.
2491 	 */
2492 	if (!(v & (1 << (i & 0x1f)))) {
2493 		atomic_inc(&irq_mis_count);
2494 
2495 		eoi_ioapic_irq(irq, cfg);
2496 	}
2497 
2498 	/* Now we can move and renable the irq */
2499 	if (unlikely(do_unmask_irq)) {
2500 		/* Only migrate the irq if the ack has been received.
2501 		 *
2502 		 * On rare occasions the broadcast level triggered ack gets
2503 		 * delayed going to ioapics, and if we reprogram the
2504 		 * vector while Remote IRR is still set the irq will never
2505 		 * fire again.
2506 		 *
2507 		 * To prevent this scenario we read the Remote IRR bit
2508 		 * of the ioapic.  This has two effects.
2509 		 * - On any sane system the read of the ioapic will
2510 		 *   flush writes (and acks) going to the ioapic from
2511 		 *   this cpu.
2512 		 * - We get to see if the ACK has actually been delivered.
2513 		 *
2514 		 * Based on failed experiments of reprogramming the
2515 		 * ioapic entry from outside of irq context starting
2516 		 * with masking the ioapic entry and then polling until
2517 		 * Remote IRR was clear before reprogramming the
2518 		 * ioapic I don't trust the Remote IRR bit to be
2519 		 * completey accurate.
2520 		 *
2521 		 * However there appears to be no other way to plug
2522 		 * this race, so if the Remote IRR bit is not
2523 		 * accurate and is causing problems then it is a hardware bug
2524 		 * and you can go talk to the chipset vendor about it.
2525 		 */
2526 		if (!io_apic_level_ack_pending(cfg))
2527 			move_masked_irq(irq);
2528 		unmask_ioapic(cfg);
2529 	}
2530 }
2531 
2532 #ifdef CONFIG_INTR_REMAP
2533 static void ir_ack_apic_edge(struct irq_data *data)
2534 {
2535 	ack_APIC_irq();
2536 }
2537 
2538 static void ir_ack_apic_level(struct irq_data *data)
2539 {
2540 	ack_APIC_irq();
2541 	eoi_ioapic_irq(data->irq, data->chip_data);
2542 }
2543 #endif /* CONFIG_INTR_REMAP */
2544 
2545 static struct irq_chip ioapic_chip __read_mostly = {
2546 	.name			= "IO-APIC",
2547 	.irq_startup		= startup_ioapic_irq,
2548 	.irq_mask		= mask_ioapic_irq,
2549 	.irq_unmask		= unmask_ioapic_irq,
2550 	.irq_ack		= ack_apic_edge,
2551 	.irq_eoi		= ack_apic_level,
2552 #ifdef CONFIG_SMP
2553 	.irq_set_affinity	= ioapic_set_affinity,
2554 #endif
2555 	.irq_retrigger		= ioapic_retrigger_irq,
2556 };
2557 
2558 static struct irq_chip ir_ioapic_chip __read_mostly = {
2559 	.name			= "IR-IO-APIC",
2560 	.irq_startup		= startup_ioapic_irq,
2561 	.irq_mask		= mask_ioapic_irq,
2562 	.irq_unmask		= unmask_ioapic_irq,
2563 #ifdef CONFIG_INTR_REMAP
2564 	.irq_ack		= ir_ack_apic_edge,
2565 	.irq_eoi		= ir_ack_apic_level,
2566 #ifdef CONFIG_SMP
2567 	.irq_set_affinity	= ir_ioapic_set_affinity,
2568 #endif
2569 #endif
2570 	.irq_retrigger		= ioapic_retrigger_irq,
2571 };
2572 
2573 static inline void init_IO_APIC_traps(void)
2574 {
2575 	struct irq_cfg *cfg;
2576 	unsigned int irq;
2577 
2578 	/*
2579 	 * NOTE! The local APIC isn't very good at handling
2580 	 * multiple interrupts at the same interrupt level.
2581 	 * As the interrupt level is determined by taking the
2582 	 * vector number and shifting that right by 4, we
2583 	 * want to spread these out a bit so that they don't
2584 	 * all fall in the same interrupt level.
2585 	 *
2586 	 * Also, we've got to be careful not to trash gate
2587 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2588 	 */
2589 	for_each_active_irq(irq) {
2590 		cfg = get_irq_chip_data(irq);
2591 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2592 			/*
2593 			 * Hmm.. We don't have an entry for this,
2594 			 * so default to an old-fashioned 8259
2595 			 * interrupt if we can..
2596 			 */
2597 			if (irq < legacy_pic->nr_legacy_irqs)
2598 				legacy_pic->make_irq(irq);
2599 			else
2600 				/* Strange. Oh, well.. */
2601 				set_irq_chip(irq, &no_irq_chip);
2602 		}
2603 	}
2604 }
2605 
2606 /*
2607  * The local APIC irq-chip implementation:
2608  */
2609 
2610 static void mask_lapic_irq(struct irq_data *data)
2611 {
2612 	unsigned long v;
2613 
2614 	v = apic_read(APIC_LVT0);
2615 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2616 }
2617 
2618 static void unmask_lapic_irq(struct irq_data *data)
2619 {
2620 	unsigned long v;
2621 
2622 	v = apic_read(APIC_LVT0);
2623 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2624 }
2625 
2626 static void ack_lapic_irq(struct irq_data *data)
2627 {
2628 	ack_APIC_irq();
2629 }
2630 
2631 static struct irq_chip lapic_chip __read_mostly = {
2632 	.name		= "local-APIC",
2633 	.irq_mask	= mask_lapic_irq,
2634 	.irq_unmask	= unmask_lapic_irq,
2635 	.irq_ack	= ack_lapic_irq,
2636 };
2637 
2638 static void lapic_register_intr(int irq)
2639 {
2640 	irq_clear_status_flags(irq, IRQ_LEVEL);
2641 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2642 				      "edge");
2643 }
2644 
2645 /*
2646  * This looks a bit hackish but it's about the only one way of sending
2647  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2648  * not support the ExtINT mode, unfortunately.  We need to send these
2649  * cycles as some i82489DX-based boards have glue logic that keeps the
2650  * 8259A interrupt line asserted until INTA.  --macro
2651  */
2652 static inline void __init unlock_ExtINT_logic(void)
2653 {
2654 	int apic, pin, i;
2655 	struct IO_APIC_route_entry entry0, entry1;
2656 	unsigned char save_control, save_freq_select;
2657 
2658 	pin  = find_isa_irq_pin(8, mp_INT);
2659 	if (pin == -1) {
2660 		WARN_ON_ONCE(1);
2661 		return;
2662 	}
2663 	apic = find_isa_irq_apic(8, mp_INT);
2664 	if (apic == -1) {
2665 		WARN_ON_ONCE(1);
2666 		return;
2667 	}
2668 
2669 	entry0 = ioapic_read_entry(apic, pin);
2670 	clear_IO_APIC_pin(apic, pin);
2671 
2672 	memset(&entry1, 0, sizeof(entry1));
2673 
2674 	entry1.dest_mode = 0;			/* physical delivery */
2675 	entry1.mask = 0;			/* unmask IRQ now */
2676 	entry1.dest = hard_smp_processor_id();
2677 	entry1.delivery_mode = dest_ExtINT;
2678 	entry1.polarity = entry0.polarity;
2679 	entry1.trigger = 0;
2680 	entry1.vector = 0;
2681 
2682 	ioapic_write_entry(apic, pin, entry1);
2683 
2684 	save_control = CMOS_READ(RTC_CONTROL);
2685 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2686 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2687 		   RTC_FREQ_SELECT);
2688 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2689 
2690 	i = 100;
2691 	while (i-- > 0) {
2692 		mdelay(10);
2693 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2694 			i -= 10;
2695 	}
2696 
2697 	CMOS_WRITE(save_control, RTC_CONTROL);
2698 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2699 	clear_IO_APIC_pin(apic, pin);
2700 
2701 	ioapic_write_entry(apic, pin, entry0);
2702 }
2703 
2704 static int disable_timer_pin_1 __initdata;
2705 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2706 static int __init disable_timer_pin_setup(char *arg)
2707 {
2708 	disable_timer_pin_1 = 1;
2709 	return 0;
2710 }
2711 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2712 
2713 int timer_through_8259 __initdata;
2714 
2715 /*
2716  * This code may look a bit paranoid, but it's supposed to cooperate with
2717  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2718  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2719  * fanatically on his truly buggy board.
2720  *
2721  * FIXME: really need to revamp this for all platforms.
2722  */
2723 static inline void __init check_timer(void)
2724 {
2725 	struct irq_cfg *cfg = get_irq_chip_data(0);
2726 	int node = cpu_to_node(0);
2727 	int apic1, pin1, apic2, pin2;
2728 	unsigned long flags;
2729 	int no_pin1 = 0;
2730 
2731 	local_irq_save(flags);
2732 
2733 	/*
2734 	 * get/set the timer IRQ vector:
2735 	 */
2736 	legacy_pic->mask(0);
2737 	assign_irq_vector(0, cfg, apic->target_cpus());
2738 
2739 	/*
2740 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2741 	 * wire has to be disabled in the local APIC.  Also
2742 	 * timer interrupts need to be acknowledged manually in
2743 	 * the 8259A for the i82489DX when using the NMI
2744 	 * watchdog as that APIC treats NMIs as level-triggered.
2745 	 * The AEOI mode will finish them in the 8259A
2746 	 * automatically.
2747 	 */
2748 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2749 	legacy_pic->init(1);
2750 
2751 	pin1  = find_isa_irq_pin(0, mp_INT);
2752 	apic1 = find_isa_irq_apic(0, mp_INT);
2753 	pin2  = ioapic_i8259.pin;
2754 	apic2 = ioapic_i8259.apic;
2755 
2756 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2757 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2758 		    cfg->vector, apic1, pin1, apic2, pin2);
2759 
2760 	/*
2761 	 * Some BIOS writers are clueless and report the ExtINTA
2762 	 * I/O APIC input from the cascaded 8259A as the timer
2763 	 * interrupt input.  So just in case, if only one pin
2764 	 * was found above, try it both directly and through the
2765 	 * 8259A.
2766 	 */
2767 	if (pin1 == -1) {
2768 		if (intr_remapping_enabled)
2769 			panic("BIOS bug: timer not connected to IO-APIC");
2770 		pin1 = pin2;
2771 		apic1 = apic2;
2772 		no_pin1 = 1;
2773 	} else if (pin2 == -1) {
2774 		pin2 = pin1;
2775 		apic2 = apic1;
2776 	}
2777 
2778 	if (pin1 != -1) {
2779 		/*
2780 		 * Ok, does IRQ0 through the IOAPIC work?
2781 		 */
2782 		if (no_pin1) {
2783 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2784 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2785 		} else {
2786 			/* for edge trigger, setup_ioapic_irq already
2787 			 * leave it unmasked.
2788 			 * so only need to unmask if it is level-trigger
2789 			 * do we really have level trigger timer?
2790 			 */
2791 			int idx;
2792 			idx = find_irq_entry(apic1, pin1, mp_INT);
2793 			if (idx != -1 && irq_trigger(idx))
2794 				unmask_ioapic(cfg);
2795 		}
2796 		if (timer_irq_works()) {
2797 			if (disable_timer_pin_1 > 0)
2798 				clear_IO_APIC_pin(0, pin1);
2799 			goto out;
2800 		}
2801 		if (intr_remapping_enabled)
2802 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2803 		local_irq_disable();
2804 		clear_IO_APIC_pin(apic1, pin1);
2805 		if (!no_pin1)
2806 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2807 				    "8254 timer not connected to IO-APIC\n");
2808 
2809 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2810 			    "(IRQ0) through the 8259A ...\n");
2811 		apic_printk(APIC_QUIET, KERN_INFO
2812 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2813 		/*
2814 		 * legacy devices should be connected to IO APIC #0
2815 		 */
2816 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2817 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2818 		legacy_pic->unmask(0);
2819 		if (timer_irq_works()) {
2820 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2821 			timer_through_8259 = 1;
2822 			goto out;
2823 		}
2824 		/*
2825 		 * Cleanup, just in case ...
2826 		 */
2827 		local_irq_disable();
2828 		legacy_pic->mask(0);
2829 		clear_IO_APIC_pin(apic2, pin2);
2830 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2831 	}
2832 
2833 	apic_printk(APIC_QUIET, KERN_INFO
2834 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2835 
2836 	lapic_register_intr(0);
2837 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
2838 	legacy_pic->unmask(0);
2839 
2840 	if (timer_irq_works()) {
2841 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2842 		goto out;
2843 	}
2844 	local_irq_disable();
2845 	legacy_pic->mask(0);
2846 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2847 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2848 
2849 	apic_printk(APIC_QUIET, KERN_INFO
2850 		    "...trying to set up timer as ExtINT IRQ...\n");
2851 
2852 	legacy_pic->init(0);
2853 	legacy_pic->make_irq(0);
2854 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
2855 
2856 	unlock_ExtINT_logic();
2857 
2858 	if (timer_irq_works()) {
2859 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2860 		goto out;
2861 	}
2862 	local_irq_disable();
2863 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2864 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
2865 		"report.  Then try booting with the 'noapic' option.\n");
2866 out:
2867 	local_irq_restore(flags);
2868 }
2869 
2870 /*
2871  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2872  * to devices.  However there may be an I/O APIC pin available for
2873  * this interrupt regardless.  The pin may be left unconnected, but
2874  * typically it will be reused as an ExtINT cascade interrupt for
2875  * the master 8259A.  In the MPS case such a pin will normally be
2876  * reported as an ExtINT interrupt in the MP table.  With ACPI
2877  * there is no provision for ExtINT interrupts, and in the absence
2878  * of an override it would be treated as an ordinary ISA I/O APIC
2879  * interrupt, that is edge-triggered and unmasked by default.  We
2880  * used to do this, but it caused problems on some systems because
2881  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2882  * the same ExtINT cascade interrupt to drive the local APIC of the
2883  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
2884  * the I/O APIC in all cases now.  No actual device should request
2885  * it anyway.  --macro
2886  */
2887 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
2888 
2889 void __init setup_IO_APIC(void)
2890 {
2891 
2892 	/*
2893 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2894 	 */
2895 	io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2896 
2897 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2898 	/*
2899          * Set up IO-APIC IRQ routing.
2900          */
2901 	x86_init.mpparse.setup_ioapic_ids();
2902 
2903 	sync_Arb_IDs();
2904 	setup_IO_APIC_irqs();
2905 	init_IO_APIC_traps();
2906 	if (legacy_pic->nr_legacy_irqs)
2907 		check_timer();
2908 }
2909 
2910 /*
2911  *      Called after all the initialization is done. If we didnt find any
2912  *      APIC bugs then we can allow the modify fast path
2913  */
2914 
2915 static int __init io_apic_bug_finalize(void)
2916 {
2917 	if (sis_apic_bug == -1)
2918 		sis_apic_bug = 0;
2919 	return 0;
2920 }
2921 
2922 late_initcall(io_apic_bug_finalize);
2923 
2924 struct sysfs_ioapic_data {
2925 	struct sys_device dev;
2926 	struct IO_APIC_route_entry entry[0];
2927 };
2928 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2929 
2930 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2931 {
2932 	struct IO_APIC_route_entry *entry;
2933 	struct sysfs_ioapic_data *data;
2934 	int i;
2935 
2936 	data = container_of(dev, struct sysfs_ioapic_data, dev);
2937 	entry = data->entry;
2938 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2939 		*entry = ioapic_read_entry(dev->id, i);
2940 
2941 	return 0;
2942 }
2943 
2944 static int ioapic_resume(struct sys_device *dev)
2945 {
2946 	struct IO_APIC_route_entry *entry;
2947 	struct sysfs_ioapic_data *data;
2948 	unsigned long flags;
2949 	union IO_APIC_reg_00 reg_00;
2950 	int i;
2951 
2952 	data = container_of(dev, struct sysfs_ioapic_data, dev);
2953 	entry = data->entry;
2954 
2955 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2956 	reg_00.raw = io_apic_read(dev->id, 0);
2957 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
2958 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
2959 		io_apic_write(dev->id, 0, reg_00.raw);
2960 	}
2961 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2962 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
2963 		ioapic_write_entry(dev->id, i, entry[i]);
2964 
2965 	return 0;
2966 }
2967 
2968 static struct sysdev_class ioapic_sysdev_class = {
2969 	.name = "ioapic",
2970 	.suspend = ioapic_suspend,
2971 	.resume = ioapic_resume,
2972 };
2973 
2974 static int __init ioapic_init_sysfs(void)
2975 {
2976 	struct sys_device * dev;
2977 	int i, size, error;
2978 
2979 	error = sysdev_class_register(&ioapic_sysdev_class);
2980 	if (error)
2981 		return error;
2982 
2983 	for (i = 0; i < nr_ioapics; i++ ) {
2984 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
2985 			* sizeof(struct IO_APIC_route_entry);
2986 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
2987 		if (!mp_ioapic_data[i]) {
2988 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2989 			continue;
2990 		}
2991 		dev = &mp_ioapic_data[i]->dev;
2992 		dev->id = i;
2993 		dev->cls = &ioapic_sysdev_class;
2994 		error = sysdev_register(dev);
2995 		if (error) {
2996 			kfree(mp_ioapic_data[i]);
2997 			mp_ioapic_data[i] = NULL;
2998 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2999 			continue;
3000 		}
3001 	}
3002 
3003 	return 0;
3004 }
3005 
3006 device_initcall(ioapic_init_sysfs);
3007 
3008 /*
3009  * Dynamic irq allocate and deallocation
3010  */
3011 unsigned int create_irq_nr(unsigned int from, int node)
3012 {
3013 	struct irq_cfg *cfg;
3014 	unsigned long flags;
3015 	unsigned int ret = 0;
3016 	int irq;
3017 
3018 	if (from < nr_irqs_gsi)
3019 		from = nr_irqs_gsi;
3020 
3021 	irq = alloc_irq_from(from, node);
3022 	if (irq < 0)
3023 		return 0;
3024 	cfg = alloc_irq_cfg(irq, node);
3025 	if (!cfg) {
3026 		free_irq_at(irq, NULL);
3027 		return 0;
3028 	}
3029 
3030 	raw_spin_lock_irqsave(&vector_lock, flags);
3031 	if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3032 		ret = irq;
3033 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3034 
3035 	if (ret) {
3036 		set_irq_chip_data(irq, cfg);
3037 		irq_clear_status_flags(irq, IRQ_NOREQUEST);
3038 	} else {
3039 		free_irq_at(irq, cfg);
3040 	}
3041 	return ret;
3042 }
3043 
3044 int create_irq(void)
3045 {
3046 	int node = cpu_to_node(0);
3047 	unsigned int irq_want;
3048 	int irq;
3049 
3050 	irq_want = nr_irqs_gsi;
3051 	irq = create_irq_nr(irq_want, node);
3052 
3053 	if (irq == 0)
3054 		irq = -1;
3055 
3056 	return irq;
3057 }
3058 
3059 void destroy_irq(unsigned int irq)
3060 {
3061 	struct irq_cfg *cfg = get_irq_chip_data(irq);
3062 	unsigned long flags;
3063 
3064 	irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3065 
3066 	if (irq_remapped(cfg))
3067 		free_irte(irq);
3068 	raw_spin_lock_irqsave(&vector_lock, flags);
3069 	__clear_irq_vector(irq, cfg);
3070 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3071 	free_irq_at(irq, cfg);
3072 }
3073 
3074 /*
3075  * MSI message composition
3076  */
3077 #ifdef CONFIG_PCI_MSI
3078 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3079 			   struct msi_msg *msg, u8 hpet_id)
3080 {
3081 	struct irq_cfg *cfg;
3082 	int err;
3083 	unsigned dest;
3084 
3085 	if (disable_apic)
3086 		return -ENXIO;
3087 
3088 	cfg = irq_cfg(irq);
3089 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3090 	if (err)
3091 		return err;
3092 
3093 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3094 
3095 	if (irq_remapped(get_irq_chip_data(irq))) {
3096 		struct irte irte;
3097 		int ir_index;
3098 		u16 sub_handle;
3099 
3100 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3101 		BUG_ON(ir_index == -1);
3102 
3103 		prepare_irte(&irte, cfg->vector, dest);
3104 
3105 		/* Set source-id of interrupt request */
3106 		if (pdev)
3107 			set_msi_sid(&irte, pdev);
3108 		else
3109 			set_hpet_sid(&irte, hpet_id);
3110 
3111 		modify_irte(irq, &irte);
3112 
3113 		msg->address_hi = MSI_ADDR_BASE_HI;
3114 		msg->data = sub_handle;
3115 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3116 				  MSI_ADDR_IR_SHV |
3117 				  MSI_ADDR_IR_INDEX1(ir_index) |
3118 				  MSI_ADDR_IR_INDEX2(ir_index);
3119 	} else {
3120 		if (x2apic_enabled())
3121 			msg->address_hi = MSI_ADDR_BASE_HI |
3122 					  MSI_ADDR_EXT_DEST_ID(dest);
3123 		else
3124 			msg->address_hi = MSI_ADDR_BASE_HI;
3125 
3126 		msg->address_lo =
3127 			MSI_ADDR_BASE_LO |
3128 			((apic->irq_dest_mode == 0) ?
3129 				MSI_ADDR_DEST_MODE_PHYSICAL:
3130 				MSI_ADDR_DEST_MODE_LOGICAL) |
3131 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3132 				MSI_ADDR_REDIRECTION_CPU:
3133 				MSI_ADDR_REDIRECTION_LOWPRI) |
3134 			MSI_ADDR_DEST_ID(dest);
3135 
3136 		msg->data =
3137 			MSI_DATA_TRIGGER_EDGE |
3138 			MSI_DATA_LEVEL_ASSERT |
3139 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3140 				MSI_DATA_DELIVERY_FIXED:
3141 				MSI_DATA_DELIVERY_LOWPRI) |
3142 			MSI_DATA_VECTOR(cfg->vector);
3143 	}
3144 	return err;
3145 }
3146 
3147 #ifdef CONFIG_SMP
3148 static int
3149 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3150 {
3151 	struct irq_cfg *cfg = data->chip_data;
3152 	struct msi_msg msg;
3153 	unsigned int dest;
3154 
3155 	if (__ioapic_set_affinity(data, mask, &dest))
3156 		return -1;
3157 
3158 	__get_cached_msi_msg(data->msi_desc, &msg);
3159 
3160 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3161 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3162 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3163 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3164 
3165 	__write_msi_msg(data->msi_desc, &msg);
3166 
3167 	return 0;
3168 }
3169 #ifdef CONFIG_INTR_REMAP
3170 /*
3171  * Migrate the MSI irq to another cpumask. This migration is
3172  * done in the process context using interrupt-remapping hardware.
3173  */
3174 static int
3175 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3176 		    bool force)
3177 {
3178 	struct irq_cfg *cfg = data->chip_data;
3179 	unsigned int dest, irq = data->irq;
3180 	struct irte irte;
3181 
3182 	if (get_irte(irq, &irte))
3183 		return -1;
3184 
3185 	if (__ioapic_set_affinity(data, mask, &dest))
3186 		return -1;
3187 
3188 	irte.vector = cfg->vector;
3189 	irte.dest_id = IRTE_DEST(dest);
3190 
3191 	/*
3192 	 * atomically update the IRTE with the new destination and vector.
3193 	 */
3194 	modify_irte(irq, &irte);
3195 
3196 	/*
3197 	 * After this point, all the interrupts will start arriving
3198 	 * at the new destination. So, time to cleanup the previous
3199 	 * vector allocation.
3200 	 */
3201 	if (cfg->move_in_progress)
3202 		send_cleanup_vector(cfg);
3203 
3204 	return 0;
3205 }
3206 
3207 #endif
3208 #endif /* CONFIG_SMP */
3209 
3210 /*
3211  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3212  * which implement the MSI or MSI-X Capability Structure.
3213  */
3214 static struct irq_chip msi_chip = {
3215 	.name			= "PCI-MSI",
3216 	.irq_unmask		= unmask_msi_irq,
3217 	.irq_mask		= mask_msi_irq,
3218 	.irq_ack		= ack_apic_edge,
3219 #ifdef CONFIG_SMP
3220 	.irq_set_affinity	= msi_set_affinity,
3221 #endif
3222 	.irq_retrigger		= ioapic_retrigger_irq,
3223 };
3224 
3225 static struct irq_chip msi_ir_chip = {
3226 	.name			= "IR-PCI-MSI",
3227 	.irq_unmask		= unmask_msi_irq,
3228 	.irq_mask		= mask_msi_irq,
3229 #ifdef CONFIG_INTR_REMAP
3230 	.irq_ack		= ir_ack_apic_edge,
3231 #ifdef CONFIG_SMP
3232 	.irq_set_affinity	= ir_msi_set_affinity,
3233 #endif
3234 #endif
3235 	.irq_retrigger		= ioapic_retrigger_irq,
3236 };
3237 
3238 /*
3239  * Map the PCI dev to the corresponding remapping hardware unit
3240  * and allocate 'nvec' consecutive interrupt-remapping table entries
3241  * in it.
3242  */
3243 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3244 {
3245 	struct intel_iommu *iommu;
3246 	int index;
3247 
3248 	iommu = map_dev_to_ir(dev);
3249 	if (!iommu) {
3250 		printk(KERN_ERR
3251 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3252 		return -ENOENT;
3253 	}
3254 
3255 	index = alloc_irte(iommu, irq, nvec);
3256 	if (index < 0) {
3257 		printk(KERN_ERR
3258 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3259 		       pci_name(dev));
3260 		return -ENOSPC;
3261 	}
3262 	return index;
3263 }
3264 
3265 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3266 {
3267 	struct msi_msg msg;
3268 	int ret;
3269 
3270 	ret = msi_compose_msg(dev, irq, &msg, -1);
3271 	if (ret < 0)
3272 		return ret;
3273 
3274 	set_irq_msi(irq, msidesc);
3275 	write_msi_msg(irq, &msg);
3276 
3277 	if (irq_remapped(get_irq_chip_data(irq))) {
3278 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3279 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3280 	} else
3281 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3282 
3283 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3284 
3285 	return 0;
3286 }
3287 
3288 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3289 {
3290 	int node, ret, sub_handle, index = 0;
3291 	unsigned int irq, irq_want;
3292 	struct msi_desc *msidesc;
3293 	struct intel_iommu *iommu = NULL;
3294 
3295 	/* x86 doesn't support multiple MSI yet */
3296 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3297 		return 1;
3298 
3299 	node = dev_to_node(&dev->dev);
3300 	irq_want = nr_irqs_gsi;
3301 	sub_handle = 0;
3302 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3303 		irq = create_irq_nr(irq_want, node);
3304 		if (irq == 0)
3305 			return -1;
3306 		irq_want = irq + 1;
3307 		if (!intr_remapping_enabled)
3308 			goto no_ir;
3309 
3310 		if (!sub_handle) {
3311 			/*
3312 			 * allocate the consecutive block of IRTE's
3313 			 * for 'nvec'
3314 			 */
3315 			index = msi_alloc_irte(dev, irq, nvec);
3316 			if (index < 0) {
3317 				ret = index;
3318 				goto error;
3319 			}
3320 		} else {
3321 			iommu = map_dev_to_ir(dev);
3322 			if (!iommu) {
3323 				ret = -ENOENT;
3324 				goto error;
3325 			}
3326 			/*
3327 			 * setup the mapping between the irq and the IRTE
3328 			 * base index, the sub_handle pointing to the
3329 			 * appropriate interrupt remap table entry.
3330 			 */
3331 			set_irte_irq(irq, iommu, index, sub_handle);
3332 		}
3333 no_ir:
3334 		ret = setup_msi_irq(dev, msidesc, irq);
3335 		if (ret < 0)
3336 			goto error;
3337 		sub_handle++;
3338 	}
3339 	return 0;
3340 
3341 error:
3342 	destroy_irq(irq);
3343 	return ret;
3344 }
3345 
3346 void native_teardown_msi_irq(unsigned int irq)
3347 {
3348 	destroy_irq(irq);
3349 }
3350 
3351 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3352 #ifdef CONFIG_SMP
3353 static int
3354 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3355 		      bool force)
3356 {
3357 	struct irq_cfg *cfg = data->chip_data;
3358 	unsigned int dest, irq = data->irq;
3359 	struct msi_msg msg;
3360 
3361 	if (__ioapic_set_affinity(data, mask, &dest))
3362 		return -1;
3363 
3364 	dmar_msi_read(irq, &msg);
3365 
3366 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3367 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3368 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3369 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3370 	msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3371 
3372 	dmar_msi_write(irq, &msg);
3373 
3374 	return 0;
3375 }
3376 
3377 #endif /* CONFIG_SMP */
3378 
3379 static struct irq_chip dmar_msi_type = {
3380 	.name			= "DMAR_MSI",
3381 	.irq_unmask		= dmar_msi_unmask,
3382 	.irq_mask		= dmar_msi_mask,
3383 	.irq_ack		= ack_apic_edge,
3384 #ifdef CONFIG_SMP
3385 	.irq_set_affinity	= dmar_msi_set_affinity,
3386 #endif
3387 	.irq_retrigger		= ioapic_retrigger_irq,
3388 };
3389 
3390 int arch_setup_dmar_msi(unsigned int irq)
3391 {
3392 	int ret;
3393 	struct msi_msg msg;
3394 
3395 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3396 	if (ret < 0)
3397 		return ret;
3398 	dmar_msi_write(irq, &msg);
3399 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3400 		"edge");
3401 	return 0;
3402 }
3403 #endif
3404 
3405 #ifdef CONFIG_HPET_TIMER
3406 
3407 #ifdef CONFIG_SMP
3408 static int hpet_msi_set_affinity(struct irq_data *data,
3409 				 const struct cpumask *mask, bool force)
3410 {
3411 	struct irq_cfg *cfg = data->chip_data;
3412 	struct msi_msg msg;
3413 	unsigned int dest;
3414 
3415 	if (__ioapic_set_affinity(data, mask, &dest))
3416 		return -1;
3417 
3418 	hpet_msi_read(data->handler_data, &msg);
3419 
3420 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3421 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3422 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3423 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3424 
3425 	hpet_msi_write(data->handler_data, &msg);
3426 
3427 	return 0;
3428 }
3429 
3430 #endif /* CONFIG_SMP */
3431 
3432 static struct irq_chip ir_hpet_msi_type = {
3433 	.name			= "IR-HPET_MSI",
3434 	.irq_unmask		= hpet_msi_unmask,
3435 	.irq_mask		= hpet_msi_mask,
3436 #ifdef CONFIG_INTR_REMAP
3437 	.irq_ack		= ir_ack_apic_edge,
3438 #ifdef CONFIG_SMP
3439 	.irq_set_affinity	= ir_msi_set_affinity,
3440 #endif
3441 #endif
3442 	.irq_retrigger		= ioapic_retrigger_irq,
3443 };
3444 
3445 static struct irq_chip hpet_msi_type = {
3446 	.name = "HPET_MSI",
3447 	.irq_unmask = hpet_msi_unmask,
3448 	.irq_mask = hpet_msi_mask,
3449 	.irq_ack = ack_apic_edge,
3450 #ifdef CONFIG_SMP
3451 	.irq_set_affinity = hpet_msi_set_affinity,
3452 #endif
3453 	.irq_retrigger = ioapic_retrigger_irq,
3454 };
3455 
3456 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3457 {
3458 	struct msi_msg msg;
3459 	int ret;
3460 
3461 	if (intr_remapping_enabled) {
3462 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3463 		int index;
3464 
3465 		if (!iommu)
3466 			return -1;
3467 
3468 		index = alloc_irte(iommu, irq, 1);
3469 		if (index < 0)
3470 			return -1;
3471 	}
3472 
3473 	ret = msi_compose_msg(NULL, irq, &msg, id);
3474 	if (ret < 0)
3475 		return ret;
3476 
3477 	hpet_msi_write(get_irq_data(irq), &msg);
3478 	irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3479 	if (irq_remapped(get_irq_chip_data(irq)))
3480 		set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3481 					      handle_edge_irq, "edge");
3482 	else
3483 		set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3484 					      handle_edge_irq, "edge");
3485 
3486 	return 0;
3487 }
3488 #endif
3489 
3490 #endif /* CONFIG_PCI_MSI */
3491 /*
3492  * Hypertransport interrupt support
3493  */
3494 #ifdef CONFIG_HT_IRQ
3495 
3496 #ifdef CONFIG_SMP
3497 
3498 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3499 {
3500 	struct ht_irq_msg msg;
3501 	fetch_ht_irq_msg(irq, &msg);
3502 
3503 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3504 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3505 
3506 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3507 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3508 
3509 	write_ht_irq_msg(irq, &msg);
3510 }
3511 
3512 static int
3513 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3514 {
3515 	struct irq_cfg *cfg = data->chip_data;
3516 	unsigned int dest;
3517 
3518 	if (__ioapic_set_affinity(data, mask, &dest))
3519 		return -1;
3520 
3521 	target_ht_irq(data->irq, dest, cfg->vector);
3522 	return 0;
3523 }
3524 
3525 #endif
3526 
3527 static struct irq_chip ht_irq_chip = {
3528 	.name			= "PCI-HT",
3529 	.irq_mask		= mask_ht_irq,
3530 	.irq_unmask		= unmask_ht_irq,
3531 	.irq_ack		= ack_apic_edge,
3532 #ifdef CONFIG_SMP
3533 	.irq_set_affinity	= ht_set_affinity,
3534 #endif
3535 	.irq_retrigger		= ioapic_retrigger_irq,
3536 };
3537 
3538 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3539 {
3540 	struct irq_cfg *cfg;
3541 	int err;
3542 
3543 	if (disable_apic)
3544 		return -ENXIO;
3545 
3546 	cfg = irq_cfg(irq);
3547 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3548 	if (!err) {
3549 		struct ht_irq_msg msg;
3550 		unsigned dest;
3551 
3552 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3553 						    apic->target_cpus());
3554 
3555 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3556 
3557 		msg.address_lo =
3558 			HT_IRQ_LOW_BASE |
3559 			HT_IRQ_LOW_DEST_ID(dest) |
3560 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3561 			((apic->irq_dest_mode == 0) ?
3562 				HT_IRQ_LOW_DM_PHYSICAL :
3563 				HT_IRQ_LOW_DM_LOGICAL) |
3564 			HT_IRQ_LOW_RQEOI_EDGE |
3565 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3566 				HT_IRQ_LOW_MT_FIXED :
3567 				HT_IRQ_LOW_MT_ARBITRATED) |
3568 			HT_IRQ_LOW_IRQ_MASKED;
3569 
3570 		write_ht_irq_msg(irq, &msg);
3571 
3572 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3573 					      handle_edge_irq, "edge");
3574 
3575 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3576 	}
3577 	return err;
3578 }
3579 #endif /* CONFIG_HT_IRQ */
3580 
3581 int
3582 io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
3583 {
3584 	struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
3585 	int ret;
3586 
3587 	if (!cfg)
3588 		return -EINVAL;
3589 	ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
3590 	if (!ret)
3591 		setup_ioapic_irq(attr->ioapic, attr->ioapic_pin, irq, cfg,
3592 				 attr->trigger, attr->polarity);
3593 	return ret;
3594 }
3595 
3596 static int io_apic_setup_irq_pin_once(unsigned int irq, int node,
3597 				      struct io_apic_irq_attr *attr)
3598 {
3599 	unsigned int id = attr->ioapic, pin = attr->ioapic_pin;
3600 	int ret;
3601 
3602 	/* Avoid redundant programming */
3603 	if (test_bit(pin, mp_ioapic_routing[id].pin_programmed)) {
3604 		pr_debug("Pin %d-%d already programmed\n",
3605 			 mp_ioapics[id].apicid, pin);
3606 		return 0;
3607 	}
3608 	ret = io_apic_setup_irq_pin(irq, node, attr);
3609 	if (!ret)
3610 		set_bit(pin, mp_ioapic_routing[id].pin_programmed);
3611 	return ret;
3612 }
3613 
3614 static int __init io_apic_get_redir_entries(int ioapic)
3615 {
3616 	union IO_APIC_reg_01	reg_01;
3617 	unsigned long flags;
3618 
3619 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3620 	reg_01.raw = io_apic_read(ioapic, 1);
3621 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3622 
3623 	/* The register returns the maximum index redir index
3624 	 * supported, which is one less than the total number of redir
3625 	 * entries.
3626 	 */
3627 	return reg_01.bits.entries + 1;
3628 }
3629 
3630 static void __init probe_nr_irqs_gsi(void)
3631 {
3632 	int nr;
3633 
3634 	nr = gsi_top + NR_IRQS_LEGACY;
3635 	if (nr > nr_irqs_gsi)
3636 		nr_irqs_gsi = nr;
3637 
3638 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3639 }
3640 
3641 int get_nr_irqs_gsi(void)
3642 {
3643 	return nr_irqs_gsi;
3644 }
3645 
3646 #ifdef CONFIG_SPARSE_IRQ
3647 int __init arch_probe_nr_irqs(void)
3648 {
3649 	int nr;
3650 
3651 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3652 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3653 
3654 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3655 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3656 	/*
3657 	 * for MSI and HT dyn irq
3658 	 */
3659 	nr += nr_irqs_gsi * 16;
3660 #endif
3661 	if (nr < nr_irqs)
3662 		nr_irqs = nr;
3663 
3664 	return NR_IRQS_LEGACY;
3665 }
3666 #endif
3667 
3668 int io_apic_set_pci_routing(struct device *dev, int irq,
3669 			    struct io_apic_irq_attr *irq_attr)
3670 {
3671 	int node;
3672 
3673 	if (!IO_APIC_IRQ(irq)) {
3674 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3675 			    irq_attr->ioapic);
3676 		return -EINVAL;
3677 	}
3678 
3679 	node = dev ? dev_to_node(dev) : cpu_to_node(0);
3680 
3681 	return io_apic_setup_irq_pin_once(irq, node, irq_attr);
3682 }
3683 
3684 #ifdef CONFIG_X86_32
3685 static int __init io_apic_get_unique_id(int ioapic, int apic_id)
3686 {
3687 	union IO_APIC_reg_00 reg_00;
3688 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3689 	physid_mask_t tmp;
3690 	unsigned long flags;
3691 	int i = 0;
3692 
3693 	/*
3694 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3695 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3696 	 * supports up to 16 on one shared APIC bus.
3697 	 *
3698 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3699 	 *      advantage of new APIC bus architecture.
3700 	 */
3701 
3702 	if (physids_empty(apic_id_map))
3703 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3704 
3705 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3706 	reg_00.raw = io_apic_read(ioapic, 0);
3707 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3708 
3709 	if (apic_id >= get_physical_broadcast()) {
3710 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3711 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3712 		apic_id = reg_00.bits.ID;
3713 	}
3714 
3715 	/*
3716 	 * Every APIC in a system must have a unique ID or we get lots of nice
3717 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3718 	 */
3719 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3720 
3721 		for (i = 0; i < get_physical_broadcast(); i++) {
3722 			if (!apic->check_apicid_used(&apic_id_map, i))
3723 				break;
3724 		}
3725 
3726 		if (i == get_physical_broadcast())
3727 			panic("Max apic_id exceeded!\n");
3728 
3729 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3730 			"trying %d\n", ioapic, apic_id, i);
3731 
3732 		apic_id = i;
3733 	}
3734 
3735 	apic->apicid_to_cpu_present(apic_id, &tmp);
3736 	physids_or(apic_id_map, apic_id_map, tmp);
3737 
3738 	if (reg_00.bits.ID != apic_id) {
3739 		reg_00.bits.ID = apic_id;
3740 
3741 		raw_spin_lock_irqsave(&ioapic_lock, flags);
3742 		io_apic_write(ioapic, 0, reg_00.raw);
3743 		reg_00.raw = io_apic_read(ioapic, 0);
3744 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3745 
3746 		/* Sanity check */
3747 		if (reg_00.bits.ID != apic_id) {
3748 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3749 			return -1;
3750 		}
3751 	}
3752 
3753 	apic_printk(APIC_VERBOSE, KERN_INFO
3754 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3755 
3756 	return apic_id;
3757 }
3758 
3759 static u8 __init io_apic_unique_id(u8 id)
3760 {
3761 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3762 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3763 		return io_apic_get_unique_id(nr_ioapics, id);
3764 	else
3765 		return id;
3766 }
3767 #else
3768 static u8 __init io_apic_unique_id(u8 id)
3769 {
3770 	int i;
3771 	DECLARE_BITMAP(used, 256);
3772 
3773 	bitmap_zero(used, 256);
3774 	for (i = 0; i < nr_ioapics; i++) {
3775 		struct mpc_ioapic *ia = &mp_ioapics[i];
3776 		__set_bit(ia->apicid, used);
3777 	}
3778 	if (!test_bit(id, used))
3779 		return id;
3780 	return find_first_zero_bit(used, 256);
3781 }
3782 #endif
3783 
3784 static int __init io_apic_get_version(int ioapic)
3785 {
3786 	union IO_APIC_reg_01	reg_01;
3787 	unsigned long flags;
3788 
3789 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3790 	reg_01.raw = io_apic_read(ioapic, 1);
3791 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3792 
3793 	return reg_01.bits.version;
3794 }
3795 
3796 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3797 {
3798 	int ioapic, pin, idx;
3799 
3800 	if (skip_ioapic_setup)
3801 		return -1;
3802 
3803 	ioapic = mp_find_ioapic(gsi);
3804 	if (ioapic < 0)
3805 		return -1;
3806 
3807 	pin = mp_find_ioapic_pin(ioapic, gsi);
3808 	if (pin < 0)
3809 		return -1;
3810 
3811 	idx = find_irq_entry(ioapic, pin, mp_INT);
3812 	if (idx < 0)
3813 		return -1;
3814 
3815 	*trigger = irq_trigger(idx);
3816 	*polarity = irq_polarity(idx);
3817 	return 0;
3818 }
3819 
3820 /*
3821  * This function currently is only a helper for the i386 smp boot process where
3822  * we need to reprogram the ioredtbls to cater for the cpus which have come online
3823  * so mask in all cases should simply be apic->target_cpus()
3824  */
3825 #ifdef CONFIG_SMP
3826 void __init setup_ioapic_dest(void)
3827 {
3828 	int pin, ioapic, irq, irq_entry;
3829 	struct irq_desc *desc;
3830 	const struct cpumask *mask;
3831 
3832 	if (skip_ioapic_setup == 1)
3833 		return;
3834 
3835 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3836 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3837 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3838 		if (irq_entry == -1)
3839 			continue;
3840 		irq = pin_2_irq(irq_entry, ioapic, pin);
3841 
3842 		if ((ioapic > 0) && (irq > 16))
3843 			continue;
3844 
3845 		desc = irq_to_desc(irq);
3846 
3847 		/*
3848 		 * Honour affinities which have been set in early boot
3849 		 */
3850 		if (desc->status &
3851 		    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
3852 			mask = desc->irq_data.affinity;
3853 		else
3854 			mask = apic->target_cpus();
3855 
3856 		if (intr_remapping_enabled)
3857 			ir_ioapic_set_affinity(&desc->irq_data, mask, false);
3858 		else
3859 			ioapic_set_affinity(&desc->irq_data, mask, false);
3860 	}
3861 
3862 }
3863 #endif
3864 
3865 #define IOAPIC_RESOURCE_NAME_SIZE 11
3866 
3867 static struct resource *ioapic_resources;
3868 
3869 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3870 {
3871 	unsigned long n;
3872 	struct resource *res;
3873 	char *mem;
3874 	int i;
3875 
3876 	if (nr_ioapics <= 0)
3877 		return NULL;
3878 
3879 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3880 	n *= nr_ioapics;
3881 
3882 	mem = alloc_bootmem(n);
3883 	res = (void *)mem;
3884 
3885 	mem += sizeof(struct resource) * nr_ioapics;
3886 
3887 	for (i = 0; i < nr_ioapics; i++) {
3888 		res[i].name = mem;
3889 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3890 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3891 		mem += IOAPIC_RESOURCE_NAME_SIZE;
3892 	}
3893 
3894 	ioapic_resources = res;
3895 
3896 	return res;
3897 }
3898 
3899 void __init ioapic_and_gsi_init(void)
3900 {
3901 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3902 	struct resource *ioapic_res;
3903 	int i;
3904 
3905 	ioapic_res = ioapic_setup_resources(nr_ioapics);
3906 	for (i = 0; i < nr_ioapics; i++) {
3907 		if (smp_found_config) {
3908 			ioapic_phys = mp_ioapics[i].apicaddr;
3909 #ifdef CONFIG_X86_32
3910 			if (!ioapic_phys) {
3911 				printk(KERN_ERR
3912 				       "WARNING: bogus zero IO-APIC "
3913 				       "address found in MPTABLE, "
3914 				       "disabling IO/APIC support!\n");
3915 				smp_found_config = 0;
3916 				skip_ioapic_setup = 1;
3917 				goto fake_ioapic_page;
3918 			}
3919 #endif
3920 		} else {
3921 #ifdef CONFIG_X86_32
3922 fake_ioapic_page:
3923 #endif
3924 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3925 			ioapic_phys = __pa(ioapic_phys);
3926 		}
3927 		set_fixmap_nocache(idx, ioapic_phys);
3928 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3929 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3930 			ioapic_phys);
3931 		idx++;
3932 
3933 		ioapic_res->start = ioapic_phys;
3934 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3935 		ioapic_res++;
3936 	}
3937 
3938 	probe_nr_irqs_gsi();
3939 }
3940 
3941 void __init ioapic_insert_resources(void)
3942 {
3943 	int i;
3944 	struct resource *r = ioapic_resources;
3945 
3946 	if (!r) {
3947 		if (nr_ioapics > 0)
3948 			printk(KERN_ERR
3949 				"IO APIC resources couldn't be allocated.\n");
3950 		return;
3951 	}
3952 
3953 	for (i = 0; i < nr_ioapics; i++) {
3954 		insert_resource(&iomem_resource, r);
3955 		r++;
3956 	}
3957 }
3958 
3959 int mp_find_ioapic(u32 gsi)
3960 {
3961 	int i = 0;
3962 
3963 	if (nr_ioapics == 0)
3964 		return -1;
3965 
3966 	/* Find the IOAPIC that manages this GSI. */
3967 	for (i = 0; i < nr_ioapics; i++) {
3968 		if ((gsi >= mp_gsi_routing[i].gsi_base)
3969 		    && (gsi <= mp_gsi_routing[i].gsi_end))
3970 			return i;
3971 	}
3972 
3973 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3974 	return -1;
3975 }
3976 
3977 int mp_find_ioapic_pin(int ioapic, u32 gsi)
3978 {
3979 	if (WARN_ON(ioapic == -1))
3980 		return -1;
3981 	if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
3982 		return -1;
3983 
3984 	return gsi - mp_gsi_routing[ioapic].gsi_base;
3985 }
3986 
3987 static __init int bad_ioapic(unsigned long address)
3988 {
3989 	if (nr_ioapics >= MAX_IO_APICS) {
3990 		printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
3991 		       "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
3992 		return 1;
3993 	}
3994 	if (!address) {
3995 		printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
3996 		       " found in table, skipping!\n");
3997 		return 1;
3998 	}
3999 	return 0;
4000 }
4001 
4002 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4003 {
4004 	int idx = 0;
4005 	int entries;
4006 
4007 	if (bad_ioapic(address))
4008 		return;
4009 
4010 	idx = nr_ioapics;
4011 
4012 	mp_ioapics[idx].type = MP_IOAPIC;
4013 	mp_ioapics[idx].flags = MPC_APIC_USABLE;
4014 	mp_ioapics[idx].apicaddr = address;
4015 
4016 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4017 	mp_ioapics[idx].apicid = io_apic_unique_id(id);
4018 	mp_ioapics[idx].apicver = io_apic_get_version(idx);
4019 
4020 	/*
4021 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4022 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4023 	 */
4024 	entries = io_apic_get_redir_entries(idx);
4025 	mp_gsi_routing[idx].gsi_base = gsi_base;
4026 	mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4027 
4028 	/*
4029 	 * The number of IO-APIC IRQ registers (== #pins):
4030 	 */
4031 	nr_ioapic_registers[idx] = entries;
4032 
4033 	if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4034 		gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4035 
4036 	printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4037 	       "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4038 	       mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4039 	       mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4040 
4041 	nr_ioapics++;
4042 }
4043 
4044 /* Enable IOAPIC early just for system timer */
4045 void __init pre_init_apic_IRQ0(void)
4046 {
4047 	struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
4048 
4049 	printk(KERN_INFO "Early APIC setup for system timer0\n");
4050 #ifndef CONFIG_SMP
4051 	physid_set_mask_of_physid(boot_cpu_physical_apicid,
4052 					 &phys_cpu_present_map);
4053 #endif
4054 	setup_local_APIC();
4055 
4056 	io_apic_setup_irq_pin(0, 0, &attr);
4057 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4058 }
4059