1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Intel IO-APIC support for multi-Pentium hosts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * 7 * Many thanks to Stig Venaas for trying out countless experimental 8 * patches and reporting/debugging problems patiently! 9 * 10 * (c) 1999, Multiple IO-APIC support, developed by 11 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 12 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 13 * further tested and cleaned up by Zach Brown <zab@redhat.com> 14 * and Ingo Molnar <mingo@redhat.com> 15 * 16 * Fixes 17 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 18 * thanks to Eric Gilmore 19 * and Rolf G. Tews 20 * for testing these extensively 21 * Paul Diefenbaugh : Added full ACPI support 22 * 23 * Historical information which is worth to be preserved: 24 * 25 * - SiS APIC rmw bug: 26 * 27 * We used to have a workaround for a bug in SiS chips which 28 * required to rewrite the index register for a read-modify-write 29 * operation as the chip lost the index information which was 30 * setup for the read already. We cache the data now, so that 31 * workaround has been removed. 32 */ 33 34 #include <linux/mm.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> 37 #include <linux/init.h> 38 #include <linux/delay.h> 39 #include <linux/sched.h> 40 #include <linux/pci.h> 41 #include <linux/mc146818rtc.h> 42 #include <linux/compiler.h> 43 #include <linux/acpi.h> 44 #include <linux/export.h> 45 #include <linux/syscore_ops.h> 46 #include <linux/freezer.h> 47 #include <linux/kthread.h> 48 #include <linux/jiffies.h> /* time_after() */ 49 #include <linux/slab.h> 50 #include <linux/memblock.h> 51 #include <linux/msi.h> 52 53 #include <asm/irqdomain.h> 54 #include <asm/io.h> 55 #include <asm/smp.h> 56 #include <asm/cpu.h> 57 #include <asm/desc.h> 58 #include <asm/proto.h> 59 #include <asm/acpi.h> 60 #include <asm/dma.h> 61 #include <asm/timer.h> 62 #include <asm/time.h> 63 #include <asm/i8259.h> 64 #include <asm/setup.h> 65 #include <asm/irq_remapping.h> 66 #include <asm/hw_irq.h> 67 #include <asm/apic.h> 68 #include <asm/pgtable.h> 69 #include <asm/x86_init.h> 70 71 #define for_each_ioapic(idx) \ 72 for ((idx) = 0; (idx) < nr_ioapics; (idx)++) 73 #define for_each_ioapic_reverse(idx) \ 74 for ((idx) = nr_ioapics - 1; (idx) >= 0; (idx)--) 75 #define for_each_pin(idx, pin) \ 76 for ((pin) = 0; (pin) < ioapics[(idx)].nr_registers; (pin)++) 77 #define for_each_ioapic_pin(idx, pin) \ 78 for_each_ioapic((idx)) \ 79 for_each_pin((idx), (pin)) 80 #define for_each_irq_pin(entry, head) \ 81 list_for_each_entry(entry, &head, list) 82 83 static DEFINE_RAW_SPINLOCK(ioapic_lock); 84 static DEFINE_MUTEX(ioapic_mutex); 85 static unsigned int ioapic_dynirq_base; 86 static int ioapic_initialized; 87 88 struct irq_pin_list { 89 struct list_head list; 90 int apic, pin; 91 }; 92 93 struct mp_chip_data { 94 struct list_head irq_2_pin; 95 struct IO_APIC_route_entry entry; 96 bool is_level; 97 bool active_low; 98 bool isa_irq; 99 u32 count; 100 }; 101 102 struct mp_ioapic_gsi { 103 u32 gsi_base; 104 u32 gsi_end; 105 }; 106 107 static struct ioapic { 108 /* 109 * # of IRQ routing registers 110 */ 111 int nr_registers; 112 /* 113 * Saved state during suspend/resume, or while enabling intr-remap. 114 */ 115 struct IO_APIC_route_entry *saved_registers; 116 /* I/O APIC config */ 117 struct mpc_ioapic mp_config; 118 /* IO APIC gsi routing info */ 119 struct mp_ioapic_gsi gsi_config; 120 struct ioapic_domain_cfg irqdomain_cfg; 121 struct irq_domain *irqdomain; 122 struct resource *iomem_res; 123 } ioapics[MAX_IO_APICS]; 124 125 #define mpc_ioapic_ver(ioapic_idx) ioapics[ioapic_idx].mp_config.apicver 126 127 int mpc_ioapic_id(int ioapic_idx) 128 { 129 return ioapics[ioapic_idx].mp_config.apicid; 130 } 131 132 unsigned int mpc_ioapic_addr(int ioapic_idx) 133 { 134 return ioapics[ioapic_idx].mp_config.apicaddr; 135 } 136 137 static inline struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int ioapic_idx) 138 { 139 return &ioapics[ioapic_idx].gsi_config; 140 } 141 142 static inline int mp_ioapic_pin_count(int ioapic) 143 { 144 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 145 146 return gsi_cfg->gsi_end - gsi_cfg->gsi_base + 1; 147 } 148 149 static inline u32 mp_pin_to_gsi(int ioapic, int pin) 150 { 151 return mp_ioapic_gsi_routing(ioapic)->gsi_base + pin; 152 } 153 154 static inline bool mp_is_legacy_irq(int irq) 155 { 156 return irq >= 0 && irq < nr_legacy_irqs(); 157 } 158 159 static inline struct irq_domain *mp_ioapic_irqdomain(int ioapic) 160 { 161 return ioapics[ioapic].irqdomain; 162 } 163 164 int nr_ioapics; 165 166 /* The one past the highest gsi number used */ 167 u32 gsi_top; 168 169 /* MP IRQ source entries */ 170 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 171 172 /* # of MP IRQ source entries */ 173 int mp_irq_entries; 174 175 #ifdef CONFIG_EISA 176 int mp_bus_id_to_type[MAX_MP_BUSSES]; 177 #endif 178 179 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 180 181 int skip_ioapic_setup; 182 183 /** 184 * disable_ioapic_support() - disables ioapic support at runtime 185 */ 186 void disable_ioapic_support(void) 187 { 188 #ifdef CONFIG_PCI 189 noioapicquirk = 1; 190 noioapicreroute = -1; 191 #endif 192 skip_ioapic_setup = 1; 193 } 194 195 static int __init parse_noapic(char *str) 196 { 197 /* disable IO-APIC */ 198 disable_ioapic_support(); 199 return 0; 200 } 201 early_param("noapic", parse_noapic); 202 203 /* Will be called in mpparse/ACPI codes for saving IRQ info */ 204 void mp_save_irq(struct mpc_intsrc *m) 205 { 206 int i; 207 208 apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x," 209 " IRQ %02x, APIC ID %x, APIC INT %02x\n", 210 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus, 211 m->srcbusirq, m->dstapic, m->dstirq); 212 213 for (i = 0; i < mp_irq_entries; i++) { 214 if (!memcmp(&mp_irqs[i], m, sizeof(*m))) 215 return; 216 } 217 218 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m)); 219 if (++mp_irq_entries == MAX_IRQ_SOURCES) 220 panic("Max # of irq sources exceeded!!\n"); 221 } 222 223 static void alloc_ioapic_saved_registers(int idx) 224 { 225 size_t size; 226 227 if (ioapics[idx].saved_registers) 228 return; 229 230 size = sizeof(struct IO_APIC_route_entry) * ioapics[idx].nr_registers; 231 ioapics[idx].saved_registers = kzalloc(size, GFP_KERNEL); 232 if (!ioapics[idx].saved_registers) 233 pr_err("IOAPIC %d: suspend/resume impossible!\n", idx); 234 } 235 236 static void free_ioapic_saved_registers(int idx) 237 { 238 kfree(ioapics[idx].saved_registers); 239 ioapics[idx].saved_registers = NULL; 240 } 241 242 int __init arch_early_ioapic_init(void) 243 { 244 int i; 245 246 if (!nr_legacy_irqs()) 247 io_apic_irqs = ~0UL; 248 249 for_each_ioapic(i) 250 alloc_ioapic_saved_registers(i); 251 252 return 0; 253 } 254 255 struct io_apic { 256 unsigned int index; 257 unsigned int unused[3]; 258 unsigned int data; 259 unsigned int unused2[11]; 260 unsigned int eoi; 261 }; 262 263 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 264 { 265 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 266 + (mpc_ioapic_addr(idx) & ~PAGE_MASK); 267 } 268 269 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 270 { 271 struct io_apic __iomem *io_apic = io_apic_base(apic); 272 writel(vector, &io_apic->eoi); 273 } 274 275 unsigned int native_io_apic_read(unsigned int apic, unsigned int reg) 276 { 277 struct io_apic __iomem *io_apic = io_apic_base(apic); 278 writel(reg, &io_apic->index); 279 return readl(&io_apic->data); 280 } 281 282 static void io_apic_write(unsigned int apic, unsigned int reg, 283 unsigned int value) 284 { 285 struct io_apic __iomem *io_apic = io_apic_base(apic); 286 287 writel(reg, &io_apic->index); 288 writel(value, &io_apic->data); 289 } 290 291 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin) 292 { 293 struct IO_APIC_route_entry entry; 294 295 entry.w1 = io_apic_read(apic, 0x10 + 2 * pin); 296 entry.w2 = io_apic_read(apic, 0x11 + 2 * pin); 297 298 return entry; 299 } 300 301 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 302 { 303 struct IO_APIC_route_entry entry; 304 unsigned long flags; 305 306 raw_spin_lock_irqsave(&ioapic_lock, flags); 307 entry = __ioapic_read_entry(apic, pin); 308 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 309 310 return entry; 311 } 312 313 /* 314 * When we write a new IO APIC routing entry, we need to write the high 315 * word first! If the mask bit in the low word is clear, we will enable 316 * the interrupt, and we need to make sure the entry is fully populated 317 * before that happens. 318 */ 319 static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 320 { 321 io_apic_write(apic, 0x11 + 2*pin, e.w2); 322 io_apic_write(apic, 0x10 + 2*pin, e.w1); 323 } 324 325 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 326 { 327 unsigned long flags; 328 329 raw_spin_lock_irqsave(&ioapic_lock, flags); 330 __ioapic_write_entry(apic, pin, e); 331 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 332 } 333 334 /* 335 * When we mask an IO APIC routing entry, we need to write the low 336 * word first, in order to set the mask bit before we change the 337 * high bits! 338 */ 339 static void ioapic_mask_entry(int apic, int pin) 340 { 341 struct IO_APIC_route_entry e = { .masked = true }; 342 unsigned long flags; 343 344 raw_spin_lock_irqsave(&ioapic_lock, flags); 345 io_apic_write(apic, 0x10 + 2*pin, e.w1); 346 io_apic_write(apic, 0x11 + 2*pin, e.w2); 347 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 348 } 349 350 /* 351 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 352 * shared ISA-space IRQs, so we have to support them. We are super 353 * fast in the common case, and fast for shared ISA-space IRQs. 354 */ 355 static int __add_pin_to_irq_node(struct mp_chip_data *data, 356 int node, int apic, int pin) 357 { 358 struct irq_pin_list *entry; 359 360 /* don't allow duplicates */ 361 for_each_irq_pin(entry, data->irq_2_pin) 362 if (entry->apic == apic && entry->pin == pin) 363 return 0; 364 365 entry = kzalloc_node(sizeof(struct irq_pin_list), GFP_ATOMIC, node); 366 if (!entry) { 367 pr_err("can not alloc irq_pin_list (%d,%d,%d)\n", 368 node, apic, pin); 369 return -ENOMEM; 370 } 371 entry->apic = apic; 372 entry->pin = pin; 373 list_add_tail(&entry->list, &data->irq_2_pin); 374 375 return 0; 376 } 377 378 static void __remove_pin_from_irq(struct mp_chip_data *data, int apic, int pin) 379 { 380 struct irq_pin_list *tmp, *entry; 381 382 list_for_each_entry_safe(entry, tmp, &data->irq_2_pin, list) 383 if (entry->apic == apic && entry->pin == pin) { 384 list_del(&entry->list); 385 kfree(entry); 386 return; 387 } 388 } 389 390 static void add_pin_to_irq_node(struct mp_chip_data *data, 391 int node, int apic, int pin) 392 { 393 if (__add_pin_to_irq_node(data, node, apic, pin)) 394 panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); 395 } 396 397 /* 398 * Reroute an IRQ to a different pin. 399 */ 400 static void __init replace_pin_at_irq_node(struct mp_chip_data *data, int node, 401 int oldapic, int oldpin, 402 int newapic, int newpin) 403 { 404 struct irq_pin_list *entry; 405 406 for_each_irq_pin(entry, data->irq_2_pin) { 407 if (entry->apic == oldapic && entry->pin == oldpin) { 408 entry->apic = newapic; 409 entry->pin = newpin; 410 /* every one is different, right? */ 411 return; 412 } 413 } 414 415 /* old apic/pin didn't exist, so just add new ones */ 416 add_pin_to_irq_node(data, node, newapic, newpin); 417 } 418 419 static void io_apic_modify_irq(struct mp_chip_data *data, bool masked, 420 void (*final)(struct irq_pin_list *entry)) 421 { 422 struct irq_pin_list *entry; 423 424 data->entry.masked = masked; 425 426 for_each_irq_pin(entry, data->irq_2_pin) { 427 io_apic_write(entry->apic, 0x10 + 2 * entry->pin, data->entry.w1); 428 if (final) 429 final(entry); 430 } 431 } 432 433 static void io_apic_sync(struct irq_pin_list *entry) 434 { 435 /* 436 * Synchronize the IO-APIC and the CPU by doing 437 * a dummy read from the IO-APIC 438 */ 439 struct io_apic __iomem *io_apic; 440 441 io_apic = io_apic_base(entry->apic); 442 readl(&io_apic->data); 443 } 444 445 static void mask_ioapic_irq(struct irq_data *irq_data) 446 { 447 struct mp_chip_data *data = irq_data->chip_data; 448 unsigned long flags; 449 450 raw_spin_lock_irqsave(&ioapic_lock, flags); 451 io_apic_modify_irq(data, true, &io_apic_sync); 452 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 453 } 454 455 static void __unmask_ioapic(struct mp_chip_data *data) 456 { 457 io_apic_modify_irq(data, false, NULL); 458 } 459 460 static void unmask_ioapic_irq(struct irq_data *irq_data) 461 { 462 struct mp_chip_data *data = irq_data->chip_data; 463 unsigned long flags; 464 465 raw_spin_lock_irqsave(&ioapic_lock, flags); 466 __unmask_ioapic(data); 467 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 468 } 469 470 /* 471 * IO-APIC versions below 0x20 don't support EOI register. 472 * For the record, here is the information about various versions: 473 * 0Xh 82489DX 474 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant 475 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant 476 * 30h-FFh Reserved 477 * 478 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic 479 * version as 0x2. This is an error with documentation and these ICH chips 480 * use io-apic's of version 0x20. 481 * 482 * For IO-APIC's with EOI register, we use that to do an explicit EOI. 483 * Otherwise, we simulate the EOI message manually by changing the trigger 484 * mode to edge and then back to level, with RTE being masked during this. 485 */ 486 static void __eoi_ioapic_pin(int apic, int pin, int vector) 487 { 488 if (mpc_ioapic_ver(apic) >= 0x20) { 489 io_apic_eoi(apic, vector); 490 } else { 491 struct IO_APIC_route_entry entry, entry1; 492 493 entry = entry1 = __ioapic_read_entry(apic, pin); 494 495 /* 496 * Mask the entry and change the trigger mode to edge. 497 */ 498 entry1.masked = true; 499 entry1.is_level = false; 500 501 __ioapic_write_entry(apic, pin, entry1); 502 503 /* 504 * Restore the previous level triggered entry. 505 */ 506 __ioapic_write_entry(apic, pin, entry); 507 } 508 } 509 510 static void eoi_ioapic_pin(int vector, struct mp_chip_data *data) 511 { 512 unsigned long flags; 513 struct irq_pin_list *entry; 514 515 raw_spin_lock_irqsave(&ioapic_lock, flags); 516 for_each_irq_pin(entry, data->irq_2_pin) 517 __eoi_ioapic_pin(entry->apic, entry->pin, vector); 518 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 519 } 520 521 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 522 { 523 struct IO_APIC_route_entry entry; 524 525 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 526 entry = ioapic_read_entry(apic, pin); 527 if (entry.delivery_mode == APIC_DELIVERY_MODE_SMI) 528 return; 529 530 /* 531 * Make sure the entry is masked and re-read the contents to check 532 * if it is a level triggered pin and if the remote-IRR is set. 533 */ 534 if (!entry.masked) { 535 entry.masked = true; 536 ioapic_write_entry(apic, pin, entry); 537 entry = ioapic_read_entry(apic, pin); 538 } 539 540 if (entry.irr) { 541 unsigned long flags; 542 543 /* 544 * Make sure the trigger mode is set to level. Explicit EOI 545 * doesn't clear the remote-IRR if the trigger mode is not 546 * set to level. 547 */ 548 if (!entry.is_level) { 549 entry.is_level = true; 550 ioapic_write_entry(apic, pin, entry); 551 } 552 raw_spin_lock_irqsave(&ioapic_lock, flags); 553 __eoi_ioapic_pin(apic, pin, entry.vector); 554 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 555 } 556 557 /* 558 * Clear the rest of the bits in the IO-APIC RTE except for the mask 559 * bit. 560 */ 561 ioapic_mask_entry(apic, pin); 562 entry = ioapic_read_entry(apic, pin); 563 if (entry.irr) 564 pr_err("Unable to reset IRR for apic: %d, pin :%d\n", 565 mpc_ioapic_id(apic), pin); 566 } 567 568 void clear_IO_APIC (void) 569 { 570 int apic, pin; 571 572 for_each_ioapic_pin(apic, pin) 573 clear_IO_APIC_pin(apic, pin); 574 } 575 576 #ifdef CONFIG_X86_32 577 /* 578 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 579 * specific CPU-side IRQs. 580 */ 581 582 #define MAX_PIRQS 8 583 static int pirq_entries[MAX_PIRQS] = { 584 [0 ... MAX_PIRQS - 1] = -1 585 }; 586 587 static int __init ioapic_pirq_setup(char *str) 588 { 589 int i, max; 590 int ints[MAX_PIRQS+1]; 591 592 get_options(str, ARRAY_SIZE(ints), ints); 593 594 apic_printk(APIC_VERBOSE, KERN_INFO 595 "PIRQ redirection, working around broken MP-BIOS.\n"); 596 max = MAX_PIRQS; 597 if (ints[0] < MAX_PIRQS) 598 max = ints[0]; 599 600 for (i = 0; i < max; i++) { 601 apic_printk(APIC_VERBOSE, KERN_DEBUG 602 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 603 /* 604 * PIRQs are mapped upside down, usually. 605 */ 606 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 607 } 608 return 1; 609 } 610 611 __setup("pirq=", ioapic_pirq_setup); 612 #endif /* CONFIG_X86_32 */ 613 614 /* 615 * Saves all the IO-APIC RTE's 616 */ 617 int save_ioapic_entries(void) 618 { 619 int apic, pin; 620 int err = 0; 621 622 for_each_ioapic(apic) { 623 if (!ioapics[apic].saved_registers) { 624 err = -ENOMEM; 625 continue; 626 } 627 628 for_each_pin(apic, pin) 629 ioapics[apic].saved_registers[pin] = 630 ioapic_read_entry(apic, pin); 631 } 632 633 return err; 634 } 635 636 /* 637 * Mask all IO APIC entries. 638 */ 639 void mask_ioapic_entries(void) 640 { 641 int apic, pin; 642 643 for_each_ioapic(apic) { 644 if (!ioapics[apic].saved_registers) 645 continue; 646 647 for_each_pin(apic, pin) { 648 struct IO_APIC_route_entry entry; 649 650 entry = ioapics[apic].saved_registers[pin]; 651 if (!entry.masked) { 652 entry.masked = true; 653 ioapic_write_entry(apic, pin, entry); 654 } 655 } 656 } 657 } 658 659 /* 660 * Restore IO APIC entries which was saved in the ioapic structure. 661 */ 662 int restore_ioapic_entries(void) 663 { 664 int apic, pin; 665 666 for_each_ioapic(apic) { 667 if (!ioapics[apic].saved_registers) 668 continue; 669 670 for_each_pin(apic, pin) 671 ioapic_write_entry(apic, pin, 672 ioapics[apic].saved_registers[pin]); 673 } 674 return 0; 675 } 676 677 /* 678 * Find the IRQ entry number of a certain pin. 679 */ 680 static int find_irq_entry(int ioapic_idx, int pin, int type) 681 { 682 int i; 683 684 for (i = 0; i < mp_irq_entries; i++) 685 if (mp_irqs[i].irqtype == type && 686 (mp_irqs[i].dstapic == mpc_ioapic_id(ioapic_idx) || 687 mp_irqs[i].dstapic == MP_APIC_ALL) && 688 mp_irqs[i].dstirq == pin) 689 return i; 690 691 return -1; 692 } 693 694 /* 695 * Find the pin to which IRQ[irq] (ISA) is connected 696 */ 697 static int __init find_isa_irq_pin(int irq, int type) 698 { 699 int i; 700 701 for (i = 0; i < mp_irq_entries; i++) { 702 int lbus = mp_irqs[i].srcbus; 703 704 if (test_bit(lbus, mp_bus_not_pci) && 705 (mp_irqs[i].irqtype == type) && 706 (mp_irqs[i].srcbusirq == irq)) 707 708 return mp_irqs[i].dstirq; 709 } 710 return -1; 711 } 712 713 static int __init find_isa_irq_apic(int irq, int type) 714 { 715 int i; 716 717 for (i = 0; i < mp_irq_entries; i++) { 718 int lbus = mp_irqs[i].srcbus; 719 720 if (test_bit(lbus, mp_bus_not_pci) && 721 (mp_irqs[i].irqtype == type) && 722 (mp_irqs[i].srcbusirq == irq)) 723 break; 724 } 725 726 if (i < mp_irq_entries) { 727 int ioapic_idx; 728 729 for_each_ioapic(ioapic_idx) 730 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic) 731 return ioapic_idx; 732 } 733 734 return -1; 735 } 736 737 static bool irq_active_low(int idx) 738 { 739 int bus = mp_irqs[idx].srcbus; 740 741 /* 742 * Determine IRQ line polarity (high active or low active): 743 */ 744 switch (mp_irqs[idx].irqflag & MP_IRQPOL_MASK) { 745 case MP_IRQPOL_DEFAULT: 746 /* 747 * Conforms to spec, ie. bus-type dependent polarity. PCI 748 * defaults to low active. [E]ISA defaults to high active. 749 */ 750 return !test_bit(bus, mp_bus_not_pci); 751 case MP_IRQPOL_ACTIVE_HIGH: 752 return false; 753 case MP_IRQPOL_RESERVED: 754 pr_warn("IOAPIC: Invalid polarity: 2, defaulting to low\n"); 755 fallthrough; 756 case MP_IRQPOL_ACTIVE_LOW: 757 default: /* Pointless default required due to do gcc stupidity */ 758 return true; 759 } 760 } 761 762 #ifdef CONFIG_EISA 763 /* 764 * EISA Edge/Level control register, ELCR 765 */ 766 static bool EISA_ELCR(unsigned int irq) 767 { 768 if (irq < nr_legacy_irqs()) { 769 unsigned int port = PIC_ELCR1 + (irq >> 3); 770 return (inb(port) >> (irq & 7)) & 1; 771 } 772 apic_printk(APIC_VERBOSE, KERN_INFO 773 "Broken MPtable reports ISA irq %d\n", irq); 774 return false; 775 } 776 777 /* 778 * EISA interrupts are always active high and can be edge or level 779 * triggered depending on the ELCR value. If an interrupt is listed as 780 * EISA conforming in the MP table, that means its trigger type must be 781 * read in from the ELCR. 782 */ 783 static bool eisa_irq_is_level(int idx, int bus, bool level) 784 { 785 switch (mp_bus_id_to_type[bus]) { 786 case MP_BUS_PCI: 787 case MP_BUS_ISA: 788 return level; 789 case MP_BUS_EISA: 790 return EISA_ELCR(mp_irqs[idx].srcbusirq); 791 } 792 pr_warn("IOAPIC: Invalid srcbus: %d defaulting to level\n", bus); 793 return true; 794 } 795 #else 796 static inline int eisa_irq_is_level(int idx, int bus, bool level) 797 { 798 return level; 799 } 800 #endif 801 802 static bool irq_is_level(int idx) 803 { 804 int bus = mp_irqs[idx].srcbus; 805 bool level; 806 807 /* 808 * Determine IRQ trigger mode (edge or level sensitive): 809 */ 810 switch (mp_irqs[idx].irqflag & MP_IRQTRIG_MASK) { 811 case MP_IRQTRIG_DEFAULT: 812 /* 813 * Conforms to spec, ie. bus-type dependent trigger 814 * mode. PCI defaults to level, ISA to edge. 815 */ 816 level = !test_bit(bus, mp_bus_not_pci); 817 /* Take EISA into account */ 818 return eisa_irq_is_level(idx, bus, level); 819 case MP_IRQTRIG_EDGE: 820 return false; 821 case MP_IRQTRIG_RESERVED: 822 pr_warn("IOAPIC: Invalid trigger mode 2 defaulting to level\n"); 823 fallthrough; 824 case MP_IRQTRIG_LEVEL: 825 default: /* Pointless default required due to do gcc stupidity */ 826 return true; 827 } 828 } 829 830 static int __acpi_get_override_irq(u32 gsi, bool *trigger, bool *polarity) 831 { 832 int ioapic, pin, idx; 833 834 if (skip_ioapic_setup) 835 return -1; 836 837 ioapic = mp_find_ioapic(gsi); 838 if (ioapic < 0) 839 return -1; 840 841 pin = mp_find_ioapic_pin(ioapic, gsi); 842 if (pin < 0) 843 return -1; 844 845 idx = find_irq_entry(ioapic, pin, mp_INT); 846 if (idx < 0) 847 return -1; 848 849 *trigger = irq_is_level(idx); 850 *polarity = irq_active_low(idx); 851 return 0; 852 } 853 854 #ifdef CONFIG_ACPI 855 int acpi_get_override_irq(u32 gsi, int *is_level, int *active_low) 856 { 857 *is_level = *active_low = 0; 858 return __acpi_get_override_irq(gsi, (bool *)is_level, 859 (bool *)active_low); 860 } 861 #endif 862 863 void ioapic_set_alloc_attr(struct irq_alloc_info *info, int node, 864 int trigger, int polarity) 865 { 866 init_irq_alloc_info(info, NULL); 867 info->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 868 info->ioapic.node = node; 869 info->ioapic.is_level = trigger; 870 info->ioapic.active_low = polarity; 871 info->ioapic.valid = 1; 872 } 873 874 static void ioapic_copy_alloc_attr(struct irq_alloc_info *dst, 875 struct irq_alloc_info *src, 876 u32 gsi, int ioapic_idx, int pin) 877 { 878 bool level, pol_low; 879 880 copy_irq_alloc_info(dst, src); 881 dst->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 882 dst->devid = mpc_ioapic_id(ioapic_idx); 883 dst->ioapic.pin = pin; 884 dst->ioapic.valid = 1; 885 if (src && src->ioapic.valid) { 886 dst->ioapic.node = src->ioapic.node; 887 dst->ioapic.is_level = src->ioapic.is_level; 888 dst->ioapic.active_low = src->ioapic.active_low; 889 } else { 890 dst->ioapic.node = NUMA_NO_NODE; 891 if (__acpi_get_override_irq(gsi, &level, &pol_low) >= 0) { 892 dst->ioapic.is_level = level; 893 dst->ioapic.active_low = pol_low; 894 } else { 895 /* 896 * PCI interrupts are always active low level 897 * triggered. 898 */ 899 dst->ioapic.is_level = true; 900 dst->ioapic.active_low = true; 901 } 902 } 903 } 904 905 static int ioapic_alloc_attr_node(struct irq_alloc_info *info) 906 { 907 return (info && info->ioapic.valid) ? info->ioapic.node : NUMA_NO_NODE; 908 } 909 910 static void mp_register_handler(unsigned int irq, bool level) 911 { 912 irq_flow_handler_t hdl; 913 bool fasteoi; 914 915 if (level) { 916 irq_set_status_flags(irq, IRQ_LEVEL); 917 fasteoi = true; 918 } else { 919 irq_clear_status_flags(irq, IRQ_LEVEL); 920 fasteoi = false; 921 } 922 923 hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq; 924 __irq_set_handler(irq, hdl, 0, fasteoi ? "fasteoi" : "edge"); 925 } 926 927 static bool mp_check_pin_attr(int irq, struct irq_alloc_info *info) 928 { 929 struct mp_chip_data *data = irq_get_chip_data(irq); 930 931 /* 932 * setup_IO_APIC_irqs() programs all legacy IRQs with default trigger 933 * and polarity attributes. So allow the first user to reprogram the 934 * pin with real trigger and polarity attributes. 935 */ 936 if (irq < nr_legacy_irqs() && data->count == 1) { 937 if (info->ioapic.is_level != data->is_level) 938 mp_register_handler(irq, info->ioapic.is_level); 939 data->entry.is_level = data->is_level = info->ioapic.is_level; 940 data->entry.active_low = data->active_low = info->ioapic.active_low; 941 } 942 943 return data->is_level == info->ioapic.is_level && 944 data->active_low == info->ioapic.active_low; 945 } 946 947 static int alloc_irq_from_domain(struct irq_domain *domain, int ioapic, u32 gsi, 948 struct irq_alloc_info *info) 949 { 950 bool legacy = false; 951 int irq = -1; 952 int type = ioapics[ioapic].irqdomain_cfg.type; 953 954 switch (type) { 955 case IOAPIC_DOMAIN_LEGACY: 956 /* 957 * Dynamically allocate IRQ number for non-ISA IRQs in the first 958 * 16 GSIs on some weird platforms. 959 */ 960 if (!ioapic_initialized || gsi >= nr_legacy_irqs()) 961 irq = gsi; 962 legacy = mp_is_legacy_irq(irq); 963 break; 964 case IOAPIC_DOMAIN_STRICT: 965 irq = gsi; 966 break; 967 case IOAPIC_DOMAIN_DYNAMIC: 968 break; 969 default: 970 WARN(1, "ioapic: unknown irqdomain type %d\n", type); 971 return -1; 972 } 973 974 return __irq_domain_alloc_irqs(domain, irq, 1, 975 ioapic_alloc_attr_node(info), 976 info, legacy, NULL); 977 } 978 979 /* 980 * Need special handling for ISA IRQs because there may be multiple IOAPIC pins 981 * sharing the same ISA IRQ number and irqdomain only supports 1:1 mapping 982 * between IOAPIC pin and IRQ number. A typical IOAPIC has 24 pins, pin 0-15 are 983 * used for legacy IRQs and pin 16-23 are used for PCI IRQs (PIRQ A-H). 984 * When ACPI is disabled, only legacy IRQ numbers (IRQ0-15) are available, and 985 * some BIOSes may use MP Interrupt Source records to override IRQ numbers for 986 * PIRQs instead of reprogramming the interrupt routing logic. Thus there may be 987 * multiple pins sharing the same legacy IRQ number when ACPI is disabled. 988 */ 989 static int alloc_isa_irq_from_domain(struct irq_domain *domain, 990 int irq, int ioapic, int pin, 991 struct irq_alloc_info *info) 992 { 993 struct mp_chip_data *data; 994 struct irq_data *irq_data = irq_get_irq_data(irq); 995 int node = ioapic_alloc_attr_node(info); 996 997 /* 998 * Legacy ISA IRQ has already been allocated, just add pin to 999 * the pin list associated with this IRQ and program the IOAPIC 1000 * entry. The IOAPIC entry 1001 */ 1002 if (irq_data && irq_data->parent_data) { 1003 if (!mp_check_pin_attr(irq, info)) 1004 return -EBUSY; 1005 if (__add_pin_to_irq_node(irq_data->chip_data, node, ioapic, 1006 info->ioapic.pin)) 1007 return -ENOMEM; 1008 } else { 1009 info->flags |= X86_IRQ_ALLOC_LEGACY; 1010 irq = __irq_domain_alloc_irqs(domain, irq, 1, node, info, true, 1011 NULL); 1012 if (irq >= 0) { 1013 irq_data = irq_domain_get_irq_data(domain, irq); 1014 data = irq_data->chip_data; 1015 data->isa_irq = true; 1016 } 1017 } 1018 1019 return irq; 1020 } 1021 1022 static int mp_map_pin_to_irq(u32 gsi, int idx, int ioapic, int pin, 1023 unsigned int flags, struct irq_alloc_info *info) 1024 { 1025 int irq; 1026 bool legacy = false; 1027 struct irq_alloc_info tmp; 1028 struct mp_chip_data *data; 1029 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 1030 1031 if (!domain) 1032 return -ENOSYS; 1033 1034 if (idx >= 0 && test_bit(mp_irqs[idx].srcbus, mp_bus_not_pci)) { 1035 irq = mp_irqs[idx].srcbusirq; 1036 legacy = mp_is_legacy_irq(irq); 1037 /* 1038 * IRQ2 is unusable for historical reasons on systems which 1039 * have a legacy PIC. See the comment vs. IRQ2 further down. 1040 * 1041 * If this gets removed at some point then the related code 1042 * in lapic_assign_system_vectors() needs to be adjusted as 1043 * well. 1044 */ 1045 if (legacy && irq == PIC_CASCADE_IR) 1046 return -EINVAL; 1047 } 1048 1049 mutex_lock(&ioapic_mutex); 1050 if (!(flags & IOAPIC_MAP_ALLOC)) { 1051 if (!legacy) { 1052 irq = irq_find_mapping(domain, pin); 1053 if (irq == 0) 1054 irq = -ENOENT; 1055 } 1056 } else { 1057 ioapic_copy_alloc_attr(&tmp, info, gsi, ioapic, pin); 1058 if (legacy) 1059 irq = alloc_isa_irq_from_domain(domain, irq, 1060 ioapic, pin, &tmp); 1061 else if ((irq = irq_find_mapping(domain, pin)) == 0) 1062 irq = alloc_irq_from_domain(domain, ioapic, gsi, &tmp); 1063 else if (!mp_check_pin_attr(irq, &tmp)) 1064 irq = -EBUSY; 1065 if (irq >= 0) { 1066 data = irq_get_chip_data(irq); 1067 data->count++; 1068 } 1069 } 1070 mutex_unlock(&ioapic_mutex); 1071 1072 return irq; 1073 } 1074 1075 static int pin_2_irq(int idx, int ioapic, int pin, unsigned int flags) 1076 { 1077 u32 gsi = mp_pin_to_gsi(ioapic, pin); 1078 1079 /* 1080 * Debugging check, we are in big trouble if this message pops up! 1081 */ 1082 if (mp_irqs[idx].dstirq != pin) 1083 pr_err("broken BIOS or MPTABLE parser, ayiee!!\n"); 1084 1085 #ifdef CONFIG_X86_32 1086 /* 1087 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1088 */ 1089 if ((pin >= 16) && (pin <= 23)) { 1090 if (pirq_entries[pin-16] != -1) { 1091 if (!pirq_entries[pin-16]) { 1092 apic_printk(APIC_VERBOSE, KERN_DEBUG 1093 "disabling PIRQ%d\n", pin-16); 1094 } else { 1095 int irq = pirq_entries[pin-16]; 1096 apic_printk(APIC_VERBOSE, KERN_DEBUG 1097 "using PIRQ%d -> IRQ %d\n", 1098 pin-16, irq); 1099 return irq; 1100 } 1101 } 1102 } 1103 #endif 1104 1105 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, NULL); 1106 } 1107 1108 int mp_map_gsi_to_irq(u32 gsi, unsigned int flags, struct irq_alloc_info *info) 1109 { 1110 int ioapic, pin, idx; 1111 1112 ioapic = mp_find_ioapic(gsi); 1113 if (ioapic < 0) 1114 return -ENODEV; 1115 1116 pin = mp_find_ioapic_pin(ioapic, gsi); 1117 idx = find_irq_entry(ioapic, pin, mp_INT); 1118 if ((flags & IOAPIC_MAP_CHECK) && idx < 0) 1119 return -ENODEV; 1120 1121 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, info); 1122 } 1123 1124 void mp_unmap_irq(int irq) 1125 { 1126 struct irq_data *irq_data = irq_get_irq_data(irq); 1127 struct mp_chip_data *data; 1128 1129 if (!irq_data || !irq_data->domain) 1130 return; 1131 1132 data = irq_data->chip_data; 1133 if (!data || data->isa_irq) 1134 return; 1135 1136 mutex_lock(&ioapic_mutex); 1137 if (--data->count == 0) 1138 irq_domain_free_irqs(irq, 1); 1139 mutex_unlock(&ioapic_mutex); 1140 } 1141 1142 /* 1143 * Find a specific PCI IRQ entry. 1144 * Not an __init, possibly needed by modules 1145 */ 1146 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) 1147 { 1148 int irq, i, best_ioapic = -1, best_idx = -1; 1149 1150 apic_printk(APIC_DEBUG, 1151 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1152 bus, slot, pin); 1153 if (test_bit(bus, mp_bus_not_pci)) { 1154 apic_printk(APIC_VERBOSE, 1155 "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1156 return -1; 1157 } 1158 1159 for (i = 0; i < mp_irq_entries; i++) { 1160 int lbus = mp_irqs[i].srcbus; 1161 int ioapic_idx, found = 0; 1162 1163 if (bus != lbus || mp_irqs[i].irqtype != mp_INT || 1164 slot != ((mp_irqs[i].srcbusirq >> 2) & 0x1f)) 1165 continue; 1166 1167 for_each_ioapic(ioapic_idx) 1168 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic || 1169 mp_irqs[i].dstapic == MP_APIC_ALL) { 1170 found = 1; 1171 break; 1172 } 1173 if (!found) 1174 continue; 1175 1176 /* Skip ISA IRQs */ 1177 irq = pin_2_irq(i, ioapic_idx, mp_irqs[i].dstirq, 0); 1178 if (irq > 0 && !IO_APIC_IRQ(irq)) 1179 continue; 1180 1181 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1182 best_idx = i; 1183 best_ioapic = ioapic_idx; 1184 goto out; 1185 } 1186 1187 /* 1188 * Use the first all-but-pin matching entry as a 1189 * best-guess fuzzy result for broken mptables. 1190 */ 1191 if (best_idx < 0) { 1192 best_idx = i; 1193 best_ioapic = ioapic_idx; 1194 } 1195 } 1196 if (best_idx < 0) 1197 return -1; 1198 1199 out: 1200 return pin_2_irq(best_idx, best_ioapic, mp_irqs[best_idx].dstirq, 1201 IOAPIC_MAP_ALLOC); 1202 } 1203 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1204 1205 static struct irq_chip ioapic_chip, ioapic_ir_chip; 1206 1207 static void __init setup_IO_APIC_irqs(void) 1208 { 1209 unsigned int ioapic, pin; 1210 int idx; 1211 1212 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1213 1214 for_each_ioapic_pin(ioapic, pin) { 1215 idx = find_irq_entry(ioapic, pin, mp_INT); 1216 if (idx < 0) 1217 apic_printk(APIC_VERBOSE, 1218 KERN_DEBUG " apic %d pin %d not connected\n", 1219 mpc_ioapic_id(ioapic), pin); 1220 else 1221 pin_2_irq(idx, ioapic, pin, 1222 ioapic ? 0 : IOAPIC_MAP_ALLOC); 1223 } 1224 } 1225 1226 void ioapic_zap_locks(void) 1227 { 1228 raw_spin_lock_init(&ioapic_lock); 1229 } 1230 1231 static void io_apic_print_entries(unsigned int apic, unsigned int nr_entries) 1232 { 1233 struct IO_APIC_route_entry entry; 1234 char buf[256]; 1235 int i; 1236 1237 printk(KERN_DEBUG "IOAPIC %d:\n", apic); 1238 for (i = 0; i <= nr_entries; i++) { 1239 entry = ioapic_read_entry(apic, i); 1240 snprintf(buf, sizeof(buf), 1241 " pin%02x, %s, %s, %s, V(%02X), IRR(%1d), S(%1d)", 1242 i, 1243 entry.masked ? "disabled" : "enabled ", 1244 entry.is_level ? "level" : "edge ", 1245 entry.active_low ? "low " : "high", 1246 entry.vector, entry.irr, entry.delivery_status); 1247 if (entry.ir_format) { 1248 printk(KERN_DEBUG "%s, remapped, I(%04X), Z(%X)\n", 1249 buf, 1250 (entry.ir_index_15 << 15) | entry.ir_index_0_14, 1251 entry.ir_zero); 1252 } else { 1253 printk(KERN_DEBUG "%s, %s, D(%02X%02X), M(%1d)\n", buf, 1254 entry.dest_mode_logical ? "logical " : "physical", 1255 entry.virt_destid_8_14, entry.destid_0_7, 1256 entry.delivery_mode); 1257 } 1258 } 1259 } 1260 1261 static void __init print_IO_APIC(int ioapic_idx) 1262 { 1263 union IO_APIC_reg_00 reg_00; 1264 union IO_APIC_reg_01 reg_01; 1265 union IO_APIC_reg_02 reg_02; 1266 union IO_APIC_reg_03 reg_03; 1267 unsigned long flags; 1268 1269 raw_spin_lock_irqsave(&ioapic_lock, flags); 1270 reg_00.raw = io_apic_read(ioapic_idx, 0); 1271 reg_01.raw = io_apic_read(ioapic_idx, 1); 1272 if (reg_01.bits.version >= 0x10) 1273 reg_02.raw = io_apic_read(ioapic_idx, 2); 1274 if (reg_01.bits.version >= 0x20) 1275 reg_03.raw = io_apic_read(ioapic_idx, 3); 1276 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1277 1278 printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(ioapic_idx)); 1279 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1280 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1281 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1282 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1283 1284 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1285 printk(KERN_DEBUG "....... : max redirection entries: %02X\n", 1286 reg_01.bits.entries); 1287 1288 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1289 printk(KERN_DEBUG "....... : IO APIC version: %02X\n", 1290 reg_01.bits.version); 1291 1292 /* 1293 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1294 * but the value of reg_02 is read as the previous read register 1295 * value, so ignore it if reg_02 == reg_01. 1296 */ 1297 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1298 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1299 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1300 } 1301 1302 /* 1303 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1304 * or reg_03, but the value of reg_0[23] is read as the previous read 1305 * register value, so ignore it if reg_03 == reg_0[12]. 1306 */ 1307 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1308 reg_03.raw != reg_01.raw) { 1309 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1310 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1311 } 1312 1313 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1314 io_apic_print_entries(ioapic_idx, reg_01.bits.entries); 1315 } 1316 1317 void __init print_IO_APICs(void) 1318 { 1319 int ioapic_idx; 1320 unsigned int irq; 1321 1322 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1323 for_each_ioapic(ioapic_idx) 1324 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1325 mpc_ioapic_id(ioapic_idx), 1326 ioapics[ioapic_idx].nr_registers); 1327 1328 /* 1329 * We are a bit conservative about what we expect. We have to 1330 * know about every hardware change ASAP. 1331 */ 1332 printk(KERN_INFO "testing the IO APIC.......................\n"); 1333 1334 for_each_ioapic(ioapic_idx) 1335 print_IO_APIC(ioapic_idx); 1336 1337 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1338 for_each_active_irq(irq) { 1339 struct irq_pin_list *entry; 1340 struct irq_chip *chip; 1341 struct mp_chip_data *data; 1342 1343 chip = irq_get_chip(irq); 1344 if (chip != &ioapic_chip && chip != &ioapic_ir_chip) 1345 continue; 1346 data = irq_get_chip_data(irq); 1347 if (!data) 1348 continue; 1349 if (list_empty(&data->irq_2_pin)) 1350 continue; 1351 1352 printk(KERN_DEBUG "IRQ%d ", irq); 1353 for_each_irq_pin(entry, data->irq_2_pin) 1354 pr_cont("-> %d:%d", entry->apic, entry->pin); 1355 pr_cont("\n"); 1356 } 1357 1358 printk(KERN_INFO ".................................... done.\n"); 1359 } 1360 1361 /* Where if anywhere is the i8259 connect in external int mode */ 1362 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1363 1364 void __init enable_IO_APIC(void) 1365 { 1366 int i8259_apic, i8259_pin; 1367 int apic, pin; 1368 1369 if (skip_ioapic_setup) 1370 nr_ioapics = 0; 1371 1372 if (!nr_legacy_irqs() || !nr_ioapics) 1373 return; 1374 1375 for_each_ioapic_pin(apic, pin) { 1376 /* See if any of the pins is in ExtINT mode */ 1377 struct IO_APIC_route_entry entry = ioapic_read_entry(apic, pin); 1378 1379 /* If the interrupt line is enabled and in ExtInt mode 1380 * I have found the pin where the i8259 is connected. 1381 */ 1382 if (!entry.masked && 1383 entry.delivery_mode == APIC_DELIVERY_MODE_EXTINT) { 1384 ioapic_i8259.apic = apic; 1385 ioapic_i8259.pin = pin; 1386 goto found_i8259; 1387 } 1388 } 1389 found_i8259: 1390 /* Look to see what if the MP table has reported the ExtINT */ 1391 /* If we could not find the appropriate pin by looking at the ioapic 1392 * the i8259 probably is not connected the ioapic but give the 1393 * mptable a chance anyway. 1394 */ 1395 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1396 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1397 /* Trust the MP table if nothing is setup in the hardware */ 1398 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1399 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 1400 ioapic_i8259.pin = i8259_pin; 1401 ioapic_i8259.apic = i8259_apic; 1402 } 1403 /* Complain if the MP table and the hardware disagree */ 1404 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1405 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1406 { 1407 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 1408 } 1409 1410 /* 1411 * Do not trust the IO-APIC being empty at bootup 1412 */ 1413 clear_IO_APIC(); 1414 } 1415 1416 void native_restore_boot_irq_mode(void) 1417 { 1418 /* 1419 * If the i8259 is routed through an IOAPIC 1420 * Put that IOAPIC in virtual wire mode 1421 * so legacy interrupts can be delivered. 1422 */ 1423 if (ioapic_i8259.pin != -1) { 1424 struct IO_APIC_route_entry entry; 1425 u32 apic_id = read_apic_id(); 1426 1427 memset(&entry, 0, sizeof(entry)); 1428 entry.masked = false; 1429 entry.is_level = false; 1430 entry.active_low = false; 1431 entry.dest_mode_logical = false; 1432 entry.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 1433 entry.destid_0_7 = apic_id & 0xFF; 1434 entry.virt_destid_8_14 = apic_id >> 8; 1435 1436 /* 1437 * Add it to the IO-APIC irq-routing table: 1438 */ 1439 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 1440 } 1441 1442 if (boot_cpu_has(X86_FEATURE_APIC) || apic_from_smp_config()) 1443 disconnect_bsp_APIC(ioapic_i8259.pin != -1); 1444 } 1445 1446 void restore_boot_irq_mode(void) 1447 { 1448 if (!nr_legacy_irqs()) 1449 return; 1450 1451 x86_apic_ops.restore(); 1452 } 1453 1454 #ifdef CONFIG_X86_32 1455 /* 1456 * function to set the IO-APIC physical IDs based on the 1457 * values stored in the MPC table. 1458 * 1459 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 1460 */ 1461 void __init setup_ioapic_ids_from_mpc_nocheck(void) 1462 { 1463 union IO_APIC_reg_00 reg_00; 1464 physid_mask_t phys_id_present_map; 1465 int ioapic_idx; 1466 int i; 1467 unsigned char old_id; 1468 unsigned long flags; 1469 1470 /* 1471 * This is broken; anything with a real cpu count has to 1472 * circumvent this idiocy regardless. 1473 */ 1474 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map); 1475 1476 /* 1477 * Set the IOAPIC ID to the value stored in the MPC table. 1478 */ 1479 for_each_ioapic(ioapic_idx) { 1480 /* Read the register 0 value */ 1481 raw_spin_lock_irqsave(&ioapic_lock, flags); 1482 reg_00.raw = io_apic_read(ioapic_idx, 0); 1483 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1484 1485 old_id = mpc_ioapic_id(ioapic_idx); 1486 1487 if (mpc_ioapic_id(ioapic_idx) >= get_physical_broadcast()) { 1488 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 1489 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1490 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 1491 reg_00.bits.ID); 1492 ioapics[ioapic_idx].mp_config.apicid = reg_00.bits.ID; 1493 } 1494 1495 /* 1496 * Sanity check, is the ID really free? Every APIC in a 1497 * system must have a unique ID or we get lots of nice 1498 * 'stuck on smp_invalidate_needed IPI wait' messages. 1499 */ 1500 if (apic->check_apicid_used(&phys_id_present_map, 1501 mpc_ioapic_id(ioapic_idx))) { 1502 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 1503 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1504 for (i = 0; i < get_physical_broadcast(); i++) 1505 if (!physid_isset(i, phys_id_present_map)) 1506 break; 1507 if (i >= get_physical_broadcast()) 1508 panic("Max APIC ID exceeded!\n"); 1509 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 1510 i); 1511 physid_set(i, phys_id_present_map); 1512 ioapics[ioapic_idx].mp_config.apicid = i; 1513 } else { 1514 physid_mask_t tmp; 1515 apic->apicid_to_cpu_present(mpc_ioapic_id(ioapic_idx), 1516 &tmp); 1517 apic_printk(APIC_VERBOSE, "Setting %d in the " 1518 "phys_id_present_map\n", 1519 mpc_ioapic_id(ioapic_idx)); 1520 physids_or(phys_id_present_map, phys_id_present_map, tmp); 1521 } 1522 1523 /* 1524 * We need to adjust the IRQ routing table 1525 * if the ID changed. 1526 */ 1527 if (old_id != mpc_ioapic_id(ioapic_idx)) 1528 for (i = 0; i < mp_irq_entries; i++) 1529 if (mp_irqs[i].dstapic == old_id) 1530 mp_irqs[i].dstapic 1531 = mpc_ioapic_id(ioapic_idx); 1532 1533 /* 1534 * Update the ID register according to the right value 1535 * from the MPC table if they are different. 1536 */ 1537 if (mpc_ioapic_id(ioapic_idx) == reg_00.bits.ID) 1538 continue; 1539 1540 apic_printk(APIC_VERBOSE, KERN_INFO 1541 "...changing IO-APIC physical APIC ID to %d ...", 1542 mpc_ioapic_id(ioapic_idx)); 1543 1544 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 1545 raw_spin_lock_irqsave(&ioapic_lock, flags); 1546 io_apic_write(ioapic_idx, 0, reg_00.raw); 1547 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1548 1549 /* 1550 * Sanity check 1551 */ 1552 raw_spin_lock_irqsave(&ioapic_lock, flags); 1553 reg_00.raw = io_apic_read(ioapic_idx, 0); 1554 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1555 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) 1556 pr_cont("could not set ID!\n"); 1557 else 1558 apic_printk(APIC_VERBOSE, " ok.\n"); 1559 } 1560 } 1561 1562 void __init setup_ioapic_ids_from_mpc(void) 1563 { 1564 1565 if (acpi_ioapic) 1566 return; 1567 /* 1568 * Don't check I/O APIC IDs for xAPIC systems. They have 1569 * no meaning without the serial APIC bus. 1570 */ 1571 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1572 || APIC_XAPIC(boot_cpu_apic_version)) 1573 return; 1574 setup_ioapic_ids_from_mpc_nocheck(); 1575 } 1576 #endif 1577 1578 int no_timer_check __initdata; 1579 1580 static int __init notimercheck(char *s) 1581 { 1582 no_timer_check = 1; 1583 return 1; 1584 } 1585 __setup("no_timer_check", notimercheck); 1586 1587 static void __init delay_with_tsc(void) 1588 { 1589 unsigned long long start, now; 1590 unsigned long end = jiffies + 4; 1591 1592 start = rdtsc(); 1593 1594 /* 1595 * We don't know the TSC frequency yet, but waiting for 1596 * 40000000000/HZ TSC cycles is safe: 1597 * 4 GHz == 10 jiffies 1598 * 1 GHz == 40 jiffies 1599 */ 1600 do { 1601 rep_nop(); 1602 now = rdtsc(); 1603 } while ((now - start) < 40000000000ULL / HZ && 1604 time_before_eq(jiffies, end)); 1605 } 1606 1607 static void __init delay_without_tsc(void) 1608 { 1609 unsigned long end = jiffies + 4; 1610 int band = 1; 1611 1612 /* 1613 * We don't know any frequency yet, but waiting for 1614 * 40940000000/HZ cycles is safe: 1615 * 4 GHz == 10 jiffies 1616 * 1 GHz == 40 jiffies 1617 * 1 << 1 + 1 << 2 +...+ 1 << 11 = 4094 1618 */ 1619 do { 1620 __delay(((1U << band++) * 10000000UL) / HZ); 1621 } while (band < 12 && time_before_eq(jiffies, end)); 1622 } 1623 1624 /* 1625 * There is a nasty bug in some older SMP boards, their mptable lies 1626 * about the timer IRQ. We do the following to work around the situation: 1627 * 1628 * - timer IRQ defaults to IO-APIC IRQ 1629 * - if this function detects that timer IRQs are defunct, then we fall 1630 * back to ISA timer IRQs 1631 */ 1632 static int __init timer_irq_works(void) 1633 { 1634 unsigned long t1 = jiffies; 1635 1636 if (no_timer_check) 1637 return 1; 1638 1639 local_irq_enable(); 1640 if (boot_cpu_has(X86_FEATURE_TSC)) 1641 delay_with_tsc(); 1642 else 1643 delay_without_tsc(); 1644 1645 /* 1646 * Expect a few ticks at least, to be sure some possible 1647 * glue logic does not lock up after one or two first 1648 * ticks in a non-ExtINT mode. Also the local APIC 1649 * might have cached one ExtINT interrupt. Finally, at 1650 * least one tick may be lost due to delays. 1651 */ 1652 1653 local_irq_disable(); 1654 1655 /* Did jiffies advance? */ 1656 return time_after(jiffies, t1 + 4); 1657 } 1658 1659 /* 1660 * In the SMP+IOAPIC case it might happen that there are an unspecified 1661 * number of pending IRQ events unhandled. These cases are very rare, 1662 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 1663 * better to do it this way as thus we do not have to be aware of 1664 * 'pending' interrupts in the IRQ path, except at this point. 1665 */ 1666 /* 1667 * Edge triggered needs to resend any interrupt 1668 * that was delayed but this is now handled in the device 1669 * independent code. 1670 */ 1671 1672 /* 1673 * Starting up a edge-triggered IO-APIC interrupt is 1674 * nasty - we need to make sure that we get the edge. 1675 * If it is already asserted for some reason, we need 1676 * return 1 to indicate that is was pending. 1677 * 1678 * This is not complete - we should be able to fake 1679 * an edge even if it isn't on the 8259A... 1680 */ 1681 static unsigned int startup_ioapic_irq(struct irq_data *data) 1682 { 1683 int was_pending = 0, irq = data->irq; 1684 unsigned long flags; 1685 1686 raw_spin_lock_irqsave(&ioapic_lock, flags); 1687 if (irq < nr_legacy_irqs()) { 1688 legacy_pic->mask(irq); 1689 if (legacy_pic->irq_pending(irq)) 1690 was_pending = 1; 1691 } 1692 __unmask_ioapic(data->chip_data); 1693 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1694 1695 return was_pending; 1696 } 1697 1698 atomic_t irq_mis_count; 1699 1700 #ifdef CONFIG_GENERIC_PENDING_IRQ 1701 static bool io_apic_level_ack_pending(struct mp_chip_data *data) 1702 { 1703 struct irq_pin_list *entry; 1704 unsigned long flags; 1705 1706 raw_spin_lock_irqsave(&ioapic_lock, flags); 1707 for_each_irq_pin(entry, data->irq_2_pin) { 1708 struct IO_APIC_route_entry e; 1709 int pin; 1710 1711 pin = entry->pin; 1712 e.w1 = io_apic_read(entry->apic, 0x10 + pin*2); 1713 /* Is the remote IRR bit set? */ 1714 if (e.irr) { 1715 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1716 return true; 1717 } 1718 } 1719 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1720 1721 return false; 1722 } 1723 1724 static inline bool ioapic_prepare_move(struct irq_data *data) 1725 { 1726 /* If we are moving the IRQ we need to mask it */ 1727 if (unlikely(irqd_is_setaffinity_pending(data))) { 1728 if (!irqd_irq_masked(data)) 1729 mask_ioapic_irq(data); 1730 return true; 1731 } 1732 return false; 1733 } 1734 1735 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1736 { 1737 if (unlikely(moveit)) { 1738 /* Only migrate the irq if the ack has been received. 1739 * 1740 * On rare occasions the broadcast level triggered ack gets 1741 * delayed going to ioapics, and if we reprogram the 1742 * vector while Remote IRR is still set the irq will never 1743 * fire again. 1744 * 1745 * To prevent this scenario we read the Remote IRR bit 1746 * of the ioapic. This has two effects. 1747 * - On any sane system the read of the ioapic will 1748 * flush writes (and acks) going to the ioapic from 1749 * this cpu. 1750 * - We get to see if the ACK has actually been delivered. 1751 * 1752 * Based on failed experiments of reprogramming the 1753 * ioapic entry from outside of irq context starting 1754 * with masking the ioapic entry and then polling until 1755 * Remote IRR was clear before reprogramming the 1756 * ioapic I don't trust the Remote IRR bit to be 1757 * completely accurate. 1758 * 1759 * However there appears to be no other way to plug 1760 * this race, so if the Remote IRR bit is not 1761 * accurate and is causing problems then it is a hardware bug 1762 * and you can go talk to the chipset vendor about it. 1763 */ 1764 if (!io_apic_level_ack_pending(data->chip_data)) 1765 irq_move_masked_irq(data); 1766 /* If the IRQ is masked in the core, leave it: */ 1767 if (!irqd_irq_masked(data)) 1768 unmask_ioapic_irq(data); 1769 } 1770 } 1771 #else 1772 static inline bool ioapic_prepare_move(struct irq_data *data) 1773 { 1774 return false; 1775 } 1776 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1777 { 1778 } 1779 #endif 1780 1781 static void ioapic_ack_level(struct irq_data *irq_data) 1782 { 1783 struct irq_cfg *cfg = irqd_cfg(irq_data); 1784 unsigned long v; 1785 bool moveit; 1786 int i; 1787 1788 irq_complete_move(cfg); 1789 moveit = ioapic_prepare_move(irq_data); 1790 1791 /* 1792 * It appears there is an erratum which affects at least version 0x11 1793 * of I/O APIC (that's the 82093AA and cores integrated into various 1794 * chipsets). Under certain conditions a level-triggered interrupt is 1795 * erroneously delivered as edge-triggered one but the respective IRR 1796 * bit gets set nevertheless. As a result the I/O unit expects an EOI 1797 * message but it will never arrive and further interrupts are blocked 1798 * from the source. The exact reason is so far unknown, but the 1799 * phenomenon was observed when two consecutive interrupt requests 1800 * from a given source get delivered to the same CPU and the source is 1801 * temporarily disabled in between. 1802 * 1803 * A workaround is to simulate an EOI message manually. We achieve it 1804 * by setting the trigger mode to edge and then to level when the edge 1805 * trigger mode gets detected in the TMR of a local APIC for a 1806 * level-triggered interrupt. We mask the source for the time of the 1807 * operation to prevent an edge-triggered interrupt escaping meanwhile. 1808 * The idea is from Manfred Spraul. --macro 1809 * 1810 * Also in the case when cpu goes offline, fixup_irqs() will forward 1811 * any unhandled interrupt on the offlined cpu to the new cpu 1812 * destination that is handling the corresponding interrupt. This 1813 * interrupt forwarding is done via IPI's. Hence, in this case also 1814 * level-triggered io-apic interrupt will be seen as an edge 1815 * interrupt in the IRR. And we can't rely on the cpu's EOI 1816 * to be broadcasted to the IO-APIC's which will clear the remoteIRR 1817 * corresponding to the level-triggered interrupt. Hence on IO-APIC's 1818 * supporting EOI register, we do an explicit EOI to clear the 1819 * remote IRR and on IO-APIC's which don't have an EOI register, 1820 * we use the above logic (mask+edge followed by unmask+level) from 1821 * Manfred Spraul to clear the remote IRR. 1822 */ 1823 i = cfg->vector; 1824 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 1825 1826 /* 1827 * We must acknowledge the irq before we move it or the acknowledge will 1828 * not propagate properly. 1829 */ 1830 ack_APIC_irq(); 1831 1832 /* 1833 * Tail end of clearing remote IRR bit (either by delivering the EOI 1834 * message via io-apic EOI register write or simulating it using 1835 * mask+edge followed by unmask+level logic) manually when the 1836 * level triggered interrupt is seen as the edge triggered interrupt 1837 * at the cpu. 1838 */ 1839 if (!(v & (1 << (i & 0x1f)))) { 1840 atomic_inc(&irq_mis_count); 1841 eoi_ioapic_pin(cfg->vector, irq_data->chip_data); 1842 } 1843 1844 ioapic_finish_move(irq_data, moveit); 1845 } 1846 1847 static void ioapic_ir_ack_level(struct irq_data *irq_data) 1848 { 1849 struct mp_chip_data *data = irq_data->chip_data; 1850 1851 /* 1852 * Intr-remapping uses pin number as the virtual vector 1853 * in the RTE. Actual vector is programmed in 1854 * intr-remapping table entry. Hence for the io-apic 1855 * EOI we use the pin number. 1856 */ 1857 apic_ack_irq(irq_data); 1858 eoi_ioapic_pin(data->entry.vector, data); 1859 } 1860 1861 /* 1862 * The I/OAPIC is just a device for generating MSI messages from legacy 1863 * interrupt pins. Various fields of the RTE translate into bits of the 1864 * resulting MSI which had a historical meaning. 1865 * 1866 * With interrupt remapping, many of those bits have different meanings 1867 * in the underlying MSI, but the way that the I/OAPIC transforms them 1868 * from its RTE to the MSI message is the same. This function allows 1869 * the parent IRQ domain to compose the MSI message, then takes the 1870 * relevant bits to put them in the appropriate places in the RTE in 1871 * order to generate that message when the IRQ happens. 1872 * 1873 * The setup here relies on a preconfigured route entry (is_level, 1874 * active_low, masked) because the parent domain is merely composing the 1875 * generic message routing information which is used for the MSI. 1876 */ 1877 static void ioapic_setup_msg_from_msi(struct irq_data *irq_data, 1878 struct IO_APIC_route_entry *entry) 1879 { 1880 struct msi_msg msg; 1881 1882 /* Let the parent domain compose the MSI message */ 1883 irq_chip_compose_msi_msg(irq_data, &msg); 1884 1885 /* 1886 * - Real vector 1887 * - DMAR/IR: 8bit subhandle (ioapic.pin) 1888 * - AMD/IR: 8bit IRTE index 1889 */ 1890 entry->vector = msg.arch_data.vector; 1891 /* Delivery mode (for DMAR/IR all 0) */ 1892 entry->delivery_mode = msg.arch_data.delivery_mode; 1893 /* Destination mode or DMAR/IR index bit 15 */ 1894 entry->dest_mode_logical = msg.arch_addr_lo.dest_mode_logical; 1895 /* DMAR/IR: 1, 0 for all other modes */ 1896 entry->ir_format = msg.arch_addr_lo.dmar_format; 1897 /* 1898 * - DMAR/IR: index bit 0-14. 1899 * 1900 * - Virt: If the host supports x2apic without a virtualized IR 1901 * unit then bit 0-6 of dmar_index_0_14 are providing bit 1902 * 8-14 of the destination id. 1903 * 1904 * All other modes have bit 0-6 of dmar_index_0_14 cleared and the 1905 * topmost 8 bits are destination id bit 0-7 (entry::destid_0_7). 1906 */ 1907 entry->ir_index_0_14 = msg.arch_addr_lo.dmar_index_0_14; 1908 } 1909 1910 static void ioapic_configure_entry(struct irq_data *irqd) 1911 { 1912 struct mp_chip_data *mpd = irqd->chip_data; 1913 struct irq_pin_list *entry; 1914 1915 ioapic_setup_msg_from_msi(irqd, &mpd->entry); 1916 1917 for_each_irq_pin(entry, mpd->irq_2_pin) 1918 __ioapic_write_entry(entry->apic, entry->pin, mpd->entry); 1919 } 1920 1921 static int ioapic_set_affinity(struct irq_data *irq_data, 1922 const struct cpumask *mask, bool force) 1923 { 1924 struct irq_data *parent = irq_data->parent_data; 1925 unsigned long flags; 1926 int ret; 1927 1928 ret = parent->chip->irq_set_affinity(parent, mask, force); 1929 raw_spin_lock_irqsave(&ioapic_lock, flags); 1930 if (ret >= 0 && ret != IRQ_SET_MASK_OK_DONE) 1931 ioapic_configure_entry(irq_data); 1932 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1933 1934 return ret; 1935 } 1936 1937 /* 1938 * Interrupt shutdown masks the ioapic pin, but the interrupt might already 1939 * be in flight, but not yet serviced by the target CPU. That means 1940 * __synchronize_hardirq() would return and claim that everything is calmed 1941 * down. So free_irq() would proceed and deactivate the interrupt and free 1942 * resources. 1943 * 1944 * Once the target CPU comes around to service it it will find a cleared 1945 * vector and complain. While the spurious interrupt is harmless, the full 1946 * release of resources might prevent the interrupt from being acknowledged 1947 * which keeps the hardware in a weird state. 1948 * 1949 * Verify that the corresponding Remote-IRR bits are clear. 1950 */ 1951 static int ioapic_irq_get_chip_state(struct irq_data *irqd, 1952 enum irqchip_irq_state which, 1953 bool *state) 1954 { 1955 struct mp_chip_data *mcd = irqd->chip_data; 1956 struct IO_APIC_route_entry rentry; 1957 struct irq_pin_list *p; 1958 1959 if (which != IRQCHIP_STATE_ACTIVE) 1960 return -EINVAL; 1961 1962 *state = false; 1963 raw_spin_lock(&ioapic_lock); 1964 for_each_irq_pin(p, mcd->irq_2_pin) { 1965 rentry = __ioapic_read_entry(p->apic, p->pin); 1966 /* 1967 * The remote IRR is only valid in level trigger mode. It's 1968 * meaning is undefined for edge triggered interrupts and 1969 * irrelevant because the IO-APIC treats them as fire and 1970 * forget. 1971 */ 1972 if (rentry.irr && rentry.is_level) { 1973 *state = true; 1974 break; 1975 } 1976 } 1977 raw_spin_unlock(&ioapic_lock); 1978 return 0; 1979 } 1980 1981 static struct irq_chip ioapic_chip __read_mostly = { 1982 .name = "IO-APIC", 1983 .irq_startup = startup_ioapic_irq, 1984 .irq_mask = mask_ioapic_irq, 1985 .irq_unmask = unmask_ioapic_irq, 1986 .irq_ack = irq_chip_ack_parent, 1987 .irq_eoi = ioapic_ack_level, 1988 .irq_set_affinity = ioapic_set_affinity, 1989 .irq_retrigger = irq_chip_retrigger_hierarchy, 1990 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 1991 .flags = IRQCHIP_SKIP_SET_WAKE | 1992 IRQCHIP_AFFINITY_PRE_STARTUP, 1993 }; 1994 1995 static struct irq_chip ioapic_ir_chip __read_mostly = { 1996 .name = "IR-IO-APIC", 1997 .irq_startup = startup_ioapic_irq, 1998 .irq_mask = mask_ioapic_irq, 1999 .irq_unmask = unmask_ioapic_irq, 2000 .irq_ack = irq_chip_ack_parent, 2001 .irq_eoi = ioapic_ir_ack_level, 2002 .irq_set_affinity = ioapic_set_affinity, 2003 .irq_retrigger = irq_chip_retrigger_hierarchy, 2004 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 2005 .flags = IRQCHIP_SKIP_SET_WAKE | 2006 IRQCHIP_AFFINITY_PRE_STARTUP, 2007 }; 2008 2009 static inline void init_IO_APIC_traps(void) 2010 { 2011 struct irq_cfg *cfg; 2012 unsigned int irq; 2013 2014 for_each_active_irq(irq) { 2015 cfg = irq_cfg(irq); 2016 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2017 /* 2018 * Hmm.. We don't have an entry for this, 2019 * so default to an old-fashioned 8259 2020 * interrupt if we can.. 2021 */ 2022 if (irq < nr_legacy_irqs()) 2023 legacy_pic->make_irq(irq); 2024 else 2025 /* Strange. Oh, well.. */ 2026 irq_set_chip(irq, &no_irq_chip); 2027 } 2028 } 2029 } 2030 2031 /* 2032 * The local APIC irq-chip implementation: 2033 */ 2034 2035 static void mask_lapic_irq(struct irq_data *data) 2036 { 2037 unsigned long v; 2038 2039 v = apic_read(APIC_LVT0); 2040 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2041 } 2042 2043 static void unmask_lapic_irq(struct irq_data *data) 2044 { 2045 unsigned long v; 2046 2047 v = apic_read(APIC_LVT0); 2048 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2049 } 2050 2051 static void ack_lapic_irq(struct irq_data *data) 2052 { 2053 ack_APIC_irq(); 2054 } 2055 2056 static struct irq_chip lapic_chip __read_mostly = { 2057 .name = "local-APIC", 2058 .irq_mask = mask_lapic_irq, 2059 .irq_unmask = unmask_lapic_irq, 2060 .irq_ack = ack_lapic_irq, 2061 }; 2062 2063 static void lapic_register_intr(int irq) 2064 { 2065 irq_clear_status_flags(irq, IRQ_LEVEL); 2066 irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2067 "edge"); 2068 } 2069 2070 /* 2071 * This looks a bit hackish but it's about the only one way of sending 2072 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2073 * not support the ExtINT mode, unfortunately. We need to send these 2074 * cycles as some i82489DX-based boards have glue logic that keeps the 2075 * 8259A interrupt line asserted until INTA. --macro 2076 */ 2077 static inline void __init unlock_ExtINT_logic(void) 2078 { 2079 int apic, pin, i; 2080 struct IO_APIC_route_entry entry0, entry1; 2081 unsigned char save_control, save_freq_select; 2082 u32 apic_id; 2083 2084 pin = find_isa_irq_pin(8, mp_INT); 2085 if (pin == -1) { 2086 WARN_ON_ONCE(1); 2087 return; 2088 } 2089 apic = find_isa_irq_apic(8, mp_INT); 2090 if (apic == -1) { 2091 WARN_ON_ONCE(1); 2092 return; 2093 } 2094 2095 entry0 = ioapic_read_entry(apic, pin); 2096 clear_IO_APIC_pin(apic, pin); 2097 2098 apic_id = hard_smp_processor_id(); 2099 memset(&entry1, 0, sizeof(entry1)); 2100 2101 entry1.dest_mode_logical = true; 2102 entry1.masked = false; 2103 entry1.destid_0_7 = apic_id & 0xFF; 2104 entry1.virt_destid_8_14 = apic_id >> 8; 2105 entry1.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 2106 entry1.active_low = entry0.active_low; 2107 entry1.is_level = false; 2108 entry1.vector = 0; 2109 2110 ioapic_write_entry(apic, pin, entry1); 2111 2112 save_control = CMOS_READ(RTC_CONTROL); 2113 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2114 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2115 RTC_FREQ_SELECT); 2116 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2117 2118 i = 100; 2119 while (i-- > 0) { 2120 mdelay(10); 2121 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2122 i -= 10; 2123 } 2124 2125 CMOS_WRITE(save_control, RTC_CONTROL); 2126 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2127 clear_IO_APIC_pin(apic, pin); 2128 2129 ioapic_write_entry(apic, pin, entry0); 2130 } 2131 2132 static int disable_timer_pin_1 __initdata; 2133 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2134 static int __init disable_timer_pin_setup(char *arg) 2135 { 2136 disable_timer_pin_1 = 1; 2137 return 0; 2138 } 2139 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2140 2141 static int mp_alloc_timer_irq(int ioapic, int pin) 2142 { 2143 int irq = -1; 2144 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 2145 2146 if (domain) { 2147 struct irq_alloc_info info; 2148 2149 ioapic_set_alloc_attr(&info, NUMA_NO_NODE, 0, 0); 2150 info.devid = mpc_ioapic_id(ioapic); 2151 info.ioapic.pin = pin; 2152 mutex_lock(&ioapic_mutex); 2153 irq = alloc_isa_irq_from_domain(domain, 0, ioapic, pin, &info); 2154 mutex_unlock(&ioapic_mutex); 2155 } 2156 2157 return irq; 2158 } 2159 2160 /* 2161 * This code may look a bit paranoid, but it's supposed to cooperate with 2162 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2163 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2164 * fanatically on his truly buggy board. 2165 * 2166 * FIXME: really need to revamp this for all platforms. 2167 */ 2168 static inline void __init check_timer(void) 2169 { 2170 struct irq_data *irq_data = irq_get_irq_data(0); 2171 struct mp_chip_data *data = irq_data->chip_data; 2172 struct irq_cfg *cfg = irqd_cfg(irq_data); 2173 int node = cpu_to_node(0); 2174 int apic1, pin1, apic2, pin2; 2175 int no_pin1 = 0; 2176 2177 if (!global_clock_event) 2178 return; 2179 2180 local_irq_disable(); 2181 2182 /* 2183 * get/set the timer IRQ vector: 2184 */ 2185 legacy_pic->mask(0); 2186 2187 /* 2188 * As IRQ0 is to be enabled in the 8259A, the virtual 2189 * wire has to be disabled in the local APIC. Also 2190 * timer interrupts need to be acknowledged manually in 2191 * the 8259A for the i82489DX when using the NMI 2192 * watchdog as that APIC treats NMIs as level-triggered. 2193 * The AEOI mode will finish them in the 8259A 2194 * automatically. 2195 */ 2196 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2197 legacy_pic->init(1); 2198 2199 pin1 = find_isa_irq_pin(0, mp_INT); 2200 apic1 = find_isa_irq_apic(0, mp_INT); 2201 pin2 = ioapic_i8259.pin; 2202 apic2 = ioapic_i8259.apic; 2203 2204 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2205 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2206 cfg->vector, apic1, pin1, apic2, pin2); 2207 2208 /* 2209 * Some BIOS writers are clueless and report the ExtINTA 2210 * I/O APIC input from the cascaded 8259A as the timer 2211 * interrupt input. So just in case, if only one pin 2212 * was found above, try it both directly and through the 2213 * 8259A. 2214 */ 2215 if (pin1 == -1) { 2216 panic_if_irq_remap("BIOS bug: timer not connected to IO-APIC"); 2217 pin1 = pin2; 2218 apic1 = apic2; 2219 no_pin1 = 1; 2220 } else if (pin2 == -1) { 2221 pin2 = pin1; 2222 apic2 = apic1; 2223 } 2224 2225 if (pin1 != -1) { 2226 /* Ok, does IRQ0 through the IOAPIC work? */ 2227 if (no_pin1) { 2228 mp_alloc_timer_irq(apic1, pin1); 2229 } else { 2230 /* 2231 * for edge trigger, it's already unmasked, 2232 * so only need to unmask if it is level-trigger 2233 * do we really have level trigger timer? 2234 */ 2235 int idx = find_irq_entry(apic1, pin1, mp_INT); 2236 2237 if (idx != -1 && irq_is_level(idx)) 2238 unmask_ioapic_irq(irq_get_irq_data(0)); 2239 } 2240 irq_domain_deactivate_irq(irq_data); 2241 irq_domain_activate_irq(irq_data, false); 2242 if (timer_irq_works()) { 2243 if (disable_timer_pin_1 > 0) 2244 clear_IO_APIC_pin(0, pin1); 2245 goto out; 2246 } 2247 panic_if_irq_remap("timer doesn't work through Interrupt-remapped IO-APIC"); 2248 clear_IO_APIC_pin(apic1, pin1); 2249 if (!no_pin1) 2250 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 2251 "8254 timer not connected to IO-APIC\n"); 2252 2253 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 2254 "(IRQ0) through the 8259A ...\n"); 2255 apic_printk(APIC_QUIET, KERN_INFO 2256 "..... (found apic %d pin %d) ...\n", apic2, pin2); 2257 /* 2258 * legacy devices should be connected to IO APIC #0 2259 */ 2260 replace_pin_at_irq_node(data, node, apic1, pin1, apic2, pin2); 2261 irq_domain_deactivate_irq(irq_data); 2262 irq_domain_activate_irq(irq_data, false); 2263 legacy_pic->unmask(0); 2264 if (timer_irq_works()) { 2265 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 2266 goto out; 2267 } 2268 /* 2269 * Cleanup, just in case ... 2270 */ 2271 legacy_pic->mask(0); 2272 clear_IO_APIC_pin(apic2, pin2); 2273 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 2274 } 2275 2276 apic_printk(APIC_QUIET, KERN_INFO 2277 "...trying to set up timer as Virtual Wire IRQ...\n"); 2278 2279 lapic_register_intr(0); 2280 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 2281 legacy_pic->unmask(0); 2282 2283 if (timer_irq_works()) { 2284 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2285 goto out; 2286 } 2287 legacy_pic->mask(0); 2288 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 2289 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 2290 2291 apic_printk(APIC_QUIET, KERN_INFO 2292 "...trying to set up timer as ExtINT IRQ...\n"); 2293 2294 legacy_pic->init(0); 2295 legacy_pic->make_irq(0); 2296 apic_write(APIC_LVT0, APIC_DM_EXTINT); 2297 legacy_pic->unmask(0); 2298 2299 unlock_ExtINT_logic(); 2300 2301 if (timer_irq_works()) { 2302 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2303 goto out; 2304 } 2305 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 2306 if (apic_is_x2apic_enabled()) 2307 apic_printk(APIC_QUIET, KERN_INFO 2308 "Perhaps problem with the pre-enabled x2apic mode\n" 2309 "Try booting with x2apic and interrupt-remapping disabled in the bios.\n"); 2310 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 2311 "report. Then try booting with the 'noapic' option.\n"); 2312 out: 2313 local_irq_enable(); 2314 } 2315 2316 /* 2317 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 2318 * to devices. However there may be an I/O APIC pin available for 2319 * this interrupt regardless. The pin may be left unconnected, but 2320 * typically it will be reused as an ExtINT cascade interrupt for 2321 * the master 8259A. In the MPS case such a pin will normally be 2322 * reported as an ExtINT interrupt in the MP table. With ACPI 2323 * there is no provision for ExtINT interrupts, and in the absence 2324 * of an override it would be treated as an ordinary ISA I/O APIC 2325 * interrupt, that is edge-triggered and unmasked by default. We 2326 * used to do this, but it caused problems on some systems because 2327 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 2328 * the same ExtINT cascade interrupt to drive the local APIC of the 2329 * bootstrap processor. Therefore we refrain from routing IRQ2 to 2330 * the I/O APIC in all cases now. No actual device should request 2331 * it anyway. --macro 2332 */ 2333 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 2334 2335 static int mp_irqdomain_create(int ioapic) 2336 { 2337 struct irq_domain *parent; 2338 int hwirqs = mp_ioapic_pin_count(ioapic); 2339 struct ioapic *ip = &ioapics[ioapic]; 2340 struct ioapic_domain_cfg *cfg = &ip->irqdomain_cfg; 2341 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2342 struct fwnode_handle *fn; 2343 struct irq_fwspec fwspec; 2344 2345 if (cfg->type == IOAPIC_DOMAIN_INVALID) 2346 return 0; 2347 2348 /* Handle device tree enumerated APICs proper */ 2349 if (cfg->dev) { 2350 fn = of_node_to_fwnode(cfg->dev); 2351 } else { 2352 fn = irq_domain_alloc_named_id_fwnode("IO-APIC", mpc_ioapic_id(ioapic)); 2353 if (!fn) 2354 return -ENOMEM; 2355 } 2356 2357 fwspec.fwnode = fn; 2358 fwspec.param_count = 1; 2359 fwspec.param[0] = mpc_ioapic_id(ioapic); 2360 2361 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY); 2362 if (!parent) { 2363 if (!cfg->dev) 2364 irq_domain_free_fwnode(fn); 2365 return -ENODEV; 2366 } 2367 2368 ip->irqdomain = irq_domain_create_hierarchy(parent, 0, hwirqs, fn, cfg->ops, 2369 (void *)(long)ioapic); 2370 if (!ip->irqdomain) { 2371 /* Release fw handle if it was allocated above */ 2372 if (!cfg->dev) 2373 irq_domain_free_fwnode(fn); 2374 return -ENOMEM; 2375 } 2376 2377 if (cfg->type == IOAPIC_DOMAIN_LEGACY || 2378 cfg->type == IOAPIC_DOMAIN_STRICT) 2379 ioapic_dynirq_base = max(ioapic_dynirq_base, 2380 gsi_cfg->gsi_end + 1); 2381 2382 return 0; 2383 } 2384 2385 static void ioapic_destroy_irqdomain(int idx) 2386 { 2387 struct ioapic_domain_cfg *cfg = &ioapics[idx].irqdomain_cfg; 2388 struct fwnode_handle *fn = ioapics[idx].irqdomain->fwnode; 2389 2390 if (ioapics[idx].irqdomain) { 2391 irq_domain_remove(ioapics[idx].irqdomain); 2392 if (!cfg->dev) 2393 irq_domain_free_fwnode(fn); 2394 ioapics[idx].irqdomain = NULL; 2395 } 2396 } 2397 2398 void __init setup_IO_APIC(void) 2399 { 2400 int ioapic; 2401 2402 if (skip_ioapic_setup || !nr_ioapics) 2403 return; 2404 2405 io_apic_irqs = nr_legacy_irqs() ? ~PIC_IRQS : ~0UL; 2406 2407 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 2408 for_each_ioapic(ioapic) 2409 BUG_ON(mp_irqdomain_create(ioapic)); 2410 2411 /* 2412 * Set up IO-APIC IRQ routing. 2413 */ 2414 x86_init.mpparse.setup_ioapic_ids(); 2415 2416 sync_Arb_IDs(); 2417 setup_IO_APIC_irqs(); 2418 init_IO_APIC_traps(); 2419 if (nr_legacy_irqs()) 2420 check_timer(); 2421 2422 ioapic_initialized = 1; 2423 } 2424 2425 static void resume_ioapic_id(int ioapic_idx) 2426 { 2427 unsigned long flags; 2428 union IO_APIC_reg_00 reg_00; 2429 2430 raw_spin_lock_irqsave(&ioapic_lock, flags); 2431 reg_00.raw = io_apic_read(ioapic_idx, 0); 2432 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) { 2433 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 2434 io_apic_write(ioapic_idx, 0, reg_00.raw); 2435 } 2436 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2437 } 2438 2439 static void ioapic_resume(void) 2440 { 2441 int ioapic_idx; 2442 2443 for_each_ioapic_reverse(ioapic_idx) 2444 resume_ioapic_id(ioapic_idx); 2445 2446 restore_ioapic_entries(); 2447 } 2448 2449 static struct syscore_ops ioapic_syscore_ops = { 2450 .suspend = save_ioapic_entries, 2451 .resume = ioapic_resume, 2452 }; 2453 2454 static int __init ioapic_init_ops(void) 2455 { 2456 register_syscore_ops(&ioapic_syscore_ops); 2457 2458 return 0; 2459 } 2460 2461 device_initcall(ioapic_init_ops); 2462 2463 static int io_apic_get_redir_entries(int ioapic) 2464 { 2465 union IO_APIC_reg_01 reg_01; 2466 unsigned long flags; 2467 2468 raw_spin_lock_irqsave(&ioapic_lock, flags); 2469 reg_01.raw = io_apic_read(ioapic, 1); 2470 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2471 2472 /* The register returns the maximum index redir index 2473 * supported, which is one less than the total number of redir 2474 * entries. 2475 */ 2476 return reg_01.bits.entries + 1; 2477 } 2478 2479 unsigned int arch_dynirq_lower_bound(unsigned int from) 2480 { 2481 unsigned int ret; 2482 2483 /* 2484 * dmar_alloc_hwirq() may be called before setup_IO_APIC(), so use 2485 * gsi_top if ioapic_dynirq_base hasn't been initialized yet. 2486 */ 2487 ret = ioapic_dynirq_base ? : gsi_top; 2488 2489 /* 2490 * For DT enabled machines ioapic_dynirq_base is irrelevant and 2491 * always 0. gsi_top can be 0 if there is no IO/APIC registered. 2492 * 0 is an invalid interrupt number for dynamic allocations. Return 2493 * @from instead. 2494 */ 2495 return ret ? : from; 2496 } 2497 2498 #ifdef CONFIG_X86_32 2499 static int io_apic_get_unique_id(int ioapic, int apic_id) 2500 { 2501 union IO_APIC_reg_00 reg_00; 2502 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 2503 physid_mask_t tmp; 2504 unsigned long flags; 2505 int i = 0; 2506 2507 /* 2508 * The P4 platform supports up to 256 APIC IDs on two separate APIC 2509 * buses (one for LAPICs, one for IOAPICs), where predecessors only 2510 * supports up to 16 on one shared APIC bus. 2511 * 2512 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 2513 * advantage of new APIC bus architecture. 2514 */ 2515 2516 if (physids_empty(apic_id_map)) 2517 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map); 2518 2519 raw_spin_lock_irqsave(&ioapic_lock, flags); 2520 reg_00.raw = io_apic_read(ioapic, 0); 2521 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2522 2523 if (apic_id >= get_physical_broadcast()) { 2524 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 2525 "%d\n", ioapic, apic_id, reg_00.bits.ID); 2526 apic_id = reg_00.bits.ID; 2527 } 2528 2529 /* 2530 * Every APIC in a system must have a unique ID or we get lots of nice 2531 * 'stuck on smp_invalidate_needed IPI wait' messages. 2532 */ 2533 if (apic->check_apicid_used(&apic_id_map, apic_id)) { 2534 2535 for (i = 0; i < get_physical_broadcast(); i++) { 2536 if (!apic->check_apicid_used(&apic_id_map, i)) 2537 break; 2538 } 2539 2540 if (i == get_physical_broadcast()) 2541 panic("Max apic_id exceeded!\n"); 2542 2543 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 2544 "trying %d\n", ioapic, apic_id, i); 2545 2546 apic_id = i; 2547 } 2548 2549 apic->apicid_to_cpu_present(apic_id, &tmp); 2550 physids_or(apic_id_map, apic_id_map, tmp); 2551 2552 if (reg_00.bits.ID != apic_id) { 2553 reg_00.bits.ID = apic_id; 2554 2555 raw_spin_lock_irqsave(&ioapic_lock, flags); 2556 io_apic_write(ioapic, 0, reg_00.raw); 2557 reg_00.raw = io_apic_read(ioapic, 0); 2558 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2559 2560 /* Sanity check */ 2561 if (reg_00.bits.ID != apic_id) { 2562 pr_err("IOAPIC[%d]: Unable to change apic_id!\n", 2563 ioapic); 2564 return -1; 2565 } 2566 } 2567 2568 apic_printk(APIC_VERBOSE, KERN_INFO 2569 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 2570 2571 return apic_id; 2572 } 2573 2574 static u8 io_apic_unique_id(int idx, u8 id) 2575 { 2576 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 2577 !APIC_XAPIC(boot_cpu_apic_version)) 2578 return io_apic_get_unique_id(idx, id); 2579 else 2580 return id; 2581 } 2582 #else 2583 static u8 io_apic_unique_id(int idx, u8 id) 2584 { 2585 union IO_APIC_reg_00 reg_00; 2586 DECLARE_BITMAP(used, 256); 2587 unsigned long flags; 2588 u8 new_id; 2589 int i; 2590 2591 bitmap_zero(used, 256); 2592 for_each_ioapic(i) 2593 __set_bit(mpc_ioapic_id(i), used); 2594 2595 /* Hand out the requested id if available */ 2596 if (!test_bit(id, used)) 2597 return id; 2598 2599 /* 2600 * Read the current id from the ioapic and keep it if 2601 * available. 2602 */ 2603 raw_spin_lock_irqsave(&ioapic_lock, flags); 2604 reg_00.raw = io_apic_read(idx, 0); 2605 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2606 new_id = reg_00.bits.ID; 2607 if (!test_bit(new_id, used)) { 2608 apic_printk(APIC_VERBOSE, KERN_INFO 2609 "IOAPIC[%d]: Using reg apic_id %d instead of %d\n", 2610 idx, new_id, id); 2611 return new_id; 2612 } 2613 2614 /* 2615 * Get the next free id and write it to the ioapic. 2616 */ 2617 new_id = find_first_zero_bit(used, 256); 2618 reg_00.bits.ID = new_id; 2619 raw_spin_lock_irqsave(&ioapic_lock, flags); 2620 io_apic_write(idx, 0, reg_00.raw); 2621 reg_00.raw = io_apic_read(idx, 0); 2622 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2623 /* Sanity check */ 2624 BUG_ON(reg_00.bits.ID != new_id); 2625 2626 return new_id; 2627 } 2628 #endif 2629 2630 static int io_apic_get_version(int ioapic) 2631 { 2632 union IO_APIC_reg_01 reg_01; 2633 unsigned long flags; 2634 2635 raw_spin_lock_irqsave(&ioapic_lock, flags); 2636 reg_01.raw = io_apic_read(ioapic, 1); 2637 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2638 2639 return reg_01.bits.version; 2640 } 2641 2642 /* 2643 * This function updates target affinity of IOAPIC interrupts to include 2644 * the CPUs which came online during SMP bringup. 2645 */ 2646 #define IOAPIC_RESOURCE_NAME_SIZE 11 2647 2648 static struct resource *ioapic_resources; 2649 2650 static struct resource * __init ioapic_setup_resources(void) 2651 { 2652 unsigned long n; 2653 struct resource *res; 2654 char *mem; 2655 int i; 2656 2657 if (nr_ioapics == 0) 2658 return NULL; 2659 2660 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 2661 n *= nr_ioapics; 2662 2663 mem = memblock_alloc(n, SMP_CACHE_BYTES); 2664 if (!mem) 2665 panic("%s: Failed to allocate %lu bytes\n", __func__, n); 2666 res = (void *)mem; 2667 2668 mem += sizeof(struct resource) * nr_ioapics; 2669 2670 for_each_ioapic(i) { 2671 res[i].name = mem; 2672 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 2673 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); 2674 mem += IOAPIC_RESOURCE_NAME_SIZE; 2675 ioapics[i].iomem_res = &res[i]; 2676 } 2677 2678 ioapic_resources = res; 2679 2680 return res; 2681 } 2682 2683 static void io_apic_set_fixmap(enum fixed_addresses idx, phys_addr_t phys) 2684 { 2685 pgprot_t flags = FIXMAP_PAGE_NOCACHE; 2686 2687 /* 2688 * Ensure fixmaps for IO-APIC MMIO respect memory encryption pgprot 2689 * bits, just like normal ioremap(): 2690 */ 2691 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 2692 if (x86_platform.hyper.is_private_mmio(phys)) 2693 flags = pgprot_encrypted(flags); 2694 else 2695 flags = pgprot_decrypted(flags); 2696 } 2697 2698 __set_fixmap(idx, phys, flags); 2699 } 2700 2701 void __init io_apic_init_mappings(void) 2702 { 2703 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 2704 struct resource *ioapic_res; 2705 int i; 2706 2707 ioapic_res = ioapic_setup_resources(); 2708 for_each_ioapic(i) { 2709 if (smp_found_config) { 2710 ioapic_phys = mpc_ioapic_addr(i); 2711 #ifdef CONFIG_X86_32 2712 if (!ioapic_phys) { 2713 printk(KERN_ERR 2714 "WARNING: bogus zero IO-APIC " 2715 "address found in MPTABLE, " 2716 "disabling IO/APIC support!\n"); 2717 smp_found_config = 0; 2718 skip_ioapic_setup = 1; 2719 goto fake_ioapic_page; 2720 } 2721 #endif 2722 } else { 2723 #ifdef CONFIG_X86_32 2724 fake_ioapic_page: 2725 #endif 2726 ioapic_phys = (unsigned long)memblock_alloc(PAGE_SIZE, 2727 PAGE_SIZE); 2728 if (!ioapic_phys) 2729 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 2730 __func__, PAGE_SIZE, PAGE_SIZE); 2731 ioapic_phys = __pa(ioapic_phys); 2732 } 2733 io_apic_set_fixmap(idx, ioapic_phys); 2734 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", 2735 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), 2736 ioapic_phys); 2737 idx++; 2738 2739 ioapic_res->start = ioapic_phys; 2740 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; 2741 ioapic_res++; 2742 } 2743 } 2744 2745 void __init ioapic_insert_resources(void) 2746 { 2747 int i; 2748 struct resource *r = ioapic_resources; 2749 2750 if (!r) { 2751 if (nr_ioapics > 0) 2752 printk(KERN_ERR 2753 "IO APIC resources couldn't be allocated.\n"); 2754 return; 2755 } 2756 2757 for_each_ioapic(i) { 2758 insert_resource(&iomem_resource, r); 2759 r++; 2760 } 2761 } 2762 2763 int mp_find_ioapic(u32 gsi) 2764 { 2765 int i; 2766 2767 if (nr_ioapics == 0) 2768 return -1; 2769 2770 /* Find the IOAPIC that manages this GSI. */ 2771 for_each_ioapic(i) { 2772 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i); 2773 if (gsi >= gsi_cfg->gsi_base && gsi <= gsi_cfg->gsi_end) 2774 return i; 2775 } 2776 2777 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 2778 return -1; 2779 } 2780 2781 int mp_find_ioapic_pin(int ioapic, u32 gsi) 2782 { 2783 struct mp_ioapic_gsi *gsi_cfg; 2784 2785 if (WARN_ON(ioapic < 0)) 2786 return -1; 2787 2788 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2789 if (WARN_ON(gsi > gsi_cfg->gsi_end)) 2790 return -1; 2791 2792 return gsi - gsi_cfg->gsi_base; 2793 } 2794 2795 static int bad_ioapic_register(int idx) 2796 { 2797 union IO_APIC_reg_00 reg_00; 2798 union IO_APIC_reg_01 reg_01; 2799 union IO_APIC_reg_02 reg_02; 2800 2801 reg_00.raw = io_apic_read(idx, 0); 2802 reg_01.raw = io_apic_read(idx, 1); 2803 reg_02.raw = io_apic_read(idx, 2); 2804 2805 if (reg_00.raw == -1 && reg_01.raw == -1 && reg_02.raw == -1) { 2806 pr_warn("I/O APIC 0x%x registers return all ones, skipping!\n", 2807 mpc_ioapic_addr(idx)); 2808 return 1; 2809 } 2810 2811 return 0; 2812 } 2813 2814 static int find_free_ioapic_entry(void) 2815 { 2816 int idx; 2817 2818 for (idx = 0; idx < MAX_IO_APICS; idx++) 2819 if (ioapics[idx].nr_registers == 0) 2820 return idx; 2821 2822 return MAX_IO_APICS; 2823 } 2824 2825 /** 2826 * mp_register_ioapic - Register an IOAPIC device 2827 * @id: hardware IOAPIC ID 2828 * @address: physical address of IOAPIC register area 2829 * @gsi_base: base of GSI associated with the IOAPIC 2830 * @cfg: configuration information for the IOAPIC 2831 */ 2832 int mp_register_ioapic(int id, u32 address, u32 gsi_base, 2833 struct ioapic_domain_cfg *cfg) 2834 { 2835 bool hotplug = !!ioapic_initialized; 2836 struct mp_ioapic_gsi *gsi_cfg; 2837 int idx, ioapic, entries; 2838 u32 gsi_end; 2839 2840 if (!address) { 2841 pr_warn("Bogus (zero) I/O APIC address found, skipping!\n"); 2842 return -EINVAL; 2843 } 2844 for_each_ioapic(ioapic) 2845 if (ioapics[ioapic].mp_config.apicaddr == address) { 2846 pr_warn("address 0x%x conflicts with IOAPIC%d\n", 2847 address, ioapic); 2848 return -EEXIST; 2849 } 2850 2851 idx = find_free_ioapic_entry(); 2852 if (idx >= MAX_IO_APICS) { 2853 pr_warn("Max # of I/O APICs (%d) exceeded (found %d), skipping\n", 2854 MAX_IO_APICS, idx); 2855 return -ENOSPC; 2856 } 2857 2858 ioapics[idx].mp_config.type = MP_IOAPIC; 2859 ioapics[idx].mp_config.flags = MPC_APIC_USABLE; 2860 ioapics[idx].mp_config.apicaddr = address; 2861 2862 io_apic_set_fixmap(FIX_IO_APIC_BASE_0 + idx, address); 2863 if (bad_ioapic_register(idx)) { 2864 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2865 return -ENODEV; 2866 } 2867 2868 ioapics[idx].mp_config.apicid = io_apic_unique_id(idx, id); 2869 ioapics[idx].mp_config.apicver = io_apic_get_version(idx); 2870 2871 /* 2872 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 2873 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 2874 */ 2875 entries = io_apic_get_redir_entries(idx); 2876 gsi_end = gsi_base + entries - 1; 2877 for_each_ioapic(ioapic) { 2878 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2879 if ((gsi_base >= gsi_cfg->gsi_base && 2880 gsi_base <= gsi_cfg->gsi_end) || 2881 (gsi_end >= gsi_cfg->gsi_base && 2882 gsi_end <= gsi_cfg->gsi_end)) { 2883 pr_warn("GSI range [%u-%u] for new IOAPIC conflicts with GSI[%u-%u]\n", 2884 gsi_base, gsi_end, 2885 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2886 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2887 return -ENOSPC; 2888 } 2889 } 2890 gsi_cfg = mp_ioapic_gsi_routing(idx); 2891 gsi_cfg->gsi_base = gsi_base; 2892 gsi_cfg->gsi_end = gsi_end; 2893 2894 ioapics[idx].irqdomain = NULL; 2895 ioapics[idx].irqdomain_cfg = *cfg; 2896 2897 /* 2898 * If mp_register_ioapic() is called during early boot stage when 2899 * walking ACPI/DT tables, it's too early to create irqdomain, 2900 * we are still using bootmem allocator. So delay it to setup_IO_APIC(). 2901 */ 2902 if (hotplug) { 2903 if (mp_irqdomain_create(idx)) { 2904 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2905 return -ENOMEM; 2906 } 2907 alloc_ioapic_saved_registers(idx); 2908 } 2909 2910 if (gsi_cfg->gsi_end >= gsi_top) 2911 gsi_top = gsi_cfg->gsi_end + 1; 2912 if (nr_ioapics <= idx) 2913 nr_ioapics = idx + 1; 2914 2915 /* Set nr_registers to mark entry present */ 2916 ioapics[idx].nr_registers = entries; 2917 2918 pr_info("IOAPIC[%d]: apic_id %d, version %d, address 0x%x, GSI %d-%d\n", 2919 idx, mpc_ioapic_id(idx), 2920 mpc_ioapic_ver(idx), mpc_ioapic_addr(idx), 2921 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2922 2923 return 0; 2924 } 2925 2926 int mp_unregister_ioapic(u32 gsi_base) 2927 { 2928 int ioapic, pin; 2929 int found = 0; 2930 2931 for_each_ioapic(ioapic) 2932 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) { 2933 found = 1; 2934 break; 2935 } 2936 if (!found) { 2937 pr_warn("can't find IOAPIC for GSI %d\n", gsi_base); 2938 return -ENODEV; 2939 } 2940 2941 for_each_pin(ioapic, pin) { 2942 u32 gsi = mp_pin_to_gsi(ioapic, pin); 2943 int irq = mp_map_gsi_to_irq(gsi, 0, NULL); 2944 struct mp_chip_data *data; 2945 2946 if (irq >= 0) { 2947 data = irq_get_chip_data(irq); 2948 if (data && data->count) { 2949 pr_warn("pin%d on IOAPIC%d is still in use.\n", 2950 pin, ioapic); 2951 return -EBUSY; 2952 } 2953 } 2954 } 2955 2956 /* Mark entry not present */ 2957 ioapics[ioapic].nr_registers = 0; 2958 ioapic_destroy_irqdomain(ioapic); 2959 free_ioapic_saved_registers(ioapic); 2960 if (ioapics[ioapic].iomem_res) 2961 release_resource(ioapics[ioapic].iomem_res); 2962 clear_fixmap(FIX_IO_APIC_BASE_0 + ioapic); 2963 memset(&ioapics[ioapic], 0, sizeof(ioapics[ioapic])); 2964 2965 return 0; 2966 } 2967 2968 int mp_ioapic_registered(u32 gsi_base) 2969 { 2970 int ioapic; 2971 2972 for_each_ioapic(ioapic) 2973 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) 2974 return 1; 2975 2976 return 0; 2977 } 2978 2979 static void mp_irqdomain_get_attr(u32 gsi, struct mp_chip_data *data, 2980 struct irq_alloc_info *info) 2981 { 2982 if (info && info->ioapic.valid) { 2983 data->is_level = info->ioapic.is_level; 2984 data->active_low = info->ioapic.active_low; 2985 } else if (__acpi_get_override_irq(gsi, &data->is_level, 2986 &data->active_low) < 0) { 2987 /* PCI interrupts are always active low level triggered. */ 2988 data->is_level = true; 2989 data->active_low = true; 2990 } 2991 } 2992 2993 /* 2994 * Configure the I/O-APIC specific fields in the routing entry. 2995 * 2996 * This is important to setup the I/O-APIC specific bits (is_level, 2997 * active_low, masked) because the underlying parent domain will only 2998 * provide the routing information and is oblivious of the I/O-APIC 2999 * specific bits. 3000 * 3001 * The entry is just preconfigured at this point and not written into the 3002 * RTE. This happens later during activation which will fill in the actual 3003 * routing information. 3004 */ 3005 static void mp_preconfigure_entry(struct mp_chip_data *data) 3006 { 3007 struct IO_APIC_route_entry *entry = &data->entry; 3008 3009 memset(entry, 0, sizeof(*entry)); 3010 entry->is_level = data->is_level; 3011 entry->active_low = data->active_low; 3012 /* 3013 * Mask level triggered irqs. Edge triggered irqs are masked 3014 * by the irq core code in case they fire. 3015 */ 3016 entry->masked = data->is_level; 3017 } 3018 3019 int mp_irqdomain_alloc(struct irq_domain *domain, unsigned int virq, 3020 unsigned int nr_irqs, void *arg) 3021 { 3022 struct irq_alloc_info *info = arg; 3023 struct mp_chip_data *data; 3024 struct irq_data *irq_data; 3025 int ret, ioapic, pin; 3026 unsigned long flags; 3027 3028 if (!info || nr_irqs > 1) 3029 return -EINVAL; 3030 irq_data = irq_domain_get_irq_data(domain, virq); 3031 if (!irq_data) 3032 return -EINVAL; 3033 3034 ioapic = mp_irqdomain_ioapic_idx(domain); 3035 pin = info->ioapic.pin; 3036 if (irq_find_mapping(domain, (irq_hw_number_t)pin) > 0) 3037 return -EEXIST; 3038 3039 data = kzalloc(sizeof(*data), GFP_KERNEL); 3040 if (!data) 3041 return -ENOMEM; 3042 3043 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, info); 3044 if (ret < 0) { 3045 kfree(data); 3046 return ret; 3047 } 3048 3049 INIT_LIST_HEAD(&data->irq_2_pin); 3050 irq_data->hwirq = info->ioapic.pin; 3051 irq_data->chip = (domain->parent == x86_vector_domain) ? 3052 &ioapic_chip : &ioapic_ir_chip; 3053 irq_data->chip_data = data; 3054 mp_irqdomain_get_attr(mp_pin_to_gsi(ioapic, pin), data, info); 3055 3056 add_pin_to_irq_node(data, ioapic_alloc_attr_node(info), ioapic, pin); 3057 3058 mp_preconfigure_entry(data); 3059 mp_register_handler(virq, data->is_level); 3060 3061 local_irq_save(flags); 3062 if (virq < nr_legacy_irqs()) 3063 legacy_pic->mask(virq); 3064 local_irq_restore(flags); 3065 3066 apic_printk(APIC_VERBOSE, KERN_DEBUG 3067 "IOAPIC[%d]: Preconfigured routing entry (%d-%d -> IRQ %d Level:%i ActiveLow:%i)\n", 3068 ioapic, mpc_ioapic_id(ioapic), pin, virq, 3069 data->is_level, data->active_low); 3070 return 0; 3071 } 3072 3073 void mp_irqdomain_free(struct irq_domain *domain, unsigned int virq, 3074 unsigned int nr_irqs) 3075 { 3076 struct irq_data *irq_data; 3077 struct mp_chip_data *data; 3078 3079 BUG_ON(nr_irqs != 1); 3080 irq_data = irq_domain_get_irq_data(domain, virq); 3081 if (irq_data && irq_data->chip_data) { 3082 data = irq_data->chip_data; 3083 __remove_pin_from_irq(data, mp_irqdomain_ioapic_idx(domain), 3084 (int)irq_data->hwirq); 3085 WARN_ON(!list_empty(&data->irq_2_pin)); 3086 kfree(irq_data->chip_data); 3087 } 3088 irq_domain_free_irqs_top(domain, virq, nr_irqs); 3089 } 3090 3091 int mp_irqdomain_activate(struct irq_domain *domain, 3092 struct irq_data *irq_data, bool reserve) 3093 { 3094 unsigned long flags; 3095 3096 raw_spin_lock_irqsave(&ioapic_lock, flags); 3097 ioapic_configure_entry(irq_data); 3098 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 3099 return 0; 3100 } 3101 3102 void mp_irqdomain_deactivate(struct irq_domain *domain, 3103 struct irq_data *irq_data) 3104 { 3105 /* It won't be called for IRQ with multiple IOAPIC pins associated */ 3106 ioapic_mask_entry(mp_irqdomain_ioapic_idx(domain), 3107 (int)irq_data->hwirq); 3108 } 3109 3110 int mp_irqdomain_ioapic_idx(struct irq_domain *domain) 3111 { 3112 return (int)(long)domain->host_data; 3113 } 3114 3115 const struct irq_domain_ops mp_ioapic_irqdomain_ops = { 3116 .alloc = mp_irqdomain_alloc, 3117 .free = mp_irqdomain_free, 3118 .activate = mp_irqdomain_activate, 3119 .deactivate = mp_irqdomain_deactivate, 3120 }; 3121