1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Intel IO-APIC support for multi-Pentium hosts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * 7 * Many thanks to Stig Venaas for trying out countless experimental 8 * patches and reporting/debugging problems patiently! 9 * 10 * (c) 1999, Multiple IO-APIC support, developed by 11 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 12 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 13 * further tested and cleaned up by Zach Brown <zab@redhat.com> 14 * and Ingo Molnar <mingo@redhat.com> 15 * 16 * Fixes 17 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 18 * thanks to Eric Gilmore 19 * and Rolf G. Tews 20 * for testing these extensively 21 * Paul Diefenbaugh : Added full ACPI support 22 * 23 * Historical information which is worth to be preserved: 24 * 25 * - SiS APIC rmw bug: 26 * 27 * We used to have a workaround for a bug in SiS chips which 28 * required to rewrite the index register for a read-modify-write 29 * operation as the chip lost the index information which was 30 * setup for the read already. We cache the data now, so that 31 * workaround has been removed. 32 */ 33 34 #include <linux/mm.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> 37 #include <linux/init.h> 38 #include <linux/delay.h> 39 #include <linux/sched.h> 40 #include <linux/pci.h> 41 #include <linux/mc146818rtc.h> 42 #include <linux/compiler.h> 43 #include <linux/acpi.h> 44 #include <linux/export.h> 45 #include <linux/syscore_ops.h> 46 #include <linux/freezer.h> 47 #include <linux/kthread.h> 48 #include <linux/jiffies.h> /* time_after() */ 49 #include <linux/slab.h> 50 #include <linux/memblock.h> 51 #include <linux/msi.h> 52 53 #include <asm/irqdomain.h> 54 #include <asm/io.h> 55 #include <asm/smp.h> 56 #include <asm/cpu.h> 57 #include <asm/desc.h> 58 #include <asm/proto.h> 59 #include <asm/acpi.h> 60 #include <asm/dma.h> 61 #include <asm/timer.h> 62 #include <asm/time.h> 63 #include <asm/i8259.h> 64 #include <asm/setup.h> 65 #include <asm/irq_remapping.h> 66 #include <asm/hw_irq.h> 67 #include <asm/apic.h> 68 #include <asm/pgtable.h> 69 70 #define for_each_ioapic(idx) \ 71 for ((idx) = 0; (idx) < nr_ioapics; (idx)++) 72 #define for_each_ioapic_reverse(idx) \ 73 for ((idx) = nr_ioapics - 1; (idx) >= 0; (idx)--) 74 #define for_each_pin(idx, pin) \ 75 for ((pin) = 0; (pin) < ioapics[(idx)].nr_registers; (pin)++) 76 #define for_each_ioapic_pin(idx, pin) \ 77 for_each_ioapic((idx)) \ 78 for_each_pin((idx), (pin)) 79 #define for_each_irq_pin(entry, head) \ 80 list_for_each_entry(entry, &head, list) 81 82 static DEFINE_RAW_SPINLOCK(ioapic_lock); 83 static DEFINE_MUTEX(ioapic_mutex); 84 static unsigned int ioapic_dynirq_base; 85 static int ioapic_initialized; 86 87 struct irq_pin_list { 88 struct list_head list; 89 int apic, pin; 90 }; 91 92 struct mp_chip_data { 93 struct list_head irq_2_pin; 94 struct IO_APIC_route_entry entry; 95 bool is_level; 96 bool active_low; 97 bool isa_irq; 98 u32 count; 99 }; 100 101 struct mp_ioapic_gsi { 102 u32 gsi_base; 103 u32 gsi_end; 104 }; 105 106 static struct ioapic { 107 /* 108 * # of IRQ routing registers 109 */ 110 int nr_registers; 111 /* 112 * Saved state during suspend/resume, or while enabling intr-remap. 113 */ 114 struct IO_APIC_route_entry *saved_registers; 115 /* I/O APIC config */ 116 struct mpc_ioapic mp_config; 117 /* IO APIC gsi routing info */ 118 struct mp_ioapic_gsi gsi_config; 119 struct ioapic_domain_cfg irqdomain_cfg; 120 struct irq_domain *irqdomain; 121 struct resource *iomem_res; 122 } ioapics[MAX_IO_APICS]; 123 124 #define mpc_ioapic_ver(ioapic_idx) ioapics[ioapic_idx].mp_config.apicver 125 126 int mpc_ioapic_id(int ioapic_idx) 127 { 128 return ioapics[ioapic_idx].mp_config.apicid; 129 } 130 131 unsigned int mpc_ioapic_addr(int ioapic_idx) 132 { 133 return ioapics[ioapic_idx].mp_config.apicaddr; 134 } 135 136 static inline struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int ioapic_idx) 137 { 138 return &ioapics[ioapic_idx].gsi_config; 139 } 140 141 static inline int mp_ioapic_pin_count(int ioapic) 142 { 143 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 144 145 return gsi_cfg->gsi_end - gsi_cfg->gsi_base + 1; 146 } 147 148 static inline u32 mp_pin_to_gsi(int ioapic, int pin) 149 { 150 return mp_ioapic_gsi_routing(ioapic)->gsi_base + pin; 151 } 152 153 static inline bool mp_is_legacy_irq(int irq) 154 { 155 return irq >= 0 && irq < nr_legacy_irqs(); 156 } 157 158 static inline struct irq_domain *mp_ioapic_irqdomain(int ioapic) 159 { 160 return ioapics[ioapic].irqdomain; 161 } 162 163 int nr_ioapics; 164 165 /* The one past the highest gsi number used */ 166 u32 gsi_top; 167 168 /* MP IRQ source entries */ 169 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 170 171 /* # of MP IRQ source entries */ 172 int mp_irq_entries; 173 174 #ifdef CONFIG_EISA 175 int mp_bus_id_to_type[MAX_MP_BUSSES]; 176 #endif 177 178 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 179 180 int skip_ioapic_setup; 181 182 /** 183 * disable_ioapic_support() - disables ioapic support at runtime 184 */ 185 void disable_ioapic_support(void) 186 { 187 #ifdef CONFIG_PCI 188 noioapicquirk = 1; 189 noioapicreroute = -1; 190 #endif 191 skip_ioapic_setup = 1; 192 } 193 194 static int __init parse_noapic(char *str) 195 { 196 /* disable IO-APIC */ 197 disable_ioapic_support(); 198 return 0; 199 } 200 early_param("noapic", parse_noapic); 201 202 /* Will be called in mpparse/ACPI codes for saving IRQ info */ 203 void mp_save_irq(struct mpc_intsrc *m) 204 { 205 int i; 206 207 apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x," 208 " IRQ %02x, APIC ID %x, APIC INT %02x\n", 209 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus, 210 m->srcbusirq, m->dstapic, m->dstirq); 211 212 for (i = 0; i < mp_irq_entries; i++) { 213 if (!memcmp(&mp_irqs[i], m, sizeof(*m))) 214 return; 215 } 216 217 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m)); 218 if (++mp_irq_entries == MAX_IRQ_SOURCES) 219 panic("Max # of irq sources exceeded!!\n"); 220 } 221 222 static void alloc_ioapic_saved_registers(int idx) 223 { 224 size_t size; 225 226 if (ioapics[idx].saved_registers) 227 return; 228 229 size = sizeof(struct IO_APIC_route_entry) * ioapics[idx].nr_registers; 230 ioapics[idx].saved_registers = kzalloc(size, GFP_KERNEL); 231 if (!ioapics[idx].saved_registers) 232 pr_err("IOAPIC %d: suspend/resume impossible!\n", idx); 233 } 234 235 static void free_ioapic_saved_registers(int idx) 236 { 237 kfree(ioapics[idx].saved_registers); 238 ioapics[idx].saved_registers = NULL; 239 } 240 241 int __init arch_early_ioapic_init(void) 242 { 243 int i; 244 245 if (!nr_legacy_irqs()) 246 io_apic_irqs = ~0UL; 247 248 for_each_ioapic(i) 249 alloc_ioapic_saved_registers(i); 250 251 return 0; 252 } 253 254 struct io_apic { 255 unsigned int index; 256 unsigned int unused[3]; 257 unsigned int data; 258 unsigned int unused2[11]; 259 unsigned int eoi; 260 }; 261 262 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 263 { 264 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 265 + (mpc_ioapic_addr(idx) & ~PAGE_MASK); 266 } 267 268 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 269 { 270 struct io_apic __iomem *io_apic = io_apic_base(apic); 271 writel(vector, &io_apic->eoi); 272 } 273 274 unsigned int native_io_apic_read(unsigned int apic, unsigned int reg) 275 { 276 struct io_apic __iomem *io_apic = io_apic_base(apic); 277 writel(reg, &io_apic->index); 278 return readl(&io_apic->data); 279 } 280 281 static void io_apic_write(unsigned int apic, unsigned int reg, 282 unsigned int value) 283 { 284 struct io_apic __iomem *io_apic = io_apic_base(apic); 285 286 writel(reg, &io_apic->index); 287 writel(value, &io_apic->data); 288 } 289 290 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin) 291 { 292 struct IO_APIC_route_entry entry; 293 294 entry.w1 = io_apic_read(apic, 0x10 + 2 * pin); 295 entry.w2 = io_apic_read(apic, 0x11 + 2 * pin); 296 297 return entry; 298 } 299 300 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 301 { 302 struct IO_APIC_route_entry entry; 303 unsigned long flags; 304 305 raw_spin_lock_irqsave(&ioapic_lock, flags); 306 entry = __ioapic_read_entry(apic, pin); 307 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 308 309 return entry; 310 } 311 312 /* 313 * When we write a new IO APIC routing entry, we need to write the high 314 * word first! If the mask bit in the low word is clear, we will enable 315 * the interrupt, and we need to make sure the entry is fully populated 316 * before that happens. 317 */ 318 static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 319 { 320 io_apic_write(apic, 0x11 + 2*pin, e.w2); 321 io_apic_write(apic, 0x10 + 2*pin, e.w1); 322 } 323 324 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 325 { 326 unsigned long flags; 327 328 raw_spin_lock_irqsave(&ioapic_lock, flags); 329 __ioapic_write_entry(apic, pin, e); 330 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 331 } 332 333 /* 334 * When we mask an IO APIC routing entry, we need to write the low 335 * word first, in order to set the mask bit before we change the 336 * high bits! 337 */ 338 static void ioapic_mask_entry(int apic, int pin) 339 { 340 struct IO_APIC_route_entry e = { .masked = true }; 341 unsigned long flags; 342 343 raw_spin_lock_irqsave(&ioapic_lock, flags); 344 io_apic_write(apic, 0x10 + 2*pin, e.w1); 345 io_apic_write(apic, 0x11 + 2*pin, e.w2); 346 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 347 } 348 349 /* 350 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 351 * shared ISA-space IRQs, so we have to support them. We are super 352 * fast in the common case, and fast for shared ISA-space IRQs. 353 */ 354 static int __add_pin_to_irq_node(struct mp_chip_data *data, 355 int node, int apic, int pin) 356 { 357 struct irq_pin_list *entry; 358 359 /* don't allow duplicates */ 360 for_each_irq_pin(entry, data->irq_2_pin) 361 if (entry->apic == apic && entry->pin == pin) 362 return 0; 363 364 entry = kzalloc_node(sizeof(struct irq_pin_list), GFP_ATOMIC, node); 365 if (!entry) { 366 pr_err("can not alloc irq_pin_list (%d,%d,%d)\n", 367 node, apic, pin); 368 return -ENOMEM; 369 } 370 entry->apic = apic; 371 entry->pin = pin; 372 list_add_tail(&entry->list, &data->irq_2_pin); 373 374 return 0; 375 } 376 377 static void __remove_pin_from_irq(struct mp_chip_data *data, int apic, int pin) 378 { 379 struct irq_pin_list *tmp, *entry; 380 381 list_for_each_entry_safe(entry, tmp, &data->irq_2_pin, list) 382 if (entry->apic == apic && entry->pin == pin) { 383 list_del(&entry->list); 384 kfree(entry); 385 return; 386 } 387 } 388 389 static void add_pin_to_irq_node(struct mp_chip_data *data, 390 int node, int apic, int pin) 391 { 392 if (__add_pin_to_irq_node(data, node, apic, pin)) 393 panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); 394 } 395 396 /* 397 * Reroute an IRQ to a different pin. 398 */ 399 static void __init replace_pin_at_irq_node(struct mp_chip_data *data, int node, 400 int oldapic, int oldpin, 401 int newapic, int newpin) 402 { 403 struct irq_pin_list *entry; 404 405 for_each_irq_pin(entry, data->irq_2_pin) { 406 if (entry->apic == oldapic && entry->pin == oldpin) { 407 entry->apic = newapic; 408 entry->pin = newpin; 409 /* every one is different, right? */ 410 return; 411 } 412 } 413 414 /* old apic/pin didn't exist, so just add new ones */ 415 add_pin_to_irq_node(data, node, newapic, newpin); 416 } 417 418 static void io_apic_modify_irq(struct mp_chip_data *data, bool masked, 419 void (*final)(struct irq_pin_list *entry)) 420 { 421 struct irq_pin_list *entry; 422 423 data->entry.masked = masked; 424 425 for_each_irq_pin(entry, data->irq_2_pin) { 426 io_apic_write(entry->apic, 0x10 + 2 * entry->pin, data->entry.w1); 427 if (final) 428 final(entry); 429 } 430 } 431 432 static void io_apic_sync(struct irq_pin_list *entry) 433 { 434 /* 435 * Synchronize the IO-APIC and the CPU by doing 436 * a dummy read from the IO-APIC 437 */ 438 struct io_apic __iomem *io_apic; 439 440 io_apic = io_apic_base(entry->apic); 441 readl(&io_apic->data); 442 } 443 444 static void mask_ioapic_irq(struct irq_data *irq_data) 445 { 446 struct mp_chip_data *data = irq_data->chip_data; 447 unsigned long flags; 448 449 raw_spin_lock_irqsave(&ioapic_lock, flags); 450 io_apic_modify_irq(data, true, &io_apic_sync); 451 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 452 } 453 454 static void __unmask_ioapic(struct mp_chip_data *data) 455 { 456 io_apic_modify_irq(data, false, NULL); 457 } 458 459 static void unmask_ioapic_irq(struct irq_data *irq_data) 460 { 461 struct mp_chip_data *data = irq_data->chip_data; 462 unsigned long flags; 463 464 raw_spin_lock_irqsave(&ioapic_lock, flags); 465 __unmask_ioapic(data); 466 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 467 } 468 469 /* 470 * IO-APIC versions below 0x20 don't support EOI register. 471 * For the record, here is the information about various versions: 472 * 0Xh 82489DX 473 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant 474 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant 475 * 30h-FFh Reserved 476 * 477 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic 478 * version as 0x2. This is an error with documentation and these ICH chips 479 * use io-apic's of version 0x20. 480 * 481 * For IO-APIC's with EOI register, we use that to do an explicit EOI. 482 * Otherwise, we simulate the EOI message manually by changing the trigger 483 * mode to edge and then back to level, with RTE being masked during this. 484 */ 485 static void __eoi_ioapic_pin(int apic, int pin, int vector) 486 { 487 if (mpc_ioapic_ver(apic) >= 0x20) { 488 io_apic_eoi(apic, vector); 489 } else { 490 struct IO_APIC_route_entry entry, entry1; 491 492 entry = entry1 = __ioapic_read_entry(apic, pin); 493 494 /* 495 * Mask the entry and change the trigger mode to edge. 496 */ 497 entry1.masked = true; 498 entry1.is_level = false; 499 500 __ioapic_write_entry(apic, pin, entry1); 501 502 /* 503 * Restore the previous level triggered entry. 504 */ 505 __ioapic_write_entry(apic, pin, entry); 506 } 507 } 508 509 static void eoi_ioapic_pin(int vector, struct mp_chip_data *data) 510 { 511 unsigned long flags; 512 struct irq_pin_list *entry; 513 514 raw_spin_lock_irqsave(&ioapic_lock, flags); 515 for_each_irq_pin(entry, data->irq_2_pin) 516 __eoi_ioapic_pin(entry->apic, entry->pin, vector); 517 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 518 } 519 520 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 521 { 522 struct IO_APIC_route_entry entry; 523 524 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 525 entry = ioapic_read_entry(apic, pin); 526 if (entry.delivery_mode == APIC_DELIVERY_MODE_SMI) 527 return; 528 529 /* 530 * Make sure the entry is masked and re-read the contents to check 531 * if it is a level triggered pin and if the remote-IRR is set. 532 */ 533 if (!entry.masked) { 534 entry.masked = true; 535 ioapic_write_entry(apic, pin, entry); 536 entry = ioapic_read_entry(apic, pin); 537 } 538 539 if (entry.irr) { 540 unsigned long flags; 541 542 /* 543 * Make sure the trigger mode is set to level. Explicit EOI 544 * doesn't clear the remote-IRR if the trigger mode is not 545 * set to level. 546 */ 547 if (!entry.is_level) { 548 entry.is_level = true; 549 ioapic_write_entry(apic, pin, entry); 550 } 551 raw_spin_lock_irqsave(&ioapic_lock, flags); 552 __eoi_ioapic_pin(apic, pin, entry.vector); 553 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 554 } 555 556 /* 557 * Clear the rest of the bits in the IO-APIC RTE except for the mask 558 * bit. 559 */ 560 ioapic_mask_entry(apic, pin); 561 entry = ioapic_read_entry(apic, pin); 562 if (entry.irr) 563 pr_err("Unable to reset IRR for apic: %d, pin :%d\n", 564 mpc_ioapic_id(apic), pin); 565 } 566 567 void clear_IO_APIC (void) 568 { 569 int apic, pin; 570 571 for_each_ioapic_pin(apic, pin) 572 clear_IO_APIC_pin(apic, pin); 573 } 574 575 #ifdef CONFIG_X86_32 576 /* 577 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 578 * specific CPU-side IRQs. 579 */ 580 581 #define MAX_PIRQS 8 582 static int pirq_entries[MAX_PIRQS] = { 583 [0 ... MAX_PIRQS - 1] = -1 584 }; 585 586 static int __init ioapic_pirq_setup(char *str) 587 { 588 int i, max; 589 int ints[MAX_PIRQS+1]; 590 591 get_options(str, ARRAY_SIZE(ints), ints); 592 593 apic_printk(APIC_VERBOSE, KERN_INFO 594 "PIRQ redirection, working around broken MP-BIOS.\n"); 595 max = MAX_PIRQS; 596 if (ints[0] < MAX_PIRQS) 597 max = ints[0]; 598 599 for (i = 0; i < max; i++) { 600 apic_printk(APIC_VERBOSE, KERN_DEBUG 601 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 602 /* 603 * PIRQs are mapped upside down, usually. 604 */ 605 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 606 } 607 return 1; 608 } 609 610 __setup("pirq=", ioapic_pirq_setup); 611 #endif /* CONFIG_X86_32 */ 612 613 /* 614 * Saves all the IO-APIC RTE's 615 */ 616 int save_ioapic_entries(void) 617 { 618 int apic, pin; 619 int err = 0; 620 621 for_each_ioapic(apic) { 622 if (!ioapics[apic].saved_registers) { 623 err = -ENOMEM; 624 continue; 625 } 626 627 for_each_pin(apic, pin) 628 ioapics[apic].saved_registers[pin] = 629 ioapic_read_entry(apic, pin); 630 } 631 632 return err; 633 } 634 635 /* 636 * Mask all IO APIC entries. 637 */ 638 void mask_ioapic_entries(void) 639 { 640 int apic, pin; 641 642 for_each_ioapic(apic) { 643 if (!ioapics[apic].saved_registers) 644 continue; 645 646 for_each_pin(apic, pin) { 647 struct IO_APIC_route_entry entry; 648 649 entry = ioapics[apic].saved_registers[pin]; 650 if (!entry.masked) { 651 entry.masked = true; 652 ioapic_write_entry(apic, pin, entry); 653 } 654 } 655 } 656 } 657 658 /* 659 * Restore IO APIC entries which was saved in the ioapic structure. 660 */ 661 int restore_ioapic_entries(void) 662 { 663 int apic, pin; 664 665 for_each_ioapic(apic) { 666 if (!ioapics[apic].saved_registers) 667 continue; 668 669 for_each_pin(apic, pin) 670 ioapic_write_entry(apic, pin, 671 ioapics[apic].saved_registers[pin]); 672 } 673 return 0; 674 } 675 676 /* 677 * Find the IRQ entry number of a certain pin. 678 */ 679 static int find_irq_entry(int ioapic_idx, int pin, int type) 680 { 681 int i; 682 683 for (i = 0; i < mp_irq_entries; i++) 684 if (mp_irqs[i].irqtype == type && 685 (mp_irqs[i].dstapic == mpc_ioapic_id(ioapic_idx) || 686 mp_irqs[i].dstapic == MP_APIC_ALL) && 687 mp_irqs[i].dstirq == pin) 688 return i; 689 690 return -1; 691 } 692 693 /* 694 * Find the pin to which IRQ[irq] (ISA) is connected 695 */ 696 static int __init find_isa_irq_pin(int irq, int type) 697 { 698 int i; 699 700 for (i = 0; i < mp_irq_entries; i++) { 701 int lbus = mp_irqs[i].srcbus; 702 703 if (test_bit(lbus, mp_bus_not_pci) && 704 (mp_irqs[i].irqtype == type) && 705 (mp_irqs[i].srcbusirq == irq)) 706 707 return mp_irqs[i].dstirq; 708 } 709 return -1; 710 } 711 712 static int __init find_isa_irq_apic(int irq, int type) 713 { 714 int i; 715 716 for (i = 0; i < mp_irq_entries; i++) { 717 int lbus = mp_irqs[i].srcbus; 718 719 if (test_bit(lbus, mp_bus_not_pci) && 720 (mp_irqs[i].irqtype == type) && 721 (mp_irqs[i].srcbusirq == irq)) 722 break; 723 } 724 725 if (i < mp_irq_entries) { 726 int ioapic_idx; 727 728 for_each_ioapic(ioapic_idx) 729 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic) 730 return ioapic_idx; 731 } 732 733 return -1; 734 } 735 736 static bool irq_active_low(int idx) 737 { 738 int bus = mp_irqs[idx].srcbus; 739 740 /* 741 * Determine IRQ line polarity (high active or low active): 742 */ 743 switch (mp_irqs[idx].irqflag & MP_IRQPOL_MASK) { 744 case MP_IRQPOL_DEFAULT: 745 /* 746 * Conforms to spec, ie. bus-type dependent polarity. PCI 747 * defaults to low active. [E]ISA defaults to high active. 748 */ 749 return !test_bit(bus, mp_bus_not_pci); 750 case MP_IRQPOL_ACTIVE_HIGH: 751 return false; 752 case MP_IRQPOL_RESERVED: 753 pr_warn("IOAPIC: Invalid polarity: 2, defaulting to low\n"); 754 fallthrough; 755 case MP_IRQPOL_ACTIVE_LOW: 756 default: /* Pointless default required due to do gcc stupidity */ 757 return true; 758 } 759 } 760 761 #ifdef CONFIG_EISA 762 /* 763 * EISA Edge/Level control register, ELCR 764 */ 765 static bool EISA_ELCR(unsigned int irq) 766 { 767 if (irq < nr_legacy_irqs()) { 768 unsigned int port = PIC_ELCR1 + (irq >> 3); 769 return (inb(port) >> (irq & 7)) & 1; 770 } 771 apic_printk(APIC_VERBOSE, KERN_INFO 772 "Broken MPtable reports ISA irq %d\n", irq); 773 return false; 774 } 775 776 /* 777 * EISA interrupts are always active high and can be edge or level 778 * triggered depending on the ELCR value. If an interrupt is listed as 779 * EISA conforming in the MP table, that means its trigger type must be 780 * read in from the ELCR. 781 */ 782 static bool eisa_irq_is_level(int idx, int bus, bool level) 783 { 784 switch (mp_bus_id_to_type[bus]) { 785 case MP_BUS_PCI: 786 case MP_BUS_ISA: 787 return level; 788 case MP_BUS_EISA: 789 return EISA_ELCR(mp_irqs[idx].srcbusirq); 790 } 791 pr_warn("IOAPIC: Invalid srcbus: %d defaulting to level\n", bus); 792 return true; 793 } 794 #else 795 static inline int eisa_irq_is_level(int idx, int bus, bool level) 796 { 797 return level; 798 } 799 #endif 800 801 static bool irq_is_level(int idx) 802 { 803 int bus = mp_irqs[idx].srcbus; 804 bool level; 805 806 /* 807 * Determine IRQ trigger mode (edge or level sensitive): 808 */ 809 switch (mp_irqs[idx].irqflag & MP_IRQTRIG_MASK) { 810 case MP_IRQTRIG_DEFAULT: 811 /* 812 * Conforms to spec, ie. bus-type dependent trigger 813 * mode. PCI defaults to level, ISA to edge. 814 */ 815 level = !test_bit(bus, mp_bus_not_pci); 816 /* Take EISA into account */ 817 return eisa_irq_is_level(idx, bus, level); 818 case MP_IRQTRIG_EDGE: 819 return false; 820 case MP_IRQTRIG_RESERVED: 821 pr_warn("IOAPIC: Invalid trigger mode 2 defaulting to level\n"); 822 fallthrough; 823 case MP_IRQTRIG_LEVEL: 824 default: /* Pointless default required due to do gcc stupidity */ 825 return true; 826 } 827 } 828 829 static int __acpi_get_override_irq(u32 gsi, bool *trigger, bool *polarity) 830 { 831 int ioapic, pin, idx; 832 833 if (skip_ioapic_setup) 834 return -1; 835 836 ioapic = mp_find_ioapic(gsi); 837 if (ioapic < 0) 838 return -1; 839 840 pin = mp_find_ioapic_pin(ioapic, gsi); 841 if (pin < 0) 842 return -1; 843 844 idx = find_irq_entry(ioapic, pin, mp_INT); 845 if (idx < 0) 846 return -1; 847 848 *trigger = irq_is_level(idx); 849 *polarity = irq_active_low(idx); 850 return 0; 851 } 852 853 #ifdef CONFIG_ACPI 854 int acpi_get_override_irq(u32 gsi, int *is_level, int *active_low) 855 { 856 *is_level = *active_low = 0; 857 return __acpi_get_override_irq(gsi, (bool *)is_level, 858 (bool *)active_low); 859 } 860 #endif 861 862 void ioapic_set_alloc_attr(struct irq_alloc_info *info, int node, 863 int trigger, int polarity) 864 { 865 init_irq_alloc_info(info, NULL); 866 info->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 867 info->ioapic.node = node; 868 info->ioapic.is_level = trigger; 869 info->ioapic.active_low = polarity; 870 info->ioapic.valid = 1; 871 } 872 873 static void ioapic_copy_alloc_attr(struct irq_alloc_info *dst, 874 struct irq_alloc_info *src, 875 u32 gsi, int ioapic_idx, int pin) 876 { 877 bool level, pol_low; 878 879 copy_irq_alloc_info(dst, src); 880 dst->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 881 dst->devid = mpc_ioapic_id(ioapic_idx); 882 dst->ioapic.pin = pin; 883 dst->ioapic.valid = 1; 884 if (src && src->ioapic.valid) { 885 dst->ioapic.node = src->ioapic.node; 886 dst->ioapic.is_level = src->ioapic.is_level; 887 dst->ioapic.active_low = src->ioapic.active_low; 888 } else { 889 dst->ioapic.node = NUMA_NO_NODE; 890 if (__acpi_get_override_irq(gsi, &level, &pol_low) >= 0) { 891 dst->ioapic.is_level = level; 892 dst->ioapic.active_low = pol_low; 893 } else { 894 /* 895 * PCI interrupts are always active low level 896 * triggered. 897 */ 898 dst->ioapic.is_level = true; 899 dst->ioapic.active_low = true; 900 } 901 } 902 } 903 904 static int ioapic_alloc_attr_node(struct irq_alloc_info *info) 905 { 906 return (info && info->ioapic.valid) ? info->ioapic.node : NUMA_NO_NODE; 907 } 908 909 static void mp_register_handler(unsigned int irq, bool level) 910 { 911 irq_flow_handler_t hdl; 912 bool fasteoi; 913 914 if (level) { 915 irq_set_status_flags(irq, IRQ_LEVEL); 916 fasteoi = true; 917 } else { 918 irq_clear_status_flags(irq, IRQ_LEVEL); 919 fasteoi = false; 920 } 921 922 hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq; 923 __irq_set_handler(irq, hdl, 0, fasteoi ? "fasteoi" : "edge"); 924 } 925 926 static bool mp_check_pin_attr(int irq, struct irq_alloc_info *info) 927 { 928 struct mp_chip_data *data = irq_get_chip_data(irq); 929 930 /* 931 * setup_IO_APIC_irqs() programs all legacy IRQs with default trigger 932 * and polarity attributes. So allow the first user to reprogram the 933 * pin with real trigger and polarity attributes. 934 */ 935 if (irq < nr_legacy_irqs() && data->count == 1) { 936 if (info->ioapic.is_level != data->is_level) 937 mp_register_handler(irq, info->ioapic.is_level); 938 data->entry.is_level = data->is_level = info->ioapic.is_level; 939 data->entry.active_low = data->active_low = info->ioapic.active_low; 940 } 941 942 return data->is_level == info->ioapic.is_level && 943 data->active_low == info->ioapic.active_low; 944 } 945 946 static int alloc_irq_from_domain(struct irq_domain *domain, int ioapic, u32 gsi, 947 struct irq_alloc_info *info) 948 { 949 bool legacy = false; 950 int irq = -1; 951 int type = ioapics[ioapic].irqdomain_cfg.type; 952 953 switch (type) { 954 case IOAPIC_DOMAIN_LEGACY: 955 /* 956 * Dynamically allocate IRQ number for non-ISA IRQs in the first 957 * 16 GSIs on some weird platforms. 958 */ 959 if (!ioapic_initialized || gsi >= nr_legacy_irqs()) 960 irq = gsi; 961 legacy = mp_is_legacy_irq(irq); 962 break; 963 case IOAPIC_DOMAIN_STRICT: 964 irq = gsi; 965 break; 966 case IOAPIC_DOMAIN_DYNAMIC: 967 break; 968 default: 969 WARN(1, "ioapic: unknown irqdomain type %d\n", type); 970 return -1; 971 } 972 973 return __irq_domain_alloc_irqs(domain, irq, 1, 974 ioapic_alloc_attr_node(info), 975 info, legacy, NULL); 976 } 977 978 /* 979 * Need special handling for ISA IRQs because there may be multiple IOAPIC pins 980 * sharing the same ISA IRQ number and irqdomain only supports 1:1 mapping 981 * between IOAPIC pin and IRQ number. A typical IOAPIC has 24 pins, pin 0-15 are 982 * used for legacy IRQs and pin 16-23 are used for PCI IRQs (PIRQ A-H). 983 * When ACPI is disabled, only legacy IRQ numbers (IRQ0-15) are available, and 984 * some BIOSes may use MP Interrupt Source records to override IRQ numbers for 985 * PIRQs instead of reprogramming the interrupt routing logic. Thus there may be 986 * multiple pins sharing the same legacy IRQ number when ACPI is disabled. 987 */ 988 static int alloc_isa_irq_from_domain(struct irq_domain *domain, 989 int irq, int ioapic, int pin, 990 struct irq_alloc_info *info) 991 { 992 struct mp_chip_data *data; 993 struct irq_data *irq_data = irq_get_irq_data(irq); 994 int node = ioapic_alloc_attr_node(info); 995 996 /* 997 * Legacy ISA IRQ has already been allocated, just add pin to 998 * the pin list associated with this IRQ and program the IOAPIC 999 * entry. The IOAPIC entry 1000 */ 1001 if (irq_data && irq_data->parent_data) { 1002 if (!mp_check_pin_attr(irq, info)) 1003 return -EBUSY; 1004 if (__add_pin_to_irq_node(irq_data->chip_data, node, ioapic, 1005 info->ioapic.pin)) 1006 return -ENOMEM; 1007 } else { 1008 info->flags |= X86_IRQ_ALLOC_LEGACY; 1009 irq = __irq_domain_alloc_irqs(domain, irq, 1, node, info, true, 1010 NULL); 1011 if (irq >= 0) { 1012 irq_data = irq_domain_get_irq_data(domain, irq); 1013 data = irq_data->chip_data; 1014 data->isa_irq = true; 1015 } 1016 } 1017 1018 return irq; 1019 } 1020 1021 static int mp_map_pin_to_irq(u32 gsi, int idx, int ioapic, int pin, 1022 unsigned int flags, struct irq_alloc_info *info) 1023 { 1024 int irq; 1025 bool legacy = false; 1026 struct irq_alloc_info tmp; 1027 struct mp_chip_data *data; 1028 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 1029 1030 if (!domain) 1031 return -ENOSYS; 1032 1033 if (idx >= 0 && test_bit(mp_irqs[idx].srcbus, mp_bus_not_pci)) { 1034 irq = mp_irqs[idx].srcbusirq; 1035 legacy = mp_is_legacy_irq(irq); 1036 /* 1037 * IRQ2 is unusable for historical reasons on systems which 1038 * have a legacy PIC. See the comment vs. IRQ2 further down. 1039 * 1040 * If this gets removed at some point then the related code 1041 * in lapic_assign_system_vectors() needs to be adjusted as 1042 * well. 1043 */ 1044 if (legacy && irq == PIC_CASCADE_IR) 1045 return -EINVAL; 1046 } 1047 1048 mutex_lock(&ioapic_mutex); 1049 if (!(flags & IOAPIC_MAP_ALLOC)) { 1050 if (!legacy) { 1051 irq = irq_find_mapping(domain, pin); 1052 if (irq == 0) 1053 irq = -ENOENT; 1054 } 1055 } else { 1056 ioapic_copy_alloc_attr(&tmp, info, gsi, ioapic, pin); 1057 if (legacy) 1058 irq = alloc_isa_irq_from_domain(domain, irq, 1059 ioapic, pin, &tmp); 1060 else if ((irq = irq_find_mapping(domain, pin)) == 0) 1061 irq = alloc_irq_from_domain(domain, ioapic, gsi, &tmp); 1062 else if (!mp_check_pin_attr(irq, &tmp)) 1063 irq = -EBUSY; 1064 if (irq >= 0) { 1065 data = irq_get_chip_data(irq); 1066 data->count++; 1067 } 1068 } 1069 mutex_unlock(&ioapic_mutex); 1070 1071 return irq; 1072 } 1073 1074 static int pin_2_irq(int idx, int ioapic, int pin, unsigned int flags) 1075 { 1076 u32 gsi = mp_pin_to_gsi(ioapic, pin); 1077 1078 /* 1079 * Debugging check, we are in big trouble if this message pops up! 1080 */ 1081 if (mp_irqs[idx].dstirq != pin) 1082 pr_err("broken BIOS or MPTABLE parser, ayiee!!\n"); 1083 1084 #ifdef CONFIG_X86_32 1085 /* 1086 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1087 */ 1088 if ((pin >= 16) && (pin <= 23)) { 1089 if (pirq_entries[pin-16] != -1) { 1090 if (!pirq_entries[pin-16]) { 1091 apic_printk(APIC_VERBOSE, KERN_DEBUG 1092 "disabling PIRQ%d\n", pin-16); 1093 } else { 1094 int irq = pirq_entries[pin-16]; 1095 apic_printk(APIC_VERBOSE, KERN_DEBUG 1096 "using PIRQ%d -> IRQ %d\n", 1097 pin-16, irq); 1098 return irq; 1099 } 1100 } 1101 } 1102 #endif 1103 1104 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, NULL); 1105 } 1106 1107 int mp_map_gsi_to_irq(u32 gsi, unsigned int flags, struct irq_alloc_info *info) 1108 { 1109 int ioapic, pin, idx; 1110 1111 ioapic = mp_find_ioapic(gsi); 1112 if (ioapic < 0) 1113 return -ENODEV; 1114 1115 pin = mp_find_ioapic_pin(ioapic, gsi); 1116 idx = find_irq_entry(ioapic, pin, mp_INT); 1117 if ((flags & IOAPIC_MAP_CHECK) && idx < 0) 1118 return -ENODEV; 1119 1120 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, info); 1121 } 1122 1123 void mp_unmap_irq(int irq) 1124 { 1125 struct irq_data *irq_data = irq_get_irq_data(irq); 1126 struct mp_chip_data *data; 1127 1128 if (!irq_data || !irq_data->domain) 1129 return; 1130 1131 data = irq_data->chip_data; 1132 if (!data || data->isa_irq) 1133 return; 1134 1135 mutex_lock(&ioapic_mutex); 1136 if (--data->count == 0) 1137 irq_domain_free_irqs(irq, 1); 1138 mutex_unlock(&ioapic_mutex); 1139 } 1140 1141 /* 1142 * Find a specific PCI IRQ entry. 1143 * Not an __init, possibly needed by modules 1144 */ 1145 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) 1146 { 1147 int irq, i, best_ioapic = -1, best_idx = -1; 1148 1149 apic_printk(APIC_DEBUG, 1150 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1151 bus, slot, pin); 1152 if (test_bit(bus, mp_bus_not_pci)) { 1153 apic_printk(APIC_VERBOSE, 1154 "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1155 return -1; 1156 } 1157 1158 for (i = 0; i < mp_irq_entries; i++) { 1159 int lbus = mp_irqs[i].srcbus; 1160 int ioapic_idx, found = 0; 1161 1162 if (bus != lbus || mp_irqs[i].irqtype != mp_INT || 1163 slot != ((mp_irqs[i].srcbusirq >> 2) & 0x1f)) 1164 continue; 1165 1166 for_each_ioapic(ioapic_idx) 1167 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic || 1168 mp_irqs[i].dstapic == MP_APIC_ALL) { 1169 found = 1; 1170 break; 1171 } 1172 if (!found) 1173 continue; 1174 1175 /* Skip ISA IRQs */ 1176 irq = pin_2_irq(i, ioapic_idx, mp_irqs[i].dstirq, 0); 1177 if (irq > 0 && !IO_APIC_IRQ(irq)) 1178 continue; 1179 1180 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1181 best_idx = i; 1182 best_ioapic = ioapic_idx; 1183 goto out; 1184 } 1185 1186 /* 1187 * Use the first all-but-pin matching entry as a 1188 * best-guess fuzzy result for broken mptables. 1189 */ 1190 if (best_idx < 0) { 1191 best_idx = i; 1192 best_ioapic = ioapic_idx; 1193 } 1194 } 1195 if (best_idx < 0) 1196 return -1; 1197 1198 out: 1199 return pin_2_irq(best_idx, best_ioapic, mp_irqs[best_idx].dstirq, 1200 IOAPIC_MAP_ALLOC); 1201 } 1202 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1203 1204 static struct irq_chip ioapic_chip, ioapic_ir_chip; 1205 1206 static void __init setup_IO_APIC_irqs(void) 1207 { 1208 unsigned int ioapic, pin; 1209 int idx; 1210 1211 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1212 1213 for_each_ioapic_pin(ioapic, pin) { 1214 idx = find_irq_entry(ioapic, pin, mp_INT); 1215 if (idx < 0) 1216 apic_printk(APIC_VERBOSE, 1217 KERN_DEBUG " apic %d pin %d not connected\n", 1218 mpc_ioapic_id(ioapic), pin); 1219 else 1220 pin_2_irq(idx, ioapic, pin, 1221 ioapic ? 0 : IOAPIC_MAP_ALLOC); 1222 } 1223 } 1224 1225 void ioapic_zap_locks(void) 1226 { 1227 raw_spin_lock_init(&ioapic_lock); 1228 } 1229 1230 static void io_apic_print_entries(unsigned int apic, unsigned int nr_entries) 1231 { 1232 struct IO_APIC_route_entry entry; 1233 char buf[256]; 1234 int i; 1235 1236 printk(KERN_DEBUG "IOAPIC %d:\n", apic); 1237 for (i = 0; i <= nr_entries; i++) { 1238 entry = ioapic_read_entry(apic, i); 1239 snprintf(buf, sizeof(buf), 1240 " pin%02x, %s, %s, %s, V(%02X), IRR(%1d), S(%1d)", 1241 i, 1242 entry.masked ? "disabled" : "enabled ", 1243 entry.is_level ? "level" : "edge ", 1244 entry.active_low ? "low " : "high", 1245 entry.vector, entry.irr, entry.delivery_status); 1246 if (entry.ir_format) { 1247 printk(KERN_DEBUG "%s, remapped, I(%04X), Z(%X)\n", 1248 buf, 1249 (entry.ir_index_15 << 15) | entry.ir_index_0_14, 1250 entry.ir_zero); 1251 } else { 1252 printk(KERN_DEBUG "%s, %s, D(%02X%02X), M(%1d)\n", buf, 1253 entry.dest_mode_logical ? "logical " : "physical", 1254 entry.virt_destid_8_14, entry.destid_0_7, 1255 entry.delivery_mode); 1256 } 1257 } 1258 } 1259 1260 static void __init print_IO_APIC(int ioapic_idx) 1261 { 1262 union IO_APIC_reg_00 reg_00; 1263 union IO_APIC_reg_01 reg_01; 1264 union IO_APIC_reg_02 reg_02; 1265 union IO_APIC_reg_03 reg_03; 1266 unsigned long flags; 1267 1268 raw_spin_lock_irqsave(&ioapic_lock, flags); 1269 reg_00.raw = io_apic_read(ioapic_idx, 0); 1270 reg_01.raw = io_apic_read(ioapic_idx, 1); 1271 if (reg_01.bits.version >= 0x10) 1272 reg_02.raw = io_apic_read(ioapic_idx, 2); 1273 if (reg_01.bits.version >= 0x20) 1274 reg_03.raw = io_apic_read(ioapic_idx, 3); 1275 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1276 1277 printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(ioapic_idx)); 1278 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1279 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1280 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1281 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1282 1283 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1284 printk(KERN_DEBUG "....... : max redirection entries: %02X\n", 1285 reg_01.bits.entries); 1286 1287 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1288 printk(KERN_DEBUG "....... : IO APIC version: %02X\n", 1289 reg_01.bits.version); 1290 1291 /* 1292 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1293 * but the value of reg_02 is read as the previous read register 1294 * value, so ignore it if reg_02 == reg_01. 1295 */ 1296 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1297 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1298 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1299 } 1300 1301 /* 1302 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1303 * or reg_03, but the value of reg_0[23] is read as the previous read 1304 * register value, so ignore it if reg_03 == reg_0[12]. 1305 */ 1306 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1307 reg_03.raw != reg_01.raw) { 1308 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1309 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1310 } 1311 1312 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1313 io_apic_print_entries(ioapic_idx, reg_01.bits.entries); 1314 } 1315 1316 void __init print_IO_APICs(void) 1317 { 1318 int ioapic_idx; 1319 unsigned int irq; 1320 1321 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1322 for_each_ioapic(ioapic_idx) 1323 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1324 mpc_ioapic_id(ioapic_idx), 1325 ioapics[ioapic_idx].nr_registers); 1326 1327 /* 1328 * We are a bit conservative about what we expect. We have to 1329 * know about every hardware change ASAP. 1330 */ 1331 printk(KERN_INFO "testing the IO APIC.......................\n"); 1332 1333 for_each_ioapic(ioapic_idx) 1334 print_IO_APIC(ioapic_idx); 1335 1336 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1337 for_each_active_irq(irq) { 1338 struct irq_pin_list *entry; 1339 struct irq_chip *chip; 1340 struct mp_chip_data *data; 1341 1342 chip = irq_get_chip(irq); 1343 if (chip != &ioapic_chip && chip != &ioapic_ir_chip) 1344 continue; 1345 data = irq_get_chip_data(irq); 1346 if (!data) 1347 continue; 1348 if (list_empty(&data->irq_2_pin)) 1349 continue; 1350 1351 printk(KERN_DEBUG "IRQ%d ", irq); 1352 for_each_irq_pin(entry, data->irq_2_pin) 1353 pr_cont("-> %d:%d", entry->apic, entry->pin); 1354 pr_cont("\n"); 1355 } 1356 1357 printk(KERN_INFO ".................................... done.\n"); 1358 } 1359 1360 /* Where if anywhere is the i8259 connect in external int mode */ 1361 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1362 1363 void __init enable_IO_APIC(void) 1364 { 1365 int i8259_apic, i8259_pin; 1366 int apic, pin; 1367 1368 if (skip_ioapic_setup) 1369 nr_ioapics = 0; 1370 1371 if (!nr_legacy_irqs() || !nr_ioapics) 1372 return; 1373 1374 for_each_ioapic_pin(apic, pin) { 1375 /* See if any of the pins is in ExtINT mode */ 1376 struct IO_APIC_route_entry entry = ioapic_read_entry(apic, pin); 1377 1378 /* If the interrupt line is enabled and in ExtInt mode 1379 * I have found the pin where the i8259 is connected. 1380 */ 1381 if (!entry.masked && 1382 entry.delivery_mode == APIC_DELIVERY_MODE_EXTINT) { 1383 ioapic_i8259.apic = apic; 1384 ioapic_i8259.pin = pin; 1385 goto found_i8259; 1386 } 1387 } 1388 found_i8259: 1389 /* Look to see what if the MP table has reported the ExtINT */ 1390 /* If we could not find the appropriate pin by looking at the ioapic 1391 * the i8259 probably is not connected the ioapic but give the 1392 * mptable a chance anyway. 1393 */ 1394 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1395 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1396 /* Trust the MP table if nothing is setup in the hardware */ 1397 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1398 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 1399 ioapic_i8259.pin = i8259_pin; 1400 ioapic_i8259.apic = i8259_apic; 1401 } 1402 /* Complain if the MP table and the hardware disagree */ 1403 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1404 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1405 { 1406 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 1407 } 1408 1409 /* 1410 * Do not trust the IO-APIC being empty at bootup 1411 */ 1412 clear_IO_APIC(); 1413 } 1414 1415 void native_restore_boot_irq_mode(void) 1416 { 1417 /* 1418 * If the i8259 is routed through an IOAPIC 1419 * Put that IOAPIC in virtual wire mode 1420 * so legacy interrupts can be delivered. 1421 */ 1422 if (ioapic_i8259.pin != -1) { 1423 struct IO_APIC_route_entry entry; 1424 u32 apic_id = read_apic_id(); 1425 1426 memset(&entry, 0, sizeof(entry)); 1427 entry.masked = false; 1428 entry.is_level = false; 1429 entry.active_low = false; 1430 entry.dest_mode_logical = false; 1431 entry.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 1432 entry.destid_0_7 = apic_id & 0xFF; 1433 entry.virt_destid_8_14 = apic_id >> 8; 1434 1435 /* 1436 * Add it to the IO-APIC irq-routing table: 1437 */ 1438 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 1439 } 1440 1441 if (boot_cpu_has(X86_FEATURE_APIC) || apic_from_smp_config()) 1442 disconnect_bsp_APIC(ioapic_i8259.pin != -1); 1443 } 1444 1445 void restore_boot_irq_mode(void) 1446 { 1447 if (!nr_legacy_irqs()) 1448 return; 1449 1450 x86_apic_ops.restore(); 1451 } 1452 1453 #ifdef CONFIG_X86_32 1454 /* 1455 * function to set the IO-APIC physical IDs based on the 1456 * values stored in the MPC table. 1457 * 1458 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 1459 */ 1460 void __init setup_ioapic_ids_from_mpc_nocheck(void) 1461 { 1462 union IO_APIC_reg_00 reg_00; 1463 physid_mask_t phys_id_present_map; 1464 int ioapic_idx; 1465 int i; 1466 unsigned char old_id; 1467 unsigned long flags; 1468 1469 /* 1470 * This is broken; anything with a real cpu count has to 1471 * circumvent this idiocy regardless. 1472 */ 1473 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map); 1474 1475 /* 1476 * Set the IOAPIC ID to the value stored in the MPC table. 1477 */ 1478 for_each_ioapic(ioapic_idx) { 1479 /* Read the register 0 value */ 1480 raw_spin_lock_irqsave(&ioapic_lock, flags); 1481 reg_00.raw = io_apic_read(ioapic_idx, 0); 1482 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1483 1484 old_id = mpc_ioapic_id(ioapic_idx); 1485 1486 if (mpc_ioapic_id(ioapic_idx) >= get_physical_broadcast()) { 1487 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 1488 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1489 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 1490 reg_00.bits.ID); 1491 ioapics[ioapic_idx].mp_config.apicid = reg_00.bits.ID; 1492 } 1493 1494 /* 1495 * Sanity check, is the ID really free? Every APIC in a 1496 * system must have a unique ID or we get lots of nice 1497 * 'stuck on smp_invalidate_needed IPI wait' messages. 1498 */ 1499 if (apic->check_apicid_used(&phys_id_present_map, 1500 mpc_ioapic_id(ioapic_idx))) { 1501 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 1502 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1503 for (i = 0; i < get_physical_broadcast(); i++) 1504 if (!physid_isset(i, phys_id_present_map)) 1505 break; 1506 if (i >= get_physical_broadcast()) 1507 panic("Max APIC ID exceeded!\n"); 1508 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 1509 i); 1510 physid_set(i, phys_id_present_map); 1511 ioapics[ioapic_idx].mp_config.apicid = i; 1512 } else { 1513 physid_mask_t tmp; 1514 apic->apicid_to_cpu_present(mpc_ioapic_id(ioapic_idx), 1515 &tmp); 1516 apic_printk(APIC_VERBOSE, "Setting %d in the " 1517 "phys_id_present_map\n", 1518 mpc_ioapic_id(ioapic_idx)); 1519 physids_or(phys_id_present_map, phys_id_present_map, tmp); 1520 } 1521 1522 /* 1523 * We need to adjust the IRQ routing table 1524 * if the ID changed. 1525 */ 1526 if (old_id != mpc_ioapic_id(ioapic_idx)) 1527 for (i = 0; i < mp_irq_entries; i++) 1528 if (mp_irqs[i].dstapic == old_id) 1529 mp_irqs[i].dstapic 1530 = mpc_ioapic_id(ioapic_idx); 1531 1532 /* 1533 * Update the ID register according to the right value 1534 * from the MPC table if they are different. 1535 */ 1536 if (mpc_ioapic_id(ioapic_idx) == reg_00.bits.ID) 1537 continue; 1538 1539 apic_printk(APIC_VERBOSE, KERN_INFO 1540 "...changing IO-APIC physical APIC ID to %d ...", 1541 mpc_ioapic_id(ioapic_idx)); 1542 1543 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 1544 raw_spin_lock_irqsave(&ioapic_lock, flags); 1545 io_apic_write(ioapic_idx, 0, reg_00.raw); 1546 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1547 1548 /* 1549 * Sanity check 1550 */ 1551 raw_spin_lock_irqsave(&ioapic_lock, flags); 1552 reg_00.raw = io_apic_read(ioapic_idx, 0); 1553 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1554 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) 1555 pr_cont("could not set ID!\n"); 1556 else 1557 apic_printk(APIC_VERBOSE, " ok.\n"); 1558 } 1559 } 1560 1561 void __init setup_ioapic_ids_from_mpc(void) 1562 { 1563 1564 if (acpi_ioapic) 1565 return; 1566 /* 1567 * Don't check I/O APIC IDs for xAPIC systems. They have 1568 * no meaning without the serial APIC bus. 1569 */ 1570 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1571 || APIC_XAPIC(boot_cpu_apic_version)) 1572 return; 1573 setup_ioapic_ids_from_mpc_nocheck(); 1574 } 1575 #endif 1576 1577 int no_timer_check __initdata; 1578 1579 static int __init notimercheck(char *s) 1580 { 1581 no_timer_check = 1; 1582 return 1; 1583 } 1584 __setup("no_timer_check", notimercheck); 1585 1586 static void __init delay_with_tsc(void) 1587 { 1588 unsigned long long start, now; 1589 unsigned long end = jiffies + 4; 1590 1591 start = rdtsc(); 1592 1593 /* 1594 * We don't know the TSC frequency yet, but waiting for 1595 * 40000000000/HZ TSC cycles is safe: 1596 * 4 GHz == 10 jiffies 1597 * 1 GHz == 40 jiffies 1598 */ 1599 do { 1600 rep_nop(); 1601 now = rdtsc(); 1602 } while ((now - start) < 40000000000ULL / HZ && 1603 time_before_eq(jiffies, end)); 1604 } 1605 1606 static void __init delay_without_tsc(void) 1607 { 1608 unsigned long end = jiffies + 4; 1609 int band = 1; 1610 1611 /* 1612 * We don't know any frequency yet, but waiting for 1613 * 40940000000/HZ cycles is safe: 1614 * 4 GHz == 10 jiffies 1615 * 1 GHz == 40 jiffies 1616 * 1 << 1 + 1 << 2 +...+ 1 << 11 = 4094 1617 */ 1618 do { 1619 __delay(((1U << band++) * 10000000UL) / HZ); 1620 } while (band < 12 && time_before_eq(jiffies, end)); 1621 } 1622 1623 /* 1624 * There is a nasty bug in some older SMP boards, their mptable lies 1625 * about the timer IRQ. We do the following to work around the situation: 1626 * 1627 * - timer IRQ defaults to IO-APIC IRQ 1628 * - if this function detects that timer IRQs are defunct, then we fall 1629 * back to ISA timer IRQs 1630 */ 1631 static int __init timer_irq_works(void) 1632 { 1633 unsigned long t1 = jiffies; 1634 1635 if (no_timer_check) 1636 return 1; 1637 1638 local_irq_enable(); 1639 if (boot_cpu_has(X86_FEATURE_TSC)) 1640 delay_with_tsc(); 1641 else 1642 delay_without_tsc(); 1643 1644 /* 1645 * Expect a few ticks at least, to be sure some possible 1646 * glue logic does not lock up after one or two first 1647 * ticks in a non-ExtINT mode. Also the local APIC 1648 * might have cached one ExtINT interrupt. Finally, at 1649 * least one tick may be lost due to delays. 1650 */ 1651 1652 local_irq_disable(); 1653 1654 /* Did jiffies advance? */ 1655 return time_after(jiffies, t1 + 4); 1656 } 1657 1658 /* 1659 * In the SMP+IOAPIC case it might happen that there are an unspecified 1660 * number of pending IRQ events unhandled. These cases are very rare, 1661 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 1662 * better to do it this way as thus we do not have to be aware of 1663 * 'pending' interrupts in the IRQ path, except at this point. 1664 */ 1665 /* 1666 * Edge triggered needs to resend any interrupt 1667 * that was delayed but this is now handled in the device 1668 * independent code. 1669 */ 1670 1671 /* 1672 * Starting up a edge-triggered IO-APIC interrupt is 1673 * nasty - we need to make sure that we get the edge. 1674 * If it is already asserted for some reason, we need 1675 * return 1 to indicate that is was pending. 1676 * 1677 * This is not complete - we should be able to fake 1678 * an edge even if it isn't on the 8259A... 1679 */ 1680 static unsigned int startup_ioapic_irq(struct irq_data *data) 1681 { 1682 int was_pending = 0, irq = data->irq; 1683 unsigned long flags; 1684 1685 raw_spin_lock_irqsave(&ioapic_lock, flags); 1686 if (irq < nr_legacy_irqs()) { 1687 legacy_pic->mask(irq); 1688 if (legacy_pic->irq_pending(irq)) 1689 was_pending = 1; 1690 } 1691 __unmask_ioapic(data->chip_data); 1692 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1693 1694 return was_pending; 1695 } 1696 1697 atomic_t irq_mis_count; 1698 1699 #ifdef CONFIG_GENERIC_PENDING_IRQ 1700 static bool io_apic_level_ack_pending(struct mp_chip_data *data) 1701 { 1702 struct irq_pin_list *entry; 1703 unsigned long flags; 1704 1705 raw_spin_lock_irqsave(&ioapic_lock, flags); 1706 for_each_irq_pin(entry, data->irq_2_pin) { 1707 struct IO_APIC_route_entry e; 1708 int pin; 1709 1710 pin = entry->pin; 1711 e.w1 = io_apic_read(entry->apic, 0x10 + pin*2); 1712 /* Is the remote IRR bit set? */ 1713 if (e.irr) { 1714 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1715 return true; 1716 } 1717 } 1718 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1719 1720 return false; 1721 } 1722 1723 static inline bool ioapic_prepare_move(struct irq_data *data) 1724 { 1725 /* If we are moving the IRQ we need to mask it */ 1726 if (unlikely(irqd_is_setaffinity_pending(data))) { 1727 if (!irqd_irq_masked(data)) 1728 mask_ioapic_irq(data); 1729 return true; 1730 } 1731 return false; 1732 } 1733 1734 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1735 { 1736 if (unlikely(moveit)) { 1737 /* Only migrate the irq if the ack has been received. 1738 * 1739 * On rare occasions the broadcast level triggered ack gets 1740 * delayed going to ioapics, and if we reprogram the 1741 * vector while Remote IRR is still set the irq will never 1742 * fire again. 1743 * 1744 * To prevent this scenario we read the Remote IRR bit 1745 * of the ioapic. This has two effects. 1746 * - On any sane system the read of the ioapic will 1747 * flush writes (and acks) going to the ioapic from 1748 * this cpu. 1749 * - We get to see if the ACK has actually been delivered. 1750 * 1751 * Based on failed experiments of reprogramming the 1752 * ioapic entry from outside of irq context starting 1753 * with masking the ioapic entry and then polling until 1754 * Remote IRR was clear before reprogramming the 1755 * ioapic I don't trust the Remote IRR bit to be 1756 * completely accurate. 1757 * 1758 * However there appears to be no other way to plug 1759 * this race, so if the Remote IRR bit is not 1760 * accurate and is causing problems then it is a hardware bug 1761 * and you can go talk to the chipset vendor about it. 1762 */ 1763 if (!io_apic_level_ack_pending(data->chip_data)) 1764 irq_move_masked_irq(data); 1765 /* If the IRQ is masked in the core, leave it: */ 1766 if (!irqd_irq_masked(data)) 1767 unmask_ioapic_irq(data); 1768 } 1769 } 1770 #else 1771 static inline bool ioapic_prepare_move(struct irq_data *data) 1772 { 1773 return false; 1774 } 1775 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1776 { 1777 } 1778 #endif 1779 1780 static void ioapic_ack_level(struct irq_data *irq_data) 1781 { 1782 struct irq_cfg *cfg = irqd_cfg(irq_data); 1783 unsigned long v; 1784 bool moveit; 1785 int i; 1786 1787 irq_complete_move(cfg); 1788 moveit = ioapic_prepare_move(irq_data); 1789 1790 /* 1791 * It appears there is an erratum which affects at least version 0x11 1792 * of I/O APIC (that's the 82093AA and cores integrated into various 1793 * chipsets). Under certain conditions a level-triggered interrupt is 1794 * erroneously delivered as edge-triggered one but the respective IRR 1795 * bit gets set nevertheless. As a result the I/O unit expects an EOI 1796 * message but it will never arrive and further interrupts are blocked 1797 * from the source. The exact reason is so far unknown, but the 1798 * phenomenon was observed when two consecutive interrupt requests 1799 * from a given source get delivered to the same CPU and the source is 1800 * temporarily disabled in between. 1801 * 1802 * A workaround is to simulate an EOI message manually. We achieve it 1803 * by setting the trigger mode to edge and then to level when the edge 1804 * trigger mode gets detected in the TMR of a local APIC for a 1805 * level-triggered interrupt. We mask the source for the time of the 1806 * operation to prevent an edge-triggered interrupt escaping meanwhile. 1807 * The idea is from Manfred Spraul. --macro 1808 * 1809 * Also in the case when cpu goes offline, fixup_irqs() will forward 1810 * any unhandled interrupt on the offlined cpu to the new cpu 1811 * destination that is handling the corresponding interrupt. This 1812 * interrupt forwarding is done via IPI's. Hence, in this case also 1813 * level-triggered io-apic interrupt will be seen as an edge 1814 * interrupt in the IRR. And we can't rely on the cpu's EOI 1815 * to be broadcasted to the IO-APIC's which will clear the remoteIRR 1816 * corresponding to the level-triggered interrupt. Hence on IO-APIC's 1817 * supporting EOI register, we do an explicit EOI to clear the 1818 * remote IRR and on IO-APIC's which don't have an EOI register, 1819 * we use the above logic (mask+edge followed by unmask+level) from 1820 * Manfred Spraul to clear the remote IRR. 1821 */ 1822 i = cfg->vector; 1823 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 1824 1825 /* 1826 * We must acknowledge the irq before we move it or the acknowledge will 1827 * not propagate properly. 1828 */ 1829 ack_APIC_irq(); 1830 1831 /* 1832 * Tail end of clearing remote IRR bit (either by delivering the EOI 1833 * message via io-apic EOI register write or simulating it using 1834 * mask+edge followed by unmask+level logic) manually when the 1835 * level triggered interrupt is seen as the edge triggered interrupt 1836 * at the cpu. 1837 */ 1838 if (!(v & (1 << (i & 0x1f)))) { 1839 atomic_inc(&irq_mis_count); 1840 eoi_ioapic_pin(cfg->vector, irq_data->chip_data); 1841 } 1842 1843 ioapic_finish_move(irq_data, moveit); 1844 } 1845 1846 static void ioapic_ir_ack_level(struct irq_data *irq_data) 1847 { 1848 struct mp_chip_data *data = irq_data->chip_data; 1849 1850 /* 1851 * Intr-remapping uses pin number as the virtual vector 1852 * in the RTE. Actual vector is programmed in 1853 * intr-remapping table entry. Hence for the io-apic 1854 * EOI we use the pin number. 1855 */ 1856 apic_ack_irq(irq_data); 1857 eoi_ioapic_pin(data->entry.vector, data); 1858 } 1859 1860 /* 1861 * The I/OAPIC is just a device for generating MSI messages from legacy 1862 * interrupt pins. Various fields of the RTE translate into bits of the 1863 * resulting MSI which had a historical meaning. 1864 * 1865 * With interrupt remapping, many of those bits have different meanings 1866 * in the underlying MSI, but the way that the I/OAPIC transforms them 1867 * from its RTE to the MSI message is the same. This function allows 1868 * the parent IRQ domain to compose the MSI message, then takes the 1869 * relevant bits to put them in the appropriate places in the RTE in 1870 * order to generate that message when the IRQ happens. 1871 * 1872 * The setup here relies on a preconfigured route entry (is_level, 1873 * active_low, masked) because the parent domain is merely composing the 1874 * generic message routing information which is used for the MSI. 1875 */ 1876 static void ioapic_setup_msg_from_msi(struct irq_data *irq_data, 1877 struct IO_APIC_route_entry *entry) 1878 { 1879 struct msi_msg msg; 1880 1881 /* Let the parent domain compose the MSI message */ 1882 irq_chip_compose_msi_msg(irq_data, &msg); 1883 1884 /* 1885 * - Real vector 1886 * - DMAR/IR: 8bit subhandle (ioapic.pin) 1887 * - AMD/IR: 8bit IRTE index 1888 */ 1889 entry->vector = msg.arch_data.vector; 1890 /* Delivery mode (for DMAR/IR all 0) */ 1891 entry->delivery_mode = msg.arch_data.delivery_mode; 1892 /* Destination mode or DMAR/IR index bit 15 */ 1893 entry->dest_mode_logical = msg.arch_addr_lo.dest_mode_logical; 1894 /* DMAR/IR: 1, 0 for all other modes */ 1895 entry->ir_format = msg.arch_addr_lo.dmar_format; 1896 /* 1897 * - DMAR/IR: index bit 0-14. 1898 * 1899 * - Virt: If the host supports x2apic without a virtualized IR 1900 * unit then bit 0-6 of dmar_index_0_14 are providing bit 1901 * 8-14 of the destination id. 1902 * 1903 * All other modes have bit 0-6 of dmar_index_0_14 cleared and the 1904 * topmost 8 bits are destination id bit 0-7 (entry::destid_0_7). 1905 */ 1906 entry->ir_index_0_14 = msg.arch_addr_lo.dmar_index_0_14; 1907 } 1908 1909 static void ioapic_configure_entry(struct irq_data *irqd) 1910 { 1911 struct mp_chip_data *mpd = irqd->chip_data; 1912 struct irq_pin_list *entry; 1913 1914 ioapic_setup_msg_from_msi(irqd, &mpd->entry); 1915 1916 for_each_irq_pin(entry, mpd->irq_2_pin) 1917 __ioapic_write_entry(entry->apic, entry->pin, mpd->entry); 1918 } 1919 1920 static int ioapic_set_affinity(struct irq_data *irq_data, 1921 const struct cpumask *mask, bool force) 1922 { 1923 struct irq_data *parent = irq_data->parent_data; 1924 unsigned long flags; 1925 int ret; 1926 1927 ret = parent->chip->irq_set_affinity(parent, mask, force); 1928 raw_spin_lock_irqsave(&ioapic_lock, flags); 1929 if (ret >= 0 && ret != IRQ_SET_MASK_OK_DONE) 1930 ioapic_configure_entry(irq_data); 1931 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1932 1933 return ret; 1934 } 1935 1936 /* 1937 * Interrupt shutdown masks the ioapic pin, but the interrupt might already 1938 * be in flight, but not yet serviced by the target CPU. That means 1939 * __synchronize_hardirq() would return and claim that everything is calmed 1940 * down. So free_irq() would proceed and deactivate the interrupt and free 1941 * resources. 1942 * 1943 * Once the target CPU comes around to service it it will find a cleared 1944 * vector and complain. While the spurious interrupt is harmless, the full 1945 * release of resources might prevent the interrupt from being acknowledged 1946 * which keeps the hardware in a weird state. 1947 * 1948 * Verify that the corresponding Remote-IRR bits are clear. 1949 */ 1950 static int ioapic_irq_get_chip_state(struct irq_data *irqd, 1951 enum irqchip_irq_state which, 1952 bool *state) 1953 { 1954 struct mp_chip_data *mcd = irqd->chip_data; 1955 struct IO_APIC_route_entry rentry; 1956 struct irq_pin_list *p; 1957 1958 if (which != IRQCHIP_STATE_ACTIVE) 1959 return -EINVAL; 1960 1961 *state = false; 1962 raw_spin_lock(&ioapic_lock); 1963 for_each_irq_pin(p, mcd->irq_2_pin) { 1964 rentry = __ioapic_read_entry(p->apic, p->pin); 1965 /* 1966 * The remote IRR is only valid in level trigger mode. It's 1967 * meaning is undefined for edge triggered interrupts and 1968 * irrelevant because the IO-APIC treats them as fire and 1969 * forget. 1970 */ 1971 if (rentry.irr && rentry.is_level) { 1972 *state = true; 1973 break; 1974 } 1975 } 1976 raw_spin_unlock(&ioapic_lock); 1977 return 0; 1978 } 1979 1980 static struct irq_chip ioapic_chip __read_mostly = { 1981 .name = "IO-APIC", 1982 .irq_startup = startup_ioapic_irq, 1983 .irq_mask = mask_ioapic_irq, 1984 .irq_unmask = unmask_ioapic_irq, 1985 .irq_ack = irq_chip_ack_parent, 1986 .irq_eoi = ioapic_ack_level, 1987 .irq_set_affinity = ioapic_set_affinity, 1988 .irq_retrigger = irq_chip_retrigger_hierarchy, 1989 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 1990 .flags = IRQCHIP_SKIP_SET_WAKE | 1991 IRQCHIP_AFFINITY_PRE_STARTUP, 1992 }; 1993 1994 static struct irq_chip ioapic_ir_chip __read_mostly = { 1995 .name = "IR-IO-APIC", 1996 .irq_startup = startup_ioapic_irq, 1997 .irq_mask = mask_ioapic_irq, 1998 .irq_unmask = unmask_ioapic_irq, 1999 .irq_ack = irq_chip_ack_parent, 2000 .irq_eoi = ioapic_ir_ack_level, 2001 .irq_set_affinity = ioapic_set_affinity, 2002 .irq_retrigger = irq_chip_retrigger_hierarchy, 2003 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 2004 .flags = IRQCHIP_SKIP_SET_WAKE | 2005 IRQCHIP_AFFINITY_PRE_STARTUP, 2006 }; 2007 2008 static inline void init_IO_APIC_traps(void) 2009 { 2010 struct irq_cfg *cfg; 2011 unsigned int irq; 2012 2013 for_each_active_irq(irq) { 2014 cfg = irq_cfg(irq); 2015 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2016 /* 2017 * Hmm.. We don't have an entry for this, 2018 * so default to an old-fashioned 8259 2019 * interrupt if we can.. 2020 */ 2021 if (irq < nr_legacy_irqs()) 2022 legacy_pic->make_irq(irq); 2023 else 2024 /* Strange. Oh, well.. */ 2025 irq_set_chip(irq, &no_irq_chip); 2026 } 2027 } 2028 } 2029 2030 /* 2031 * The local APIC irq-chip implementation: 2032 */ 2033 2034 static void mask_lapic_irq(struct irq_data *data) 2035 { 2036 unsigned long v; 2037 2038 v = apic_read(APIC_LVT0); 2039 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2040 } 2041 2042 static void unmask_lapic_irq(struct irq_data *data) 2043 { 2044 unsigned long v; 2045 2046 v = apic_read(APIC_LVT0); 2047 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2048 } 2049 2050 static void ack_lapic_irq(struct irq_data *data) 2051 { 2052 ack_APIC_irq(); 2053 } 2054 2055 static struct irq_chip lapic_chip __read_mostly = { 2056 .name = "local-APIC", 2057 .irq_mask = mask_lapic_irq, 2058 .irq_unmask = unmask_lapic_irq, 2059 .irq_ack = ack_lapic_irq, 2060 }; 2061 2062 static void lapic_register_intr(int irq) 2063 { 2064 irq_clear_status_flags(irq, IRQ_LEVEL); 2065 irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2066 "edge"); 2067 } 2068 2069 /* 2070 * This looks a bit hackish but it's about the only one way of sending 2071 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2072 * not support the ExtINT mode, unfortunately. We need to send these 2073 * cycles as some i82489DX-based boards have glue logic that keeps the 2074 * 8259A interrupt line asserted until INTA. --macro 2075 */ 2076 static inline void __init unlock_ExtINT_logic(void) 2077 { 2078 int apic, pin, i; 2079 struct IO_APIC_route_entry entry0, entry1; 2080 unsigned char save_control, save_freq_select; 2081 u32 apic_id; 2082 2083 pin = find_isa_irq_pin(8, mp_INT); 2084 if (pin == -1) { 2085 WARN_ON_ONCE(1); 2086 return; 2087 } 2088 apic = find_isa_irq_apic(8, mp_INT); 2089 if (apic == -1) { 2090 WARN_ON_ONCE(1); 2091 return; 2092 } 2093 2094 entry0 = ioapic_read_entry(apic, pin); 2095 clear_IO_APIC_pin(apic, pin); 2096 2097 apic_id = hard_smp_processor_id(); 2098 memset(&entry1, 0, sizeof(entry1)); 2099 2100 entry1.dest_mode_logical = true; 2101 entry1.masked = false; 2102 entry1.destid_0_7 = apic_id & 0xFF; 2103 entry1.virt_destid_8_14 = apic_id >> 8; 2104 entry1.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 2105 entry1.active_low = entry0.active_low; 2106 entry1.is_level = false; 2107 entry1.vector = 0; 2108 2109 ioapic_write_entry(apic, pin, entry1); 2110 2111 save_control = CMOS_READ(RTC_CONTROL); 2112 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2113 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2114 RTC_FREQ_SELECT); 2115 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2116 2117 i = 100; 2118 while (i-- > 0) { 2119 mdelay(10); 2120 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2121 i -= 10; 2122 } 2123 2124 CMOS_WRITE(save_control, RTC_CONTROL); 2125 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2126 clear_IO_APIC_pin(apic, pin); 2127 2128 ioapic_write_entry(apic, pin, entry0); 2129 } 2130 2131 static int disable_timer_pin_1 __initdata; 2132 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2133 static int __init disable_timer_pin_setup(char *arg) 2134 { 2135 disable_timer_pin_1 = 1; 2136 return 0; 2137 } 2138 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2139 2140 static int mp_alloc_timer_irq(int ioapic, int pin) 2141 { 2142 int irq = -1; 2143 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 2144 2145 if (domain) { 2146 struct irq_alloc_info info; 2147 2148 ioapic_set_alloc_attr(&info, NUMA_NO_NODE, 0, 0); 2149 info.devid = mpc_ioapic_id(ioapic); 2150 info.ioapic.pin = pin; 2151 mutex_lock(&ioapic_mutex); 2152 irq = alloc_isa_irq_from_domain(domain, 0, ioapic, pin, &info); 2153 mutex_unlock(&ioapic_mutex); 2154 } 2155 2156 return irq; 2157 } 2158 2159 /* 2160 * This code may look a bit paranoid, but it's supposed to cooperate with 2161 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2162 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2163 * fanatically on his truly buggy board. 2164 * 2165 * FIXME: really need to revamp this for all platforms. 2166 */ 2167 static inline void __init check_timer(void) 2168 { 2169 struct irq_data *irq_data = irq_get_irq_data(0); 2170 struct mp_chip_data *data = irq_data->chip_data; 2171 struct irq_cfg *cfg = irqd_cfg(irq_data); 2172 int node = cpu_to_node(0); 2173 int apic1, pin1, apic2, pin2; 2174 int no_pin1 = 0; 2175 2176 if (!global_clock_event) 2177 return; 2178 2179 local_irq_disable(); 2180 2181 /* 2182 * get/set the timer IRQ vector: 2183 */ 2184 legacy_pic->mask(0); 2185 2186 /* 2187 * As IRQ0 is to be enabled in the 8259A, the virtual 2188 * wire has to be disabled in the local APIC. Also 2189 * timer interrupts need to be acknowledged manually in 2190 * the 8259A for the i82489DX when using the NMI 2191 * watchdog as that APIC treats NMIs as level-triggered. 2192 * The AEOI mode will finish them in the 8259A 2193 * automatically. 2194 */ 2195 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2196 legacy_pic->init(1); 2197 2198 pin1 = find_isa_irq_pin(0, mp_INT); 2199 apic1 = find_isa_irq_apic(0, mp_INT); 2200 pin2 = ioapic_i8259.pin; 2201 apic2 = ioapic_i8259.apic; 2202 2203 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2204 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2205 cfg->vector, apic1, pin1, apic2, pin2); 2206 2207 /* 2208 * Some BIOS writers are clueless and report the ExtINTA 2209 * I/O APIC input from the cascaded 8259A as the timer 2210 * interrupt input. So just in case, if only one pin 2211 * was found above, try it both directly and through the 2212 * 8259A. 2213 */ 2214 if (pin1 == -1) { 2215 panic_if_irq_remap("BIOS bug: timer not connected to IO-APIC"); 2216 pin1 = pin2; 2217 apic1 = apic2; 2218 no_pin1 = 1; 2219 } else if (pin2 == -1) { 2220 pin2 = pin1; 2221 apic2 = apic1; 2222 } 2223 2224 if (pin1 != -1) { 2225 /* Ok, does IRQ0 through the IOAPIC work? */ 2226 if (no_pin1) { 2227 mp_alloc_timer_irq(apic1, pin1); 2228 } else { 2229 /* 2230 * for edge trigger, it's already unmasked, 2231 * so only need to unmask if it is level-trigger 2232 * do we really have level trigger timer? 2233 */ 2234 int idx = find_irq_entry(apic1, pin1, mp_INT); 2235 2236 if (idx != -1 && irq_is_level(idx)) 2237 unmask_ioapic_irq(irq_get_irq_data(0)); 2238 } 2239 irq_domain_deactivate_irq(irq_data); 2240 irq_domain_activate_irq(irq_data, false); 2241 if (timer_irq_works()) { 2242 if (disable_timer_pin_1 > 0) 2243 clear_IO_APIC_pin(0, pin1); 2244 goto out; 2245 } 2246 panic_if_irq_remap("timer doesn't work through Interrupt-remapped IO-APIC"); 2247 clear_IO_APIC_pin(apic1, pin1); 2248 if (!no_pin1) 2249 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 2250 "8254 timer not connected to IO-APIC\n"); 2251 2252 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 2253 "(IRQ0) through the 8259A ...\n"); 2254 apic_printk(APIC_QUIET, KERN_INFO 2255 "..... (found apic %d pin %d) ...\n", apic2, pin2); 2256 /* 2257 * legacy devices should be connected to IO APIC #0 2258 */ 2259 replace_pin_at_irq_node(data, node, apic1, pin1, apic2, pin2); 2260 irq_domain_deactivate_irq(irq_data); 2261 irq_domain_activate_irq(irq_data, false); 2262 legacy_pic->unmask(0); 2263 if (timer_irq_works()) { 2264 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 2265 goto out; 2266 } 2267 /* 2268 * Cleanup, just in case ... 2269 */ 2270 legacy_pic->mask(0); 2271 clear_IO_APIC_pin(apic2, pin2); 2272 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 2273 } 2274 2275 apic_printk(APIC_QUIET, KERN_INFO 2276 "...trying to set up timer as Virtual Wire IRQ...\n"); 2277 2278 lapic_register_intr(0); 2279 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 2280 legacy_pic->unmask(0); 2281 2282 if (timer_irq_works()) { 2283 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2284 goto out; 2285 } 2286 legacy_pic->mask(0); 2287 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 2288 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 2289 2290 apic_printk(APIC_QUIET, KERN_INFO 2291 "...trying to set up timer as ExtINT IRQ...\n"); 2292 2293 legacy_pic->init(0); 2294 legacy_pic->make_irq(0); 2295 apic_write(APIC_LVT0, APIC_DM_EXTINT); 2296 legacy_pic->unmask(0); 2297 2298 unlock_ExtINT_logic(); 2299 2300 if (timer_irq_works()) { 2301 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2302 goto out; 2303 } 2304 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 2305 if (apic_is_x2apic_enabled()) 2306 apic_printk(APIC_QUIET, KERN_INFO 2307 "Perhaps problem with the pre-enabled x2apic mode\n" 2308 "Try booting with x2apic and interrupt-remapping disabled in the bios.\n"); 2309 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 2310 "report. Then try booting with the 'noapic' option.\n"); 2311 out: 2312 local_irq_enable(); 2313 } 2314 2315 /* 2316 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 2317 * to devices. However there may be an I/O APIC pin available for 2318 * this interrupt regardless. The pin may be left unconnected, but 2319 * typically it will be reused as an ExtINT cascade interrupt for 2320 * the master 8259A. In the MPS case such a pin will normally be 2321 * reported as an ExtINT interrupt in the MP table. With ACPI 2322 * there is no provision for ExtINT interrupts, and in the absence 2323 * of an override it would be treated as an ordinary ISA I/O APIC 2324 * interrupt, that is edge-triggered and unmasked by default. We 2325 * used to do this, but it caused problems on some systems because 2326 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 2327 * the same ExtINT cascade interrupt to drive the local APIC of the 2328 * bootstrap processor. Therefore we refrain from routing IRQ2 to 2329 * the I/O APIC in all cases now. No actual device should request 2330 * it anyway. --macro 2331 */ 2332 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 2333 2334 static int mp_irqdomain_create(int ioapic) 2335 { 2336 struct irq_domain *parent; 2337 int hwirqs = mp_ioapic_pin_count(ioapic); 2338 struct ioapic *ip = &ioapics[ioapic]; 2339 struct ioapic_domain_cfg *cfg = &ip->irqdomain_cfg; 2340 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2341 struct fwnode_handle *fn; 2342 struct irq_fwspec fwspec; 2343 2344 if (cfg->type == IOAPIC_DOMAIN_INVALID) 2345 return 0; 2346 2347 /* Handle device tree enumerated APICs proper */ 2348 if (cfg->dev) { 2349 fn = of_node_to_fwnode(cfg->dev); 2350 } else { 2351 fn = irq_domain_alloc_named_id_fwnode("IO-APIC", mpc_ioapic_id(ioapic)); 2352 if (!fn) 2353 return -ENOMEM; 2354 } 2355 2356 fwspec.fwnode = fn; 2357 fwspec.param_count = 1; 2358 fwspec.param[0] = mpc_ioapic_id(ioapic); 2359 2360 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY); 2361 if (!parent) { 2362 if (!cfg->dev) 2363 irq_domain_free_fwnode(fn); 2364 return -ENODEV; 2365 } 2366 2367 ip->irqdomain = irq_domain_create_hierarchy(parent, 0, hwirqs, fn, cfg->ops, 2368 (void *)(long)ioapic); 2369 if (!ip->irqdomain) { 2370 /* Release fw handle if it was allocated above */ 2371 if (!cfg->dev) 2372 irq_domain_free_fwnode(fn); 2373 return -ENOMEM; 2374 } 2375 2376 if (cfg->type == IOAPIC_DOMAIN_LEGACY || 2377 cfg->type == IOAPIC_DOMAIN_STRICT) 2378 ioapic_dynirq_base = max(ioapic_dynirq_base, 2379 gsi_cfg->gsi_end + 1); 2380 2381 return 0; 2382 } 2383 2384 static void ioapic_destroy_irqdomain(int idx) 2385 { 2386 struct ioapic_domain_cfg *cfg = &ioapics[idx].irqdomain_cfg; 2387 struct fwnode_handle *fn = ioapics[idx].irqdomain->fwnode; 2388 2389 if (ioapics[idx].irqdomain) { 2390 irq_domain_remove(ioapics[idx].irqdomain); 2391 if (!cfg->dev) 2392 irq_domain_free_fwnode(fn); 2393 ioapics[idx].irqdomain = NULL; 2394 } 2395 } 2396 2397 void __init setup_IO_APIC(void) 2398 { 2399 int ioapic; 2400 2401 if (skip_ioapic_setup || !nr_ioapics) 2402 return; 2403 2404 io_apic_irqs = nr_legacy_irqs() ? ~PIC_IRQS : ~0UL; 2405 2406 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 2407 for_each_ioapic(ioapic) 2408 BUG_ON(mp_irqdomain_create(ioapic)); 2409 2410 /* 2411 * Set up IO-APIC IRQ routing. 2412 */ 2413 x86_init.mpparse.setup_ioapic_ids(); 2414 2415 sync_Arb_IDs(); 2416 setup_IO_APIC_irqs(); 2417 init_IO_APIC_traps(); 2418 if (nr_legacy_irqs()) 2419 check_timer(); 2420 2421 ioapic_initialized = 1; 2422 } 2423 2424 static void resume_ioapic_id(int ioapic_idx) 2425 { 2426 unsigned long flags; 2427 union IO_APIC_reg_00 reg_00; 2428 2429 raw_spin_lock_irqsave(&ioapic_lock, flags); 2430 reg_00.raw = io_apic_read(ioapic_idx, 0); 2431 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) { 2432 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 2433 io_apic_write(ioapic_idx, 0, reg_00.raw); 2434 } 2435 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2436 } 2437 2438 static void ioapic_resume(void) 2439 { 2440 int ioapic_idx; 2441 2442 for_each_ioapic_reverse(ioapic_idx) 2443 resume_ioapic_id(ioapic_idx); 2444 2445 restore_ioapic_entries(); 2446 } 2447 2448 static struct syscore_ops ioapic_syscore_ops = { 2449 .suspend = save_ioapic_entries, 2450 .resume = ioapic_resume, 2451 }; 2452 2453 static int __init ioapic_init_ops(void) 2454 { 2455 register_syscore_ops(&ioapic_syscore_ops); 2456 2457 return 0; 2458 } 2459 2460 device_initcall(ioapic_init_ops); 2461 2462 static int io_apic_get_redir_entries(int ioapic) 2463 { 2464 union IO_APIC_reg_01 reg_01; 2465 unsigned long flags; 2466 2467 raw_spin_lock_irqsave(&ioapic_lock, flags); 2468 reg_01.raw = io_apic_read(ioapic, 1); 2469 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2470 2471 /* The register returns the maximum index redir index 2472 * supported, which is one less than the total number of redir 2473 * entries. 2474 */ 2475 return reg_01.bits.entries + 1; 2476 } 2477 2478 unsigned int arch_dynirq_lower_bound(unsigned int from) 2479 { 2480 /* 2481 * dmar_alloc_hwirq() may be called before setup_IO_APIC(), so use 2482 * gsi_top if ioapic_dynirq_base hasn't been initialized yet. 2483 */ 2484 if (!ioapic_initialized) 2485 return gsi_top; 2486 /* 2487 * For DT enabled machines ioapic_dynirq_base is irrelevant and not 2488 * updated. So simply return @from if ioapic_dynirq_base == 0. 2489 */ 2490 return ioapic_dynirq_base ? : from; 2491 } 2492 2493 #ifdef CONFIG_X86_32 2494 static int io_apic_get_unique_id(int ioapic, int apic_id) 2495 { 2496 union IO_APIC_reg_00 reg_00; 2497 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 2498 physid_mask_t tmp; 2499 unsigned long flags; 2500 int i = 0; 2501 2502 /* 2503 * The P4 platform supports up to 256 APIC IDs on two separate APIC 2504 * buses (one for LAPICs, one for IOAPICs), where predecessors only 2505 * supports up to 16 on one shared APIC bus. 2506 * 2507 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 2508 * advantage of new APIC bus architecture. 2509 */ 2510 2511 if (physids_empty(apic_id_map)) 2512 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map); 2513 2514 raw_spin_lock_irqsave(&ioapic_lock, flags); 2515 reg_00.raw = io_apic_read(ioapic, 0); 2516 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2517 2518 if (apic_id >= get_physical_broadcast()) { 2519 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 2520 "%d\n", ioapic, apic_id, reg_00.bits.ID); 2521 apic_id = reg_00.bits.ID; 2522 } 2523 2524 /* 2525 * Every APIC in a system must have a unique ID or we get lots of nice 2526 * 'stuck on smp_invalidate_needed IPI wait' messages. 2527 */ 2528 if (apic->check_apicid_used(&apic_id_map, apic_id)) { 2529 2530 for (i = 0; i < get_physical_broadcast(); i++) { 2531 if (!apic->check_apicid_used(&apic_id_map, i)) 2532 break; 2533 } 2534 2535 if (i == get_physical_broadcast()) 2536 panic("Max apic_id exceeded!\n"); 2537 2538 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 2539 "trying %d\n", ioapic, apic_id, i); 2540 2541 apic_id = i; 2542 } 2543 2544 apic->apicid_to_cpu_present(apic_id, &tmp); 2545 physids_or(apic_id_map, apic_id_map, tmp); 2546 2547 if (reg_00.bits.ID != apic_id) { 2548 reg_00.bits.ID = apic_id; 2549 2550 raw_spin_lock_irqsave(&ioapic_lock, flags); 2551 io_apic_write(ioapic, 0, reg_00.raw); 2552 reg_00.raw = io_apic_read(ioapic, 0); 2553 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2554 2555 /* Sanity check */ 2556 if (reg_00.bits.ID != apic_id) { 2557 pr_err("IOAPIC[%d]: Unable to change apic_id!\n", 2558 ioapic); 2559 return -1; 2560 } 2561 } 2562 2563 apic_printk(APIC_VERBOSE, KERN_INFO 2564 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 2565 2566 return apic_id; 2567 } 2568 2569 static u8 io_apic_unique_id(int idx, u8 id) 2570 { 2571 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 2572 !APIC_XAPIC(boot_cpu_apic_version)) 2573 return io_apic_get_unique_id(idx, id); 2574 else 2575 return id; 2576 } 2577 #else 2578 static u8 io_apic_unique_id(int idx, u8 id) 2579 { 2580 union IO_APIC_reg_00 reg_00; 2581 DECLARE_BITMAP(used, 256); 2582 unsigned long flags; 2583 u8 new_id; 2584 int i; 2585 2586 bitmap_zero(used, 256); 2587 for_each_ioapic(i) 2588 __set_bit(mpc_ioapic_id(i), used); 2589 2590 /* Hand out the requested id if available */ 2591 if (!test_bit(id, used)) 2592 return id; 2593 2594 /* 2595 * Read the current id from the ioapic and keep it if 2596 * available. 2597 */ 2598 raw_spin_lock_irqsave(&ioapic_lock, flags); 2599 reg_00.raw = io_apic_read(idx, 0); 2600 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2601 new_id = reg_00.bits.ID; 2602 if (!test_bit(new_id, used)) { 2603 apic_printk(APIC_VERBOSE, KERN_INFO 2604 "IOAPIC[%d]: Using reg apic_id %d instead of %d\n", 2605 idx, new_id, id); 2606 return new_id; 2607 } 2608 2609 /* 2610 * Get the next free id and write it to the ioapic. 2611 */ 2612 new_id = find_first_zero_bit(used, 256); 2613 reg_00.bits.ID = new_id; 2614 raw_spin_lock_irqsave(&ioapic_lock, flags); 2615 io_apic_write(idx, 0, reg_00.raw); 2616 reg_00.raw = io_apic_read(idx, 0); 2617 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2618 /* Sanity check */ 2619 BUG_ON(reg_00.bits.ID != new_id); 2620 2621 return new_id; 2622 } 2623 #endif 2624 2625 static int io_apic_get_version(int ioapic) 2626 { 2627 union IO_APIC_reg_01 reg_01; 2628 unsigned long flags; 2629 2630 raw_spin_lock_irqsave(&ioapic_lock, flags); 2631 reg_01.raw = io_apic_read(ioapic, 1); 2632 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2633 2634 return reg_01.bits.version; 2635 } 2636 2637 /* 2638 * This function updates target affinity of IOAPIC interrupts to include 2639 * the CPUs which came online during SMP bringup. 2640 */ 2641 #define IOAPIC_RESOURCE_NAME_SIZE 11 2642 2643 static struct resource *ioapic_resources; 2644 2645 static struct resource * __init ioapic_setup_resources(void) 2646 { 2647 unsigned long n; 2648 struct resource *res; 2649 char *mem; 2650 int i; 2651 2652 if (nr_ioapics == 0) 2653 return NULL; 2654 2655 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 2656 n *= nr_ioapics; 2657 2658 mem = memblock_alloc(n, SMP_CACHE_BYTES); 2659 if (!mem) 2660 panic("%s: Failed to allocate %lu bytes\n", __func__, n); 2661 res = (void *)mem; 2662 2663 mem += sizeof(struct resource) * nr_ioapics; 2664 2665 for_each_ioapic(i) { 2666 res[i].name = mem; 2667 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 2668 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); 2669 mem += IOAPIC_RESOURCE_NAME_SIZE; 2670 ioapics[i].iomem_res = &res[i]; 2671 } 2672 2673 ioapic_resources = res; 2674 2675 return res; 2676 } 2677 2678 static void io_apic_set_fixmap(enum fixed_addresses idx, phys_addr_t phys) 2679 { 2680 pgprot_t flags = FIXMAP_PAGE_NOCACHE; 2681 2682 /* 2683 * Ensure fixmaps for IOAPIC MMIO respect memory encryption pgprot 2684 * bits, just like normal ioremap(): 2685 */ 2686 flags = pgprot_decrypted(flags); 2687 2688 __set_fixmap(idx, phys, flags); 2689 } 2690 2691 void __init io_apic_init_mappings(void) 2692 { 2693 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 2694 struct resource *ioapic_res; 2695 int i; 2696 2697 ioapic_res = ioapic_setup_resources(); 2698 for_each_ioapic(i) { 2699 if (smp_found_config) { 2700 ioapic_phys = mpc_ioapic_addr(i); 2701 #ifdef CONFIG_X86_32 2702 if (!ioapic_phys) { 2703 printk(KERN_ERR 2704 "WARNING: bogus zero IO-APIC " 2705 "address found in MPTABLE, " 2706 "disabling IO/APIC support!\n"); 2707 smp_found_config = 0; 2708 skip_ioapic_setup = 1; 2709 goto fake_ioapic_page; 2710 } 2711 #endif 2712 } else { 2713 #ifdef CONFIG_X86_32 2714 fake_ioapic_page: 2715 #endif 2716 ioapic_phys = (unsigned long)memblock_alloc(PAGE_SIZE, 2717 PAGE_SIZE); 2718 if (!ioapic_phys) 2719 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 2720 __func__, PAGE_SIZE, PAGE_SIZE); 2721 ioapic_phys = __pa(ioapic_phys); 2722 } 2723 io_apic_set_fixmap(idx, ioapic_phys); 2724 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", 2725 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), 2726 ioapic_phys); 2727 idx++; 2728 2729 ioapic_res->start = ioapic_phys; 2730 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; 2731 ioapic_res++; 2732 } 2733 } 2734 2735 void __init ioapic_insert_resources(void) 2736 { 2737 int i; 2738 struct resource *r = ioapic_resources; 2739 2740 if (!r) { 2741 if (nr_ioapics > 0) 2742 printk(KERN_ERR 2743 "IO APIC resources couldn't be allocated.\n"); 2744 return; 2745 } 2746 2747 for_each_ioapic(i) { 2748 insert_resource(&iomem_resource, r); 2749 r++; 2750 } 2751 } 2752 2753 int mp_find_ioapic(u32 gsi) 2754 { 2755 int i; 2756 2757 if (nr_ioapics == 0) 2758 return -1; 2759 2760 /* Find the IOAPIC that manages this GSI. */ 2761 for_each_ioapic(i) { 2762 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i); 2763 if (gsi >= gsi_cfg->gsi_base && gsi <= gsi_cfg->gsi_end) 2764 return i; 2765 } 2766 2767 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 2768 return -1; 2769 } 2770 2771 int mp_find_ioapic_pin(int ioapic, u32 gsi) 2772 { 2773 struct mp_ioapic_gsi *gsi_cfg; 2774 2775 if (WARN_ON(ioapic < 0)) 2776 return -1; 2777 2778 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2779 if (WARN_ON(gsi > gsi_cfg->gsi_end)) 2780 return -1; 2781 2782 return gsi - gsi_cfg->gsi_base; 2783 } 2784 2785 static int bad_ioapic_register(int idx) 2786 { 2787 union IO_APIC_reg_00 reg_00; 2788 union IO_APIC_reg_01 reg_01; 2789 union IO_APIC_reg_02 reg_02; 2790 2791 reg_00.raw = io_apic_read(idx, 0); 2792 reg_01.raw = io_apic_read(idx, 1); 2793 reg_02.raw = io_apic_read(idx, 2); 2794 2795 if (reg_00.raw == -1 && reg_01.raw == -1 && reg_02.raw == -1) { 2796 pr_warn("I/O APIC 0x%x registers return all ones, skipping!\n", 2797 mpc_ioapic_addr(idx)); 2798 return 1; 2799 } 2800 2801 return 0; 2802 } 2803 2804 static int find_free_ioapic_entry(void) 2805 { 2806 int idx; 2807 2808 for (idx = 0; idx < MAX_IO_APICS; idx++) 2809 if (ioapics[idx].nr_registers == 0) 2810 return idx; 2811 2812 return MAX_IO_APICS; 2813 } 2814 2815 /** 2816 * mp_register_ioapic - Register an IOAPIC device 2817 * @id: hardware IOAPIC ID 2818 * @address: physical address of IOAPIC register area 2819 * @gsi_base: base of GSI associated with the IOAPIC 2820 * @cfg: configuration information for the IOAPIC 2821 */ 2822 int mp_register_ioapic(int id, u32 address, u32 gsi_base, 2823 struct ioapic_domain_cfg *cfg) 2824 { 2825 bool hotplug = !!ioapic_initialized; 2826 struct mp_ioapic_gsi *gsi_cfg; 2827 int idx, ioapic, entries; 2828 u32 gsi_end; 2829 2830 if (!address) { 2831 pr_warn("Bogus (zero) I/O APIC address found, skipping!\n"); 2832 return -EINVAL; 2833 } 2834 for_each_ioapic(ioapic) 2835 if (ioapics[ioapic].mp_config.apicaddr == address) { 2836 pr_warn("address 0x%x conflicts with IOAPIC%d\n", 2837 address, ioapic); 2838 return -EEXIST; 2839 } 2840 2841 idx = find_free_ioapic_entry(); 2842 if (idx >= MAX_IO_APICS) { 2843 pr_warn("Max # of I/O APICs (%d) exceeded (found %d), skipping\n", 2844 MAX_IO_APICS, idx); 2845 return -ENOSPC; 2846 } 2847 2848 ioapics[idx].mp_config.type = MP_IOAPIC; 2849 ioapics[idx].mp_config.flags = MPC_APIC_USABLE; 2850 ioapics[idx].mp_config.apicaddr = address; 2851 2852 io_apic_set_fixmap(FIX_IO_APIC_BASE_0 + idx, address); 2853 if (bad_ioapic_register(idx)) { 2854 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2855 return -ENODEV; 2856 } 2857 2858 ioapics[idx].mp_config.apicid = io_apic_unique_id(idx, id); 2859 ioapics[idx].mp_config.apicver = io_apic_get_version(idx); 2860 2861 /* 2862 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 2863 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 2864 */ 2865 entries = io_apic_get_redir_entries(idx); 2866 gsi_end = gsi_base + entries - 1; 2867 for_each_ioapic(ioapic) { 2868 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2869 if ((gsi_base >= gsi_cfg->gsi_base && 2870 gsi_base <= gsi_cfg->gsi_end) || 2871 (gsi_end >= gsi_cfg->gsi_base && 2872 gsi_end <= gsi_cfg->gsi_end)) { 2873 pr_warn("GSI range [%u-%u] for new IOAPIC conflicts with GSI[%u-%u]\n", 2874 gsi_base, gsi_end, 2875 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2876 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2877 return -ENOSPC; 2878 } 2879 } 2880 gsi_cfg = mp_ioapic_gsi_routing(idx); 2881 gsi_cfg->gsi_base = gsi_base; 2882 gsi_cfg->gsi_end = gsi_end; 2883 2884 ioapics[idx].irqdomain = NULL; 2885 ioapics[idx].irqdomain_cfg = *cfg; 2886 2887 /* 2888 * If mp_register_ioapic() is called during early boot stage when 2889 * walking ACPI/DT tables, it's too early to create irqdomain, 2890 * we are still using bootmem allocator. So delay it to setup_IO_APIC(). 2891 */ 2892 if (hotplug) { 2893 if (mp_irqdomain_create(idx)) { 2894 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2895 return -ENOMEM; 2896 } 2897 alloc_ioapic_saved_registers(idx); 2898 } 2899 2900 if (gsi_cfg->gsi_end >= gsi_top) 2901 gsi_top = gsi_cfg->gsi_end + 1; 2902 if (nr_ioapics <= idx) 2903 nr_ioapics = idx + 1; 2904 2905 /* Set nr_registers to mark entry present */ 2906 ioapics[idx].nr_registers = entries; 2907 2908 pr_info("IOAPIC[%d]: apic_id %d, version %d, address 0x%x, GSI %d-%d\n", 2909 idx, mpc_ioapic_id(idx), 2910 mpc_ioapic_ver(idx), mpc_ioapic_addr(idx), 2911 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2912 2913 return 0; 2914 } 2915 2916 int mp_unregister_ioapic(u32 gsi_base) 2917 { 2918 int ioapic, pin; 2919 int found = 0; 2920 2921 for_each_ioapic(ioapic) 2922 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) { 2923 found = 1; 2924 break; 2925 } 2926 if (!found) { 2927 pr_warn("can't find IOAPIC for GSI %d\n", gsi_base); 2928 return -ENODEV; 2929 } 2930 2931 for_each_pin(ioapic, pin) { 2932 u32 gsi = mp_pin_to_gsi(ioapic, pin); 2933 int irq = mp_map_gsi_to_irq(gsi, 0, NULL); 2934 struct mp_chip_data *data; 2935 2936 if (irq >= 0) { 2937 data = irq_get_chip_data(irq); 2938 if (data && data->count) { 2939 pr_warn("pin%d on IOAPIC%d is still in use.\n", 2940 pin, ioapic); 2941 return -EBUSY; 2942 } 2943 } 2944 } 2945 2946 /* Mark entry not present */ 2947 ioapics[ioapic].nr_registers = 0; 2948 ioapic_destroy_irqdomain(ioapic); 2949 free_ioapic_saved_registers(ioapic); 2950 if (ioapics[ioapic].iomem_res) 2951 release_resource(ioapics[ioapic].iomem_res); 2952 clear_fixmap(FIX_IO_APIC_BASE_0 + ioapic); 2953 memset(&ioapics[ioapic], 0, sizeof(ioapics[ioapic])); 2954 2955 return 0; 2956 } 2957 2958 int mp_ioapic_registered(u32 gsi_base) 2959 { 2960 int ioapic; 2961 2962 for_each_ioapic(ioapic) 2963 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) 2964 return 1; 2965 2966 return 0; 2967 } 2968 2969 static void mp_irqdomain_get_attr(u32 gsi, struct mp_chip_data *data, 2970 struct irq_alloc_info *info) 2971 { 2972 if (info && info->ioapic.valid) { 2973 data->is_level = info->ioapic.is_level; 2974 data->active_low = info->ioapic.active_low; 2975 } else if (__acpi_get_override_irq(gsi, &data->is_level, 2976 &data->active_low) < 0) { 2977 /* PCI interrupts are always active low level triggered. */ 2978 data->is_level = true; 2979 data->active_low = true; 2980 } 2981 } 2982 2983 /* 2984 * Configure the I/O-APIC specific fields in the routing entry. 2985 * 2986 * This is important to setup the I/O-APIC specific bits (is_level, 2987 * active_low, masked) because the underlying parent domain will only 2988 * provide the routing information and is oblivious of the I/O-APIC 2989 * specific bits. 2990 * 2991 * The entry is just preconfigured at this point and not written into the 2992 * RTE. This happens later during activation which will fill in the actual 2993 * routing information. 2994 */ 2995 static void mp_preconfigure_entry(struct mp_chip_data *data) 2996 { 2997 struct IO_APIC_route_entry *entry = &data->entry; 2998 2999 memset(entry, 0, sizeof(*entry)); 3000 entry->is_level = data->is_level; 3001 entry->active_low = data->active_low; 3002 /* 3003 * Mask level triggered irqs. Edge triggered irqs are masked 3004 * by the irq core code in case they fire. 3005 */ 3006 entry->masked = data->is_level; 3007 } 3008 3009 int mp_irqdomain_alloc(struct irq_domain *domain, unsigned int virq, 3010 unsigned int nr_irqs, void *arg) 3011 { 3012 struct irq_alloc_info *info = arg; 3013 struct mp_chip_data *data; 3014 struct irq_data *irq_data; 3015 int ret, ioapic, pin; 3016 unsigned long flags; 3017 3018 if (!info || nr_irqs > 1) 3019 return -EINVAL; 3020 irq_data = irq_domain_get_irq_data(domain, virq); 3021 if (!irq_data) 3022 return -EINVAL; 3023 3024 ioapic = mp_irqdomain_ioapic_idx(domain); 3025 pin = info->ioapic.pin; 3026 if (irq_find_mapping(domain, (irq_hw_number_t)pin) > 0) 3027 return -EEXIST; 3028 3029 data = kzalloc(sizeof(*data), GFP_KERNEL); 3030 if (!data) 3031 return -ENOMEM; 3032 3033 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, info); 3034 if (ret < 0) { 3035 kfree(data); 3036 return ret; 3037 } 3038 3039 INIT_LIST_HEAD(&data->irq_2_pin); 3040 irq_data->hwirq = info->ioapic.pin; 3041 irq_data->chip = (domain->parent == x86_vector_domain) ? 3042 &ioapic_chip : &ioapic_ir_chip; 3043 irq_data->chip_data = data; 3044 mp_irqdomain_get_attr(mp_pin_to_gsi(ioapic, pin), data, info); 3045 3046 add_pin_to_irq_node(data, ioapic_alloc_attr_node(info), ioapic, pin); 3047 3048 mp_preconfigure_entry(data); 3049 mp_register_handler(virq, data->is_level); 3050 3051 local_irq_save(flags); 3052 if (virq < nr_legacy_irqs()) 3053 legacy_pic->mask(virq); 3054 local_irq_restore(flags); 3055 3056 apic_printk(APIC_VERBOSE, KERN_DEBUG 3057 "IOAPIC[%d]: Preconfigured routing entry (%d-%d -> IRQ %d Level:%i ActiveLow:%i)\n", 3058 ioapic, mpc_ioapic_id(ioapic), pin, virq, 3059 data->is_level, data->active_low); 3060 return 0; 3061 } 3062 3063 void mp_irqdomain_free(struct irq_domain *domain, unsigned int virq, 3064 unsigned int nr_irqs) 3065 { 3066 struct irq_data *irq_data; 3067 struct mp_chip_data *data; 3068 3069 BUG_ON(nr_irqs != 1); 3070 irq_data = irq_domain_get_irq_data(domain, virq); 3071 if (irq_data && irq_data->chip_data) { 3072 data = irq_data->chip_data; 3073 __remove_pin_from_irq(data, mp_irqdomain_ioapic_idx(domain), 3074 (int)irq_data->hwirq); 3075 WARN_ON(!list_empty(&data->irq_2_pin)); 3076 kfree(irq_data->chip_data); 3077 } 3078 irq_domain_free_irqs_top(domain, virq, nr_irqs); 3079 } 3080 3081 int mp_irqdomain_activate(struct irq_domain *domain, 3082 struct irq_data *irq_data, bool reserve) 3083 { 3084 unsigned long flags; 3085 3086 raw_spin_lock_irqsave(&ioapic_lock, flags); 3087 ioapic_configure_entry(irq_data); 3088 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 3089 return 0; 3090 } 3091 3092 void mp_irqdomain_deactivate(struct irq_domain *domain, 3093 struct irq_data *irq_data) 3094 { 3095 /* It won't be called for IRQ with multiple IOAPIC pins associated */ 3096 ioapic_mask_entry(mp_irqdomain_ioapic_idx(domain), 3097 (int)irq_data->hwirq); 3098 } 3099 3100 int mp_irqdomain_ioapic_idx(struct irq_domain *domain) 3101 { 3102 return (int)(long)domain->host_data; 3103 } 3104 3105 const struct irq_domain_ops mp_ioapic_irqdomain_ops = { 3106 .alloc = mp_irqdomain_alloc, 3107 .free = mp_irqdomain_free, 3108 .activate = mp_irqdomain_activate, 3109 .deactivate = mp_irqdomain_deactivate, 3110 }; 3111