xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46 
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 
64 #include <asm/apic.h>
65 
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 	for (entry = head; entry; entry = entry->next)
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
78 
79 /*
80  * # of IRQ routing registers
81  */
82 int nr_ioapic_registers[MAX_IO_APICS];
83 
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87 
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi  mp_gsi_routing[MAX_IO_APICS];
90 
91 /* The one past the highest gsi number used */
92 u32 gsi_top;
93 
94 /* MP IRQ source entries */
95 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
96 
97 /* # of MP IRQ source entries */
98 int mp_irq_entries;
99 
100 /* GSI interrupts */
101 static int nr_irqs_gsi = NR_IRQS_LEGACY;
102 
103 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
104 int mp_bus_id_to_type[MAX_MP_BUSSES];
105 #endif
106 
107 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
108 
109 int skip_ioapic_setup;
110 
111 void arch_disable_smp_support(void)
112 {
113 #ifdef CONFIG_PCI
114 	noioapicquirk = 1;
115 	noioapicreroute = -1;
116 #endif
117 	skip_ioapic_setup = 1;
118 }
119 
120 static int __init parse_noapic(char *str)
121 {
122 	/* disable IO-APIC */
123 	arch_disable_smp_support();
124 	return 0;
125 }
126 early_param("noapic", parse_noapic);
127 
128 struct irq_pin_list {
129 	int apic, pin;
130 	struct irq_pin_list *next;
131 };
132 
133 static struct irq_pin_list *alloc_irq_pin_list(int node)
134 {
135 	return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
136 }
137 
138 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
139 #ifdef CONFIG_SPARSE_IRQ
140 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
141 #else
142 static struct irq_cfg irq_cfgx[NR_IRQS];
143 #endif
144 
145 int __init arch_early_irq_init(void)
146 {
147 	struct irq_cfg *cfg;
148 	int count, node, i;
149 
150 	if (!legacy_pic->nr_legacy_irqs) {
151 		nr_irqs_gsi = 0;
152 		io_apic_irqs = ~0UL;
153 	}
154 
155 	cfg = irq_cfgx;
156 	count = ARRAY_SIZE(irq_cfgx);
157 	node = cpu_to_node(0);
158 
159 	/* Make sure the legacy interrupts are marked in the bitmap */
160 	irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
161 
162 	for (i = 0; i < count; i++) {
163 		set_irq_chip_data(i, &cfg[i]);
164 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
165 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
166 		/*
167 		 * For legacy IRQ's, start with assigning irq0 to irq15 to
168 		 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
169 		 */
170 		if (i < legacy_pic->nr_legacy_irqs) {
171 			cfg[i].vector = IRQ0_VECTOR + i;
172 			cpumask_set_cpu(0, cfg[i].domain);
173 		}
174 	}
175 
176 	return 0;
177 }
178 
179 #ifdef CONFIG_SPARSE_IRQ
180 static struct irq_cfg *irq_cfg(unsigned int irq)
181 {
182 	return get_irq_chip_data(irq);
183 }
184 
185 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
186 {
187 	struct irq_cfg *cfg;
188 
189 	cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
190 	if (!cfg)
191 		return NULL;
192 	if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
193 		goto out_cfg;
194 	if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
195 		goto out_domain;
196 	return cfg;
197 out_domain:
198 	free_cpumask_var(cfg->domain);
199 out_cfg:
200 	kfree(cfg);
201 	return NULL;
202 }
203 
204 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
205 {
206 	if (!cfg)
207 		return;
208 	set_irq_chip_data(at, NULL);
209 	free_cpumask_var(cfg->domain);
210 	free_cpumask_var(cfg->old_domain);
211 	kfree(cfg);
212 }
213 
214 #else
215 
216 struct irq_cfg *irq_cfg(unsigned int irq)
217 {
218 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
219 }
220 
221 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
222 {
223 	return irq_cfgx + irq;
224 }
225 
226 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
227 
228 #endif
229 
230 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
231 {
232 	int res = irq_alloc_desc_at(at, node);
233 	struct irq_cfg *cfg;
234 
235 	if (res < 0) {
236 		if (res != -EEXIST)
237 			return NULL;
238 		cfg = get_irq_chip_data(at);
239 		if (cfg)
240 			return cfg;
241 	}
242 
243 	cfg = alloc_irq_cfg(at, node);
244 	if (cfg)
245 		set_irq_chip_data(at, cfg);
246 	else
247 		irq_free_desc(at);
248 	return cfg;
249 }
250 
251 static int alloc_irq_from(unsigned int from, int node)
252 {
253 	return irq_alloc_desc_from(from, node);
254 }
255 
256 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
257 {
258 	free_irq_cfg(at, cfg);
259 	irq_free_desc(at);
260 }
261 
262 struct io_apic {
263 	unsigned int index;
264 	unsigned int unused[3];
265 	unsigned int data;
266 	unsigned int unused2[11];
267 	unsigned int eoi;
268 };
269 
270 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
271 {
272 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
273 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
274 }
275 
276 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
277 {
278 	struct io_apic __iomem *io_apic = io_apic_base(apic);
279 	writel(vector, &io_apic->eoi);
280 }
281 
282 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
283 {
284 	struct io_apic __iomem *io_apic = io_apic_base(apic);
285 	writel(reg, &io_apic->index);
286 	return readl(&io_apic->data);
287 }
288 
289 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
290 {
291 	struct io_apic __iomem *io_apic = io_apic_base(apic);
292 	writel(reg, &io_apic->index);
293 	writel(value, &io_apic->data);
294 }
295 
296 /*
297  * Re-write a value: to be used for read-modify-write
298  * cycles where the read already set up the index register.
299  *
300  * Older SiS APIC requires we rewrite the index register
301  */
302 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
303 {
304 	struct io_apic __iomem *io_apic = io_apic_base(apic);
305 
306 	if (sis_apic_bug)
307 		writel(reg, &io_apic->index);
308 	writel(value, &io_apic->data);
309 }
310 
311 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
312 {
313 	struct irq_pin_list *entry;
314 	unsigned long flags;
315 
316 	raw_spin_lock_irqsave(&ioapic_lock, flags);
317 	for_each_irq_pin(entry, cfg->irq_2_pin) {
318 		unsigned int reg;
319 		int pin;
320 
321 		pin = entry->pin;
322 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
323 		/* Is the remote IRR bit set? */
324 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
325 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
326 			return true;
327 		}
328 	}
329 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
330 
331 	return false;
332 }
333 
334 union entry_union {
335 	struct { u32 w1, w2; };
336 	struct IO_APIC_route_entry entry;
337 };
338 
339 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
340 {
341 	union entry_union eu;
342 	unsigned long flags;
343 	raw_spin_lock_irqsave(&ioapic_lock, flags);
344 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
345 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
346 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
347 	return eu.entry;
348 }
349 
350 /*
351  * When we write a new IO APIC routing entry, we need to write the high
352  * word first! If the mask bit in the low word is clear, we will enable
353  * the interrupt, and we need to make sure the entry is fully populated
354  * before that happens.
355  */
356 static void
357 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
358 {
359 	union entry_union eu = {{0, 0}};
360 
361 	eu.entry = e;
362 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
363 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
364 }
365 
366 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
367 {
368 	unsigned long flags;
369 	raw_spin_lock_irqsave(&ioapic_lock, flags);
370 	__ioapic_write_entry(apic, pin, e);
371 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
372 }
373 
374 /*
375  * When we mask an IO APIC routing entry, we need to write the low
376  * word first, in order to set the mask bit before we change the
377  * high bits!
378  */
379 static void ioapic_mask_entry(int apic, int pin)
380 {
381 	unsigned long flags;
382 	union entry_union eu = { .entry.mask = 1 };
383 
384 	raw_spin_lock_irqsave(&ioapic_lock, flags);
385 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
386 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
387 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
388 }
389 
390 /*
391  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
392  * shared ISA-space IRQs, so we have to support them. We are super
393  * fast in the common case, and fast for shared ISA-space IRQs.
394  */
395 static int
396 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
397 {
398 	struct irq_pin_list **last, *entry;
399 
400 	/* don't allow duplicates */
401 	last = &cfg->irq_2_pin;
402 	for_each_irq_pin(entry, cfg->irq_2_pin) {
403 		if (entry->apic == apic && entry->pin == pin)
404 			return 0;
405 		last = &entry->next;
406 	}
407 
408 	entry = alloc_irq_pin_list(node);
409 	if (!entry) {
410 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
411 				node, apic, pin);
412 		return -ENOMEM;
413 	}
414 	entry->apic = apic;
415 	entry->pin = pin;
416 
417 	*last = entry;
418 	return 0;
419 }
420 
421 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
422 {
423 	if (__add_pin_to_irq_node(cfg, node, apic, pin))
424 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
425 }
426 
427 /*
428  * Reroute an IRQ to a different pin.
429  */
430 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
431 					   int oldapic, int oldpin,
432 					   int newapic, int newpin)
433 {
434 	struct irq_pin_list *entry;
435 
436 	for_each_irq_pin(entry, cfg->irq_2_pin) {
437 		if (entry->apic == oldapic && entry->pin == oldpin) {
438 			entry->apic = newapic;
439 			entry->pin = newpin;
440 			/* every one is different, right? */
441 			return;
442 		}
443 	}
444 
445 	/* old apic/pin didn't exist, so just add new ones */
446 	add_pin_to_irq_node(cfg, node, newapic, newpin);
447 }
448 
449 static void __io_apic_modify_irq(struct irq_pin_list *entry,
450 				 int mask_and, int mask_or,
451 				 void (*final)(struct irq_pin_list *entry))
452 {
453 	unsigned int reg, pin;
454 
455 	pin = entry->pin;
456 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
457 	reg &= mask_and;
458 	reg |= mask_or;
459 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
460 	if (final)
461 		final(entry);
462 }
463 
464 static void io_apic_modify_irq(struct irq_cfg *cfg,
465 			       int mask_and, int mask_or,
466 			       void (*final)(struct irq_pin_list *entry))
467 {
468 	struct irq_pin_list *entry;
469 
470 	for_each_irq_pin(entry, cfg->irq_2_pin)
471 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
472 }
473 
474 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
475 {
476 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
477 			     IO_APIC_REDIR_MASKED, NULL);
478 }
479 
480 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
481 {
482 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
483 			     IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
484 }
485 
486 static void io_apic_sync(struct irq_pin_list *entry)
487 {
488 	/*
489 	 * Synchronize the IO-APIC and the CPU by doing
490 	 * a dummy read from the IO-APIC
491 	 */
492 	struct io_apic __iomem *io_apic;
493 	io_apic = io_apic_base(entry->apic);
494 	readl(&io_apic->data);
495 }
496 
497 static void mask_ioapic(struct irq_cfg *cfg)
498 {
499 	unsigned long flags;
500 
501 	raw_spin_lock_irqsave(&ioapic_lock, flags);
502 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
503 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
504 }
505 
506 static void mask_ioapic_irq(struct irq_data *data)
507 {
508 	mask_ioapic(data->chip_data);
509 }
510 
511 static void __unmask_ioapic(struct irq_cfg *cfg)
512 {
513 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
514 }
515 
516 static void unmask_ioapic(struct irq_cfg *cfg)
517 {
518 	unsigned long flags;
519 
520 	raw_spin_lock_irqsave(&ioapic_lock, flags);
521 	__unmask_ioapic(cfg);
522 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
523 }
524 
525 static void unmask_ioapic_irq(struct irq_data *data)
526 {
527 	unmask_ioapic(data->chip_data);
528 }
529 
530 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
531 {
532 	struct IO_APIC_route_entry entry;
533 
534 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
535 	entry = ioapic_read_entry(apic, pin);
536 	if (entry.delivery_mode == dest_SMI)
537 		return;
538 	/*
539 	 * Disable it in the IO-APIC irq-routing table:
540 	 */
541 	ioapic_mask_entry(apic, pin);
542 }
543 
544 static void clear_IO_APIC (void)
545 {
546 	int apic, pin;
547 
548 	for (apic = 0; apic < nr_ioapics; apic++)
549 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
550 			clear_IO_APIC_pin(apic, pin);
551 }
552 
553 #ifdef CONFIG_X86_32
554 /*
555  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
556  * specific CPU-side IRQs.
557  */
558 
559 #define MAX_PIRQS 8
560 static int pirq_entries[MAX_PIRQS] = {
561 	[0 ... MAX_PIRQS - 1] = -1
562 };
563 
564 static int __init ioapic_pirq_setup(char *str)
565 {
566 	int i, max;
567 	int ints[MAX_PIRQS+1];
568 
569 	get_options(str, ARRAY_SIZE(ints), ints);
570 
571 	apic_printk(APIC_VERBOSE, KERN_INFO
572 			"PIRQ redirection, working around broken MP-BIOS.\n");
573 	max = MAX_PIRQS;
574 	if (ints[0] < MAX_PIRQS)
575 		max = ints[0];
576 
577 	for (i = 0; i < max; i++) {
578 		apic_printk(APIC_VERBOSE, KERN_DEBUG
579 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
580 		/*
581 		 * PIRQs are mapped upside down, usually.
582 		 */
583 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
584 	}
585 	return 1;
586 }
587 
588 __setup("pirq=", ioapic_pirq_setup);
589 #endif /* CONFIG_X86_32 */
590 
591 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
592 {
593 	int apic;
594 	struct IO_APIC_route_entry **ioapic_entries;
595 
596 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
597 				GFP_KERNEL);
598 	if (!ioapic_entries)
599 		return 0;
600 
601 	for (apic = 0; apic < nr_ioapics; apic++) {
602 		ioapic_entries[apic] =
603 			kzalloc(sizeof(struct IO_APIC_route_entry) *
604 				nr_ioapic_registers[apic], GFP_KERNEL);
605 		if (!ioapic_entries[apic])
606 			goto nomem;
607 	}
608 
609 	return ioapic_entries;
610 
611 nomem:
612 	while (--apic >= 0)
613 		kfree(ioapic_entries[apic]);
614 	kfree(ioapic_entries);
615 
616 	return 0;
617 }
618 
619 /*
620  * Saves all the IO-APIC RTE's
621  */
622 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
623 {
624 	int apic, pin;
625 
626 	if (!ioapic_entries)
627 		return -ENOMEM;
628 
629 	for (apic = 0; apic < nr_ioapics; apic++) {
630 		if (!ioapic_entries[apic])
631 			return -ENOMEM;
632 
633 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
634 			ioapic_entries[apic][pin] =
635 				ioapic_read_entry(apic, pin);
636 	}
637 
638 	return 0;
639 }
640 
641 /*
642  * Mask all IO APIC entries.
643  */
644 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
645 {
646 	int apic, pin;
647 
648 	if (!ioapic_entries)
649 		return;
650 
651 	for (apic = 0; apic < nr_ioapics; apic++) {
652 		if (!ioapic_entries[apic])
653 			break;
654 
655 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
656 			struct IO_APIC_route_entry entry;
657 
658 			entry = ioapic_entries[apic][pin];
659 			if (!entry.mask) {
660 				entry.mask = 1;
661 				ioapic_write_entry(apic, pin, entry);
662 			}
663 		}
664 	}
665 }
666 
667 /*
668  * Restore IO APIC entries which was saved in ioapic_entries.
669  */
670 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
671 {
672 	int apic, pin;
673 
674 	if (!ioapic_entries)
675 		return -ENOMEM;
676 
677 	for (apic = 0; apic < nr_ioapics; apic++) {
678 		if (!ioapic_entries[apic])
679 			return -ENOMEM;
680 
681 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
682 			ioapic_write_entry(apic, pin,
683 					ioapic_entries[apic][pin]);
684 	}
685 	return 0;
686 }
687 
688 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
689 {
690 	int apic;
691 
692 	for (apic = 0; apic < nr_ioapics; apic++)
693 		kfree(ioapic_entries[apic]);
694 
695 	kfree(ioapic_entries);
696 }
697 
698 /*
699  * Find the IRQ entry number of a certain pin.
700  */
701 static int find_irq_entry(int apic, int pin, int type)
702 {
703 	int i;
704 
705 	for (i = 0; i < mp_irq_entries; i++)
706 		if (mp_irqs[i].irqtype == type &&
707 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
708 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
709 		    mp_irqs[i].dstirq == pin)
710 			return i;
711 
712 	return -1;
713 }
714 
715 /*
716  * Find the pin to which IRQ[irq] (ISA) is connected
717  */
718 static int __init find_isa_irq_pin(int irq, int type)
719 {
720 	int i;
721 
722 	for (i = 0; i < mp_irq_entries; i++) {
723 		int lbus = mp_irqs[i].srcbus;
724 
725 		if (test_bit(lbus, mp_bus_not_pci) &&
726 		    (mp_irqs[i].irqtype == type) &&
727 		    (mp_irqs[i].srcbusirq == irq))
728 
729 			return mp_irqs[i].dstirq;
730 	}
731 	return -1;
732 }
733 
734 static int __init find_isa_irq_apic(int irq, int type)
735 {
736 	int i;
737 
738 	for (i = 0; i < mp_irq_entries; i++) {
739 		int lbus = mp_irqs[i].srcbus;
740 
741 		if (test_bit(lbus, mp_bus_not_pci) &&
742 		    (mp_irqs[i].irqtype == type) &&
743 		    (mp_irqs[i].srcbusirq == irq))
744 			break;
745 	}
746 	if (i < mp_irq_entries) {
747 		int apic;
748 		for(apic = 0; apic < nr_ioapics; apic++) {
749 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
750 				return apic;
751 		}
752 	}
753 
754 	return -1;
755 }
756 
757 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
758 /*
759  * EISA Edge/Level control register, ELCR
760  */
761 static int EISA_ELCR(unsigned int irq)
762 {
763 	if (irq < legacy_pic->nr_legacy_irqs) {
764 		unsigned int port = 0x4d0 + (irq >> 3);
765 		return (inb(port) >> (irq & 7)) & 1;
766 	}
767 	apic_printk(APIC_VERBOSE, KERN_INFO
768 			"Broken MPtable reports ISA irq %d\n", irq);
769 	return 0;
770 }
771 
772 #endif
773 
774 /* ISA interrupts are always polarity zero edge triggered,
775  * when listed as conforming in the MP table. */
776 
777 #define default_ISA_trigger(idx)	(0)
778 #define default_ISA_polarity(idx)	(0)
779 
780 /* EISA interrupts are always polarity zero and can be edge or level
781  * trigger depending on the ELCR value.  If an interrupt is listed as
782  * EISA conforming in the MP table, that means its trigger type must
783  * be read in from the ELCR */
784 
785 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
786 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
787 
788 /* PCI interrupts are always polarity one level triggered,
789  * when listed as conforming in the MP table. */
790 
791 #define default_PCI_trigger(idx)	(1)
792 #define default_PCI_polarity(idx)	(1)
793 
794 /* MCA interrupts are always polarity zero level triggered,
795  * when listed as conforming in the MP table. */
796 
797 #define default_MCA_trigger(idx)	(1)
798 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
799 
800 static int MPBIOS_polarity(int idx)
801 {
802 	int bus = mp_irqs[idx].srcbus;
803 	int polarity;
804 
805 	/*
806 	 * Determine IRQ line polarity (high active or low active):
807 	 */
808 	switch (mp_irqs[idx].irqflag & 3)
809 	{
810 		case 0: /* conforms, ie. bus-type dependent polarity */
811 			if (test_bit(bus, mp_bus_not_pci))
812 				polarity = default_ISA_polarity(idx);
813 			else
814 				polarity = default_PCI_polarity(idx);
815 			break;
816 		case 1: /* high active */
817 		{
818 			polarity = 0;
819 			break;
820 		}
821 		case 2: /* reserved */
822 		{
823 			printk(KERN_WARNING "broken BIOS!!\n");
824 			polarity = 1;
825 			break;
826 		}
827 		case 3: /* low active */
828 		{
829 			polarity = 1;
830 			break;
831 		}
832 		default: /* invalid */
833 		{
834 			printk(KERN_WARNING "broken BIOS!!\n");
835 			polarity = 1;
836 			break;
837 		}
838 	}
839 	return polarity;
840 }
841 
842 static int MPBIOS_trigger(int idx)
843 {
844 	int bus = mp_irqs[idx].srcbus;
845 	int trigger;
846 
847 	/*
848 	 * Determine IRQ trigger mode (edge or level sensitive):
849 	 */
850 	switch ((mp_irqs[idx].irqflag>>2) & 3)
851 	{
852 		case 0: /* conforms, ie. bus-type dependent */
853 			if (test_bit(bus, mp_bus_not_pci))
854 				trigger = default_ISA_trigger(idx);
855 			else
856 				trigger = default_PCI_trigger(idx);
857 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
858 			switch (mp_bus_id_to_type[bus]) {
859 				case MP_BUS_ISA: /* ISA pin */
860 				{
861 					/* set before the switch */
862 					break;
863 				}
864 				case MP_BUS_EISA: /* EISA pin */
865 				{
866 					trigger = default_EISA_trigger(idx);
867 					break;
868 				}
869 				case MP_BUS_PCI: /* PCI pin */
870 				{
871 					/* set before the switch */
872 					break;
873 				}
874 				case MP_BUS_MCA: /* MCA pin */
875 				{
876 					trigger = default_MCA_trigger(idx);
877 					break;
878 				}
879 				default:
880 				{
881 					printk(KERN_WARNING "broken BIOS!!\n");
882 					trigger = 1;
883 					break;
884 				}
885 			}
886 #endif
887 			break;
888 		case 1: /* edge */
889 		{
890 			trigger = 0;
891 			break;
892 		}
893 		case 2: /* reserved */
894 		{
895 			printk(KERN_WARNING "broken BIOS!!\n");
896 			trigger = 1;
897 			break;
898 		}
899 		case 3: /* level */
900 		{
901 			trigger = 1;
902 			break;
903 		}
904 		default: /* invalid */
905 		{
906 			printk(KERN_WARNING "broken BIOS!!\n");
907 			trigger = 0;
908 			break;
909 		}
910 	}
911 	return trigger;
912 }
913 
914 static inline int irq_polarity(int idx)
915 {
916 	return MPBIOS_polarity(idx);
917 }
918 
919 static inline int irq_trigger(int idx)
920 {
921 	return MPBIOS_trigger(idx);
922 }
923 
924 static int pin_2_irq(int idx, int apic, int pin)
925 {
926 	int irq;
927 	int bus = mp_irqs[idx].srcbus;
928 
929 	/*
930 	 * Debugging check, we are in big trouble if this message pops up!
931 	 */
932 	if (mp_irqs[idx].dstirq != pin)
933 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
934 
935 	if (test_bit(bus, mp_bus_not_pci)) {
936 		irq = mp_irqs[idx].srcbusirq;
937 	} else {
938 		u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
939 
940 		if (gsi >= NR_IRQS_LEGACY)
941 			irq = gsi;
942 		else
943 			irq = gsi_top + gsi;
944 	}
945 
946 #ifdef CONFIG_X86_32
947 	/*
948 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
949 	 */
950 	if ((pin >= 16) && (pin <= 23)) {
951 		if (pirq_entries[pin-16] != -1) {
952 			if (!pirq_entries[pin-16]) {
953 				apic_printk(APIC_VERBOSE, KERN_DEBUG
954 						"disabling PIRQ%d\n", pin-16);
955 			} else {
956 				irq = pirq_entries[pin-16];
957 				apic_printk(APIC_VERBOSE, KERN_DEBUG
958 						"using PIRQ%d -> IRQ %d\n",
959 						pin-16, irq);
960 			}
961 		}
962 	}
963 #endif
964 
965 	return irq;
966 }
967 
968 /*
969  * Find a specific PCI IRQ entry.
970  * Not an __init, possibly needed by modules
971  */
972 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
973 				struct io_apic_irq_attr *irq_attr)
974 {
975 	int apic, i, best_guess = -1;
976 
977 	apic_printk(APIC_DEBUG,
978 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
979 		    bus, slot, pin);
980 	if (test_bit(bus, mp_bus_not_pci)) {
981 		apic_printk(APIC_VERBOSE,
982 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
983 		return -1;
984 	}
985 	for (i = 0; i < mp_irq_entries; i++) {
986 		int lbus = mp_irqs[i].srcbus;
987 
988 		for (apic = 0; apic < nr_ioapics; apic++)
989 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
990 			    mp_irqs[i].dstapic == MP_APIC_ALL)
991 				break;
992 
993 		if (!test_bit(lbus, mp_bus_not_pci) &&
994 		    !mp_irqs[i].irqtype &&
995 		    (bus == lbus) &&
996 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
997 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
998 
999 			if (!(apic || IO_APIC_IRQ(irq)))
1000 				continue;
1001 
1002 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1003 				set_io_apic_irq_attr(irq_attr, apic,
1004 						     mp_irqs[i].dstirq,
1005 						     irq_trigger(i),
1006 						     irq_polarity(i));
1007 				return irq;
1008 			}
1009 			/*
1010 			 * Use the first all-but-pin matching entry as a
1011 			 * best-guess fuzzy result for broken mptables.
1012 			 */
1013 			if (best_guess < 0) {
1014 				set_io_apic_irq_attr(irq_attr, apic,
1015 						     mp_irqs[i].dstirq,
1016 						     irq_trigger(i),
1017 						     irq_polarity(i));
1018 				best_guess = irq;
1019 			}
1020 		}
1021 	}
1022 	return best_guess;
1023 }
1024 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1025 
1026 void lock_vector_lock(void)
1027 {
1028 	/* Used to the online set of cpus does not change
1029 	 * during assign_irq_vector.
1030 	 */
1031 	raw_spin_lock(&vector_lock);
1032 }
1033 
1034 void unlock_vector_lock(void)
1035 {
1036 	raw_spin_unlock(&vector_lock);
1037 }
1038 
1039 static int
1040 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1041 {
1042 	/*
1043 	 * NOTE! The local APIC isn't very good at handling
1044 	 * multiple interrupts at the same interrupt level.
1045 	 * As the interrupt level is determined by taking the
1046 	 * vector number and shifting that right by 4, we
1047 	 * want to spread these out a bit so that they don't
1048 	 * all fall in the same interrupt level.
1049 	 *
1050 	 * Also, we've got to be careful not to trash gate
1051 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1052 	 */
1053 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1054 	static int current_offset = VECTOR_OFFSET_START % 8;
1055 	unsigned int old_vector;
1056 	int cpu, err;
1057 	cpumask_var_t tmp_mask;
1058 
1059 	if (cfg->move_in_progress)
1060 		return -EBUSY;
1061 
1062 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1063 		return -ENOMEM;
1064 
1065 	old_vector = cfg->vector;
1066 	if (old_vector) {
1067 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1068 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1069 		if (!cpumask_empty(tmp_mask)) {
1070 			free_cpumask_var(tmp_mask);
1071 			return 0;
1072 		}
1073 	}
1074 
1075 	/* Only try and allocate irqs on cpus that are present */
1076 	err = -ENOSPC;
1077 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1078 		int new_cpu;
1079 		int vector, offset;
1080 
1081 		apic->vector_allocation_domain(cpu, tmp_mask);
1082 
1083 		vector = current_vector;
1084 		offset = current_offset;
1085 next:
1086 		vector += 8;
1087 		if (vector >= first_system_vector) {
1088 			/* If out of vectors on large boxen, must share them. */
1089 			offset = (offset + 1) % 8;
1090 			vector = FIRST_EXTERNAL_VECTOR + offset;
1091 		}
1092 		if (unlikely(current_vector == vector))
1093 			continue;
1094 
1095 		if (test_bit(vector, used_vectors))
1096 			goto next;
1097 
1098 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1099 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1100 				goto next;
1101 		/* Found one! */
1102 		current_vector = vector;
1103 		current_offset = offset;
1104 		if (old_vector) {
1105 			cfg->move_in_progress = 1;
1106 			cpumask_copy(cfg->old_domain, cfg->domain);
1107 		}
1108 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1109 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1110 		cfg->vector = vector;
1111 		cpumask_copy(cfg->domain, tmp_mask);
1112 		err = 0;
1113 		break;
1114 	}
1115 	free_cpumask_var(tmp_mask);
1116 	return err;
1117 }
1118 
1119 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1120 {
1121 	int err;
1122 	unsigned long flags;
1123 
1124 	raw_spin_lock_irqsave(&vector_lock, flags);
1125 	err = __assign_irq_vector(irq, cfg, mask);
1126 	raw_spin_unlock_irqrestore(&vector_lock, flags);
1127 	return err;
1128 }
1129 
1130 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1131 {
1132 	int cpu, vector;
1133 
1134 	BUG_ON(!cfg->vector);
1135 
1136 	vector = cfg->vector;
1137 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1138 		per_cpu(vector_irq, cpu)[vector] = -1;
1139 
1140 	cfg->vector = 0;
1141 	cpumask_clear(cfg->domain);
1142 
1143 	if (likely(!cfg->move_in_progress))
1144 		return;
1145 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1146 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1147 								vector++) {
1148 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1149 				continue;
1150 			per_cpu(vector_irq, cpu)[vector] = -1;
1151 			break;
1152 		}
1153 	}
1154 	cfg->move_in_progress = 0;
1155 }
1156 
1157 void __setup_vector_irq(int cpu)
1158 {
1159 	/* Initialize vector_irq on a new cpu */
1160 	int irq, vector;
1161 	struct irq_cfg *cfg;
1162 
1163 	/*
1164 	 * vector_lock will make sure that we don't run into irq vector
1165 	 * assignments that might be happening on another cpu in parallel,
1166 	 * while we setup our initial vector to irq mappings.
1167 	 */
1168 	raw_spin_lock(&vector_lock);
1169 	/* Mark the inuse vectors */
1170 	for_each_active_irq(irq) {
1171 		cfg = get_irq_chip_data(irq);
1172 		if (!cfg)
1173 			continue;
1174 		/*
1175 		 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1176 		 * will be part of the irq_cfg's domain.
1177 		 */
1178 		if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1179 			cpumask_set_cpu(cpu, cfg->domain);
1180 
1181 		if (!cpumask_test_cpu(cpu, cfg->domain))
1182 			continue;
1183 		vector = cfg->vector;
1184 		per_cpu(vector_irq, cpu)[vector] = irq;
1185 	}
1186 	/* Mark the free vectors */
1187 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1188 		irq = per_cpu(vector_irq, cpu)[vector];
1189 		if (irq < 0)
1190 			continue;
1191 
1192 		cfg = irq_cfg(irq);
1193 		if (!cpumask_test_cpu(cpu, cfg->domain))
1194 			per_cpu(vector_irq, cpu)[vector] = -1;
1195 	}
1196 	raw_spin_unlock(&vector_lock);
1197 }
1198 
1199 static struct irq_chip ioapic_chip;
1200 static struct irq_chip ir_ioapic_chip;
1201 
1202 #define IOAPIC_AUTO     -1
1203 #define IOAPIC_EDGE     0
1204 #define IOAPIC_LEVEL    1
1205 
1206 #ifdef CONFIG_X86_32
1207 static inline int IO_APIC_irq_trigger(int irq)
1208 {
1209 	int apic, idx, pin;
1210 
1211 	for (apic = 0; apic < nr_ioapics; apic++) {
1212 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1213 			idx = find_irq_entry(apic, pin, mp_INT);
1214 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1215 				return irq_trigger(idx);
1216 		}
1217 	}
1218 	/*
1219          * nonexistent IRQs are edge default
1220          */
1221 	return 0;
1222 }
1223 #else
1224 static inline int IO_APIC_irq_trigger(int irq)
1225 {
1226 	return 1;
1227 }
1228 #endif
1229 
1230 static void ioapic_register_intr(unsigned int irq, unsigned long trigger)
1231 {
1232 
1233 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1234 	    trigger == IOAPIC_LEVEL)
1235 		irq_set_status_flags(irq, IRQ_LEVEL);
1236 	else
1237 		irq_clear_status_flags(irq, IRQ_LEVEL);
1238 
1239 	if (irq_remapped(get_irq_chip_data(irq))) {
1240 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1241 		if (trigger)
1242 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1243 						      handle_fasteoi_irq,
1244 						     "fasteoi");
1245 		else
1246 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1247 						      handle_edge_irq, "edge");
1248 		return;
1249 	}
1250 
1251 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1252 	    trigger == IOAPIC_LEVEL)
1253 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1254 					      handle_fasteoi_irq,
1255 					      "fasteoi");
1256 	else
1257 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1258 					      handle_edge_irq, "edge");
1259 }
1260 
1261 static int setup_ioapic_entry(int apic_id, int irq,
1262 			      struct IO_APIC_route_entry *entry,
1263 			      unsigned int destination, int trigger,
1264 			      int polarity, int vector, int pin)
1265 {
1266 	/*
1267 	 * add it to the IO-APIC irq-routing table:
1268 	 */
1269 	memset(entry,0,sizeof(*entry));
1270 
1271 	if (intr_remapping_enabled) {
1272 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1273 		struct irte irte;
1274 		struct IR_IO_APIC_route_entry *ir_entry =
1275 			(struct IR_IO_APIC_route_entry *) entry;
1276 		int index;
1277 
1278 		if (!iommu)
1279 			panic("No mapping iommu for ioapic %d\n", apic_id);
1280 
1281 		index = alloc_irte(iommu, irq, 1);
1282 		if (index < 0)
1283 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1284 
1285 		prepare_irte(&irte, vector, destination);
1286 
1287 		/* Set source-id of interrupt request */
1288 		set_ioapic_sid(&irte, apic_id);
1289 
1290 		modify_irte(irq, &irte);
1291 
1292 		ir_entry->index2 = (index >> 15) & 0x1;
1293 		ir_entry->zero = 0;
1294 		ir_entry->format = 1;
1295 		ir_entry->index = (index & 0x7fff);
1296 		/*
1297 		 * IO-APIC RTE will be configured with virtual vector.
1298 		 * irq handler will do the explicit EOI to the io-apic.
1299 		 */
1300 		ir_entry->vector = pin;
1301 	} else {
1302 		entry->delivery_mode = apic->irq_delivery_mode;
1303 		entry->dest_mode = apic->irq_dest_mode;
1304 		entry->dest = destination;
1305 		entry->vector = vector;
1306 	}
1307 
1308 	entry->mask = 0;				/* enable IRQ */
1309 	entry->trigger = trigger;
1310 	entry->polarity = polarity;
1311 
1312 	/* Mask level triggered irqs.
1313 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1314 	 */
1315 	if (trigger)
1316 		entry->mask = 1;
1317 	return 0;
1318 }
1319 
1320 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1321 			     struct irq_cfg *cfg, int trigger, int polarity)
1322 {
1323 	struct IO_APIC_route_entry entry;
1324 	unsigned int dest;
1325 
1326 	if (!IO_APIC_IRQ(irq))
1327 		return;
1328 	/*
1329 	 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1330 	 * controllers like 8259. Now that IO-APIC can handle this irq, update
1331 	 * the cfg->domain.
1332 	 */
1333 	if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1334 		apic->vector_allocation_domain(0, cfg->domain);
1335 
1336 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1337 		return;
1338 
1339 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1340 
1341 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1342 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1343 		    "IRQ %d Mode:%i Active:%i)\n",
1344 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1345 		    irq, trigger, polarity);
1346 
1347 
1348 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1349 			       dest, trigger, polarity, cfg->vector, pin)) {
1350 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1351 		       mp_ioapics[apic_id].apicid, pin);
1352 		__clear_irq_vector(irq, cfg);
1353 		return;
1354 	}
1355 
1356 	ioapic_register_intr(irq, trigger);
1357 	if (irq < legacy_pic->nr_legacy_irqs)
1358 		legacy_pic->mask(irq);
1359 
1360 	ioapic_write_entry(apic_id, pin, entry);
1361 }
1362 
1363 static struct {
1364 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1365 } mp_ioapic_routing[MAX_IO_APICS];
1366 
1367 static void __init setup_IO_APIC_irqs(void)
1368 {
1369 	int apic_id, pin, idx, irq, notcon = 0;
1370 	int node = cpu_to_node(0);
1371 	struct irq_cfg *cfg;
1372 
1373 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1374 
1375 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1376 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1377 		idx = find_irq_entry(apic_id, pin, mp_INT);
1378 		if (idx == -1) {
1379 			if (!notcon) {
1380 				notcon = 1;
1381 				apic_printk(APIC_VERBOSE,
1382 					KERN_DEBUG " %d-%d",
1383 					mp_ioapics[apic_id].apicid, pin);
1384 			} else
1385 				apic_printk(APIC_VERBOSE, " %d-%d",
1386 					mp_ioapics[apic_id].apicid, pin);
1387 			continue;
1388 		}
1389 		if (notcon) {
1390 			apic_printk(APIC_VERBOSE,
1391 				" (apicid-pin) not connected\n");
1392 			notcon = 0;
1393 		}
1394 
1395 		irq = pin_2_irq(idx, apic_id, pin);
1396 
1397 		if ((apic_id > 0) && (irq > 16))
1398 			continue;
1399 
1400 		/*
1401 		 * Skip the timer IRQ if there's a quirk handler
1402 		 * installed and if it returns 1:
1403 		 */
1404 		if (apic->multi_timer_check &&
1405 				apic->multi_timer_check(apic_id, irq))
1406 			continue;
1407 
1408 		cfg = alloc_irq_and_cfg_at(irq, node);
1409 		if (!cfg)
1410 			continue;
1411 
1412 		add_pin_to_irq_node(cfg, node, apic_id, pin);
1413 		/*
1414 		 * don't mark it in pin_programmed, so later acpi could
1415 		 * set it correctly when irq < 16
1416 		 */
1417 		setup_ioapic_irq(apic_id, pin, irq, cfg, irq_trigger(idx),
1418 				  irq_polarity(idx));
1419 	}
1420 
1421 	if (notcon)
1422 		apic_printk(APIC_VERBOSE,
1423 			" (apicid-pin) not connected\n");
1424 }
1425 
1426 /*
1427  * for the gsit that is not in first ioapic
1428  * but could not use acpi_register_gsi()
1429  * like some special sci in IBM x3330
1430  */
1431 void setup_IO_APIC_irq_extra(u32 gsi)
1432 {
1433 	int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1434 	struct irq_cfg *cfg;
1435 
1436 	/*
1437 	 * Convert 'gsi' to 'ioapic.pin'.
1438 	 */
1439 	apic_id = mp_find_ioapic(gsi);
1440 	if (apic_id < 0)
1441 		return;
1442 
1443 	pin = mp_find_ioapic_pin(apic_id, gsi);
1444 	idx = find_irq_entry(apic_id, pin, mp_INT);
1445 	if (idx == -1)
1446 		return;
1447 
1448 	irq = pin_2_irq(idx, apic_id, pin);
1449 
1450 	/* Only handle the non legacy irqs on secondary ioapics */
1451 	if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1452 		return;
1453 
1454 	cfg = alloc_irq_and_cfg_at(irq, node);
1455 	if (!cfg)
1456 		return;
1457 
1458 	add_pin_to_irq_node(cfg, node, apic_id, pin);
1459 
1460 	if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1461 		pr_debug("Pin %d-%d already programmed\n",
1462 			 mp_ioapics[apic_id].apicid, pin);
1463 		return;
1464 	}
1465 	set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1466 
1467 	setup_ioapic_irq(apic_id, pin, irq, cfg,
1468 			irq_trigger(idx), irq_polarity(idx));
1469 }
1470 
1471 /*
1472  * Set up the timer pin, possibly with the 8259A-master behind.
1473  */
1474 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1475 					int vector)
1476 {
1477 	struct IO_APIC_route_entry entry;
1478 
1479 	if (intr_remapping_enabled)
1480 		return;
1481 
1482 	memset(&entry, 0, sizeof(entry));
1483 
1484 	/*
1485 	 * We use logical delivery to get the timer IRQ
1486 	 * to the first CPU.
1487 	 */
1488 	entry.dest_mode = apic->irq_dest_mode;
1489 	entry.mask = 0;			/* don't mask IRQ for edge */
1490 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1491 	entry.delivery_mode = apic->irq_delivery_mode;
1492 	entry.polarity = 0;
1493 	entry.trigger = 0;
1494 	entry.vector = vector;
1495 
1496 	/*
1497 	 * The timer IRQ doesn't have to know that behind the
1498 	 * scene we may have a 8259A-master in AEOI mode ...
1499 	 */
1500 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1501 
1502 	/*
1503 	 * Add it to the IO-APIC irq-routing table:
1504 	 */
1505 	ioapic_write_entry(apic_id, pin, entry);
1506 }
1507 
1508 
1509 __apicdebuginit(void) print_IO_APIC(void)
1510 {
1511 	int apic, i;
1512 	union IO_APIC_reg_00 reg_00;
1513 	union IO_APIC_reg_01 reg_01;
1514 	union IO_APIC_reg_02 reg_02;
1515 	union IO_APIC_reg_03 reg_03;
1516 	unsigned long flags;
1517 	struct irq_cfg *cfg;
1518 	unsigned int irq;
1519 
1520 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1521 	for (i = 0; i < nr_ioapics; i++)
1522 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1523 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1524 
1525 	/*
1526 	 * We are a bit conservative about what we expect.  We have to
1527 	 * know about every hardware change ASAP.
1528 	 */
1529 	printk(KERN_INFO "testing the IO APIC.......................\n");
1530 
1531 	for (apic = 0; apic < nr_ioapics; apic++) {
1532 
1533 	raw_spin_lock_irqsave(&ioapic_lock, flags);
1534 	reg_00.raw = io_apic_read(apic, 0);
1535 	reg_01.raw = io_apic_read(apic, 1);
1536 	if (reg_01.bits.version >= 0x10)
1537 		reg_02.raw = io_apic_read(apic, 2);
1538 	if (reg_01.bits.version >= 0x20)
1539 		reg_03.raw = io_apic_read(apic, 3);
1540 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1541 
1542 	printk("\n");
1543 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1544 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1545 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1546 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1547 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1548 
1549 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1550 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1551 
1552 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1553 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1554 
1555 	/*
1556 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1557 	 * but the value of reg_02 is read as the previous read register
1558 	 * value, so ignore it if reg_02 == reg_01.
1559 	 */
1560 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1561 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1562 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1563 	}
1564 
1565 	/*
1566 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1567 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1568 	 * register value, so ignore it if reg_03 == reg_0[12].
1569 	 */
1570 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1571 	    reg_03.raw != reg_01.raw) {
1572 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1573 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1574 	}
1575 
1576 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1577 
1578 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1579 			  " Stat Dmod Deli Vect:\n");
1580 
1581 	for (i = 0; i <= reg_01.bits.entries; i++) {
1582 		struct IO_APIC_route_entry entry;
1583 
1584 		entry = ioapic_read_entry(apic, i);
1585 
1586 		printk(KERN_DEBUG " %02x %03X ",
1587 			i,
1588 			entry.dest
1589 		);
1590 
1591 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1592 			entry.mask,
1593 			entry.trigger,
1594 			entry.irr,
1595 			entry.polarity,
1596 			entry.delivery_status,
1597 			entry.dest_mode,
1598 			entry.delivery_mode,
1599 			entry.vector
1600 		);
1601 	}
1602 	}
1603 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1604 	for_each_active_irq(irq) {
1605 		struct irq_pin_list *entry;
1606 
1607 		cfg = get_irq_chip_data(irq);
1608 		if (!cfg)
1609 			continue;
1610 		entry = cfg->irq_2_pin;
1611 		if (!entry)
1612 			continue;
1613 		printk(KERN_DEBUG "IRQ%d ", irq);
1614 		for_each_irq_pin(entry, cfg->irq_2_pin)
1615 			printk("-> %d:%d", entry->apic, entry->pin);
1616 		printk("\n");
1617 	}
1618 
1619 	printk(KERN_INFO ".................................... done.\n");
1620 
1621 	return;
1622 }
1623 
1624 __apicdebuginit(void) print_APIC_field(int base)
1625 {
1626 	int i;
1627 
1628 	printk(KERN_DEBUG);
1629 
1630 	for (i = 0; i < 8; i++)
1631 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1632 
1633 	printk(KERN_CONT "\n");
1634 }
1635 
1636 __apicdebuginit(void) print_local_APIC(void *dummy)
1637 {
1638 	unsigned int i, v, ver, maxlvt;
1639 	u64 icr;
1640 
1641 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1642 		smp_processor_id(), hard_smp_processor_id());
1643 	v = apic_read(APIC_ID);
1644 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1645 	v = apic_read(APIC_LVR);
1646 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1647 	ver = GET_APIC_VERSION(v);
1648 	maxlvt = lapic_get_maxlvt();
1649 
1650 	v = apic_read(APIC_TASKPRI);
1651 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1652 
1653 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1654 		if (!APIC_XAPIC(ver)) {
1655 			v = apic_read(APIC_ARBPRI);
1656 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1657 			       v & APIC_ARBPRI_MASK);
1658 		}
1659 		v = apic_read(APIC_PROCPRI);
1660 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1661 	}
1662 
1663 	/*
1664 	 * Remote read supported only in the 82489DX and local APIC for
1665 	 * Pentium processors.
1666 	 */
1667 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1668 		v = apic_read(APIC_RRR);
1669 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1670 	}
1671 
1672 	v = apic_read(APIC_LDR);
1673 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1674 	if (!x2apic_enabled()) {
1675 		v = apic_read(APIC_DFR);
1676 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1677 	}
1678 	v = apic_read(APIC_SPIV);
1679 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1680 
1681 	printk(KERN_DEBUG "... APIC ISR field:\n");
1682 	print_APIC_field(APIC_ISR);
1683 	printk(KERN_DEBUG "... APIC TMR field:\n");
1684 	print_APIC_field(APIC_TMR);
1685 	printk(KERN_DEBUG "... APIC IRR field:\n");
1686 	print_APIC_field(APIC_IRR);
1687 
1688 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1689 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1690 			apic_write(APIC_ESR, 0);
1691 
1692 		v = apic_read(APIC_ESR);
1693 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1694 	}
1695 
1696 	icr = apic_icr_read();
1697 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1698 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1699 
1700 	v = apic_read(APIC_LVTT);
1701 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1702 
1703 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1704 		v = apic_read(APIC_LVTPC);
1705 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1706 	}
1707 	v = apic_read(APIC_LVT0);
1708 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1709 	v = apic_read(APIC_LVT1);
1710 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1711 
1712 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1713 		v = apic_read(APIC_LVTERR);
1714 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1715 	}
1716 
1717 	v = apic_read(APIC_TMICT);
1718 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1719 	v = apic_read(APIC_TMCCT);
1720 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1721 	v = apic_read(APIC_TDCR);
1722 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1723 
1724 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1725 		v = apic_read(APIC_EFEAT);
1726 		maxlvt = (v >> 16) & 0xff;
1727 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1728 		v = apic_read(APIC_ECTRL);
1729 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1730 		for (i = 0; i < maxlvt; i++) {
1731 			v = apic_read(APIC_EILVTn(i));
1732 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1733 		}
1734 	}
1735 	printk("\n");
1736 }
1737 
1738 __apicdebuginit(void) print_local_APICs(int maxcpu)
1739 {
1740 	int cpu;
1741 
1742 	if (!maxcpu)
1743 		return;
1744 
1745 	preempt_disable();
1746 	for_each_online_cpu(cpu) {
1747 		if (cpu >= maxcpu)
1748 			break;
1749 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1750 	}
1751 	preempt_enable();
1752 }
1753 
1754 __apicdebuginit(void) print_PIC(void)
1755 {
1756 	unsigned int v;
1757 	unsigned long flags;
1758 
1759 	if (!legacy_pic->nr_legacy_irqs)
1760 		return;
1761 
1762 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1763 
1764 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1765 
1766 	v = inb(0xa1) << 8 | inb(0x21);
1767 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1768 
1769 	v = inb(0xa0) << 8 | inb(0x20);
1770 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1771 
1772 	outb(0x0b,0xa0);
1773 	outb(0x0b,0x20);
1774 	v = inb(0xa0) << 8 | inb(0x20);
1775 	outb(0x0a,0xa0);
1776 	outb(0x0a,0x20);
1777 
1778 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1779 
1780 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1781 
1782 	v = inb(0x4d1) << 8 | inb(0x4d0);
1783 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1784 }
1785 
1786 static int __initdata show_lapic = 1;
1787 static __init int setup_show_lapic(char *arg)
1788 {
1789 	int num = -1;
1790 
1791 	if (strcmp(arg, "all") == 0) {
1792 		show_lapic = CONFIG_NR_CPUS;
1793 	} else {
1794 		get_option(&arg, &num);
1795 		if (num >= 0)
1796 			show_lapic = num;
1797 	}
1798 
1799 	return 1;
1800 }
1801 __setup("show_lapic=", setup_show_lapic);
1802 
1803 __apicdebuginit(int) print_ICs(void)
1804 {
1805 	if (apic_verbosity == APIC_QUIET)
1806 		return 0;
1807 
1808 	print_PIC();
1809 
1810 	/* don't print out if apic is not there */
1811 	if (!cpu_has_apic && !apic_from_smp_config())
1812 		return 0;
1813 
1814 	print_local_APICs(show_lapic);
1815 	print_IO_APIC();
1816 
1817 	return 0;
1818 }
1819 
1820 fs_initcall(print_ICs);
1821 
1822 
1823 /* Where if anywhere is the i8259 connect in external int mode */
1824 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1825 
1826 void __init enable_IO_APIC(void)
1827 {
1828 	int i8259_apic, i8259_pin;
1829 	int apic;
1830 
1831 	if (!legacy_pic->nr_legacy_irqs)
1832 		return;
1833 
1834 	for(apic = 0; apic < nr_ioapics; apic++) {
1835 		int pin;
1836 		/* See if any of the pins is in ExtINT mode */
1837 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1838 			struct IO_APIC_route_entry entry;
1839 			entry = ioapic_read_entry(apic, pin);
1840 
1841 			/* If the interrupt line is enabled and in ExtInt mode
1842 			 * I have found the pin where the i8259 is connected.
1843 			 */
1844 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1845 				ioapic_i8259.apic = apic;
1846 				ioapic_i8259.pin  = pin;
1847 				goto found_i8259;
1848 			}
1849 		}
1850 	}
1851  found_i8259:
1852 	/* Look to see what if the MP table has reported the ExtINT */
1853 	/* If we could not find the appropriate pin by looking at the ioapic
1854 	 * the i8259 probably is not connected the ioapic but give the
1855 	 * mptable a chance anyway.
1856 	 */
1857 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1858 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1859 	/* Trust the MP table if nothing is setup in the hardware */
1860 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1861 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1862 		ioapic_i8259.pin  = i8259_pin;
1863 		ioapic_i8259.apic = i8259_apic;
1864 	}
1865 	/* Complain if the MP table and the hardware disagree */
1866 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1867 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1868 	{
1869 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1870 	}
1871 
1872 	/*
1873 	 * Do not trust the IO-APIC being empty at bootup
1874 	 */
1875 	clear_IO_APIC();
1876 }
1877 
1878 /*
1879  * Not an __init, needed by the reboot code
1880  */
1881 void disable_IO_APIC(void)
1882 {
1883 	/*
1884 	 * Clear the IO-APIC before rebooting:
1885 	 */
1886 	clear_IO_APIC();
1887 
1888 	if (!legacy_pic->nr_legacy_irqs)
1889 		return;
1890 
1891 	/*
1892 	 * If the i8259 is routed through an IOAPIC
1893 	 * Put that IOAPIC in virtual wire mode
1894 	 * so legacy interrupts can be delivered.
1895 	 *
1896 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1897 	 * as virtual wire B is little complex (need to configure both
1898 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
1899 	 * As this gets called during crash dump, keep this simple for now.
1900 	 */
1901 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1902 		struct IO_APIC_route_entry entry;
1903 
1904 		memset(&entry, 0, sizeof(entry));
1905 		entry.mask            = 0; /* Enabled */
1906 		entry.trigger         = 0; /* Edge */
1907 		entry.irr             = 0;
1908 		entry.polarity        = 0; /* High */
1909 		entry.delivery_status = 0;
1910 		entry.dest_mode       = 0; /* Physical */
1911 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1912 		entry.vector          = 0;
1913 		entry.dest            = read_apic_id();
1914 
1915 		/*
1916 		 * Add it to the IO-APIC irq-routing table:
1917 		 */
1918 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1919 	}
1920 
1921 	/*
1922 	 * Use virtual wire A mode when interrupt remapping is enabled.
1923 	 */
1924 	if (cpu_has_apic || apic_from_smp_config())
1925 		disconnect_bsp_APIC(!intr_remapping_enabled &&
1926 				ioapic_i8259.pin != -1);
1927 }
1928 
1929 #ifdef CONFIG_X86_32
1930 /*
1931  * function to set the IO-APIC physical IDs based on the
1932  * values stored in the MPC table.
1933  *
1934  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
1935  */
1936 void __init setup_ioapic_ids_from_mpc_nocheck(void)
1937 {
1938 	union IO_APIC_reg_00 reg_00;
1939 	physid_mask_t phys_id_present_map;
1940 	int apic_id;
1941 	int i;
1942 	unsigned char old_id;
1943 	unsigned long flags;
1944 
1945 	/*
1946 	 * This is broken; anything with a real cpu count has to
1947 	 * circumvent this idiocy regardless.
1948 	 */
1949 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1950 
1951 	/*
1952 	 * Set the IOAPIC ID to the value stored in the MPC table.
1953 	 */
1954 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1955 
1956 		/* Read the register 0 value */
1957 		raw_spin_lock_irqsave(&ioapic_lock, flags);
1958 		reg_00.raw = io_apic_read(apic_id, 0);
1959 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1960 
1961 		old_id = mp_ioapics[apic_id].apicid;
1962 
1963 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1964 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1965 				apic_id, mp_ioapics[apic_id].apicid);
1966 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1967 				reg_00.bits.ID);
1968 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1969 		}
1970 
1971 		/*
1972 		 * Sanity check, is the ID really free? Every APIC in a
1973 		 * system must have a unique ID or we get lots of nice
1974 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
1975 		 */
1976 		if (apic->check_apicid_used(&phys_id_present_map,
1977 					mp_ioapics[apic_id].apicid)) {
1978 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1979 				apic_id, mp_ioapics[apic_id].apicid);
1980 			for (i = 0; i < get_physical_broadcast(); i++)
1981 				if (!physid_isset(i, phys_id_present_map))
1982 					break;
1983 			if (i >= get_physical_broadcast())
1984 				panic("Max APIC ID exceeded!\n");
1985 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1986 				i);
1987 			physid_set(i, phys_id_present_map);
1988 			mp_ioapics[apic_id].apicid = i;
1989 		} else {
1990 			physid_mask_t tmp;
1991 			apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
1992 			apic_printk(APIC_VERBOSE, "Setting %d in the "
1993 					"phys_id_present_map\n",
1994 					mp_ioapics[apic_id].apicid);
1995 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
1996 		}
1997 
1998 		/*
1999 		 * We need to adjust the IRQ routing table
2000 		 * if the ID changed.
2001 		 */
2002 		if (old_id != mp_ioapics[apic_id].apicid)
2003 			for (i = 0; i < mp_irq_entries; i++)
2004 				if (mp_irqs[i].dstapic == old_id)
2005 					mp_irqs[i].dstapic
2006 						= mp_ioapics[apic_id].apicid;
2007 
2008 		/*
2009 		 * Read the right value from the MPC table and
2010 		 * write it into the ID register.
2011 		 */
2012 		apic_printk(APIC_VERBOSE, KERN_INFO
2013 			"...changing IO-APIC physical APIC ID to %d ...",
2014 			mp_ioapics[apic_id].apicid);
2015 
2016 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2017 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2018 		io_apic_write(apic_id, 0, reg_00.raw);
2019 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2020 
2021 		/*
2022 		 * Sanity check
2023 		 */
2024 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2025 		reg_00.raw = io_apic_read(apic_id, 0);
2026 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2027 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2028 			printk("could not set ID!\n");
2029 		else
2030 			apic_printk(APIC_VERBOSE, " ok.\n");
2031 	}
2032 }
2033 
2034 void __init setup_ioapic_ids_from_mpc(void)
2035 {
2036 
2037 	if (acpi_ioapic)
2038 		return;
2039 	/*
2040 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2041 	 * no meaning without the serial APIC bus.
2042 	 */
2043 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2044 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2045 		return;
2046 	setup_ioapic_ids_from_mpc_nocheck();
2047 }
2048 #endif
2049 
2050 int no_timer_check __initdata;
2051 
2052 static int __init notimercheck(char *s)
2053 {
2054 	no_timer_check = 1;
2055 	return 1;
2056 }
2057 __setup("no_timer_check", notimercheck);
2058 
2059 /*
2060  * There is a nasty bug in some older SMP boards, their mptable lies
2061  * about the timer IRQ. We do the following to work around the situation:
2062  *
2063  *	- timer IRQ defaults to IO-APIC IRQ
2064  *	- if this function detects that timer IRQs are defunct, then we fall
2065  *	  back to ISA timer IRQs
2066  */
2067 static int __init timer_irq_works(void)
2068 {
2069 	unsigned long t1 = jiffies;
2070 	unsigned long flags;
2071 
2072 	if (no_timer_check)
2073 		return 1;
2074 
2075 	local_save_flags(flags);
2076 	local_irq_enable();
2077 	/* Let ten ticks pass... */
2078 	mdelay((10 * 1000) / HZ);
2079 	local_irq_restore(flags);
2080 
2081 	/*
2082 	 * Expect a few ticks at least, to be sure some possible
2083 	 * glue logic does not lock up after one or two first
2084 	 * ticks in a non-ExtINT mode.  Also the local APIC
2085 	 * might have cached one ExtINT interrupt.  Finally, at
2086 	 * least one tick may be lost due to delays.
2087 	 */
2088 
2089 	/* jiffies wrap? */
2090 	if (time_after(jiffies, t1 + 4))
2091 		return 1;
2092 	return 0;
2093 }
2094 
2095 /*
2096  * In the SMP+IOAPIC case it might happen that there are an unspecified
2097  * number of pending IRQ events unhandled. These cases are very rare,
2098  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2099  * better to do it this way as thus we do not have to be aware of
2100  * 'pending' interrupts in the IRQ path, except at this point.
2101  */
2102 /*
2103  * Edge triggered needs to resend any interrupt
2104  * that was delayed but this is now handled in the device
2105  * independent code.
2106  */
2107 
2108 /*
2109  * Starting up a edge-triggered IO-APIC interrupt is
2110  * nasty - we need to make sure that we get the edge.
2111  * If it is already asserted for some reason, we need
2112  * return 1 to indicate that is was pending.
2113  *
2114  * This is not complete - we should be able to fake
2115  * an edge even if it isn't on the 8259A...
2116  */
2117 
2118 static unsigned int startup_ioapic_irq(struct irq_data *data)
2119 {
2120 	int was_pending = 0, irq = data->irq;
2121 	unsigned long flags;
2122 
2123 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2124 	if (irq < legacy_pic->nr_legacy_irqs) {
2125 		legacy_pic->mask(irq);
2126 		if (legacy_pic->irq_pending(irq))
2127 			was_pending = 1;
2128 	}
2129 	__unmask_ioapic(data->chip_data);
2130 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2131 
2132 	return was_pending;
2133 }
2134 
2135 static int ioapic_retrigger_irq(struct irq_data *data)
2136 {
2137 	struct irq_cfg *cfg = data->chip_data;
2138 	unsigned long flags;
2139 
2140 	raw_spin_lock_irqsave(&vector_lock, flags);
2141 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2142 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2143 
2144 	return 1;
2145 }
2146 
2147 /*
2148  * Level and edge triggered IO-APIC interrupts need different handling,
2149  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2150  * handled with the level-triggered descriptor, but that one has slightly
2151  * more overhead. Level-triggered interrupts cannot be handled with the
2152  * edge-triggered handler, without risking IRQ storms and other ugly
2153  * races.
2154  */
2155 
2156 #ifdef CONFIG_SMP
2157 void send_cleanup_vector(struct irq_cfg *cfg)
2158 {
2159 	cpumask_var_t cleanup_mask;
2160 
2161 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2162 		unsigned int i;
2163 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2164 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2165 	} else {
2166 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2167 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2168 		free_cpumask_var(cleanup_mask);
2169 	}
2170 	cfg->move_in_progress = 0;
2171 }
2172 
2173 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2174 {
2175 	int apic, pin;
2176 	struct irq_pin_list *entry;
2177 	u8 vector = cfg->vector;
2178 
2179 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2180 		unsigned int reg;
2181 
2182 		apic = entry->apic;
2183 		pin = entry->pin;
2184 		/*
2185 		 * With interrupt-remapping, destination information comes
2186 		 * from interrupt-remapping table entry.
2187 		 */
2188 		if (!irq_remapped(cfg))
2189 			io_apic_write(apic, 0x11 + pin*2, dest);
2190 		reg = io_apic_read(apic, 0x10 + pin*2);
2191 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2192 		reg |= vector;
2193 		io_apic_modify(apic, 0x10 + pin*2, reg);
2194 	}
2195 }
2196 
2197 /*
2198  * Either sets data->affinity to a valid value, and returns
2199  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2200  * leaves data->affinity untouched.
2201  */
2202 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2203 			  unsigned int *dest_id)
2204 {
2205 	struct irq_cfg *cfg = data->chip_data;
2206 
2207 	if (!cpumask_intersects(mask, cpu_online_mask))
2208 		return -1;
2209 
2210 	if (assign_irq_vector(data->irq, data->chip_data, mask))
2211 		return -1;
2212 
2213 	cpumask_copy(data->affinity, mask);
2214 
2215 	*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2216 	return 0;
2217 }
2218 
2219 static int
2220 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2221 		    bool force)
2222 {
2223 	unsigned int dest, irq = data->irq;
2224 	unsigned long flags;
2225 	int ret;
2226 
2227 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2228 	ret = __ioapic_set_affinity(data, mask, &dest);
2229 	if (!ret) {
2230 		/* Only the high 8 bits are valid. */
2231 		dest = SET_APIC_LOGICAL_ID(dest);
2232 		__target_IO_APIC_irq(irq, dest, data->chip_data);
2233 	}
2234 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2235 	return ret;
2236 }
2237 
2238 #ifdef CONFIG_INTR_REMAP
2239 
2240 /*
2241  * Migrate the IO-APIC irq in the presence of intr-remapping.
2242  *
2243  * For both level and edge triggered, irq migration is a simple atomic
2244  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2245  *
2246  * For level triggered, we eliminate the io-apic RTE modification (with the
2247  * updated vector information), by using a virtual vector (io-apic pin number).
2248  * Real vector that is used for interrupting cpu will be coming from
2249  * the interrupt-remapping table entry.
2250  */
2251 static int
2252 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2253 		       bool force)
2254 {
2255 	struct irq_cfg *cfg = data->chip_data;
2256 	unsigned int dest, irq = data->irq;
2257 	struct irte irte;
2258 
2259 	if (!cpumask_intersects(mask, cpu_online_mask))
2260 		return -EINVAL;
2261 
2262 	if (get_irte(irq, &irte))
2263 		return -EBUSY;
2264 
2265 	if (assign_irq_vector(irq, cfg, mask))
2266 		return -EBUSY;
2267 
2268 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2269 
2270 	irte.vector = cfg->vector;
2271 	irte.dest_id = IRTE_DEST(dest);
2272 
2273 	/*
2274 	 * Modified the IRTE and flushes the Interrupt entry cache.
2275 	 */
2276 	modify_irte(irq, &irte);
2277 
2278 	if (cfg->move_in_progress)
2279 		send_cleanup_vector(cfg);
2280 
2281 	cpumask_copy(data->affinity, mask);
2282 	return 0;
2283 }
2284 
2285 #else
2286 static inline int
2287 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2288 		       bool force)
2289 {
2290 	return 0;
2291 }
2292 #endif
2293 
2294 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2295 {
2296 	unsigned vector, me;
2297 
2298 	ack_APIC_irq();
2299 	exit_idle();
2300 	irq_enter();
2301 
2302 	me = smp_processor_id();
2303 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2304 		unsigned int irq;
2305 		unsigned int irr;
2306 		struct irq_desc *desc;
2307 		struct irq_cfg *cfg;
2308 		irq = __get_cpu_var(vector_irq)[vector];
2309 
2310 		if (irq == -1)
2311 			continue;
2312 
2313 		desc = irq_to_desc(irq);
2314 		if (!desc)
2315 			continue;
2316 
2317 		cfg = irq_cfg(irq);
2318 		raw_spin_lock(&desc->lock);
2319 
2320 		/*
2321 		 * Check if the irq migration is in progress. If so, we
2322 		 * haven't received the cleanup request yet for this irq.
2323 		 */
2324 		if (cfg->move_in_progress)
2325 			goto unlock;
2326 
2327 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2328 			goto unlock;
2329 
2330 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2331 		/*
2332 		 * Check if the vector that needs to be cleanedup is
2333 		 * registered at the cpu's IRR. If so, then this is not
2334 		 * the best time to clean it up. Lets clean it up in the
2335 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2336 		 * to myself.
2337 		 */
2338 		if (irr  & (1 << (vector % 32))) {
2339 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2340 			goto unlock;
2341 		}
2342 		__get_cpu_var(vector_irq)[vector] = -1;
2343 unlock:
2344 		raw_spin_unlock(&desc->lock);
2345 	}
2346 
2347 	irq_exit();
2348 }
2349 
2350 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2351 {
2352 	unsigned me;
2353 
2354 	if (likely(!cfg->move_in_progress))
2355 		return;
2356 
2357 	me = smp_processor_id();
2358 
2359 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2360 		send_cleanup_vector(cfg);
2361 }
2362 
2363 static void irq_complete_move(struct irq_cfg *cfg)
2364 {
2365 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2366 }
2367 
2368 void irq_force_complete_move(int irq)
2369 {
2370 	struct irq_cfg *cfg = get_irq_chip_data(irq);
2371 
2372 	if (!cfg)
2373 		return;
2374 
2375 	__irq_complete_move(cfg, cfg->vector);
2376 }
2377 #else
2378 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2379 #endif
2380 
2381 static void ack_apic_edge(struct irq_data *data)
2382 {
2383 	irq_complete_move(data->chip_data);
2384 	move_native_irq(data->irq);
2385 	ack_APIC_irq();
2386 }
2387 
2388 atomic_t irq_mis_count;
2389 
2390 /*
2391  * IO-APIC versions below 0x20 don't support EOI register.
2392  * For the record, here is the information about various versions:
2393  *     0Xh     82489DX
2394  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2395  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
2396  *     30h-FFh Reserved
2397  *
2398  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2399  * version as 0x2. This is an error with documentation and these ICH chips
2400  * use io-apic's of version 0x20.
2401  *
2402  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2403  * Otherwise, we simulate the EOI message manually by changing the trigger
2404  * mode to edge and then back to level, with RTE being masked during this.
2405 */
2406 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2407 {
2408 	struct irq_pin_list *entry;
2409 	unsigned long flags;
2410 
2411 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2412 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2413 		if (mp_ioapics[entry->apic].apicver >= 0x20) {
2414 			/*
2415 			 * Intr-remapping uses pin number as the virtual vector
2416 			 * in the RTE. Actual vector is programmed in
2417 			 * intr-remapping table entry. Hence for the io-apic
2418 			 * EOI we use the pin number.
2419 			 */
2420 			if (irq_remapped(cfg))
2421 				io_apic_eoi(entry->apic, entry->pin);
2422 			else
2423 				io_apic_eoi(entry->apic, cfg->vector);
2424 		} else {
2425 			__mask_and_edge_IO_APIC_irq(entry);
2426 			__unmask_and_level_IO_APIC_irq(entry);
2427 		}
2428 	}
2429 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2430 }
2431 
2432 static void ack_apic_level(struct irq_data *data)
2433 {
2434 	struct irq_cfg *cfg = data->chip_data;
2435 	int i, do_unmask_irq = 0, irq = data->irq;
2436 	unsigned long v;
2437 
2438 	irq_complete_move(cfg);
2439 #ifdef CONFIG_GENERIC_PENDING_IRQ
2440 	/* If we are moving the irq we need to mask it */
2441 	if (unlikely(irq_to_desc(irq)->status & IRQ_MOVE_PENDING)) {
2442 		do_unmask_irq = 1;
2443 		mask_ioapic(cfg);
2444 	}
2445 #endif
2446 
2447 	/*
2448 	 * It appears there is an erratum which affects at least version 0x11
2449 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2450 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2451 	 * erroneously delivered as edge-triggered one but the respective IRR
2452 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2453 	 * message but it will never arrive and further interrupts are blocked
2454 	 * from the source.  The exact reason is so far unknown, but the
2455 	 * phenomenon was observed when two consecutive interrupt requests
2456 	 * from a given source get delivered to the same CPU and the source is
2457 	 * temporarily disabled in between.
2458 	 *
2459 	 * A workaround is to simulate an EOI message manually.  We achieve it
2460 	 * by setting the trigger mode to edge and then to level when the edge
2461 	 * trigger mode gets detected in the TMR of a local APIC for a
2462 	 * level-triggered interrupt.  We mask the source for the time of the
2463 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2464 	 * The idea is from Manfred Spraul.  --macro
2465 	 *
2466 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2467 	 * any unhandled interrupt on the offlined cpu to the new cpu
2468 	 * destination that is handling the corresponding interrupt. This
2469 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2470 	 * level-triggered io-apic interrupt will be seen as an edge
2471 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2472 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2473 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2474 	 * supporting EOI register, we do an explicit EOI to clear the
2475 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2476 	 * we use the above logic (mask+edge followed by unmask+level) from
2477 	 * Manfred Spraul to clear the remote IRR.
2478 	 */
2479 	i = cfg->vector;
2480 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2481 
2482 	/*
2483 	 * We must acknowledge the irq before we move it or the acknowledge will
2484 	 * not propagate properly.
2485 	 */
2486 	ack_APIC_irq();
2487 
2488 	/*
2489 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2490 	 * message via io-apic EOI register write or simulating it using
2491 	 * mask+edge followed by unnask+level logic) manually when the
2492 	 * level triggered interrupt is seen as the edge triggered interrupt
2493 	 * at the cpu.
2494 	 */
2495 	if (!(v & (1 << (i & 0x1f)))) {
2496 		atomic_inc(&irq_mis_count);
2497 
2498 		eoi_ioapic_irq(irq, cfg);
2499 	}
2500 
2501 	/* Now we can move and renable the irq */
2502 	if (unlikely(do_unmask_irq)) {
2503 		/* Only migrate the irq if the ack has been received.
2504 		 *
2505 		 * On rare occasions the broadcast level triggered ack gets
2506 		 * delayed going to ioapics, and if we reprogram the
2507 		 * vector while Remote IRR is still set the irq will never
2508 		 * fire again.
2509 		 *
2510 		 * To prevent this scenario we read the Remote IRR bit
2511 		 * of the ioapic.  This has two effects.
2512 		 * - On any sane system the read of the ioapic will
2513 		 *   flush writes (and acks) going to the ioapic from
2514 		 *   this cpu.
2515 		 * - We get to see if the ACK has actually been delivered.
2516 		 *
2517 		 * Based on failed experiments of reprogramming the
2518 		 * ioapic entry from outside of irq context starting
2519 		 * with masking the ioapic entry and then polling until
2520 		 * Remote IRR was clear before reprogramming the
2521 		 * ioapic I don't trust the Remote IRR bit to be
2522 		 * completey accurate.
2523 		 *
2524 		 * However there appears to be no other way to plug
2525 		 * this race, so if the Remote IRR bit is not
2526 		 * accurate and is causing problems then it is a hardware bug
2527 		 * and you can go talk to the chipset vendor about it.
2528 		 */
2529 		if (!io_apic_level_ack_pending(cfg))
2530 			move_masked_irq(irq);
2531 		unmask_ioapic(cfg);
2532 	}
2533 }
2534 
2535 #ifdef CONFIG_INTR_REMAP
2536 static void ir_ack_apic_edge(struct irq_data *data)
2537 {
2538 	ack_APIC_irq();
2539 }
2540 
2541 static void ir_ack_apic_level(struct irq_data *data)
2542 {
2543 	ack_APIC_irq();
2544 	eoi_ioapic_irq(data->irq, data->chip_data);
2545 }
2546 #endif /* CONFIG_INTR_REMAP */
2547 
2548 static struct irq_chip ioapic_chip __read_mostly = {
2549 	.name			= "IO-APIC",
2550 	.irq_startup		= startup_ioapic_irq,
2551 	.irq_mask		= mask_ioapic_irq,
2552 	.irq_unmask		= unmask_ioapic_irq,
2553 	.irq_ack		= ack_apic_edge,
2554 	.irq_eoi		= ack_apic_level,
2555 #ifdef CONFIG_SMP
2556 	.irq_set_affinity	= ioapic_set_affinity,
2557 #endif
2558 	.irq_retrigger		= ioapic_retrigger_irq,
2559 };
2560 
2561 static struct irq_chip ir_ioapic_chip __read_mostly = {
2562 	.name			= "IR-IO-APIC",
2563 	.irq_startup		= startup_ioapic_irq,
2564 	.irq_mask		= mask_ioapic_irq,
2565 	.irq_unmask		= unmask_ioapic_irq,
2566 #ifdef CONFIG_INTR_REMAP
2567 	.irq_ack		= ir_ack_apic_edge,
2568 	.irq_eoi		= ir_ack_apic_level,
2569 #ifdef CONFIG_SMP
2570 	.irq_set_affinity	= ir_ioapic_set_affinity,
2571 #endif
2572 #endif
2573 	.irq_retrigger		= ioapic_retrigger_irq,
2574 };
2575 
2576 static inline void init_IO_APIC_traps(void)
2577 {
2578 	struct irq_cfg *cfg;
2579 	unsigned int irq;
2580 
2581 	/*
2582 	 * NOTE! The local APIC isn't very good at handling
2583 	 * multiple interrupts at the same interrupt level.
2584 	 * As the interrupt level is determined by taking the
2585 	 * vector number and shifting that right by 4, we
2586 	 * want to spread these out a bit so that they don't
2587 	 * all fall in the same interrupt level.
2588 	 *
2589 	 * Also, we've got to be careful not to trash gate
2590 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2591 	 */
2592 	for_each_active_irq(irq) {
2593 		cfg = get_irq_chip_data(irq);
2594 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2595 			/*
2596 			 * Hmm.. We don't have an entry for this,
2597 			 * so default to an old-fashioned 8259
2598 			 * interrupt if we can..
2599 			 */
2600 			if (irq < legacy_pic->nr_legacy_irqs)
2601 				legacy_pic->make_irq(irq);
2602 			else
2603 				/* Strange. Oh, well.. */
2604 				set_irq_chip(irq, &no_irq_chip);
2605 		}
2606 	}
2607 }
2608 
2609 /*
2610  * The local APIC irq-chip implementation:
2611  */
2612 
2613 static void mask_lapic_irq(struct irq_data *data)
2614 {
2615 	unsigned long v;
2616 
2617 	v = apic_read(APIC_LVT0);
2618 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2619 }
2620 
2621 static void unmask_lapic_irq(struct irq_data *data)
2622 {
2623 	unsigned long v;
2624 
2625 	v = apic_read(APIC_LVT0);
2626 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2627 }
2628 
2629 static void ack_lapic_irq(struct irq_data *data)
2630 {
2631 	ack_APIC_irq();
2632 }
2633 
2634 static struct irq_chip lapic_chip __read_mostly = {
2635 	.name		= "local-APIC",
2636 	.irq_mask	= mask_lapic_irq,
2637 	.irq_unmask	= unmask_lapic_irq,
2638 	.irq_ack	= ack_lapic_irq,
2639 };
2640 
2641 static void lapic_register_intr(int irq)
2642 {
2643 	irq_clear_status_flags(irq, IRQ_LEVEL);
2644 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2645 				      "edge");
2646 }
2647 
2648 /*
2649  * This looks a bit hackish but it's about the only one way of sending
2650  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2651  * not support the ExtINT mode, unfortunately.  We need to send these
2652  * cycles as some i82489DX-based boards have glue logic that keeps the
2653  * 8259A interrupt line asserted until INTA.  --macro
2654  */
2655 static inline void __init unlock_ExtINT_logic(void)
2656 {
2657 	int apic, pin, i;
2658 	struct IO_APIC_route_entry entry0, entry1;
2659 	unsigned char save_control, save_freq_select;
2660 
2661 	pin  = find_isa_irq_pin(8, mp_INT);
2662 	if (pin == -1) {
2663 		WARN_ON_ONCE(1);
2664 		return;
2665 	}
2666 	apic = find_isa_irq_apic(8, mp_INT);
2667 	if (apic == -1) {
2668 		WARN_ON_ONCE(1);
2669 		return;
2670 	}
2671 
2672 	entry0 = ioapic_read_entry(apic, pin);
2673 	clear_IO_APIC_pin(apic, pin);
2674 
2675 	memset(&entry1, 0, sizeof(entry1));
2676 
2677 	entry1.dest_mode = 0;			/* physical delivery */
2678 	entry1.mask = 0;			/* unmask IRQ now */
2679 	entry1.dest = hard_smp_processor_id();
2680 	entry1.delivery_mode = dest_ExtINT;
2681 	entry1.polarity = entry0.polarity;
2682 	entry1.trigger = 0;
2683 	entry1.vector = 0;
2684 
2685 	ioapic_write_entry(apic, pin, entry1);
2686 
2687 	save_control = CMOS_READ(RTC_CONTROL);
2688 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2689 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2690 		   RTC_FREQ_SELECT);
2691 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2692 
2693 	i = 100;
2694 	while (i-- > 0) {
2695 		mdelay(10);
2696 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2697 			i -= 10;
2698 	}
2699 
2700 	CMOS_WRITE(save_control, RTC_CONTROL);
2701 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2702 	clear_IO_APIC_pin(apic, pin);
2703 
2704 	ioapic_write_entry(apic, pin, entry0);
2705 }
2706 
2707 static int disable_timer_pin_1 __initdata;
2708 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2709 static int __init disable_timer_pin_setup(char *arg)
2710 {
2711 	disable_timer_pin_1 = 1;
2712 	return 0;
2713 }
2714 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2715 
2716 int timer_through_8259 __initdata;
2717 
2718 /*
2719  * This code may look a bit paranoid, but it's supposed to cooperate with
2720  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2721  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2722  * fanatically on his truly buggy board.
2723  *
2724  * FIXME: really need to revamp this for all platforms.
2725  */
2726 static inline void __init check_timer(void)
2727 {
2728 	struct irq_cfg *cfg = get_irq_chip_data(0);
2729 	int node = cpu_to_node(0);
2730 	int apic1, pin1, apic2, pin2;
2731 	unsigned long flags;
2732 	int no_pin1 = 0;
2733 
2734 	local_irq_save(flags);
2735 
2736 	/*
2737 	 * get/set the timer IRQ vector:
2738 	 */
2739 	legacy_pic->mask(0);
2740 	assign_irq_vector(0, cfg, apic->target_cpus());
2741 
2742 	/*
2743 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2744 	 * wire has to be disabled in the local APIC.  Also
2745 	 * timer interrupts need to be acknowledged manually in
2746 	 * the 8259A for the i82489DX when using the NMI
2747 	 * watchdog as that APIC treats NMIs as level-triggered.
2748 	 * The AEOI mode will finish them in the 8259A
2749 	 * automatically.
2750 	 */
2751 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2752 	legacy_pic->init(1);
2753 
2754 	pin1  = find_isa_irq_pin(0, mp_INT);
2755 	apic1 = find_isa_irq_apic(0, mp_INT);
2756 	pin2  = ioapic_i8259.pin;
2757 	apic2 = ioapic_i8259.apic;
2758 
2759 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2760 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2761 		    cfg->vector, apic1, pin1, apic2, pin2);
2762 
2763 	/*
2764 	 * Some BIOS writers are clueless and report the ExtINTA
2765 	 * I/O APIC input from the cascaded 8259A as the timer
2766 	 * interrupt input.  So just in case, if only one pin
2767 	 * was found above, try it both directly and through the
2768 	 * 8259A.
2769 	 */
2770 	if (pin1 == -1) {
2771 		if (intr_remapping_enabled)
2772 			panic("BIOS bug: timer not connected to IO-APIC");
2773 		pin1 = pin2;
2774 		apic1 = apic2;
2775 		no_pin1 = 1;
2776 	} else if (pin2 == -1) {
2777 		pin2 = pin1;
2778 		apic2 = apic1;
2779 	}
2780 
2781 	if (pin1 != -1) {
2782 		/*
2783 		 * Ok, does IRQ0 through the IOAPIC work?
2784 		 */
2785 		if (no_pin1) {
2786 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2787 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2788 		} else {
2789 			/* for edge trigger, setup_ioapic_irq already
2790 			 * leave it unmasked.
2791 			 * so only need to unmask if it is level-trigger
2792 			 * do we really have level trigger timer?
2793 			 */
2794 			int idx;
2795 			idx = find_irq_entry(apic1, pin1, mp_INT);
2796 			if (idx != -1 && irq_trigger(idx))
2797 				unmask_ioapic(cfg);
2798 		}
2799 		if (timer_irq_works()) {
2800 			if (disable_timer_pin_1 > 0)
2801 				clear_IO_APIC_pin(0, pin1);
2802 			goto out;
2803 		}
2804 		if (intr_remapping_enabled)
2805 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2806 		local_irq_disable();
2807 		clear_IO_APIC_pin(apic1, pin1);
2808 		if (!no_pin1)
2809 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2810 				    "8254 timer not connected to IO-APIC\n");
2811 
2812 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2813 			    "(IRQ0) through the 8259A ...\n");
2814 		apic_printk(APIC_QUIET, KERN_INFO
2815 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2816 		/*
2817 		 * legacy devices should be connected to IO APIC #0
2818 		 */
2819 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2820 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2821 		legacy_pic->unmask(0);
2822 		if (timer_irq_works()) {
2823 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2824 			timer_through_8259 = 1;
2825 			goto out;
2826 		}
2827 		/*
2828 		 * Cleanup, just in case ...
2829 		 */
2830 		local_irq_disable();
2831 		legacy_pic->mask(0);
2832 		clear_IO_APIC_pin(apic2, pin2);
2833 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2834 	}
2835 
2836 	apic_printk(APIC_QUIET, KERN_INFO
2837 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2838 
2839 	lapic_register_intr(0);
2840 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
2841 	legacy_pic->unmask(0);
2842 
2843 	if (timer_irq_works()) {
2844 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2845 		goto out;
2846 	}
2847 	local_irq_disable();
2848 	legacy_pic->mask(0);
2849 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2850 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2851 
2852 	apic_printk(APIC_QUIET, KERN_INFO
2853 		    "...trying to set up timer as ExtINT IRQ...\n");
2854 
2855 	legacy_pic->init(0);
2856 	legacy_pic->make_irq(0);
2857 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
2858 
2859 	unlock_ExtINT_logic();
2860 
2861 	if (timer_irq_works()) {
2862 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2863 		goto out;
2864 	}
2865 	local_irq_disable();
2866 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2867 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
2868 		"report.  Then try booting with the 'noapic' option.\n");
2869 out:
2870 	local_irq_restore(flags);
2871 }
2872 
2873 /*
2874  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2875  * to devices.  However there may be an I/O APIC pin available for
2876  * this interrupt regardless.  The pin may be left unconnected, but
2877  * typically it will be reused as an ExtINT cascade interrupt for
2878  * the master 8259A.  In the MPS case such a pin will normally be
2879  * reported as an ExtINT interrupt in the MP table.  With ACPI
2880  * there is no provision for ExtINT interrupts, and in the absence
2881  * of an override it would be treated as an ordinary ISA I/O APIC
2882  * interrupt, that is edge-triggered and unmasked by default.  We
2883  * used to do this, but it caused problems on some systems because
2884  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2885  * the same ExtINT cascade interrupt to drive the local APIC of the
2886  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
2887  * the I/O APIC in all cases now.  No actual device should request
2888  * it anyway.  --macro
2889  */
2890 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
2891 
2892 void __init setup_IO_APIC(void)
2893 {
2894 
2895 	/*
2896 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2897 	 */
2898 	io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2899 
2900 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2901 	/*
2902          * Set up IO-APIC IRQ routing.
2903          */
2904 	x86_init.mpparse.setup_ioapic_ids();
2905 
2906 	sync_Arb_IDs();
2907 	setup_IO_APIC_irqs();
2908 	init_IO_APIC_traps();
2909 	if (legacy_pic->nr_legacy_irqs)
2910 		check_timer();
2911 }
2912 
2913 /*
2914  *      Called after all the initialization is done. If we didnt find any
2915  *      APIC bugs then we can allow the modify fast path
2916  */
2917 
2918 static int __init io_apic_bug_finalize(void)
2919 {
2920 	if (sis_apic_bug == -1)
2921 		sis_apic_bug = 0;
2922 	return 0;
2923 }
2924 
2925 late_initcall(io_apic_bug_finalize);
2926 
2927 struct sysfs_ioapic_data {
2928 	struct sys_device dev;
2929 	struct IO_APIC_route_entry entry[0];
2930 };
2931 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2932 
2933 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2934 {
2935 	struct IO_APIC_route_entry *entry;
2936 	struct sysfs_ioapic_data *data;
2937 	int i;
2938 
2939 	data = container_of(dev, struct sysfs_ioapic_data, dev);
2940 	entry = data->entry;
2941 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2942 		*entry = ioapic_read_entry(dev->id, i);
2943 
2944 	return 0;
2945 }
2946 
2947 static int ioapic_resume(struct sys_device *dev)
2948 {
2949 	struct IO_APIC_route_entry *entry;
2950 	struct sysfs_ioapic_data *data;
2951 	unsigned long flags;
2952 	union IO_APIC_reg_00 reg_00;
2953 	int i;
2954 
2955 	data = container_of(dev, struct sysfs_ioapic_data, dev);
2956 	entry = data->entry;
2957 
2958 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2959 	reg_00.raw = io_apic_read(dev->id, 0);
2960 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
2961 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
2962 		io_apic_write(dev->id, 0, reg_00.raw);
2963 	}
2964 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2965 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
2966 		ioapic_write_entry(dev->id, i, entry[i]);
2967 
2968 	return 0;
2969 }
2970 
2971 static struct sysdev_class ioapic_sysdev_class = {
2972 	.name = "ioapic",
2973 	.suspend = ioapic_suspend,
2974 	.resume = ioapic_resume,
2975 };
2976 
2977 static int __init ioapic_init_sysfs(void)
2978 {
2979 	struct sys_device * dev;
2980 	int i, size, error;
2981 
2982 	error = sysdev_class_register(&ioapic_sysdev_class);
2983 	if (error)
2984 		return error;
2985 
2986 	for (i = 0; i < nr_ioapics; i++ ) {
2987 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
2988 			* sizeof(struct IO_APIC_route_entry);
2989 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
2990 		if (!mp_ioapic_data[i]) {
2991 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2992 			continue;
2993 		}
2994 		dev = &mp_ioapic_data[i]->dev;
2995 		dev->id = i;
2996 		dev->cls = &ioapic_sysdev_class;
2997 		error = sysdev_register(dev);
2998 		if (error) {
2999 			kfree(mp_ioapic_data[i]);
3000 			mp_ioapic_data[i] = NULL;
3001 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3002 			continue;
3003 		}
3004 	}
3005 
3006 	return 0;
3007 }
3008 
3009 device_initcall(ioapic_init_sysfs);
3010 
3011 /*
3012  * Dynamic irq allocate and deallocation
3013  */
3014 unsigned int create_irq_nr(unsigned int from, int node)
3015 {
3016 	struct irq_cfg *cfg;
3017 	unsigned long flags;
3018 	unsigned int ret = 0;
3019 	int irq;
3020 
3021 	if (from < nr_irqs_gsi)
3022 		from = nr_irqs_gsi;
3023 
3024 	irq = alloc_irq_from(from, node);
3025 	if (irq < 0)
3026 		return 0;
3027 	cfg = alloc_irq_cfg(irq, node);
3028 	if (!cfg) {
3029 		free_irq_at(irq, NULL);
3030 		return 0;
3031 	}
3032 
3033 	raw_spin_lock_irqsave(&vector_lock, flags);
3034 	if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3035 		ret = irq;
3036 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3037 
3038 	if (ret) {
3039 		set_irq_chip_data(irq, cfg);
3040 		irq_clear_status_flags(irq, IRQ_NOREQUEST);
3041 	} else {
3042 		free_irq_at(irq, cfg);
3043 	}
3044 	return ret;
3045 }
3046 
3047 int create_irq(void)
3048 {
3049 	int node = cpu_to_node(0);
3050 	unsigned int irq_want;
3051 	int irq;
3052 
3053 	irq_want = nr_irqs_gsi;
3054 	irq = create_irq_nr(irq_want, node);
3055 
3056 	if (irq == 0)
3057 		irq = -1;
3058 
3059 	return irq;
3060 }
3061 
3062 void destroy_irq(unsigned int irq)
3063 {
3064 	struct irq_cfg *cfg = get_irq_chip_data(irq);
3065 	unsigned long flags;
3066 
3067 	irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3068 
3069 	if (irq_remapped(cfg))
3070 		free_irte(irq);
3071 	raw_spin_lock_irqsave(&vector_lock, flags);
3072 	__clear_irq_vector(irq, cfg);
3073 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3074 	free_irq_at(irq, cfg);
3075 }
3076 
3077 /*
3078  * MSI message composition
3079  */
3080 #ifdef CONFIG_PCI_MSI
3081 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3082 			   struct msi_msg *msg, u8 hpet_id)
3083 {
3084 	struct irq_cfg *cfg;
3085 	int err;
3086 	unsigned dest;
3087 
3088 	if (disable_apic)
3089 		return -ENXIO;
3090 
3091 	cfg = irq_cfg(irq);
3092 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3093 	if (err)
3094 		return err;
3095 
3096 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3097 
3098 	if (irq_remapped(get_irq_chip_data(irq))) {
3099 		struct irte irte;
3100 		int ir_index;
3101 		u16 sub_handle;
3102 
3103 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3104 		BUG_ON(ir_index == -1);
3105 
3106 		prepare_irte(&irte, cfg->vector, dest);
3107 
3108 		/* Set source-id of interrupt request */
3109 		if (pdev)
3110 			set_msi_sid(&irte, pdev);
3111 		else
3112 			set_hpet_sid(&irte, hpet_id);
3113 
3114 		modify_irte(irq, &irte);
3115 
3116 		msg->address_hi = MSI_ADDR_BASE_HI;
3117 		msg->data = sub_handle;
3118 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3119 				  MSI_ADDR_IR_SHV |
3120 				  MSI_ADDR_IR_INDEX1(ir_index) |
3121 				  MSI_ADDR_IR_INDEX2(ir_index);
3122 	} else {
3123 		if (x2apic_enabled())
3124 			msg->address_hi = MSI_ADDR_BASE_HI |
3125 					  MSI_ADDR_EXT_DEST_ID(dest);
3126 		else
3127 			msg->address_hi = MSI_ADDR_BASE_HI;
3128 
3129 		msg->address_lo =
3130 			MSI_ADDR_BASE_LO |
3131 			((apic->irq_dest_mode == 0) ?
3132 				MSI_ADDR_DEST_MODE_PHYSICAL:
3133 				MSI_ADDR_DEST_MODE_LOGICAL) |
3134 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3135 				MSI_ADDR_REDIRECTION_CPU:
3136 				MSI_ADDR_REDIRECTION_LOWPRI) |
3137 			MSI_ADDR_DEST_ID(dest);
3138 
3139 		msg->data =
3140 			MSI_DATA_TRIGGER_EDGE |
3141 			MSI_DATA_LEVEL_ASSERT |
3142 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3143 				MSI_DATA_DELIVERY_FIXED:
3144 				MSI_DATA_DELIVERY_LOWPRI) |
3145 			MSI_DATA_VECTOR(cfg->vector);
3146 	}
3147 	return err;
3148 }
3149 
3150 #ifdef CONFIG_SMP
3151 static int
3152 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3153 {
3154 	struct irq_cfg *cfg = data->chip_data;
3155 	struct msi_msg msg;
3156 	unsigned int dest;
3157 
3158 	if (__ioapic_set_affinity(data, mask, &dest))
3159 		return -1;
3160 
3161 	__get_cached_msi_msg(data->msi_desc, &msg);
3162 
3163 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3164 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3165 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3166 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3167 
3168 	__write_msi_msg(data->msi_desc, &msg);
3169 
3170 	return 0;
3171 }
3172 #ifdef CONFIG_INTR_REMAP
3173 /*
3174  * Migrate the MSI irq to another cpumask. This migration is
3175  * done in the process context using interrupt-remapping hardware.
3176  */
3177 static int
3178 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3179 		    bool force)
3180 {
3181 	struct irq_cfg *cfg = data->chip_data;
3182 	unsigned int dest, irq = data->irq;
3183 	struct irte irte;
3184 
3185 	if (get_irte(irq, &irte))
3186 		return -1;
3187 
3188 	if (__ioapic_set_affinity(data, mask, &dest))
3189 		return -1;
3190 
3191 	irte.vector = cfg->vector;
3192 	irte.dest_id = IRTE_DEST(dest);
3193 
3194 	/*
3195 	 * atomically update the IRTE with the new destination and vector.
3196 	 */
3197 	modify_irte(irq, &irte);
3198 
3199 	/*
3200 	 * After this point, all the interrupts will start arriving
3201 	 * at the new destination. So, time to cleanup the previous
3202 	 * vector allocation.
3203 	 */
3204 	if (cfg->move_in_progress)
3205 		send_cleanup_vector(cfg);
3206 
3207 	return 0;
3208 }
3209 
3210 #endif
3211 #endif /* CONFIG_SMP */
3212 
3213 /*
3214  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3215  * which implement the MSI or MSI-X Capability Structure.
3216  */
3217 static struct irq_chip msi_chip = {
3218 	.name			= "PCI-MSI",
3219 	.irq_unmask		= unmask_msi_irq,
3220 	.irq_mask		= mask_msi_irq,
3221 	.irq_ack		= ack_apic_edge,
3222 #ifdef CONFIG_SMP
3223 	.irq_set_affinity	= msi_set_affinity,
3224 #endif
3225 	.irq_retrigger		= ioapic_retrigger_irq,
3226 };
3227 
3228 static struct irq_chip msi_ir_chip = {
3229 	.name			= "IR-PCI-MSI",
3230 	.irq_unmask		= unmask_msi_irq,
3231 	.irq_mask		= mask_msi_irq,
3232 #ifdef CONFIG_INTR_REMAP
3233 	.irq_ack		= ir_ack_apic_edge,
3234 #ifdef CONFIG_SMP
3235 	.irq_set_affinity	= ir_msi_set_affinity,
3236 #endif
3237 #endif
3238 	.irq_retrigger		= ioapic_retrigger_irq,
3239 };
3240 
3241 /*
3242  * Map the PCI dev to the corresponding remapping hardware unit
3243  * and allocate 'nvec' consecutive interrupt-remapping table entries
3244  * in it.
3245  */
3246 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3247 {
3248 	struct intel_iommu *iommu;
3249 	int index;
3250 
3251 	iommu = map_dev_to_ir(dev);
3252 	if (!iommu) {
3253 		printk(KERN_ERR
3254 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3255 		return -ENOENT;
3256 	}
3257 
3258 	index = alloc_irte(iommu, irq, nvec);
3259 	if (index < 0) {
3260 		printk(KERN_ERR
3261 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3262 		       pci_name(dev));
3263 		return -ENOSPC;
3264 	}
3265 	return index;
3266 }
3267 
3268 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3269 {
3270 	struct msi_msg msg;
3271 	int ret;
3272 
3273 	ret = msi_compose_msg(dev, irq, &msg, -1);
3274 	if (ret < 0)
3275 		return ret;
3276 
3277 	set_irq_msi(irq, msidesc);
3278 	write_msi_msg(irq, &msg);
3279 
3280 	if (irq_remapped(get_irq_chip_data(irq))) {
3281 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3282 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3283 	} else
3284 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3285 
3286 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3287 
3288 	return 0;
3289 }
3290 
3291 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3292 {
3293 	int node, ret, sub_handle, index = 0;
3294 	unsigned int irq, irq_want;
3295 	struct msi_desc *msidesc;
3296 	struct intel_iommu *iommu = NULL;
3297 
3298 	/* x86 doesn't support multiple MSI yet */
3299 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3300 		return 1;
3301 
3302 	node = dev_to_node(&dev->dev);
3303 	irq_want = nr_irqs_gsi;
3304 	sub_handle = 0;
3305 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3306 		irq = create_irq_nr(irq_want, node);
3307 		if (irq == 0)
3308 			return -1;
3309 		irq_want = irq + 1;
3310 		if (!intr_remapping_enabled)
3311 			goto no_ir;
3312 
3313 		if (!sub_handle) {
3314 			/*
3315 			 * allocate the consecutive block of IRTE's
3316 			 * for 'nvec'
3317 			 */
3318 			index = msi_alloc_irte(dev, irq, nvec);
3319 			if (index < 0) {
3320 				ret = index;
3321 				goto error;
3322 			}
3323 		} else {
3324 			iommu = map_dev_to_ir(dev);
3325 			if (!iommu) {
3326 				ret = -ENOENT;
3327 				goto error;
3328 			}
3329 			/*
3330 			 * setup the mapping between the irq and the IRTE
3331 			 * base index, the sub_handle pointing to the
3332 			 * appropriate interrupt remap table entry.
3333 			 */
3334 			set_irte_irq(irq, iommu, index, sub_handle);
3335 		}
3336 no_ir:
3337 		ret = setup_msi_irq(dev, msidesc, irq);
3338 		if (ret < 0)
3339 			goto error;
3340 		sub_handle++;
3341 	}
3342 	return 0;
3343 
3344 error:
3345 	destroy_irq(irq);
3346 	return ret;
3347 }
3348 
3349 void native_teardown_msi_irq(unsigned int irq)
3350 {
3351 	destroy_irq(irq);
3352 }
3353 
3354 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3355 #ifdef CONFIG_SMP
3356 static int
3357 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3358 		      bool force)
3359 {
3360 	struct irq_cfg *cfg = data->chip_data;
3361 	unsigned int dest, irq = data->irq;
3362 	struct msi_msg msg;
3363 
3364 	if (__ioapic_set_affinity(data, mask, &dest))
3365 		return -1;
3366 
3367 	dmar_msi_read(irq, &msg);
3368 
3369 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3370 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3371 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3372 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3373 	msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3374 
3375 	dmar_msi_write(irq, &msg);
3376 
3377 	return 0;
3378 }
3379 
3380 #endif /* CONFIG_SMP */
3381 
3382 static struct irq_chip dmar_msi_type = {
3383 	.name			= "DMAR_MSI",
3384 	.irq_unmask		= dmar_msi_unmask,
3385 	.irq_mask		= dmar_msi_mask,
3386 	.irq_ack		= ack_apic_edge,
3387 #ifdef CONFIG_SMP
3388 	.irq_set_affinity	= dmar_msi_set_affinity,
3389 #endif
3390 	.irq_retrigger		= ioapic_retrigger_irq,
3391 };
3392 
3393 int arch_setup_dmar_msi(unsigned int irq)
3394 {
3395 	int ret;
3396 	struct msi_msg msg;
3397 
3398 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3399 	if (ret < 0)
3400 		return ret;
3401 	dmar_msi_write(irq, &msg);
3402 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3403 		"edge");
3404 	return 0;
3405 }
3406 #endif
3407 
3408 #ifdef CONFIG_HPET_TIMER
3409 
3410 #ifdef CONFIG_SMP
3411 static int hpet_msi_set_affinity(struct irq_data *data,
3412 				 const struct cpumask *mask, bool force)
3413 {
3414 	struct irq_cfg *cfg = data->chip_data;
3415 	struct msi_msg msg;
3416 	unsigned int dest;
3417 
3418 	if (__ioapic_set_affinity(data, mask, &dest))
3419 		return -1;
3420 
3421 	hpet_msi_read(data->handler_data, &msg);
3422 
3423 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3424 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3425 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3426 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3427 
3428 	hpet_msi_write(data->handler_data, &msg);
3429 
3430 	return 0;
3431 }
3432 
3433 #endif /* CONFIG_SMP */
3434 
3435 static struct irq_chip ir_hpet_msi_type = {
3436 	.name			= "IR-HPET_MSI",
3437 	.irq_unmask		= hpet_msi_unmask,
3438 	.irq_mask		= hpet_msi_mask,
3439 #ifdef CONFIG_INTR_REMAP
3440 	.irq_ack		= ir_ack_apic_edge,
3441 #ifdef CONFIG_SMP
3442 	.irq_set_affinity	= ir_msi_set_affinity,
3443 #endif
3444 #endif
3445 	.irq_retrigger		= ioapic_retrigger_irq,
3446 };
3447 
3448 static struct irq_chip hpet_msi_type = {
3449 	.name = "HPET_MSI",
3450 	.irq_unmask = hpet_msi_unmask,
3451 	.irq_mask = hpet_msi_mask,
3452 	.irq_ack = ack_apic_edge,
3453 #ifdef CONFIG_SMP
3454 	.irq_set_affinity = hpet_msi_set_affinity,
3455 #endif
3456 	.irq_retrigger = ioapic_retrigger_irq,
3457 };
3458 
3459 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3460 {
3461 	struct msi_msg msg;
3462 	int ret;
3463 
3464 	if (intr_remapping_enabled) {
3465 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3466 		int index;
3467 
3468 		if (!iommu)
3469 			return -1;
3470 
3471 		index = alloc_irte(iommu, irq, 1);
3472 		if (index < 0)
3473 			return -1;
3474 	}
3475 
3476 	ret = msi_compose_msg(NULL, irq, &msg, id);
3477 	if (ret < 0)
3478 		return ret;
3479 
3480 	hpet_msi_write(get_irq_data(irq), &msg);
3481 	irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3482 	if (irq_remapped(get_irq_chip_data(irq)))
3483 		set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3484 					      handle_edge_irq, "edge");
3485 	else
3486 		set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3487 					      handle_edge_irq, "edge");
3488 
3489 	return 0;
3490 }
3491 #endif
3492 
3493 #endif /* CONFIG_PCI_MSI */
3494 /*
3495  * Hypertransport interrupt support
3496  */
3497 #ifdef CONFIG_HT_IRQ
3498 
3499 #ifdef CONFIG_SMP
3500 
3501 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3502 {
3503 	struct ht_irq_msg msg;
3504 	fetch_ht_irq_msg(irq, &msg);
3505 
3506 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3507 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3508 
3509 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3510 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3511 
3512 	write_ht_irq_msg(irq, &msg);
3513 }
3514 
3515 static int
3516 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3517 {
3518 	struct irq_cfg *cfg = data->chip_data;
3519 	unsigned int dest;
3520 
3521 	if (__ioapic_set_affinity(data, mask, &dest))
3522 		return -1;
3523 
3524 	target_ht_irq(data->irq, dest, cfg->vector);
3525 	return 0;
3526 }
3527 
3528 #endif
3529 
3530 static struct irq_chip ht_irq_chip = {
3531 	.name			= "PCI-HT",
3532 	.irq_mask		= mask_ht_irq,
3533 	.irq_unmask		= unmask_ht_irq,
3534 	.irq_ack		= ack_apic_edge,
3535 #ifdef CONFIG_SMP
3536 	.irq_set_affinity	= ht_set_affinity,
3537 #endif
3538 	.irq_retrigger		= ioapic_retrigger_irq,
3539 };
3540 
3541 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3542 {
3543 	struct irq_cfg *cfg;
3544 	int err;
3545 
3546 	if (disable_apic)
3547 		return -ENXIO;
3548 
3549 	cfg = irq_cfg(irq);
3550 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3551 	if (!err) {
3552 		struct ht_irq_msg msg;
3553 		unsigned dest;
3554 
3555 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3556 						    apic->target_cpus());
3557 
3558 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3559 
3560 		msg.address_lo =
3561 			HT_IRQ_LOW_BASE |
3562 			HT_IRQ_LOW_DEST_ID(dest) |
3563 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3564 			((apic->irq_dest_mode == 0) ?
3565 				HT_IRQ_LOW_DM_PHYSICAL :
3566 				HT_IRQ_LOW_DM_LOGICAL) |
3567 			HT_IRQ_LOW_RQEOI_EDGE |
3568 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3569 				HT_IRQ_LOW_MT_FIXED :
3570 				HT_IRQ_LOW_MT_ARBITRATED) |
3571 			HT_IRQ_LOW_IRQ_MASKED;
3572 
3573 		write_ht_irq_msg(irq, &msg);
3574 
3575 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3576 					      handle_edge_irq, "edge");
3577 
3578 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3579 	}
3580 	return err;
3581 }
3582 #endif /* CONFIG_HT_IRQ */
3583 
3584 int __init io_apic_get_redir_entries (int ioapic)
3585 {
3586 	union IO_APIC_reg_01	reg_01;
3587 	unsigned long flags;
3588 
3589 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3590 	reg_01.raw = io_apic_read(ioapic, 1);
3591 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3592 
3593 	/* The register returns the maximum index redir index
3594 	 * supported, which is one less than the total number of redir
3595 	 * entries.
3596 	 */
3597 	return reg_01.bits.entries + 1;
3598 }
3599 
3600 static void __init probe_nr_irqs_gsi(void)
3601 {
3602 	int nr;
3603 
3604 	nr = gsi_top + NR_IRQS_LEGACY;
3605 	if (nr > nr_irqs_gsi)
3606 		nr_irqs_gsi = nr;
3607 
3608 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3609 }
3610 
3611 int get_nr_irqs_gsi(void)
3612 {
3613 	return nr_irqs_gsi;
3614 }
3615 
3616 #ifdef CONFIG_SPARSE_IRQ
3617 int __init arch_probe_nr_irqs(void)
3618 {
3619 	int nr;
3620 
3621 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3622 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3623 
3624 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3625 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3626 	/*
3627 	 * for MSI and HT dyn irq
3628 	 */
3629 	nr += nr_irqs_gsi * 16;
3630 #endif
3631 	if (nr < nr_irqs)
3632 		nr_irqs = nr;
3633 
3634 	return NR_IRQS_LEGACY;
3635 }
3636 #endif
3637 
3638 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3639 				struct io_apic_irq_attr *irq_attr)
3640 {
3641 	struct irq_cfg *cfg;
3642 	int node;
3643 	int ioapic, pin;
3644 	int trigger, polarity;
3645 
3646 	ioapic = irq_attr->ioapic;
3647 	if (!IO_APIC_IRQ(irq)) {
3648 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3649 			ioapic);
3650 		return -EINVAL;
3651 	}
3652 
3653 	if (dev)
3654 		node = dev_to_node(dev);
3655 	else
3656 		node = cpu_to_node(0);
3657 
3658 	cfg = alloc_irq_and_cfg_at(irq, node);
3659 	if (!cfg)
3660 		return 0;
3661 
3662 	pin = irq_attr->ioapic_pin;
3663 	trigger = irq_attr->trigger;
3664 	polarity = irq_attr->polarity;
3665 
3666 	/*
3667 	 * IRQs < 16 are already in the irq_2_pin[] map
3668 	 */
3669 	if (irq >= legacy_pic->nr_legacy_irqs) {
3670 		if (__add_pin_to_irq_node(cfg, node, ioapic, pin)) {
3671 			printk(KERN_INFO "can not add pin %d for irq %d\n",
3672 				pin, irq);
3673 			return 0;
3674 		}
3675 	}
3676 
3677 	setup_ioapic_irq(ioapic, pin, irq, cfg, trigger, polarity);
3678 
3679 	return 0;
3680 }
3681 
3682 int io_apic_set_pci_routing(struct device *dev, int irq,
3683 				struct io_apic_irq_attr *irq_attr)
3684 {
3685 	int ioapic, pin;
3686 	/*
3687 	 * Avoid pin reprogramming.  PRTs typically include entries
3688 	 * with redundant pin->gsi mappings (but unique PCI devices);
3689 	 * we only program the IOAPIC on the first.
3690 	 */
3691 	ioapic = irq_attr->ioapic;
3692 	pin = irq_attr->ioapic_pin;
3693 	if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3694 		pr_debug("Pin %d-%d already programmed\n",
3695 			 mp_ioapics[ioapic].apicid, pin);
3696 		return 0;
3697 	}
3698 	set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3699 
3700 	return __io_apic_set_pci_routing(dev, irq, irq_attr);
3701 }
3702 
3703 u8 __init io_apic_unique_id(u8 id)
3704 {
3705 #ifdef CONFIG_X86_32
3706 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3707 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3708 		return io_apic_get_unique_id(nr_ioapics, id);
3709 	else
3710 		return id;
3711 #else
3712 	int i;
3713 	DECLARE_BITMAP(used, 256);
3714 
3715 	bitmap_zero(used, 256);
3716 	for (i = 0; i < nr_ioapics; i++) {
3717 		struct mpc_ioapic *ia = &mp_ioapics[i];
3718 		__set_bit(ia->apicid, used);
3719 	}
3720 	if (!test_bit(id, used))
3721 		return id;
3722 	return find_first_zero_bit(used, 256);
3723 #endif
3724 }
3725 
3726 #ifdef CONFIG_X86_32
3727 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3728 {
3729 	union IO_APIC_reg_00 reg_00;
3730 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3731 	physid_mask_t tmp;
3732 	unsigned long flags;
3733 	int i = 0;
3734 
3735 	/*
3736 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3737 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3738 	 * supports up to 16 on one shared APIC bus.
3739 	 *
3740 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3741 	 *      advantage of new APIC bus architecture.
3742 	 */
3743 
3744 	if (physids_empty(apic_id_map))
3745 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3746 
3747 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3748 	reg_00.raw = io_apic_read(ioapic, 0);
3749 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3750 
3751 	if (apic_id >= get_physical_broadcast()) {
3752 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3753 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3754 		apic_id = reg_00.bits.ID;
3755 	}
3756 
3757 	/*
3758 	 * Every APIC in a system must have a unique ID or we get lots of nice
3759 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3760 	 */
3761 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3762 
3763 		for (i = 0; i < get_physical_broadcast(); i++) {
3764 			if (!apic->check_apicid_used(&apic_id_map, i))
3765 				break;
3766 		}
3767 
3768 		if (i == get_physical_broadcast())
3769 			panic("Max apic_id exceeded!\n");
3770 
3771 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3772 			"trying %d\n", ioapic, apic_id, i);
3773 
3774 		apic_id = i;
3775 	}
3776 
3777 	apic->apicid_to_cpu_present(apic_id, &tmp);
3778 	physids_or(apic_id_map, apic_id_map, tmp);
3779 
3780 	if (reg_00.bits.ID != apic_id) {
3781 		reg_00.bits.ID = apic_id;
3782 
3783 		raw_spin_lock_irqsave(&ioapic_lock, flags);
3784 		io_apic_write(ioapic, 0, reg_00.raw);
3785 		reg_00.raw = io_apic_read(ioapic, 0);
3786 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3787 
3788 		/* Sanity check */
3789 		if (reg_00.bits.ID != apic_id) {
3790 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3791 			return -1;
3792 		}
3793 	}
3794 
3795 	apic_printk(APIC_VERBOSE, KERN_INFO
3796 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3797 
3798 	return apic_id;
3799 }
3800 #endif
3801 
3802 int __init io_apic_get_version(int ioapic)
3803 {
3804 	union IO_APIC_reg_01	reg_01;
3805 	unsigned long flags;
3806 
3807 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3808 	reg_01.raw = io_apic_read(ioapic, 1);
3809 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3810 
3811 	return reg_01.bits.version;
3812 }
3813 
3814 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3815 {
3816 	int ioapic, pin, idx;
3817 
3818 	if (skip_ioapic_setup)
3819 		return -1;
3820 
3821 	ioapic = mp_find_ioapic(gsi);
3822 	if (ioapic < 0)
3823 		return -1;
3824 
3825 	pin = mp_find_ioapic_pin(ioapic, gsi);
3826 	if (pin < 0)
3827 		return -1;
3828 
3829 	idx = find_irq_entry(ioapic, pin, mp_INT);
3830 	if (idx < 0)
3831 		return -1;
3832 
3833 	*trigger = irq_trigger(idx);
3834 	*polarity = irq_polarity(idx);
3835 	return 0;
3836 }
3837 
3838 /*
3839  * This function currently is only a helper for the i386 smp boot process where
3840  * we need to reprogram the ioredtbls to cater for the cpus which have come online
3841  * so mask in all cases should simply be apic->target_cpus()
3842  */
3843 #ifdef CONFIG_SMP
3844 void __init setup_ioapic_dest(void)
3845 {
3846 	int pin, ioapic, irq, irq_entry;
3847 	struct irq_desc *desc;
3848 	const struct cpumask *mask;
3849 
3850 	if (skip_ioapic_setup == 1)
3851 		return;
3852 
3853 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3854 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3855 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3856 		if (irq_entry == -1)
3857 			continue;
3858 		irq = pin_2_irq(irq_entry, ioapic, pin);
3859 
3860 		if ((ioapic > 0) && (irq > 16))
3861 			continue;
3862 
3863 		desc = irq_to_desc(irq);
3864 
3865 		/*
3866 		 * Honour affinities which have been set in early boot
3867 		 */
3868 		if (desc->status &
3869 		    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
3870 			mask = desc->irq_data.affinity;
3871 		else
3872 			mask = apic->target_cpus();
3873 
3874 		if (intr_remapping_enabled)
3875 			ir_ioapic_set_affinity(&desc->irq_data, mask, false);
3876 		else
3877 			ioapic_set_affinity(&desc->irq_data, mask, false);
3878 	}
3879 
3880 }
3881 #endif
3882 
3883 #define IOAPIC_RESOURCE_NAME_SIZE 11
3884 
3885 static struct resource *ioapic_resources;
3886 
3887 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3888 {
3889 	unsigned long n;
3890 	struct resource *res;
3891 	char *mem;
3892 	int i;
3893 
3894 	if (nr_ioapics <= 0)
3895 		return NULL;
3896 
3897 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3898 	n *= nr_ioapics;
3899 
3900 	mem = alloc_bootmem(n);
3901 	res = (void *)mem;
3902 
3903 	mem += sizeof(struct resource) * nr_ioapics;
3904 
3905 	for (i = 0; i < nr_ioapics; i++) {
3906 		res[i].name = mem;
3907 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3908 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3909 		mem += IOAPIC_RESOURCE_NAME_SIZE;
3910 	}
3911 
3912 	ioapic_resources = res;
3913 
3914 	return res;
3915 }
3916 
3917 void __init ioapic_and_gsi_init(void)
3918 {
3919 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3920 	struct resource *ioapic_res;
3921 	int i;
3922 
3923 	ioapic_res = ioapic_setup_resources(nr_ioapics);
3924 	for (i = 0; i < nr_ioapics; i++) {
3925 		if (smp_found_config) {
3926 			ioapic_phys = mp_ioapics[i].apicaddr;
3927 #ifdef CONFIG_X86_32
3928 			if (!ioapic_phys) {
3929 				printk(KERN_ERR
3930 				       "WARNING: bogus zero IO-APIC "
3931 				       "address found in MPTABLE, "
3932 				       "disabling IO/APIC support!\n");
3933 				smp_found_config = 0;
3934 				skip_ioapic_setup = 1;
3935 				goto fake_ioapic_page;
3936 			}
3937 #endif
3938 		} else {
3939 #ifdef CONFIG_X86_32
3940 fake_ioapic_page:
3941 #endif
3942 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3943 			ioapic_phys = __pa(ioapic_phys);
3944 		}
3945 		set_fixmap_nocache(idx, ioapic_phys);
3946 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3947 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3948 			ioapic_phys);
3949 		idx++;
3950 
3951 		ioapic_res->start = ioapic_phys;
3952 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3953 		ioapic_res++;
3954 	}
3955 
3956 	probe_nr_irqs_gsi();
3957 }
3958 
3959 void __init ioapic_insert_resources(void)
3960 {
3961 	int i;
3962 	struct resource *r = ioapic_resources;
3963 
3964 	if (!r) {
3965 		if (nr_ioapics > 0)
3966 			printk(KERN_ERR
3967 				"IO APIC resources couldn't be allocated.\n");
3968 		return;
3969 	}
3970 
3971 	for (i = 0; i < nr_ioapics; i++) {
3972 		insert_resource(&iomem_resource, r);
3973 		r++;
3974 	}
3975 }
3976 
3977 int mp_find_ioapic(u32 gsi)
3978 {
3979 	int i = 0;
3980 
3981 	/* Find the IOAPIC that manages this GSI. */
3982 	for (i = 0; i < nr_ioapics; i++) {
3983 		if ((gsi >= mp_gsi_routing[i].gsi_base)
3984 		    && (gsi <= mp_gsi_routing[i].gsi_end))
3985 			return i;
3986 	}
3987 
3988 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3989 	return -1;
3990 }
3991 
3992 int mp_find_ioapic_pin(int ioapic, u32 gsi)
3993 {
3994 	if (WARN_ON(ioapic == -1))
3995 		return -1;
3996 	if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
3997 		return -1;
3998 
3999 	return gsi - mp_gsi_routing[ioapic].gsi_base;
4000 }
4001 
4002 static int bad_ioapic(unsigned long address)
4003 {
4004 	if (nr_ioapics >= MAX_IO_APICS) {
4005 		printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4006 		       "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4007 		return 1;
4008 	}
4009 	if (!address) {
4010 		printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4011 		       " found in table, skipping!\n");
4012 		return 1;
4013 	}
4014 	return 0;
4015 }
4016 
4017 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4018 {
4019 	int idx = 0;
4020 	int entries;
4021 
4022 	if (bad_ioapic(address))
4023 		return;
4024 
4025 	idx = nr_ioapics;
4026 
4027 	mp_ioapics[idx].type = MP_IOAPIC;
4028 	mp_ioapics[idx].flags = MPC_APIC_USABLE;
4029 	mp_ioapics[idx].apicaddr = address;
4030 
4031 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4032 	mp_ioapics[idx].apicid = io_apic_unique_id(id);
4033 	mp_ioapics[idx].apicver = io_apic_get_version(idx);
4034 
4035 	/*
4036 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4037 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4038 	 */
4039 	entries = io_apic_get_redir_entries(idx);
4040 	mp_gsi_routing[idx].gsi_base = gsi_base;
4041 	mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4042 
4043 	/*
4044 	 * The number of IO-APIC IRQ registers (== #pins):
4045 	 */
4046 	nr_ioapic_registers[idx] = entries;
4047 
4048 	if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4049 		gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4050 
4051 	printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4052 	       "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4053 	       mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4054 	       mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4055 
4056 	nr_ioapics++;
4057 }
4058 
4059 /* Enable IOAPIC early just for system timer */
4060 void __init pre_init_apic_IRQ0(void)
4061 {
4062 	struct irq_cfg *cfg;
4063 
4064 	printk(KERN_INFO "Early APIC setup for system timer0\n");
4065 #ifndef CONFIG_SMP
4066 	physid_set_mask_of_physid(boot_cpu_physical_apicid,
4067 					 &phys_cpu_present_map);
4068 #endif
4069 	/* Make sure the irq descriptor is set up */
4070 	cfg = alloc_irq_and_cfg_at(0, 0);
4071 
4072 	setup_local_APIC();
4073 
4074 	add_pin_to_irq_node(cfg, 0, 0, 0);
4075 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4076 
4077 	setup_ioapic_irq(0, 0, 0, cfg, 0, 0);
4078 }
4079