1 /* 2 * Intel IO-APIC support for multi-Pentium hosts. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * 6 * Many thanks to Stig Venaas for trying out countless experimental 7 * patches and reporting/debugging problems patiently! 8 * 9 * (c) 1999, Multiple IO-APIC support, developed by 10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 12 * further tested and cleaned up by Zach Brown <zab@redhat.com> 13 * and Ingo Molnar <mingo@redhat.com> 14 * 15 * Fixes 16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 17 * thanks to Eric Gilmore 18 * and Rolf G. Tews 19 * for testing these extensively 20 * Paul Diefenbaugh : Added full ACPI support 21 */ 22 23 #include <linux/mm.h> 24 #include <linux/interrupt.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/sched.h> 28 #include <linux/pci.h> 29 #include <linux/mc146818rtc.h> 30 #include <linux/compiler.h> 31 #include <linux/acpi.h> 32 #include <linux/module.h> 33 #include <linux/sysdev.h> 34 #include <linux/msi.h> 35 #include <linux/htirq.h> 36 #include <linux/freezer.h> 37 #include <linux/kthread.h> 38 #include <linux/jiffies.h> /* time_after() */ 39 #ifdef CONFIG_ACPI 40 #include <acpi/acpi_bus.h> 41 #endif 42 #include <linux/bootmem.h> 43 #include <linux/dmar.h> 44 #include <linux/hpet.h> 45 46 #include <asm/idle.h> 47 #include <asm/io.h> 48 #include <asm/smp.h> 49 #include <asm/cpu.h> 50 #include <asm/desc.h> 51 #include <asm/proto.h> 52 #include <asm/acpi.h> 53 #include <asm/dma.h> 54 #include <asm/timer.h> 55 #include <asm/i8259.h> 56 #include <asm/nmi.h> 57 #include <asm/msidef.h> 58 #include <asm/hypertransport.h> 59 #include <asm/setup.h> 60 #include <asm/irq_remapping.h> 61 #include <asm/hpet.h> 62 #include <asm/uv/uv_hub.h> 63 #include <asm/uv/uv_irq.h> 64 65 #include <asm/apic.h> 66 67 #define __apicdebuginit(type) static type __init 68 69 /* 70 * Is the SiS APIC rmw bug present ? 71 * -1 = don't know, 0 = no, 1 = yes 72 */ 73 int sis_apic_bug = -1; 74 75 static DEFINE_SPINLOCK(ioapic_lock); 76 static DEFINE_SPINLOCK(vector_lock); 77 78 /* 79 * # of IRQ routing registers 80 */ 81 int nr_ioapic_registers[MAX_IO_APICS]; 82 83 /* I/O APIC entries */ 84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS]; 85 int nr_ioapics; 86 87 /* MP IRQ source entries */ 88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 89 90 /* # of MP IRQ source entries */ 91 int mp_irq_entries; 92 93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA) 94 int mp_bus_id_to_type[MAX_MP_BUSSES]; 95 #endif 96 97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 98 99 int skip_ioapic_setup; 100 101 void arch_disable_smp_support(void) 102 { 103 #ifdef CONFIG_PCI 104 noioapicquirk = 1; 105 noioapicreroute = -1; 106 #endif 107 skip_ioapic_setup = 1; 108 } 109 110 static int __init parse_noapic(char *str) 111 { 112 /* disable IO-APIC */ 113 arch_disable_smp_support(); 114 return 0; 115 } 116 early_param("noapic", parse_noapic); 117 118 struct irq_pin_list; 119 120 /* 121 * This is performance-critical, we want to do it O(1) 122 * 123 * the indexing order of this array favors 1:1 mappings 124 * between pins and IRQs. 125 */ 126 127 struct irq_pin_list { 128 int apic, pin; 129 struct irq_pin_list *next; 130 }; 131 132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu) 133 { 134 struct irq_pin_list *pin; 135 int node; 136 137 node = cpu_to_node(cpu); 138 139 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node); 140 141 return pin; 142 } 143 144 struct irq_cfg { 145 struct irq_pin_list *irq_2_pin; 146 cpumask_var_t domain; 147 cpumask_var_t old_domain; 148 unsigned move_cleanup_count; 149 u8 vector; 150 u8 move_in_progress : 1; 151 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC 152 u8 move_desc_pending : 1; 153 #endif 154 }; 155 156 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ 157 #ifdef CONFIG_SPARSE_IRQ 158 static struct irq_cfg irq_cfgx[] = { 159 #else 160 static struct irq_cfg irq_cfgx[NR_IRQS] = { 161 #endif 162 [0] = { .vector = IRQ0_VECTOR, }, 163 [1] = { .vector = IRQ1_VECTOR, }, 164 [2] = { .vector = IRQ2_VECTOR, }, 165 [3] = { .vector = IRQ3_VECTOR, }, 166 [4] = { .vector = IRQ4_VECTOR, }, 167 [5] = { .vector = IRQ5_VECTOR, }, 168 [6] = { .vector = IRQ6_VECTOR, }, 169 [7] = { .vector = IRQ7_VECTOR, }, 170 [8] = { .vector = IRQ8_VECTOR, }, 171 [9] = { .vector = IRQ9_VECTOR, }, 172 [10] = { .vector = IRQ10_VECTOR, }, 173 [11] = { .vector = IRQ11_VECTOR, }, 174 [12] = { .vector = IRQ12_VECTOR, }, 175 [13] = { .vector = IRQ13_VECTOR, }, 176 [14] = { .vector = IRQ14_VECTOR, }, 177 [15] = { .vector = IRQ15_VECTOR, }, 178 }; 179 180 int __init arch_early_irq_init(void) 181 { 182 struct irq_cfg *cfg; 183 struct irq_desc *desc; 184 int count; 185 int i; 186 187 cfg = irq_cfgx; 188 count = ARRAY_SIZE(irq_cfgx); 189 190 for (i = 0; i < count; i++) { 191 desc = irq_to_desc(i); 192 desc->chip_data = &cfg[i]; 193 alloc_bootmem_cpumask_var(&cfg[i].domain); 194 alloc_bootmem_cpumask_var(&cfg[i].old_domain); 195 if (i < NR_IRQS_LEGACY) 196 cpumask_setall(cfg[i].domain); 197 } 198 199 return 0; 200 } 201 202 #ifdef CONFIG_SPARSE_IRQ 203 static struct irq_cfg *irq_cfg(unsigned int irq) 204 { 205 struct irq_cfg *cfg = NULL; 206 struct irq_desc *desc; 207 208 desc = irq_to_desc(irq); 209 if (desc) 210 cfg = desc->chip_data; 211 212 return cfg; 213 } 214 215 static struct irq_cfg *get_one_free_irq_cfg(int cpu) 216 { 217 struct irq_cfg *cfg; 218 int node; 219 220 node = cpu_to_node(cpu); 221 222 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node); 223 if (cfg) { 224 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) { 225 kfree(cfg); 226 cfg = NULL; 227 } else if (!alloc_cpumask_var_node(&cfg->old_domain, 228 GFP_ATOMIC, node)) { 229 free_cpumask_var(cfg->domain); 230 kfree(cfg); 231 cfg = NULL; 232 } else { 233 cpumask_clear(cfg->domain); 234 cpumask_clear(cfg->old_domain); 235 } 236 } 237 238 return cfg; 239 } 240 241 int arch_init_chip_data(struct irq_desc *desc, int cpu) 242 { 243 struct irq_cfg *cfg; 244 245 cfg = desc->chip_data; 246 if (!cfg) { 247 desc->chip_data = get_one_free_irq_cfg(cpu); 248 if (!desc->chip_data) { 249 printk(KERN_ERR "can not alloc irq_cfg\n"); 250 BUG_ON(1); 251 } 252 } 253 254 return 0; 255 } 256 257 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC 258 259 static void 260 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu) 261 { 262 struct irq_pin_list *old_entry, *head, *tail, *entry; 263 264 cfg->irq_2_pin = NULL; 265 old_entry = old_cfg->irq_2_pin; 266 if (!old_entry) 267 return; 268 269 entry = get_one_free_irq_2_pin(cpu); 270 if (!entry) 271 return; 272 273 entry->apic = old_entry->apic; 274 entry->pin = old_entry->pin; 275 head = entry; 276 tail = entry; 277 old_entry = old_entry->next; 278 while (old_entry) { 279 entry = get_one_free_irq_2_pin(cpu); 280 if (!entry) { 281 entry = head; 282 while (entry) { 283 head = entry->next; 284 kfree(entry); 285 entry = head; 286 } 287 /* still use the old one */ 288 return; 289 } 290 entry->apic = old_entry->apic; 291 entry->pin = old_entry->pin; 292 tail->next = entry; 293 tail = entry; 294 old_entry = old_entry->next; 295 } 296 297 tail->next = NULL; 298 cfg->irq_2_pin = head; 299 } 300 301 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg) 302 { 303 struct irq_pin_list *entry, *next; 304 305 if (old_cfg->irq_2_pin == cfg->irq_2_pin) 306 return; 307 308 entry = old_cfg->irq_2_pin; 309 310 while (entry) { 311 next = entry->next; 312 kfree(entry); 313 entry = next; 314 } 315 old_cfg->irq_2_pin = NULL; 316 } 317 318 void arch_init_copy_chip_data(struct irq_desc *old_desc, 319 struct irq_desc *desc, int cpu) 320 { 321 struct irq_cfg *cfg; 322 struct irq_cfg *old_cfg; 323 324 cfg = get_one_free_irq_cfg(cpu); 325 326 if (!cfg) 327 return; 328 329 desc->chip_data = cfg; 330 331 old_cfg = old_desc->chip_data; 332 333 memcpy(cfg, old_cfg, sizeof(struct irq_cfg)); 334 335 init_copy_irq_2_pin(old_cfg, cfg, cpu); 336 } 337 338 static void free_irq_cfg(struct irq_cfg *old_cfg) 339 { 340 kfree(old_cfg); 341 } 342 343 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc) 344 { 345 struct irq_cfg *old_cfg, *cfg; 346 347 old_cfg = old_desc->chip_data; 348 cfg = desc->chip_data; 349 350 if (old_cfg == cfg) 351 return; 352 353 if (old_cfg) { 354 free_irq_2_pin(old_cfg, cfg); 355 free_irq_cfg(old_cfg); 356 old_desc->chip_data = NULL; 357 } 358 } 359 360 static void 361 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask) 362 { 363 struct irq_cfg *cfg = desc->chip_data; 364 365 if (!cfg->move_in_progress) { 366 /* it means that domain is not changed */ 367 if (!cpumask_intersects(desc->affinity, mask)) 368 cfg->move_desc_pending = 1; 369 } 370 } 371 #endif 372 373 #else 374 static struct irq_cfg *irq_cfg(unsigned int irq) 375 { 376 return irq < nr_irqs ? irq_cfgx + irq : NULL; 377 } 378 379 #endif 380 381 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC 382 static inline void 383 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask) 384 { 385 } 386 #endif 387 388 struct io_apic { 389 unsigned int index; 390 unsigned int unused[3]; 391 unsigned int data; 392 unsigned int unused2[11]; 393 unsigned int eoi; 394 }; 395 396 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 397 { 398 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 399 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK); 400 } 401 402 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 403 { 404 struct io_apic __iomem *io_apic = io_apic_base(apic); 405 writel(vector, &io_apic->eoi); 406 } 407 408 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) 409 { 410 struct io_apic __iomem *io_apic = io_apic_base(apic); 411 writel(reg, &io_apic->index); 412 return readl(&io_apic->data); 413 } 414 415 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) 416 { 417 struct io_apic __iomem *io_apic = io_apic_base(apic); 418 writel(reg, &io_apic->index); 419 writel(value, &io_apic->data); 420 } 421 422 /* 423 * Re-write a value: to be used for read-modify-write 424 * cycles where the read already set up the index register. 425 * 426 * Older SiS APIC requires we rewrite the index register 427 */ 428 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value) 429 { 430 struct io_apic __iomem *io_apic = io_apic_base(apic); 431 432 if (sis_apic_bug) 433 writel(reg, &io_apic->index); 434 writel(value, &io_apic->data); 435 } 436 437 static bool io_apic_level_ack_pending(struct irq_cfg *cfg) 438 { 439 struct irq_pin_list *entry; 440 unsigned long flags; 441 442 spin_lock_irqsave(&ioapic_lock, flags); 443 entry = cfg->irq_2_pin; 444 for (;;) { 445 unsigned int reg; 446 int pin; 447 448 if (!entry) 449 break; 450 pin = entry->pin; 451 reg = io_apic_read(entry->apic, 0x10 + pin*2); 452 /* Is the remote IRR bit set? */ 453 if (reg & IO_APIC_REDIR_REMOTE_IRR) { 454 spin_unlock_irqrestore(&ioapic_lock, flags); 455 return true; 456 } 457 if (!entry->next) 458 break; 459 entry = entry->next; 460 } 461 spin_unlock_irqrestore(&ioapic_lock, flags); 462 463 return false; 464 } 465 466 union entry_union { 467 struct { u32 w1, w2; }; 468 struct IO_APIC_route_entry entry; 469 }; 470 471 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 472 { 473 union entry_union eu; 474 unsigned long flags; 475 spin_lock_irqsave(&ioapic_lock, flags); 476 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); 477 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); 478 spin_unlock_irqrestore(&ioapic_lock, flags); 479 return eu.entry; 480 } 481 482 /* 483 * When we write a new IO APIC routing entry, we need to write the high 484 * word first! If the mask bit in the low word is clear, we will enable 485 * the interrupt, and we need to make sure the entry is fully populated 486 * before that happens. 487 */ 488 static void 489 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 490 { 491 union entry_union eu; 492 eu.entry = e; 493 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 494 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 495 } 496 497 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 498 { 499 unsigned long flags; 500 spin_lock_irqsave(&ioapic_lock, flags); 501 __ioapic_write_entry(apic, pin, e); 502 spin_unlock_irqrestore(&ioapic_lock, flags); 503 } 504 505 /* 506 * When we mask an IO APIC routing entry, we need to write the low 507 * word first, in order to set the mask bit before we change the 508 * high bits! 509 */ 510 static void ioapic_mask_entry(int apic, int pin) 511 { 512 unsigned long flags; 513 union entry_union eu = { .entry.mask = 1 }; 514 515 spin_lock_irqsave(&ioapic_lock, flags); 516 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 517 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 518 spin_unlock_irqrestore(&ioapic_lock, flags); 519 } 520 521 #ifdef CONFIG_SMP 522 static void send_cleanup_vector(struct irq_cfg *cfg) 523 { 524 cpumask_var_t cleanup_mask; 525 526 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { 527 unsigned int i; 528 cfg->move_cleanup_count = 0; 529 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) 530 cfg->move_cleanup_count++; 531 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) 532 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); 533 } else { 534 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask); 535 cfg->move_cleanup_count = cpumask_weight(cleanup_mask); 536 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); 537 free_cpumask_var(cleanup_mask); 538 } 539 cfg->move_in_progress = 0; 540 } 541 542 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg) 543 { 544 int apic, pin; 545 struct irq_pin_list *entry; 546 u8 vector = cfg->vector; 547 548 entry = cfg->irq_2_pin; 549 for (;;) { 550 unsigned int reg; 551 552 if (!entry) 553 break; 554 555 apic = entry->apic; 556 pin = entry->pin; 557 /* 558 * With interrupt-remapping, destination information comes 559 * from interrupt-remapping table entry. 560 */ 561 if (!irq_remapped(irq)) 562 io_apic_write(apic, 0x11 + pin*2, dest); 563 reg = io_apic_read(apic, 0x10 + pin*2); 564 reg &= ~IO_APIC_REDIR_VECTOR_MASK; 565 reg |= vector; 566 io_apic_modify(apic, 0x10 + pin*2, reg); 567 if (!entry->next) 568 break; 569 entry = entry->next; 570 } 571 } 572 573 static int 574 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask); 575 576 /* 577 * Either sets desc->affinity to a valid value, and returns 578 * ->cpu_mask_to_apicid of that, or returns BAD_APICID and 579 * leaves desc->affinity untouched. 580 */ 581 static unsigned int 582 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask) 583 { 584 struct irq_cfg *cfg; 585 unsigned int irq; 586 587 if (!cpumask_intersects(mask, cpu_online_mask)) 588 return BAD_APICID; 589 590 irq = desc->irq; 591 cfg = desc->chip_data; 592 if (assign_irq_vector(irq, cfg, mask)) 593 return BAD_APICID; 594 595 /* check that before desc->addinity get updated */ 596 set_extra_move_desc(desc, mask); 597 598 cpumask_copy(desc->affinity, mask); 599 600 return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain); 601 } 602 603 static void 604 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 605 { 606 struct irq_cfg *cfg; 607 unsigned long flags; 608 unsigned int dest; 609 unsigned int irq; 610 611 irq = desc->irq; 612 cfg = desc->chip_data; 613 614 spin_lock_irqsave(&ioapic_lock, flags); 615 dest = set_desc_affinity(desc, mask); 616 if (dest != BAD_APICID) { 617 /* Only the high 8 bits are valid. */ 618 dest = SET_APIC_LOGICAL_ID(dest); 619 __target_IO_APIC_irq(irq, dest, cfg); 620 } 621 spin_unlock_irqrestore(&ioapic_lock, flags); 622 } 623 624 static void 625 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask) 626 { 627 struct irq_desc *desc; 628 629 desc = irq_to_desc(irq); 630 631 set_ioapic_affinity_irq_desc(desc, mask); 632 } 633 #endif /* CONFIG_SMP */ 634 635 /* 636 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 637 * shared ISA-space IRQs, so we have to support them. We are super 638 * fast in the common case, and fast for shared ISA-space IRQs. 639 */ 640 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin) 641 { 642 struct irq_pin_list *entry; 643 644 entry = cfg->irq_2_pin; 645 if (!entry) { 646 entry = get_one_free_irq_2_pin(cpu); 647 if (!entry) { 648 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n", 649 apic, pin); 650 return; 651 } 652 cfg->irq_2_pin = entry; 653 entry->apic = apic; 654 entry->pin = pin; 655 return; 656 } 657 658 while (entry->next) { 659 /* not again, please */ 660 if (entry->apic == apic && entry->pin == pin) 661 return; 662 663 entry = entry->next; 664 } 665 666 entry->next = get_one_free_irq_2_pin(cpu); 667 entry = entry->next; 668 entry->apic = apic; 669 entry->pin = pin; 670 } 671 672 /* 673 * Reroute an IRQ to a different pin. 674 */ 675 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu, 676 int oldapic, int oldpin, 677 int newapic, int newpin) 678 { 679 struct irq_pin_list *entry = cfg->irq_2_pin; 680 int replaced = 0; 681 682 while (entry) { 683 if (entry->apic == oldapic && entry->pin == oldpin) { 684 entry->apic = newapic; 685 entry->pin = newpin; 686 replaced = 1; 687 /* every one is different, right? */ 688 break; 689 } 690 entry = entry->next; 691 } 692 693 /* why? call replace before add? */ 694 if (!replaced) 695 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin); 696 } 697 698 static inline void io_apic_modify_irq(struct irq_cfg *cfg, 699 int mask_and, int mask_or, 700 void (*final)(struct irq_pin_list *entry)) 701 { 702 int pin; 703 struct irq_pin_list *entry; 704 705 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) { 706 unsigned int reg; 707 pin = entry->pin; 708 reg = io_apic_read(entry->apic, 0x10 + pin * 2); 709 reg &= mask_and; 710 reg |= mask_or; 711 io_apic_modify(entry->apic, 0x10 + pin * 2, reg); 712 if (final) 713 final(entry); 714 } 715 } 716 717 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg) 718 { 719 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL); 720 } 721 722 #ifdef CONFIG_X86_64 723 static void io_apic_sync(struct irq_pin_list *entry) 724 { 725 /* 726 * Synchronize the IO-APIC and the CPU by doing 727 * a dummy read from the IO-APIC 728 */ 729 struct io_apic __iomem *io_apic; 730 io_apic = io_apic_base(entry->apic); 731 readl(&io_apic->data); 732 } 733 734 static void __mask_IO_APIC_irq(struct irq_cfg *cfg) 735 { 736 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync); 737 } 738 #else /* CONFIG_X86_32 */ 739 static void __mask_IO_APIC_irq(struct irq_cfg *cfg) 740 { 741 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL); 742 } 743 744 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg) 745 { 746 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER, 747 IO_APIC_REDIR_MASKED, NULL); 748 } 749 750 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg) 751 { 752 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 753 IO_APIC_REDIR_LEVEL_TRIGGER, NULL); 754 } 755 #endif /* CONFIG_X86_32 */ 756 757 static void mask_IO_APIC_irq_desc(struct irq_desc *desc) 758 { 759 struct irq_cfg *cfg = desc->chip_data; 760 unsigned long flags; 761 762 BUG_ON(!cfg); 763 764 spin_lock_irqsave(&ioapic_lock, flags); 765 __mask_IO_APIC_irq(cfg); 766 spin_unlock_irqrestore(&ioapic_lock, flags); 767 } 768 769 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc) 770 { 771 struct irq_cfg *cfg = desc->chip_data; 772 unsigned long flags; 773 774 spin_lock_irqsave(&ioapic_lock, flags); 775 __unmask_IO_APIC_irq(cfg); 776 spin_unlock_irqrestore(&ioapic_lock, flags); 777 } 778 779 static void mask_IO_APIC_irq(unsigned int irq) 780 { 781 struct irq_desc *desc = irq_to_desc(irq); 782 783 mask_IO_APIC_irq_desc(desc); 784 } 785 static void unmask_IO_APIC_irq(unsigned int irq) 786 { 787 struct irq_desc *desc = irq_to_desc(irq); 788 789 unmask_IO_APIC_irq_desc(desc); 790 } 791 792 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 793 { 794 struct IO_APIC_route_entry entry; 795 796 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 797 entry = ioapic_read_entry(apic, pin); 798 if (entry.delivery_mode == dest_SMI) 799 return; 800 /* 801 * Disable it in the IO-APIC irq-routing table: 802 */ 803 ioapic_mask_entry(apic, pin); 804 } 805 806 static void clear_IO_APIC (void) 807 { 808 int apic, pin; 809 810 for (apic = 0; apic < nr_ioapics; apic++) 811 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 812 clear_IO_APIC_pin(apic, pin); 813 } 814 815 #ifdef CONFIG_X86_32 816 /* 817 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 818 * specific CPU-side IRQs. 819 */ 820 821 #define MAX_PIRQS 8 822 static int pirq_entries[MAX_PIRQS] = { 823 [0 ... MAX_PIRQS - 1] = -1 824 }; 825 826 static int __init ioapic_pirq_setup(char *str) 827 { 828 int i, max; 829 int ints[MAX_PIRQS+1]; 830 831 get_options(str, ARRAY_SIZE(ints), ints); 832 833 apic_printk(APIC_VERBOSE, KERN_INFO 834 "PIRQ redirection, working around broken MP-BIOS.\n"); 835 max = MAX_PIRQS; 836 if (ints[0] < MAX_PIRQS) 837 max = ints[0]; 838 839 for (i = 0; i < max; i++) { 840 apic_printk(APIC_VERBOSE, KERN_DEBUG 841 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 842 /* 843 * PIRQs are mapped upside down, usually. 844 */ 845 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 846 } 847 return 1; 848 } 849 850 __setup("pirq=", ioapic_pirq_setup); 851 #endif /* CONFIG_X86_32 */ 852 853 #ifdef CONFIG_INTR_REMAP 854 /* I/O APIC RTE contents at the OS boot up */ 855 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS]; 856 857 /* 858 * Saves all the IO-APIC RTE's 859 */ 860 int save_IO_APIC_setup(void) 861 { 862 union IO_APIC_reg_01 reg_01; 863 unsigned long flags; 864 int apic, pin; 865 866 /* 867 * The number of IO-APIC IRQ registers (== #pins): 868 */ 869 for (apic = 0; apic < nr_ioapics; apic++) { 870 spin_lock_irqsave(&ioapic_lock, flags); 871 reg_01.raw = io_apic_read(apic, 1); 872 spin_unlock_irqrestore(&ioapic_lock, flags); 873 nr_ioapic_registers[apic] = reg_01.bits.entries+1; 874 } 875 876 for (apic = 0; apic < nr_ioapics; apic++) { 877 early_ioapic_entries[apic] = 878 kzalloc(sizeof(struct IO_APIC_route_entry) * 879 nr_ioapic_registers[apic], GFP_KERNEL); 880 if (!early_ioapic_entries[apic]) 881 goto nomem; 882 } 883 884 for (apic = 0; apic < nr_ioapics; apic++) 885 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 886 early_ioapic_entries[apic][pin] = 887 ioapic_read_entry(apic, pin); 888 889 return 0; 890 891 nomem: 892 while (apic >= 0) 893 kfree(early_ioapic_entries[apic--]); 894 memset(early_ioapic_entries, 0, 895 ARRAY_SIZE(early_ioapic_entries)); 896 897 return -ENOMEM; 898 } 899 900 void mask_IO_APIC_setup(void) 901 { 902 int apic, pin; 903 904 for (apic = 0; apic < nr_ioapics; apic++) { 905 if (!early_ioapic_entries[apic]) 906 break; 907 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 908 struct IO_APIC_route_entry entry; 909 910 entry = early_ioapic_entries[apic][pin]; 911 if (!entry.mask) { 912 entry.mask = 1; 913 ioapic_write_entry(apic, pin, entry); 914 } 915 } 916 } 917 } 918 919 void restore_IO_APIC_setup(void) 920 { 921 int apic, pin; 922 923 for (apic = 0; apic < nr_ioapics; apic++) { 924 if (!early_ioapic_entries[apic]) 925 break; 926 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 927 ioapic_write_entry(apic, pin, 928 early_ioapic_entries[apic][pin]); 929 kfree(early_ioapic_entries[apic]); 930 early_ioapic_entries[apic] = NULL; 931 } 932 } 933 934 void reinit_intr_remapped_IO_APIC(int intr_remapping) 935 { 936 /* 937 * for now plain restore of previous settings. 938 * TBD: In the case of OS enabling interrupt-remapping, 939 * IO-APIC RTE's need to be setup to point to interrupt-remapping 940 * table entries. for now, do a plain restore, and wait for 941 * the setup_IO_APIC_irqs() to do proper initialization. 942 */ 943 restore_IO_APIC_setup(); 944 } 945 #endif 946 947 /* 948 * Find the IRQ entry number of a certain pin. 949 */ 950 static int find_irq_entry(int apic, int pin, int type) 951 { 952 int i; 953 954 for (i = 0; i < mp_irq_entries; i++) 955 if (mp_irqs[i].irqtype == type && 956 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid || 957 mp_irqs[i].dstapic == MP_APIC_ALL) && 958 mp_irqs[i].dstirq == pin) 959 return i; 960 961 return -1; 962 } 963 964 /* 965 * Find the pin to which IRQ[irq] (ISA) is connected 966 */ 967 static int __init find_isa_irq_pin(int irq, int type) 968 { 969 int i; 970 971 for (i = 0; i < mp_irq_entries; i++) { 972 int lbus = mp_irqs[i].srcbus; 973 974 if (test_bit(lbus, mp_bus_not_pci) && 975 (mp_irqs[i].irqtype == type) && 976 (mp_irqs[i].srcbusirq == irq)) 977 978 return mp_irqs[i].dstirq; 979 } 980 return -1; 981 } 982 983 static int __init find_isa_irq_apic(int irq, int type) 984 { 985 int i; 986 987 for (i = 0; i < mp_irq_entries; i++) { 988 int lbus = mp_irqs[i].srcbus; 989 990 if (test_bit(lbus, mp_bus_not_pci) && 991 (mp_irqs[i].irqtype == type) && 992 (mp_irqs[i].srcbusirq == irq)) 993 break; 994 } 995 if (i < mp_irq_entries) { 996 int apic; 997 for(apic = 0; apic < nr_ioapics; apic++) { 998 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic) 999 return apic; 1000 } 1001 } 1002 1003 return -1; 1004 } 1005 1006 /* 1007 * Find a specific PCI IRQ entry. 1008 * Not an __init, possibly needed by modules 1009 */ 1010 static int pin_2_irq(int idx, int apic, int pin); 1011 1012 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) 1013 { 1014 int apic, i, best_guess = -1; 1015 1016 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1017 bus, slot, pin); 1018 if (test_bit(bus, mp_bus_not_pci)) { 1019 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1020 return -1; 1021 } 1022 for (i = 0; i < mp_irq_entries; i++) { 1023 int lbus = mp_irqs[i].srcbus; 1024 1025 for (apic = 0; apic < nr_ioapics; apic++) 1026 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic || 1027 mp_irqs[i].dstapic == MP_APIC_ALL) 1028 break; 1029 1030 if (!test_bit(lbus, mp_bus_not_pci) && 1031 !mp_irqs[i].irqtype && 1032 (bus == lbus) && 1033 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) { 1034 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq); 1035 1036 if (!(apic || IO_APIC_IRQ(irq))) 1037 continue; 1038 1039 if (pin == (mp_irqs[i].srcbusirq & 3)) 1040 return irq; 1041 /* 1042 * Use the first all-but-pin matching entry as a 1043 * best-guess fuzzy result for broken mptables. 1044 */ 1045 if (best_guess < 0) 1046 best_guess = irq; 1047 } 1048 } 1049 return best_guess; 1050 } 1051 1052 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1053 1054 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 1055 /* 1056 * EISA Edge/Level control register, ELCR 1057 */ 1058 static int EISA_ELCR(unsigned int irq) 1059 { 1060 if (irq < NR_IRQS_LEGACY) { 1061 unsigned int port = 0x4d0 + (irq >> 3); 1062 return (inb(port) >> (irq & 7)) & 1; 1063 } 1064 apic_printk(APIC_VERBOSE, KERN_INFO 1065 "Broken MPtable reports ISA irq %d\n", irq); 1066 return 0; 1067 } 1068 1069 #endif 1070 1071 /* ISA interrupts are always polarity zero edge triggered, 1072 * when listed as conforming in the MP table. */ 1073 1074 #define default_ISA_trigger(idx) (0) 1075 #define default_ISA_polarity(idx) (0) 1076 1077 /* EISA interrupts are always polarity zero and can be edge or level 1078 * trigger depending on the ELCR value. If an interrupt is listed as 1079 * EISA conforming in the MP table, that means its trigger type must 1080 * be read in from the ELCR */ 1081 1082 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq)) 1083 #define default_EISA_polarity(idx) default_ISA_polarity(idx) 1084 1085 /* PCI interrupts are always polarity one level triggered, 1086 * when listed as conforming in the MP table. */ 1087 1088 #define default_PCI_trigger(idx) (1) 1089 #define default_PCI_polarity(idx) (1) 1090 1091 /* MCA interrupts are always polarity zero level triggered, 1092 * when listed as conforming in the MP table. */ 1093 1094 #define default_MCA_trigger(idx) (1) 1095 #define default_MCA_polarity(idx) default_ISA_polarity(idx) 1096 1097 static int MPBIOS_polarity(int idx) 1098 { 1099 int bus = mp_irqs[idx].srcbus; 1100 int polarity; 1101 1102 /* 1103 * Determine IRQ line polarity (high active or low active): 1104 */ 1105 switch (mp_irqs[idx].irqflag & 3) 1106 { 1107 case 0: /* conforms, ie. bus-type dependent polarity */ 1108 if (test_bit(bus, mp_bus_not_pci)) 1109 polarity = default_ISA_polarity(idx); 1110 else 1111 polarity = default_PCI_polarity(idx); 1112 break; 1113 case 1: /* high active */ 1114 { 1115 polarity = 0; 1116 break; 1117 } 1118 case 2: /* reserved */ 1119 { 1120 printk(KERN_WARNING "broken BIOS!!\n"); 1121 polarity = 1; 1122 break; 1123 } 1124 case 3: /* low active */ 1125 { 1126 polarity = 1; 1127 break; 1128 } 1129 default: /* invalid */ 1130 { 1131 printk(KERN_WARNING "broken BIOS!!\n"); 1132 polarity = 1; 1133 break; 1134 } 1135 } 1136 return polarity; 1137 } 1138 1139 static int MPBIOS_trigger(int idx) 1140 { 1141 int bus = mp_irqs[idx].srcbus; 1142 int trigger; 1143 1144 /* 1145 * Determine IRQ trigger mode (edge or level sensitive): 1146 */ 1147 switch ((mp_irqs[idx].irqflag>>2) & 3) 1148 { 1149 case 0: /* conforms, ie. bus-type dependent */ 1150 if (test_bit(bus, mp_bus_not_pci)) 1151 trigger = default_ISA_trigger(idx); 1152 else 1153 trigger = default_PCI_trigger(idx); 1154 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 1155 switch (mp_bus_id_to_type[bus]) { 1156 case MP_BUS_ISA: /* ISA pin */ 1157 { 1158 /* set before the switch */ 1159 break; 1160 } 1161 case MP_BUS_EISA: /* EISA pin */ 1162 { 1163 trigger = default_EISA_trigger(idx); 1164 break; 1165 } 1166 case MP_BUS_PCI: /* PCI pin */ 1167 { 1168 /* set before the switch */ 1169 break; 1170 } 1171 case MP_BUS_MCA: /* MCA pin */ 1172 { 1173 trigger = default_MCA_trigger(idx); 1174 break; 1175 } 1176 default: 1177 { 1178 printk(KERN_WARNING "broken BIOS!!\n"); 1179 trigger = 1; 1180 break; 1181 } 1182 } 1183 #endif 1184 break; 1185 case 1: /* edge */ 1186 { 1187 trigger = 0; 1188 break; 1189 } 1190 case 2: /* reserved */ 1191 { 1192 printk(KERN_WARNING "broken BIOS!!\n"); 1193 trigger = 1; 1194 break; 1195 } 1196 case 3: /* level */ 1197 { 1198 trigger = 1; 1199 break; 1200 } 1201 default: /* invalid */ 1202 { 1203 printk(KERN_WARNING "broken BIOS!!\n"); 1204 trigger = 0; 1205 break; 1206 } 1207 } 1208 return trigger; 1209 } 1210 1211 static inline int irq_polarity(int idx) 1212 { 1213 return MPBIOS_polarity(idx); 1214 } 1215 1216 static inline int irq_trigger(int idx) 1217 { 1218 return MPBIOS_trigger(idx); 1219 } 1220 1221 int (*ioapic_renumber_irq)(int ioapic, int irq); 1222 static int pin_2_irq(int idx, int apic, int pin) 1223 { 1224 int irq, i; 1225 int bus = mp_irqs[idx].srcbus; 1226 1227 /* 1228 * Debugging check, we are in big trouble if this message pops up! 1229 */ 1230 if (mp_irqs[idx].dstirq != pin) 1231 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); 1232 1233 if (test_bit(bus, mp_bus_not_pci)) { 1234 irq = mp_irqs[idx].srcbusirq; 1235 } else { 1236 /* 1237 * PCI IRQs are mapped in order 1238 */ 1239 i = irq = 0; 1240 while (i < apic) 1241 irq += nr_ioapic_registers[i++]; 1242 irq += pin; 1243 /* 1244 * For MPS mode, so far only needed by ES7000 platform 1245 */ 1246 if (ioapic_renumber_irq) 1247 irq = ioapic_renumber_irq(apic, irq); 1248 } 1249 1250 #ifdef CONFIG_X86_32 1251 /* 1252 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1253 */ 1254 if ((pin >= 16) && (pin <= 23)) { 1255 if (pirq_entries[pin-16] != -1) { 1256 if (!pirq_entries[pin-16]) { 1257 apic_printk(APIC_VERBOSE, KERN_DEBUG 1258 "disabling PIRQ%d\n", pin-16); 1259 } else { 1260 irq = pirq_entries[pin-16]; 1261 apic_printk(APIC_VERBOSE, KERN_DEBUG 1262 "using PIRQ%d -> IRQ %d\n", 1263 pin-16, irq); 1264 } 1265 } 1266 } 1267 #endif 1268 1269 return irq; 1270 } 1271 1272 void lock_vector_lock(void) 1273 { 1274 /* Used to the online set of cpus does not change 1275 * during assign_irq_vector. 1276 */ 1277 spin_lock(&vector_lock); 1278 } 1279 1280 void unlock_vector_lock(void) 1281 { 1282 spin_unlock(&vector_lock); 1283 } 1284 1285 static int 1286 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1287 { 1288 /* 1289 * NOTE! The local APIC isn't very good at handling 1290 * multiple interrupts at the same interrupt level. 1291 * As the interrupt level is determined by taking the 1292 * vector number and shifting that right by 4, we 1293 * want to spread these out a bit so that they don't 1294 * all fall in the same interrupt level. 1295 * 1296 * Also, we've got to be careful not to trash gate 1297 * 0x80, because int 0x80 is hm, kind of importantish. ;) 1298 */ 1299 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0; 1300 unsigned int old_vector; 1301 int cpu, err; 1302 cpumask_var_t tmp_mask; 1303 1304 if ((cfg->move_in_progress) || cfg->move_cleanup_count) 1305 return -EBUSY; 1306 1307 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC)) 1308 return -ENOMEM; 1309 1310 old_vector = cfg->vector; 1311 if (old_vector) { 1312 cpumask_and(tmp_mask, mask, cpu_online_mask); 1313 cpumask_and(tmp_mask, cfg->domain, tmp_mask); 1314 if (!cpumask_empty(tmp_mask)) { 1315 free_cpumask_var(tmp_mask); 1316 return 0; 1317 } 1318 } 1319 1320 /* Only try and allocate irqs on cpus that are present */ 1321 err = -ENOSPC; 1322 for_each_cpu_and(cpu, mask, cpu_online_mask) { 1323 int new_cpu; 1324 int vector, offset; 1325 1326 apic->vector_allocation_domain(cpu, tmp_mask); 1327 1328 vector = current_vector; 1329 offset = current_offset; 1330 next: 1331 vector += 8; 1332 if (vector >= first_system_vector) { 1333 /* If out of vectors on large boxen, must share them. */ 1334 offset = (offset + 1) % 8; 1335 vector = FIRST_DEVICE_VECTOR + offset; 1336 } 1337 if (unlikely(current_vector == vector)) 1338 continue; 1339 1340 if (test_bit(vector, used_vectors)) 1341 goto next; 1342 1343 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1344 if (per_cpu(vector_irq, new_cpu)[vector] != -1) 1345 goto next; 1346 /* Found one! */ 1347 current_vector = vector; 1348 current_offset = offset; 1349 if (old_vector) { 1350 cfg->move_in_progress = 1; 1351 cpumask_copy(cfg->old_domain, cfg->domain); 1352 } 1353 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1354 per_cpu(vector_irq, new_cpu)[vector] = irq; 1355 cfg->vector = vector; 1356 cpumask_copy(cfg->domain, tmp_mask); 1357 err = 0; 1358 break; 1359 } 1360 free_cpumask_var(tmp_mask); 1361 return err; 1362 } 1363 1364 static int 1365 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1366 { 1367 int err; 1368 unsigned long flags; 1369 1370 spin_lock_irqsave(&vector_lock, flags); 1371 err = __assign_irq_vector(irq, cfg, mask); 1372 spin_unlock_irqrestore(&vector_lock, flags); 1373 return err; 1374 } 1375 1376 static void __clear_irq_vector(int irq, struct irq_cfg *cfg) 1377 { 1378 int cpu, vector; 1379 1380 BUG_ON(!cfg->vector); 1381 1382 vector = cfg->vector; 1383 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask) 1384 per_cpu(vector_irq, cpu)[vector] = -1; 1385 1386 cfg->vector = 0; 1387 cpumask_clear(cfg->domain); 1388 1389 if (likely(!cfg->move_in_progress)) 1390 return; 1391 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) { 1392 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 1393 vector++) { 1394 if (per_cpu(vector_irq, cpu)[vector] != irq) 1395 continue; 1396 per_cpu(vector_irq, cpu)[vector] = -1; 1397 break; 1398 } 1399 } 1400 cfg->move_in_progress = 0; 1401 } 1402 1403 void __setup_vector_irq(int cpu) 1404 { 1405 /* Initialize vector_irq on a new cpu */ 1406 /* This function must be called with vector_lock held */ 1407 int irq, vector; 1408 struct irq_cfg *cfg; 1409 struct irq_desc *desc; 1410 1411 /* Mark the inuse vectors */ 1412 for_each_irq_desc(irq, desc) { 1413 cfg = desc->chip_data; 1414 if (!cpumask_test_cpu(cpu, cfg->domain)) 1415 continue; 1416 vector = cfg->vector; 1417 per_cpu(vector_irq, cpu)[vector] = irq; 1418 } 1419 /* Mark the free vectors */ 1420 for (vector = 0; vector < NR_VECTORS; ++vector) { 1421 irq = per_cpu(vector_irq, cpu)[vector]; 1422 if (irq < 0) 1423 continue; 1424 1425 cfg = irq_cfg(irq); 1426 if (!cpumask_test_cpu(cpu, cfg->domain)) 1427 per_cpu(vector_irq, cpu)[vector] = -1; 1428 } 1429 } 1430 1431 static struct irq_chip ioapic_chip; 1432 static struct irq_chip ir_ioapic_chip; 1433 1434 #define IOAPIC_AUTO -1 1435 #define IOAPIC_EDGE 0 1436 #define IOAPIC_LEVEL 1 1437 1438 #ifdef CONFIG_X86_32 1439 static inline int IO_APIC_irq_trigger(int irq) 1440 { 1441 int apic, idx, pin; 1442 1443 for (apic = 0; apic < nr_ioapics; apic++) { 1444 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1445 idx = find_irq_entry(apic, pin, mp_INT); 1446 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin))) 1447 return irq_trigger(idx); 1448 } 1449 } 1450 /* 1451 * nonexistent IRQs are edge default 1452 */ 1453 return 0; 1454 } 1455 #else 1456 static inline int IO_APIC_irq_trigger(int irq) 1457 { 1458 return 1; 1459 } 1460 #endif 1461 1462 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger) 1463 { 1464 1465 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1466 trigger == IOAPIC_LEVEL) 1467 desc->status |= IRQ_LEVEL; 1468 else 1469 desc->status &= ~IRQ_LEVEL; 1470 1471 if (irq_remapped(irq)) { 1472 desc->status |= IRQ_MOVE_PCNTXT; 1473 if (trigger) 1474 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1475 handle_fasteoi_irq, 1476 "fasteoi"); 1477 else 1478 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1479 handle_edge_irq, "edge"); 1480 return; 1481 } 1482 1483 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1484 trigger == IOAPIC_LEVEL) 1485 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1486 handle_fasteoi_irq, 1487 "fasteoi"); 1488 else 1489 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1490 handle_edge_irq, "edge"); 1491 } 1492 1493 int setup_ioapic_entry(int apic_id, int irq, 1494 struct IO_APIC_route_entry *entry, 1495 unsigned int destination, int trigger, 1496 int polarity, int vector, int pin) 1497 { 1498 /* 1499 * add it to the IO-APIC irq-routing table: 1500 */ 1501 memset(entry,0,sizeof(*entry)); 1502 1503 if (intr_remapping_enabled) { 1504 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id); 1505 struct irte irte; 1506 struct IR_IO_APIC_route_entry *ir_entry = 1507 (struct IR_IO_APIC_route_entry *) entry; 1508 int index; 1509 1510 if (!iommu) 1511 panic("No mapping iommu for ioapic %d\n", apic_id); 1512 1513 index = alloc_irte(iommu, irq, 1); 1514 if (index < 0) 1515 panic("Failed to allocate IRTE for ioapic %d\n", apic_id); 1516 1517 memset(&irte, 0, sizeof(irte)); 1518 1519 irte.present = 1; 1520 irte.dst_mode = apic->irq_dest_mode; 1521 /* 1522 * Trigger mode in the IRTE will always be edge, and the 1523 * actual level or edge trigger will be setup in the IO-APIC 1524 * RTE. This will help simplify level triggered irq migration. 1525 * For more details, see the comments above explainig IO-APIC 1526 * irq migration in the presence of interrupt-remapping. 1527 */ 1528 irte.trigger_mode = 0; 1529 irte.dlvry_mode = apic->irq_delivery_mode; 1530 irte.vector = vector; 1531 irte.dest_id = IRTE_DEST(destination); 1532 1533 modify_irte(irq, &irte); 1534 1535 ir_entry->index2 = (index >> 15) & 0x1; 1536 ir_entry->zero = 0; 1537 ir_entry->format = 1; 1538 ir_entry->index = (index & 0x7fff); 1539 /* 1540 * IO-APIC RTE will be configured with virtual vector. 1541 * irq handler will do the explicit EOI to the io-apic. 1542 */ 1543 ir_entry->vector = pin; 1544 } else { 1545 entry->delivery_mode = apic->irq_delivery_mode; 1546 entry->dest_mode = apic->irq_dest_mode; 1547 entry->dest = destination; 1548 entry->vector = vector; 1549 } 1550 1551 entry->mask = 0; /* enable IRQ */ 1552 entry->trigger = trigger; 1553 entry->polarity = polarity; 1554 1555 /* Mask level triggered irqs. 1556 * Use IRQ_DELAYED_DISABLE for edge triggered irqs. 1557 */ 1558 if (trigger) 1559 entry->mask = 1; 1560 return 0; 1561 } 1562 1563 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc, 1564 int trigger, int polarity) 1565 { 1566 struct irq_cfg *cfg; 1567 struct IO_APIC_route_entry entry; 1568 unsigned int dest; 1569 1570 if (!IO_APIC_IRQ(irq)) 1571 return; 1572 1573 cfg = desc->chip_data; 1574 1575 if (assign_irq_vector(irq, cfg, apic->target_cpus())) 1576 return; 1577 1578 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 1579 1580 apic_printk(APIC_VERBOSE,KERN_DEBUG 1581 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " 1582 "IRQ %d Mode:%i Active:%i)\n", 1583 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector, 1584 irq, trigger, polarity); 1585 1586 1587 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry, 1588 dest, trigger, polarity, cfg->vector, pin)) { 1589 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n", 1590 mp_ioapics[apic_id].apicid, pin); 1591 __clear_irq_vector(irq, cfg); 1592 return; 1593 } 1594 1595 ioapic_register_intr(irq, desc, trigger); 1596 if (irq < NR_IRQS_LEGACY) 1597 disable_8259A_irq(irq); 1598 1599 ioapic_write_entry(apic_id, pin, entry); 1600 } 1601 1602 static void __init setup_IO_APIC_irqs(void) 1603 { 1604 int apic_id, pin, idx, irq; 1605 int notcon = 0; 1606 struct irq_desc *desc; 1607 struct irq_cfg *cfg; 1608 int cpu = boot_cpu_id; 1609 1610 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1611 1612 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { 1613 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) { 1614 1615 idx = find_irq_entry(apic_id, pin, mp_INT); 1616 if (idx == -1) { 1617 if (!notcon) { 1618 notcon = 1; 1619 apic_printk(APIC_VERBOSE, 1620 KERN_DEBUG " %d-%d", 1621 mp_ioapics[apic_id].apicid, pin); 1622 } else 1623 apic_printk(APIC_VERBOSE, " %d-%d", 1624 mp_ioapics[apic_id].apicid, pin); 1625 continue; 1626 } 1627 if (notcon) { 1628 apic_printk(APIC_VERBOSE, 1629 " (apicid-pin) not connected\n"); 1630 notcon = 0; 1631 } 1632 1633 irq = pin_2_irq(idx, apic_id, pin); 1634 1635 /* 1636 * Skip the timer IRQ if there's a quirk handler 1637 * installed and if it returns 1: 1638 */ 1639 if (apic->multi_timer_check && 1640 apic->multi_timer_check(apic_id, irq)) 1641 continue; 1642 1643 desc = irq_to_desc_alloc_cpu(irq, cpu); 1644 if (!desc) { 1645 printk(KERN_INFO "can not get irq_desc for %d\n", irq); 1646 continue; 1647 } 1648 cfg = desc->chip_data; 1649 add_pin_to_irq_cpu(cfg, cpu, apic_id, pin); 1650 1651 setup_IO_APIC_irq(apic_id, pin, irq, desc, 1652 irq_trigger(idx), irq_polarity(idx)); 1653 } 1654 } 1655 1656 if (notcon) 1657 apic_printk(APIC_VERBOSE, 1658 " (apicid-pin) not connected\n"); 1659 } 1660 1661 /* 1662 * Set up the timer pin, possibly with the 8259A-master behind. 1663 */ 1664 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin, 1665 int vector) 1666 { 1667 struct IO_APIC_route_entry entry; 1668 1669 if (intr_remapping_enabled) 1670 return; 1671 1672 memset(&entry, 0, sizeof(entry)); 1673 1674 /* 1675 * We use logical delivery to get the timer IRQ 1676 * to the first CPU. 1677 */ 1678 entry.dest_mode = apic->irq_dest_mode; 1679 entry.mask = 0; /* don't mask IRQ for edge */ 1680 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus()); 1681 entry.delivery_mode = apic->irq_delivery_mode; 1682 entry.polarity = 0; 1683 entry.trigger = 0; 1684 entry.vector = vector; 1685 1686 /* 1687 * The timer IRQ doesn't have to know that behind the 1688 * scene we may have a 8259A-master in AEOI mode ... 1689 */ 1690 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); 1691 1692 /* 1693 * Add it to the IO-APIC irq-routing table: 1694 */ 1695 ioapic_write_entry(apic_id, pin, entry); 1696 } 1697 1698 1699 __apicdebuginit(void) print_IO_APIC(void) 1700 { 1701 int apic, i; 1702 union IO_APIC_reg_00 reg_00; 1703 union IO_APIC_reg_01 reg_01; 1704 union IO_APIC_reg_02 reg_02; 1705 union IO_APIC_reg_03 reg_03; 1706 unsigned long flags; 1707 struct irq_cfg *cfg; 1708 struct irq_desc *desc; 1709 unsigned int irq; 1710 1711 if (apic_verbosity == APIC_QUIET) 1712 return; 1713 1714 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1715 for (i = 0; i < nr_ioapics; i++) 1716 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1717 mp_ioapics[i].apicid, nr_ioapic_registers[i]); 1718 1719 /* 1720 * We are a bit conservative about what we expect. We have to 1721 * know about every hardware change ASAP. 1722 */ 1723 printk(KERN_INFO "testing the IO APIC.......................\n"); 1724 1725 for (apic = 0; apic < nr_ioapics; apic++) { 1726 1727 spin_lock_irqsave(&ioapic_lock, flags); 1728 reg_00.raw = io_apic_read(apic, 0); 1729 reg_01.raw = io_apic_read(apic, 1); 1730 if (reg_01.bits.version >= 0x10) 1731 reg_02.raw = io_apic_read(apic, 2); 1732 if (reg_01.bits.version >= 0x20) 1733 reg_03.raw = io_apic_read(apic, 3); 1734 spin_unlock_irqrestore(&ioapic_lock, flags); 1735 1736 printk("\n"); 1737 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid); 1738 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1739 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1740 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1741 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1742 1743 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1744 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries); 1745 1746 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1747 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version); 1748 1749 /* 1750 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1751 * but the value of reg_02 is read as the previous read register 1752 * value, so ignore it if reg_02 == reg_01. 1753 */ 1754 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1755 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1756 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1757 } 1758 1759 /* 1760 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1761 * or reg_03, but the value of reg_0[23] is read as the previous read 1762 * register value, so ignore it if reg_03 == reg_0[12]. 1763 */ 1764 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1765 reg_03.raw != reg_01.raw) { 1766 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1767 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1768 } 1769 1770 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1771 1772 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" 1773 " Stat Dmod Deli Vect: \n"); 1774 1775 for (i = 0; i <= reg_01.bits.entries; i++) { 1776 struct IO_APIC_route_entry entry; 1777 1778 entry = ioapic_read_entry(apic, i); 1779 1780 printk(KERN_DEBUG " %02x %03X ", 1781 i, 1782 entry.dest 1783 ); 1784 1785 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", 1786 entry.mask, 1787 entry.trigger, 1788 entry.irr, 1789 entry.polarity, 1790 entry.delivery_status, 1791 entry.dest_mode, 1792 entry.delivery_mode, 1793 entry.vector 1794 ); 1795 } 1796 } 1797 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1798 for_each_irq_desc(irq, desc) { 1799 struct irq_pin_list *entry; 1800 1801 cfg = desc->chip_data; 1802 entry = cfg->irq_2_pin; 1803 if (!entry) 1804 continue; 1805 printk(KERN_DEBUG "IRQ%d ", irq); 1806 for (;;) { 1807 printk("-> %d:%d", entry->apic, entry->pin); 1808 if (!entry->next) 1809 break; 1810 entry = entry->next; 1811 } 1812 printk("\n"); 1813 } 1814 1815 printk(KERN_INFO ".................................... done.\n"); 1816 1817 return; 1818 } 1819 1820 __apicdebuginit(void) print_APIC_bitfield(int base) 1821 { 1822 unsigned int v; 1823 int i, j; 1824 1825 if (apic_verbosity == APIC_QUIET) 1826 return; 1827 1828 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG); 1829 for (i = 0; i < 8; i++) { 1830 v = apic_read(base + i*0x10); 1831 for (j = 0; j < 32; j++) { 1832 if (v & (1<<j)) 1833 printk("1"); 1834 else 1835 printk("0"); 1836 } 1837 printk("\n"); 1838 } 1839 } 1840 1841 __apicdebuginit(void) print_local_APIC(void *dummy) 1842 { 1843 unsigned int v, ver, maxlvt; 1844 u64 icr; 1845 1846 if (apic_verbosity == APIC_QUIET) 1847 return; 1848 1849 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", 1850 smp_processor_id(), hard_smp_processor_id()); 1851 v = apic_read(APIC_ID); 1852 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1853 v = apic_read(APIC_LVR); 1854 printk(KERN_INFO "... APIC VERSION: %08x\n", v); 1855 ver = GET_APIC_VERSION(v); 1856 maxlvt = lapic_get_maxlvt(); 1857 1858 v = apic_read(APIC_TASKPRI); 1859 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1860 1861 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1862 if (!APIC_XAPIC(ver)) { 1863 v = apic_read(APIC_ARBPRI); 1864 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, 1865 v & APIC_ARBPRI_MASK); 1866 } 1867 v = apic_read(APIC_PROCPRI); 1868 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); 1869 } 1870 1871 /* 1872 * Remote read supported only in the 82489DX and local APIC for 1873 * Pentium processors. 1874 */ 1875 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1876 v = apic_read(APIC_RRR); 1877 printk(KERN_DEBUG "... APIC RRR: %08x\n", v); 1878 } 1879 1880 v = apic_read(APIC_LDR); 1881 printk(KERN_DEBUG "... APIC LDR: %08x\n", v); 1882 if (!x2apic_enabled()) { 1883 v = apic_read(APIC_DFR); 1884 printk(KERN_DEBUG "... APIC DFR: %08x\n", v); 1885 } 1886 v = apic_read(APIC_SPIV); 1887 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); 1888 1889 printk(KERN_DEBUG "... APIC ISR field:\n"); 1890 print_APIC_bitfield(APIC_ISR); 1891 printk(KERN_DEBUG "... APIC TMR field:\n"); 1892 print_APIC_bitfield(APIC_TMR); 1893 printk(KERN_DEBUG "... APIC IRR field:\n"); 1894 print_APIC_bitfield(APIC_IRR); 1895 1896 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1897 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1898 apic_write(APIC_ESR, 0); 1899 1900 v = apic_read(APIC_ESR); 1901 printk(KERN_DEBUG "... APIC ESR: %08x\n", v); 1902 } 1903 1904 icr = apic_icr_read(); 1905 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr); 1906 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1907 1908 v = apic_read(APIC_LVTT); 1909 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); 1910 1911 if (maxlvt > 3) { /* PC is LVT#4. */ 1912 v = apic_read(APIC_LVTPC); 1913 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); 1914 } 1915 v = apic_read(APIC_LVT0); 1916 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); 1917 v = apic_read(APIC_LVT1); 1918 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); 1919 1920 if (maxlvt > 2) { /* ERR is LVT#3. */ 1921 v = apic_read(APIC_LVTERR); 1922 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); 1923 } 1924 1925 v = apic_read(APIC_TMICT); 1926 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); 1927 v = apic_read(APIC_TMCCT); 1928 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); 1929 v = apic_read(APIC_TDCR); 1930 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); 1931 printk("\n"); 1932 } 1933 1934 __apicdebuginit(void) print_all_local_APICs(void) 1935 { 1936 int cpu; 1937 1938 preempt_disable(); 1939 for_each_online_cpu(cpu) 1940 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1941 preempt_enable(); 1942 } 1943 1944 __apicdebuginit(void) print_PIC(void) 1945 { 1946 unsigned int v; 1947 unsigned long flags; 1948 1949 if (apic_verbosity == APIC_QUIET) 1950 return; 1951 1952 printk(KERN_DEBUG "\nprinting PIC contents\n"); 1953 1954 spin_lock_irqsave(&i8259A_lock, flags); 1955 1956 v = inb(0xa1) << 8 | inb(0x21); 1957 printk(KERN_DEBUG "... PIC IMR: %04x\n", v); 1958 1959 v = inb(0xa0) << 8 | inb(0x20); 1960 printk(KERN_DEBUG "... PIC IRR: %04x\n", v); 1961 1962 outb(0x0b,0xa0); 1963 outb(0x0b,0x20); 1964 v = inb(0xa0) << 8 | inb(0x20); 1965 outb(0x0a,0xa0); 1966 outb(0x0a,0x20); 1967 1968 spin_unlock_irqrestore(&i8259A_lock, flags); 1969 1970 printk(KERN_DEBUG "... PIC ISR: %04x\n", v); 1971 1972 v = inb(0x4d1) << 8 | inb(0x4d0); 1973 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); 1974 } 1975 1976 __apicdebuginit(int) print_all_ICs(void) 1977 { 1978 print_PIC(); 1979 print_all_local_APICs(); 1980 print_IO_APIC(); 1981 1982 return 0; 1983 } 1984 1985 fs_initcall(print_all_ICs); 1986 1987 1988 /* Where if anywhere is the i8259 connect in external int mode */ 1989 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1990 1991 void __init enable_IO_APIC(void) 1992 { 1993 union IO_APIC_reg_01 reg_01; 1994 int i8259_apic, i8259_pin; 1995 int apic; 1996 unsigned long flags; 1997 1998 /* 1999 * The number of IO-APIC IRQ registers (== #pins): 2000 */ 2001 for (apic = 0; apic < nr_ioapics; apic++) { 2002 spin_lock_irqsave(&ioapic_lock, flags); 2003 reg_01.raw = io_apic_read(apic, 1); 2004 spin_unlock_irqrestore(&ioapic_lock, flags); 2005 nr_ioapic_registers[apic] = reg_01.bits.entries+1; 2006 } 2007 for(apic = 0; apic < nr_ioapics; apic++) { 2008 int pin; 2009 /* See if any of the pins is in ExtINT mode */ 2010 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 2011 struct IO_APIC_route_entry entry; 2012 entry = ioapic_read_entry(apic, pin); 2013 2014 /* If the interrupt line is enabled and in ExtInt mode 2015 * I have found the pin where the i8259 is connected. 2016 */ 2017 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { 2018 ioapic_i8259.apic = apic; 2019 ioapic_i8259.pin = pin; 2020 goto found_i8259; 2021 } 2022 } 2023 } 2024 found_i8259: 2025 /* Look to see what if the MP table has reported the ExtINT */ 2026 /* If we could not find the appropriate pin by looking at the ioapic 2027 * the i8259 probably is not connected the ioapic but give the 2028 * mptable a chance anyway. 2029 */ 2030 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 2031 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 2032 /* Trust the MP table if nothing is setup in the hardware */ 2033 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 2034 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 2035 ioapic_i8259.pin = i8259_pin; 2036 ioapic_i8259.apic = i8259_apic; 2037 } 2038 /* Complain if the MP table and the hardware disagree */ 2039 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 2040 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 2041 { 2042 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 2043 } 2044 2045 /* 2046 * Do not trust the IO-APIC being empty at bootup 2047 */ 2048 clear_IO_APIC(); 2049 } 2050 2051 /* 2052 * Not an __init, needed by the reboot code 2053 */ 2054 void disable_IO_APIC(void) 2055 { 2056 /* 2057 * Clear the IO-APIC before rebooting: 2058 */ 2059 clear_IO_APIC(); 2060 2061 /* 2062 * If the i8259 is routed through an IOAPIC 2063 * Put that IOAPIC in virtual wire mode 2064 * so legacy interrupts can be delivered. 2065 * 2066 * With interrupt-remapping, for now we will use virtual wire A mode, 2067 * as virtual wire B is little complex (need to configure both 2068 * IOAPIC RTE aswell as interrupt-remapping table entry). 2069 * As this gets called during crash dump, keep this simple for now. 2070 */ 2071 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) { 2072 struct IO_APIC_route_entry entry; 2073 2074 memset(&entry, 0, sizeof(entry)); 2075 entry.mask = 0; /* Enabled */ 2076 entry.trigger = 0; /* Edge */ 2077 entry.irr = 0; 2078 entry.polarity = 0; /* High */ 2079 entry.delivery_status = 0; 2080 entry.dest_mode = 0; /* Physical */ 2081 entry.delivery_mode = dest_ExtINT; /* ExtInt */ 2082 entry.vector = 0; 2083 entry.dest = read_apic_id(); 2084 2085 /* 2086 * Add it to the IO-APIC irq-routing table: 2087 */ 2088 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 2089 } 2090 2091 /* 2092 * Use virtual wire A mode when interrupt remapping is enabled. 2093 */ 2094 disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1); 2095 } 2096 2097 #ifdef CONFIG_X86_32 2098 /* 2099 * function to set the IO-APIC physical IDs based on the 2100 * values stored in the MPC table. 2101 * 2102 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 2103 */ 2104 2105 static void __init setup_ioapic_ids_from_mpc(void) 2106 { 2107 union IO_APIC_reg_00 reg_00; 2108 physid_mask_t phys_id_present_map; 2109 int apic_id; 2110 int i; 2111 unsigned char old_id; 2112 unsigned long flags; 2113 2114 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids()) 2115 return; 2116 2117 /* 2118 * Don't check I/O APIC IDs for xAPIC systems. They have 2119 * no meaning without the serial APIC bus. 2120 */ 2121 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2122 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 2123 return; 2124 /* 2125 * This is broken; anything with a real cpu count has to 2126 * circumvent this idiocy regardless. 2127 */ 2128 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map); 2129 2130 /* 2131 * Set the IOAPIC ID to the value stored in the MPC table. 2132 */ 2133 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { 2134 2135 /* Read the register 0 value */ 2136 spin_lock_irqsave(&ioapic_lock, flags); 2137 reg_00.raw = io_apic_read(apic_id, 0); 2138 spin_unlock_irqrestore(&ioapic_lock, flags); 2139 2140 old_id = mp_ioapics[apic_id].apicid; 2141 2142 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) { 2143 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 2144 apic_id, mp_ioapics[apic_id].apicid); 2145 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2146 reg_00.bits.ID); 2147 mp_ioapics[apic_id].apicid = reg_00.bits.ID; 2148 } 2149 2150 /* 2151 * Sanity check, is the ID really free? Every APIC in a 2152 * system must have a unique ID or we get lots of nice 2153 * 'stuck on smp_invalidate_needed IPI wait' messages. 2154 */ 2155 if (apic->check_apicid_used(phys_id_present_map, 2156 mp_ioapics[apic_id].apicid)) { 2157 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 2158 apic_id, mp_ioapics[apic_id].apicid); 2159 for (i = 0; i < get_physical_broadcast(); i++) 2160 if (!physid_isset(i, phys_id_present_map)) 2161 break; 2162 if (i >= get_physical_broadcast()) 2163 panic("Max APIC ID exceeded!\n"); 2164 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2165 i); 2166 physid_set(i, phys_id_present_map); 2167 mp_ioapics[apic_id].apicid = i; 2168 } else { 2169 physid_mask_t tmp; 2170 tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid); 2171 apic_printk(APIC_VERBOSE, "Setting %d in the " 2172 "phys_id_present_map\n", 2173 mp_ioapics[apic_id].apicid); 2174 physids_or(phys_id_present_map, phys_id_present_map, tmp); 2175 } 2176 2177 2178 /* 2179 * We need to adjust the IRQ routing table 2180 * if the ID changed. 2181 */ 2182 if (old_id != mp_ioapics[apic_id].apicid) 2183 for (i = 0; i < mp_irq_entries; i++) 2184 if (mp_irqs[i].dstapic == old_id) 2185 mp_irqs[i].dstapic 2186 = mp_ioapics[apic_id].apicid; 2187 2188 /* 2189 * Read the right value from the MPC table and 2190 * write it into the ID register. 2191 */ 2192 apic_printk(APIC_VERBOSE, KERN_INFO 2193 "...changing IO-APIC physical APIC ID to %d ...", 2194 mp_ioapics[apic_id].apicid); 2195 2196 reg_00.bits.ID = mp_ioapics[apic_id].apicid; 2197 spin_lock_irqsave(&ioapic_lock, flags); 2198 io_apic_write(apic_id, 0, reg_00.raw); 2199 spin_unlock_irqrestore(&ioapic_lock, flags); 2200 2201 /* 2202 * Sanity check 2203 */ 2204 spin_lock_irqsave(&ioapic_lock, flags); 2205 reg_00.raw = io_apic_read(apic_id, 0); 2206 spin_unlock_irqrestore(&ioapic_lock, flags); 2207 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid) 2208 printk("could not set ID!\n"); 2209 else 2210 apic_printk(APIC_VERBOSE, " ok.\n"); 2211 } 2212 } 2213 #endif 2214 2215 int no_timer_check __initdata; 2216 2217 static int __init notimercheck(char *s) 2218 { 2219 no_timer_check = 1; 2220 return 1; 2221 } 2222 __setup("no_timer_check", notimercheck); 2223 2224 /* 2225 * There is a nasty bug in some older SMP boards, their mptable lies 2226 * about the timer IRQ. We do the following to work around the situation: 2227 * 2228 * - timer IRQ defaults to IO-APIC IRQ 2229 * - if this function detects that timer IRQs are defunct, then we fall 2230 * back to ISA timer IRQs 2231 */ 2232 static int __init timer_irq_works(void) 2233 { 2234 unsigned long t1 = jiffies; 2235 unsigned long flags; 2236 2237 if (no_timer_check) 2238 return 1; 2239 2240 local_save_flags(flags); 2241 local_irq_enable(); 2242 /* Let ten ticks pass... */ 2243 mdelay((10 * 1000) / HZ); 2244 local_irq_restore(flags); 2245 2246 /* 2247 * Expect a few ticks at least, to be sure some possible 2248 * glue logic does not lock up after one or two first 2249 * ticks in a non-ExtINT mode. Also the local APIC 2250 * might have cached one ExtINT interrupt. Finally, at 2251 * least one tick may be lost due to delays. 2252 */ 2253 2254 /* jiffies wrap? */ 2255 if (time_after(jiffies, t1 + 4)) 2256 return 1; 2257 return 0; 2258 } 2259 2260 /* 2261 * In the SMP+IOAPIC case it might happen that there are an unspecified 2262 * number of pending IRQ events unhandled. These cases are very rare, 2263 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 2264 * better to do it this way as thus we do not have to be aware of 2265 * 'pending' interrupts in the IRQ path, except at this point. 2266 */ 2267 /* 2268 * Edge triggered needs to resend any interrupt 2269 * that was delayed but this is now handled in the device 2270 * independent code. 2271 */ 2272 2273 /* 2274 * Starting up a edge-triggered IO-APIC interrupt is 2275 * nasty - we need to make sure that we get the edge. 2276 * If it is already asserted for some reason, we need 2277 * return 1 to indicate that is was pending. 2278 * 2279 * This is not complete - we should be able to fake 2280 * an edge even if it isn't on the 8259A... 2281 */ 2282 2283 static unsigned int startup_ioapic_irq(unsigned int irq) 2284 { 2285 int was_pending = 0; 2286 unsigned long flags; 2287 struct irq_cfg *cfg; 2288 2289 spin_lock_irqsave(&ioapic_lock, flags); 2290 if (irq < NR_IRQS_LEGACY) { 2291 disable_8259A_irq(irq); 2292 if (i8259A_irq_pending(irq)) 2293 was_pending = 1; 2294 } 2295 cfg = irq_cfg(irq); 2296 __unmask_IO_APIC_irq(cfg); 2297 spin_unlock_irqrestore(&ioapic_lock, flags); 2298 2299 return was_pending; 2300 } 2301 2302 #ifdef CONFIG_X86_64 2303 static int ioapic_retrigger_irq(unsigned int irq) 2304 { 2305 2306 struct irq_cfg *cfg = irq_cfg(irq); 2307 unsigned long flags; 2308 2309 spin_lock_irqsave(&vector_lock, flags); 2310 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector); 2311 spin_unlock_irqrestore(&vector_lock, flags); 2312 2313 return 1; 2314 } 2315 #else 2316 static int ioapic_retrigger_irq(unsigned int irq) 2317 { 2318 apic->send_IPI_self(irq_cfg(irq)->vector); 2319 2320 return 1; 2321 } 2322 #endif 2323 2324 /* 2325 * Level and edge triggered IO-APIC interrupts need different handling, 2326 * so we use two separate IRQ descriptors. Edge triggered IRQs can be 2327 * handled with the level-triggered descriptor, but that one has slightly 2328 * more overhead. Level-triggered interrupts cannot be handled with the 2329 * edge-triggered handler, without risking IRQ storms and other ugly 2330 * races. 2331 */ 2332 2333 #ifdef CONFIG_SMP 2334 2335 #ifdef CONFIG_INTR_REMAP 2336 2337 /* 2338 * Migrate the IO-APIC irq in the presence of intr-remapping. 2339 * 2340 * For both level and edge triggered, irq migration is a simple atomic 2341 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 2342 * 2343 * For level triggered, we eliminate the io-apic RTE modification (with the 2344 * updated vector information), by using a virtual vector (io-apic pin number). 2345 * Real vector that is used for interrupting cpu will be coming from 2346 * the interrupt-remapping table entry. 2347 */ 2348 static void 2349 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2350 { 2351 struct irq_cfg *cfg; 2352 struct irte irte; 2353 unsigned int dest; 2354 unsigned int irq; 2355 2356 if (!cpumask_intersects(mask, cpu_online_mask)) 2357 return; 2358 2359 irq = desc->irq; 2360 if (get_irte(irq, &irte)) 2361 return; 2362 2363 cfg = desc->chip_data; 2364 if (assign_irq_vector(irq, cfg, mask)) 2365 return; 2366 2367 set_extra_move_desc(desc, mask); 2368 2369 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask); 2370 2371 irte.vector = cfg->vector; 2372 irte.dest_id = IRTE_DEST(dest); 2373 2374 /* 2375 * Modified the IRTE and flushes the Interrupt entry cache. 2376 */ 2377 modify_irte(irq, &irte); 2378 2379 if (cfg->move_in_progress) 2380 send_cleanup_vector(cfg); 2381 2382 cpumask_copy(desc->affinity, mask); 2383 } 2384 2385 /* 2386 * Migrates the IRQ destination in the process context. 2387 */ 2388 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2389 const struct cpumask *mask) 2390 { 2391 migrate_ioapic_irq_desc(desc, mask); 2392 } 2393 static void set_ir_ioapic_affinity_irq(unsigned int irq, 2394 const struct cpumask *mask) 2395 { 2396 struct irq_desc *desc = irq_to_desc(irq); 2397 2398 set_ir_ioapic_affinity_irq_desc(desc, mask); 2399 } 2400 #else 2401 static inline void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2402 const struct cpumask *mask) 2403 { 2404 } 2405 #endif 2406 2407 asmlinkage void smp_irq_move_cleanup_interrupt(void) 2408 { 2409 unsigned vector, me; 2410 2411 ack_APIC_irq(); 2412 exit_idle(); 2413 irq_enter(); 2414 2415 me = smp_processor_id(); 2416 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 2417 unsigned int irq; 2418 unsigned int irr; 2419 struct irq_desc *desc; 2420 struct irq_cfg *cfg; 2421 irq = __get_cpu_var(vector_irq)[vector]; 2422 2423 if (irq == -1) 2424 continue; 2425 2426 desc = irq_to_desc(irq); 2427 if (!desc) 2428 continue; 2429 2430 cfg = irq_cfg(irq); 2431 spin_lock(&desc->lock); 2432 if (!cfg->move_cleanup_count) 2433 goto unlock; 2434 2435 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2436 goto unlock; 2437 2438 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 2439 /* 2440 * Check if the vector that needs to be cleanedup is 2441 * registered at the cpu's IRR. If so, then this is not 2442 * the best time to clean it up. Lets clean it up in the 2443 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 2444 * to myself. 2445 */ 2446 if (irr & (1 << (vector % 32))) { 2447 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 2448 goto unlock; 2449 } 2450 __get_cpu_var(vector_irq)[vector] = -1; 2451 cfg->move_cleanup_count--; 2452 unlock: 2453 spin_unlock(&desc->lock); 2454 } 2455 2456 irq_exit(); 2457 } 2458 2459 static void irq_complete_move(struct irq_desc **descp) 2460 { 2461 struct irq_desc *desc = *descp; 2462 struct irq_cfg *cfg = desc->chip_data; 2463 unsigned vector, me; 2464 2465 if (likely(!cfg->move_in_progress)) { 2466 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC 2467 if (likely(!cfg->move_desc_pending)) 2468 return; 2469 2470 /* domain has not changed, but affinity did */ 2471 me = smp_processor_id(); 2472 if (cpumask_test_cpu(me, desc->affinity)) { 2473 *descp = desc = move_irq_desc(desc, me); 2474 /* get the new one */ 2475 cfg = desc->chip_data; 2476 cfg->move_desc_pending = 0; 2477 } 2478 #endif 2479 return; 2480 } 2481 2482 vector = ~get_irq_regs()->orig_ax; 2483 me = smp_processor_id(); 2484 2485 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) { 2486 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC 2487 *descp = desc = move_irq_desc(desc, me); 2488 /* get the new one */ 2489 cfg = desc->chip_data; 2490 #endif 2491 send_cleanup_vector(cfg); 2492 } 2493 } 2494 #else 2495 static inline void irq_complete_move(struct irq_desc **descp) {} 2496 #endif 2497 2498 #ifdef CONFIG_INTR_REMAP 2499 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg) 2500 { 2501 int apic, pin; 2502 struct irq_pin_list *entry; 2503 2504 entry = cfg->irq_2_pin; 2505 for (;;) { 2506 2507 if (!entry) 2508 break; 2509 2510 apic = entry->apic; 2511 pin = entry->pin; 2512 io_apic_eoi(apic, pin); 2513 entry = entry->next; 2514 } 2515 } 2516 2517 static void 2518 eoi_ioapic_irq(struct irq_desc *desc) 2519 { 2520 struct irq_cfg *cfg; 2521 unsigned long flags; 2522 unsigned int irq; 2523 2524 irq = desc->irq; 2525 cfg = desc->chip_data; 2526 2527 spin_lock_irqsave(&ioapic_lock, flags); 2528 __eoi_ioapic_irq(irq, cfg); 2529 spin_unlock_irqrestore(&ioapic_lock, flags); 2530 } 2531 2532 static void ack_x2apic_level(unsigned int irq) 2533 { 2534 struct irq_desc *desc = irq_to_desc(irq); 2535 ack_x2APIC_irq(); 2536 eoi_ioapic_irq(desc); 2537 } 2538 2539 static void ack_x2apic_edge(unsigned int irq) 2540 { 2541 ack_x2APIC_irq(); 2542 } 2543 2544 #endif 2545 2546 static void ack_apic_edge(unsigned int irq) 2547 { 2548 struct irq_desc *desc = irq_to_desc(irq); 2549 2550 irq_complete_move(&desc); 2551 move_native_irq(irq); 2552 ack_APIC_irq(); 2553 } 2554 2555 atomic_t irq_mis_count; 2556 2557 static void ack_apic_level(unsigned int irq) 2558 { 2559 struct irq_desc *desc = irq_to_desc(irq); 2560 2561 #ifdef CONFIG_X86_32 2562 unsigned long v; 2563 int i; 2564 #endif 2565 struct irq_cfg *cfg; 2566 int do_unmask_irq = 0; 2567 2568 irq_complete_move(&desc); 2569 #ifdef CONFIG_GENERIC_PENDING_IRQ 2570 /* If we are moving the irq we need to mask it */ 2571 if (unlikely(desc->status & IRQ_MOVE_PENDING)) { 2572 do_unmask_irq = 1; 2573 mask_IO_APIC_irq_desc(desc); 2574 } 2575 #endif 2576 2577 #ifdef CONFIG_X86_32 2578 /* 2579 * It appears there is an erratum which affects at least version 0x11 2580 * of I/O APIC (that's the 82093AA and cores integrated into various 2581 * chipsets). Under certain conditions a level-triggered interrupt is 2582 * erroneously delivered as edge-triggered one but the respective IRR 2583 * bit gets set nevertheless. As a result the I/O unit expects an EOI 2584 * message but it will never arrive and further interrupts are blocked 2585 * from the source. The exact reason is so far unknown, but the 2586 * phenomenon was observed when two consecutive interrupt requests 2587 * from a given source get delivered to the same CPU and the source is 2588 * temporarily disabled in between. 2589 * 2590 * A workaround is to simulate an EOI message manually. We achieve it 2591 * by setting the trigger mode to edge and then to level when the edge 2592 * trigger mode gets detected in the TMR of a local APIC for a 2593 * level-triggered interrupt. We mask the source for the time of the 2594 * operation to prevent an edge-triggered interrupt escaping meanwhile. 2595 * The idea is from Manfred Spraul. --macro 2596 */ 2597 cfg = desc->chip_data; 2598 i = cfg->vector; 2599 2600 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 2601 #endif 2602 2603 /* 2604 * We must acknowledge the irq before we move it or the acknowledge will 2605 * not propagate properly. 2606 */ 2607 ack_APIC_irq(); 2608 2609 /* Now we can move and renable the irq */ 2610 if (unlikely(do_unmask_irq)) { 2611 /* Only migrate the irq if the ack has been received. 2612 * 2613 * On rare occasions the broadcast level triggered ack gets 2614 * delayed going to ioapics, and if we reprogram the 2615 * vector while Remote IRR is still set the irq will never 2616 * fire again. 2617 * 2618 * To prevent this scenario we read the Remote IRR bit 2619 * of the ioapic. This has two effects. 2620 * - On any sane system the read of the ioapic will 2621 * flush writes (and acks) going to the ioapic from 2622 * this cpu. 2623 * - We get to see if the ACK has actually been delivered. 2624 * 2625 * Based on failed experiments of reprogramming the 2626 * ioapic entry from outside of irq context starting 2627 * with masking the ioapic entry and then polling until 2628 * Remote IRR was clear before reprogramming the 2629 * ioapic I don't trust the Remote IRR bit to be 2630 * completey accurate. 2631 * 2632 * However there appears to be no other way to plug 2633 * this race, so if the Remote IRR bit is not 2634 * accurate and is causing problems then it is a hardware bug 2635 * and you can go talk to the chipset vendor about it. 2636 */ 2637 cfg = desc->chip_data; 2638 if (!io_apic_level_ack_pending(cfg)) 2639 move_masked_irq(irq); 2640 unmask_IO_APIC_irq_desc(desc); 2641 } 2642 2643 #ifdef CONFIG_X86_32 2644 if (!(v & (1 << (i & 0x1f)))) { 2645 atomic_inc(&irq_mis_count); 2646 spin_lock(&ioapic_lock); 2647 __mask_and_edge_IO_APIC_irq(cfg); 2648 __unmask_and_level_IO_APIC_irq(cfg); 2649 spin_unlock(&ioapic_lock); 2650 } 2651 #endif 2652 } 2653 2654 static struct irq_chip ioapic_chip __read_mostly = { 2655 .name = "IO-APIC", 2656 .startup = startup_ioapic_irq, 2657 .mask = mask_IO_APIC_irq, 2658 .unmask = unmask_IO_APIC_irq, 2659 .ack = ack_apic_edge, 2660 .eoi = ack_apic_level, 2661 #ifdef CONFIG_SMP 2662 .set_affinity = set_ioapic_affinity_irq, 2663 #endif 2664 .retrigger = ioapic_retrigger_irq, 2665 }; 2666 2667 static struct irq_chip ir_ioapic_chip __read_mostly = { 2668 .name = "IR-IO-APIC", 2669 .startup = startup_ioapic_irq, 2670 .mask = mask_IO_APIC_irq, 2671 .unmask = unmask_IO_APIC_irq, 2672 #ifdef CONFIG_INTR_REMAP 2673 .ack = ack_x2apic_edge, 2674 .eoi = ack_x2apic_level, 2675 #ifdef CONFIG_SMP 2676 .set_affinity = set_ir_ioapic_affinity_irq, 2677 #endif 2678 #endif 2679 .retrigger = ioapic_retrigger_irq, 2680 }; 2681 2682 static inline void init_IO_APIC_traps(void) 2683 { 2684 int irq; 2685 struct irq_desc *desc; 2686 struct irq_cfg *cfg; 2687 2688 /* 2689 * NOTE! The local APIC isn't very good at handling 2690 * multiple interrupts at the same interrupt level. 2691 * As the interrupt level is determined by taking the 2692 * vector number and shifting that right by 4, we 2693 * want to spread these out a bit so that they don't 2694 * all fall in the same interrupt level. 2695 * 2696 * Also, we've got to be careful not to trash gate 2697 * 0x80, because int 0x80 is hm, kind of importantish. ;) 2698 */ 2699 for_each_irq_desc(irq, desc) { 2700 cfg = desc->chip_data; 2701 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2702 /* 2703 * Hmm.. We don't have an entry for this, 2704 * so default to an old-fashioned 8259 2705 * interrupt if we can.. 2706 */ 2707 if (irq < NR_IRQS_LEGACY) 2708 make_8259A_irq(irq); 2709 else 2710 /* Strange. Oh, well.. */ 2711 desc->chip = &no_irq_chip; 2712 } 2713 } 2714 } 2715 2716 /* 2717 * The local APIC irq-chip implementation: 2718 */ 2719 2720 static void mask_lapic_irq(unsigned int irq) 2721 { 2722 unsigned long v; 2723 2724 v = apic_read(APIC_LVT0); 2725 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2726 } 2727 2728 static void unmask_lapic_irq(unsigned int irq) 2729 { 2730 unsigned long v; 2731 2732 v = apic_read(APIC_LVT0); 2733 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2734 } 2735 2736 static void ack_lapic_irq(unsigned int irq) 2737 { 2738 ack_APIC_irq(); 2739 } 2740 2741 static struct irq_chip lapic_chip __read_mostly = { 2742 .name = "local-APIC", 2743 .mask = mask_lapic_irq, 2744 .unmask = unmask_lapic_irq, 2745 .ack = ack_lapic_irq, 2746 }; 2747 2748 static void lapic_register_intr(int irq, struct irq_desc *desc) 2749 { 2750 desc->status &= ~IRQ_LEVEL; 2751 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2752 "edge"); 2753 } 2754 2755 static void __init setup_nmi(void) 2756 { 2757 /* 2758 * Dirty trick to enable the NMI watchdog ... 2759 * We put the 8259A master into AEOI mode and 2760 * unmask on all local APICs LVT0 as NMI. 2761 * 2762 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') 2763 * is from Maciej W. Rozycki - so we do not have to EOI from 2764 * the NMI handler or the timer interrupt. 2765 */ 2766 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ..."); 2767 2768 enable_NMI_through_LVT0(); 2769 2770 apic_printk(APIC_VERBOSE, " done.\n"); 2771 } 2772 2773 /* 2774 * This looks a bit hackish but it's about the only one way of sending 2775 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2776 * not support the ExtINT mode, unfortunately. We need to send these 2777 * cycles as some i82489DX-based boards have glue logic that keeps the 2778 * 8259A interrupt line asserted until INTA. --macro 2779 */ 2780 static inline void __init unlock_ExtINT_logic(void) 2781 { 2782 int apic, pin, i; 2783 struct IO_APIC_route_entry entry0, entry1; 2784 unsigned char save_control, save_freq_select; 2785 2786 pin = find_isa_irq_pin(8, mp_INT); 2787 if (pin == -1) { 2788 WARN_ON_ONCE(1); 2789 return; 2790 } 2791 apic = find_isa_irq_apic(8, mp_INT); 2792 if (apic == -1) { 2793 WARN_ON_ONCE(1); 2794 return; 2795 } 2796 2797 entry0 = ioapic_read_entry(apic, pin); 2798 clear_IO_APIC_pin(apic, pin); 2799 2800 memset(&entry1, 0, sizeof(entry1)); 2801 2802 entry1.dest_mode = 0; /* physical delivery */ 2803 entry1.mask = 0; /* unmask IRQ now */ 2804 entry1.dest = hard_smp_processor_id(); 2805 entry1.delivery_mode = dest_ExtINT; 2806 entry1.polarity = entry0.polarity; 2807 entry1.trigger = 0; 2808 entry1.vector = 0; 2809 2810 ioapic_write_entry(apic, pin, entry1); 2811 2812 save_control = CMOS_READ(RTC_CONTROL); 2813 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2814 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2815 RTC_FREQ_SELECT); 2816 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2817 2818 i = 100; 2819 while (i-- > 0) { 2820 mdelay(10); 2821 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2822 i -= 10; 2823 } 2824 2825 CMOS_WRITE(save_control, RTC_CONTROL); 2826 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2827 clear_IO_APIC_pin(apic, pin); 2828 2829 ioapic_write_entry(apic, pin, entry0); 2830 } 2831 2832 static int disable_timer_pin_1 __initdata; 2833 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2834 static int __init disable_timer_pin_setup(char *arg) 2835 { 2836 disable_timer_pin_1 = 1; 2837 return 0; 2838 } 2839 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2840 2841 int timer_through_8259 __initdata; 2842 2843 /* 2844 * This code may look a bit paranoid, but it's supposed to cooperate with 2845 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2846 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2847 * fanatically on his truly buggy board. 2848 * 2849 * FIXME: really need to revamp this for all platforms. 2850 */ 2851 static inline void __init check_timer(void) 2852 { 2853 struct irq_desc *desc = irq_to_desc(0); 2854 struct irq_cfg *cfg = desc->chip_data; 2855 int cpu = boot_cpu_id; 2856 int apic1, pin1, apic2, pin2; 2857 unsigned long flags; 2858 int no_pin1 = 0; 2859 2860 local_irq_save(flags); 2861 2862 /* 2863 * get/set the timer IRQ vector: 2864 */ 2865 disable_8259A_irq(0); 2866 assign_irq_vector(0, cfg, apic->target_cpus()); 2867 2868 /* 2869 * As IRQ0 is to be enabled in the 8259A, the virtual 2870 * wire has to be disabled in the local APIC. Also 2871 * timer interrupts need to be acknowledged manually in 2872 * the 8259A for the i82489DX when using the NMI 2873 * watchdog as that APIC treats NMIs as level-triggered. 2874 * The AEOI mode will finish them in the 8259A 2875 * automatically. 2876 */ 2877 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2878 init_8259A(1); 2879 #ifdef CONFIG_X86_32 2880 { 2881 unsigned int ver; 2882 2883 ver = apic_read(APIC_LVR); 2884 ver = GET_APIC_VERSION(ver); 2885 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver)); 2886 } 2887 #endif 2888 2889 pin1 = find_isa_irq_pin(0, mp_INT); 2890 apic1 = find_isa_irq_apic(0, mp_INT); 2891 pin2 = ioapic_i8259.pin; 2892 apic2 = ioapic_i8259.apic; 2893 2894 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2895 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2896 cfg->vector, apic1, pin1, apic2, pin2); 2897 2898 /* 2899 * Some BIOS writers are clueless and report the ExtINTA 2900 * I/O APIC input from the cascaded 8259A as the timer 2901 * interrupt input. So just in case, if only one pin 2902 * was found above, try it both directly and through the 2903 * 8259A. 2904 */ 2905 if (pin1 == -1) { 2906 if (intr_remapping_enabled) 2907 panic("BIOS bug: timer not connected to IO-APIC"); 2908 pin1 = pin2; 2909 apic1 = apic2; 2910 no_pin1 = 1; 2911 } else if (pin2 == -1) { 2912 pin2 = pin1; 2913 apic2 = apic1; 2914 } 2915 2916 if (pin1 != -1) { 2917 /* 2918 * Ok, does IRQ0 through the IOAPIC work? 2919 */ 2920 if (no_pin1) { 2921 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1); 2922 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); 2923 } else { 2924 /* for edge trigger, setup_IO_APIC_irq already 2925 * leave it unmasked. 2926 * so only need to unmask if it is level-trigger 2927 * do we really have level trigger timer? 2928 */ 2929 int idx; 2930 idx = find_irq_entry(apic1, pin1, mp_INT); 2931 if (idx != -1 && irq_trigger(idx)) 2932 unmask_IO_APIC_irq_desc(desc); 2933 } 2934 if (timer_irq_works()) { 2935 if (nmi_watchdog == NMI_IO_APIC) { 2936 setup_nmi(); 2937 enable_8259A_irq(0); 2938 } 2939 if (disable_timer_pin_1 > 0) 2940 clear_IO_APIC_pin(0, pin1); 2941 goto out; 2942 } 2943 if (intr_remapping_enabled) 2944 panic("timer doesn't work through Interrupt-remapped IO-APIC"); 2945 local_irq_disable(); 2946 clear_IO_APIC_pin(apic1, pin1); 2947 if (!no_pin1) 2948 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 2949 "8254 timer not connected to IO-APIC\n"); 2950 2951 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 2952 "(IRQ0) through the 8259A ...\n"); 2953 apic_printk(APIC_QUIET, KERN_INFO 2954 "..... (found apic %d pin %d) ...\n", apic2, pin2); 2955 /* 2956 * legacy devices should be connected to IO APIC #0 2957 */ 2958 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2); 2959 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); 2960 enable_8259A_irq(0); 2961 if (timer_irq_works()) { 2962 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 2963 timer_through_8259 = 1; 2964 if (nmi_watchdog == NMI_IO_APIC) { 2965 disable_8259A_irq(0); 2966 setup_nmi(); 2967 enable_8259A_irq(0); 2968 } 2969 goto out; 2970 } 2971 /* 2972 * Cleanup, just in case ... 2973 */ 2974 local_irq_disable(); 2975 disable_8259A_irq(0); 2976 clear_IO_APIC_pin(apic2, pin2); 2977 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 2978 } 2979 2980 if (nmi_watchdog == NMI_IO_APIC) { 2981 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work " 2982 "through the IO-APIC - disabling NMI Watchdog!\n"); 2983 nmi_watchdog = NMI_NONE; 2984 } 2985 #ifdef CONFIG_X86_32 2986 timer_ack = 0; 2987 #endif 2988 2989 apic_printk(APIC_QUIET, KERN_INFO 2990 "...trying to set up timer as Virtual Wire IRQ...\n"); 2991 2992 lapic_register_intr(0, desc); 2993 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 2994 enable_8259A_irq(0); 2995 2996 if (timer_irq_works()) { 2997 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 2998 goto out; 2999 } 3000 local_irq_disable(); 3001 disable_8259A_irq(0); 3002 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 3003 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 3004 3005 apic_printk(APIC_QUIET, KERN_INFO 3006 "...trying to set up timer as ExtINT IRQ...\n"); 3007 3008 init_8259A(0); 3009 make_8259A_irq(0); 3010 apic_write(APIC_LVT0, APIC_DM_EXTINT); 3011 3012 unlock_ExtINT_logic(); 3013 3014 if (timer_irq_works()) { 3015 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 3016 goto out; 3017 } 3018 local_irq_disable(); 3019 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 3020 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 3021 "report. Then try booting with the 'noapic' option.\n"); 3022 out: 3023 local_irq_restore(flags); 3024 } 3025 3026 /* 3027 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 3028 * to devices. However there may be an I/O APIC pin available for 3029 * this interrupt regardless. The pin may be left unconnected, but 3030 * typically it will be reused as an ExtINT cascade interrupt for 3031 * the master 8259A. In the MPS case such a pin will normally be 3032 * reported as an ExtINT interrupt in the MP table. With ACPI 3033 * there is no provision for ExtINT interrupts, and in the absence 3034 * of an override it would be treated as an ordinary ISA I/O APIC 3035 * interrupt, that is edge-triggered and unmasked by default. We 3036 * used to do this, but it caused problems on some systems because 3037 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 3038 * the same ExtINT cascade interrupt to drive the local APIC of the 3039 * bootstrap processor. Therefore we refrain from routing IRQ2 to 3040 * the I/O APIC in all cases now. No actual device should request 3041 * it anyway. --macro 3042 */ 3043 #define PIC_IRQS (1 << PIC_CASCADE_IR) 3044 3045 void __init setup_IO_APIC(void) 3046 { 3047 3048 /* 3049 * calling enable_IO_APIC() is moved to setup_local_APIC for BP 3050 */ 3051 3052 io_apic_irqs = ~PIC_IRQS; 3053 3054 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 3055 /* 3056 * Set up IO-APIC IRQ routing. 3057 */ 3058 #ifdef CONFIG_X86_32 3059 if (!acpi_ioapic) 3060 setup_ioapic_ids_from_mpc(); 3061 #endif 3062 sync_Arb_IDs(); 3063 setup_IO_APIC_irqs(); 3064 init_IO_APIC_traps(); 3065 check_timer(); 3066 } 3067 3068 /* 3069 * Called after all the initialization is done. If we didnt find any 3070 * APIC bugs then we can allow the modify fast path 3071 */ 3072 3073 static int __init io_apic_bug_finalize(void) 3074 { 3075 if (sis_apic_bug == -1) 3076 sis_apic_bug = 0; 3077 return 0; 3078 } 3079 3080 late_initcall(io_apic_bug_finalize); 3081 3082 struct sysfs_ioapic_data { 3083 struct sys_device dev; 3084 struct IO_APIC_route_entry entry[0]; 3085 }; 3086 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS]; 3087 3088 static int ioapic_suspend(struct sys_device *dev, pm_message_t state) 3089 { 3090 struct IO_APIC_route_entry *entry; 3091 struct sysfs_ioapic_data *data; 3092 int i; 3093 3094 data = container_of(dev, struct sysfs_ioapic_data, dev); 3095 entry = data->entry; 3096 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ ) 3097 *entry = ioapic_read_entry(dev->id, i); 3098 3099 return 0; 3100 } 3101 3102 static int ioapic_resume(struct sys_device *dev) 3103 { 3104 struct IO_APIC_route_entry *entry; 3105 struct sysfs_ioapic_data *data; 3106 unsigned long flags; 3107 union IO_APIC_reg_00 reg_00; 3108 int i; 3109 3110 data = container_of(dev, struct sysfs_ioapic_data, dev); 3111 entry = data->entry; 3112 3113 spin_lock_irqsave(&ioapic_lock, flags); 3114 reg_00.raw = io_apic_read(dev->id, 0); 3115 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) { 3116 reg_00.bits.ID = mp_ioapics[dev->id].apicid; 3117 io_apic_write(dev->id, 0, reg_00.raw); 3118 } 3119 spin_unlock_irqrestore(&ioapic_lock, flags); 3120 for (i = 0; i < nr_ioapic_registers[dev->id]; i++) 3121 ioapic_write_entry(dev->id, i, entry[i]); 3122 3123 return 0; 3124 } 3125 3126 static struct sysdev_class ioapic_sysdev_class = { 3127 .name = "ioapic", 3128 .suspend = ioapic_suspend, 3129 .resume = ioapic_resume, 3130 }; 3131 3132 static int __init ioapic_init_sysfs(void) 3133 { 3134 struct sys_device * dev; 3135 int i, size, error; 3136 3137 error = sysdev_class_register(&ioapic_sysdev_class); 3138 if (error) 3139 return error; 3140 3141 for (i = 0; i < nr_ioapics; i++ ) { 3142 size = sizeof(struct sys_device) + nr_ioapic_registers[i] 3143 * sizeof(struct IO_APIC_route_entry); 3144 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL); 3145 if (!mp_ioapic_data[i]) { 3146 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3147 continue; 3148 } 3149 dev = &mp_ioapic_data[i]->dev; 3150 dev->id = i; 3151 dev->cls = &ioapic_sysdev_class; 3152 error = sysdev_register(dev); 3153 if (error) { 3154 kfree(mp_ioapic_data[i]); 3155 mp_ioapic_data[i] = NULL; 3156 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3157 continue; 3158 } 3159 } 3160 3161 return 0; 3162 } 3163 3164 device_initcall(ioapic_init_sysfs); 3165 3166 static int nr_irqs_gsi = NR_IRQS_LEGACY; 3167 /* 3168 * Dynamic irq allocate and deallocation 3169 */ 3170 unsigned int create_irq_nr(unsigned int irq_want) 3171 { 3172 /* Allocate an unused irq */ 3173 unsigned int irq; 3174 unsigned int new; 3175 unsigned long flags; 3176 struct irq_cfg *cfg_new = NULL; 3177 int cpu = boot_cpu_id; 3178 struct irq_desc *desc_new = NULL; 3179 3180 irq = 0; 3181 if (irq_want < nr_irqs_gsi) 3182 irq_want = nr_irqs_gsi; 3183 3184 spin_lock_irqsave(&vector_lock, flags); 3185 for (new = irq_want; new < nr_irqs; new++) { 3186 desc_new = irq_to_desc_alloc_cpu(new, cpu); 3187 if (!desc_new) { 3188 printk(KERN_INFO "can not get irq_desc for %d\n", new); 3189 continue; 3190 } 3191 cfg_new = desc_new->chip_data; 3192 3193 if (cfg_new->vector != 0) 3194 continue; 3195 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0) 3196 irq = new; 3197 break; 3198 } 3199 spin_unlock_irqrestore(&vector_lock, flags); 3200 3201 if (irq > 0) { 3202 dynamic_irq_init(irq); 3203 /* restore it, in case dynamic_irq_init clear it */ 3204 if (desc_new) 3205 desc_new->chip_data = cfg_new; 3206 } 3207 return irq; 3208 } 3209 3210 int create_irq(void) 3211 { 3212 unsigned int irq_want; 3213 int irq; 3214 3215 irq_want = nr_irqs_gsi; 3216 irq = create_irq_nr(irq_want); 3217 3218 if (irq == 0) 3219 irq = -1; 3220 3221 return irq; 3222 } 3223 3224 void destroy_irq(unsigned int irq) 3225 { 3226 unsigned long flags; 3227 struct irq_cfg *cfg; 3228 struct irq_desc *desc; 3229 3230 /* store it, in case dynamic_irq_cleanup clear it */ 3231 desc = irq_to_desc(irq); 3232 cfg = desc->chip_data; 3233 dynamic_irq_cleanup(irq); 3234 /* connect back irq_cfg */ 3235 if (desc) 3236 desc->chip_data = cfg; 3237 3238 free_irte(irq); 3239 spin_lock_irqsave(&vector_lock, flags); 3240 __clear_irq_vector(irq, cfg); 3241 spin_unlock_irqrestore(&vector_lock, flags); 3242 } 3243 3244 /* 3245 * MSI message composition 3246 */ 3247 #ifdef CONFIG_PCI_MSI 3248 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg) 3249 { 3250 struct irq_cfg *cfg; 3251 int err; 3252 unsigned dest; 3253 3254 if (disable_apic) 3255 return -ENXIO; 3256 3257 cfg = irq_cfg(irq); 3258 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3259 if (err) 3260 return err; 3261 3262 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 3263 3264 if (irq_remapped(irq)) { 3265 struct irte irte; 3266 int ir_index; 3267 u16 sub_handle; 3268 3269 ir_index = map_irq_to_irte_handle(irq, &sub_handle); 3270 BUG_ON(ir_index == -1); 3271 3272 memset (&irte, 0, sizeof(irte)); 3273 3274 irte.present = 1; 3275 irte.dst_mode = apic->irq_dest_mode; 3276 irte.trigger_mode = 0; /* edge */ 3277 irte.dlvry_mode = apic->irq_delivery_mode; 3278 irte.vector = cfg->vector; 3279 irte.dest_id = IRTE_DEST(dest); 3280 3281 modify_irte(irq, &irte); 3282 3283 msg->address_hi = MSI_ADDR_BASE_HI; 3284 msg->data = sub_handle; 3285 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | 3286 MSI_ADDR_IR_SHV | 3287 MSI_ADDR_IR_INDEX1(ir_index) | 3288 MSI_ADDR_IR_INDEX2(ir_index); 3289 } else { 3290 if (x2apic_enabled()) 3291 msg->address_hi = MSI_ADDR_BASE_HI | 3292 MSI_ADDR_EXT_DEST_ID(dest); 3293 else 3294 msg->address_hi = MSI_ADDR_BASE_HI; 3295 3296 msg->address_lo = 3297 MSI_ADDR_BASE_LO | 3298 ((apic->irq_dest_mode == 0) ? 3299 MSI_ADDR_DEST_MODE_PHYSICAL: 3300 MSI_ADDR_DEST_MODE_LOGICAL) | 3301 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3302 MSI_ADDR_REDIRECTION_CPU: 3303 MSI_ADDR_REDIRECTION_LOWPRI) | 3304 MSI_ADDR_DEST_ID(dest); 3305 3306 msg->data = 3307 MSI_DATA_TRIGGER_EDGE | 3308 MSI_DATA_LEVEL_ASSERT | 3309 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3310 MSI_DATA_DELIVERY_FIXED: 3311 MSI_DATA_DELIVERY_LOWPRI) | 3312 MSI_DATA_VECTOR(cfg->vector); 3313 } 3314 return err; 3315 } 3316 3317 #ifdef CONFIG_SMP 3318 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3319 { 3320 struct irq_desc *desc = irq_to_desc(irq); 3321 struct irq_cfg *cfg; 3322 struct msi_msg msg; 3323 unsigned int dest; 3324 3325 dest = set_desc_affinity(desc, mask); 3326 if (dest == BAD_APICID) 3327 return; 3328 3329 cfg = desc->chip_data; 3330 3331 read_msi_msg_desc(desc, &msg); 3332 3333 msg.data &= ~MSI_DATA_VECTOR_MASK; 3334 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3335 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3336 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3337 3338 write_msi_msg_desc(desc, &msg); 3339 } 3340 #ifdef CONFIG_INTR_REMAP 3341 /* 3342 * Migrate the MSI irq to another cpumask. This migration is 3343 * done in the process context using interrupt-remapping hardware. 3344 */ 3345 static void 3346 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3347 { 3348 struct irq_desc *desc = irq_to_desc(irq); 3349 struct irq_cfg *cfg = desc->chip_data; 3350 unsigned int dest; 3351 struct irte irte; 3352 3353 if (get_irte(irq, &irte)) 3354 return; 3355 3356 dest = set_desc_affinity(desc, mask); 3357 if (dest == BAD_APICID) 3358 return; 3359 3360 irte.vector = cfg->vector; 3361 irte.dest_id = IRTE_DEST(dest); 3362 3363 /* 3364 * atomically update the IRTE with the new destination and vector. 3365 */ 3366 modify_irte(irq, &irte); 3367 3368 /* 3369 * After this point, all the interrupts will start arriving 3370 * at the new destination. So, time to cleanup the previous 3371 * vector allocation. 3372 */ 3373 if (cfg->move_in_progress) 3374 send_cleanup_vector(cfg); 3375 } 3376 3377 #endif 3378 #endif /* CONFIG_SMP */ 3379 3380 /* 3381 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, 3382 * which implement the MSI or MSI-X Capability Structure. 3383 */ 3384 static struct irq_chip msi_chip = { 3385 .name = "PCI-MSI", 3386 .unmask = unmask_msi_irq, 3387 .mask = mask_msi_irq, 3388 .ack = ack_apic_edge, 3389 #ifdef CONFIG_SMP 3390 .set_affinity = set_msi_irq_affinity, 3391 #endif 3392 .retrigger = ioapic_retrigger_irq, 3393 }; 3394 3395 static struct irq_chip msi_ir_chip = { 3396 .name = "IR-PCI-MSI", 3397 .unmask = unmask_msi_irq, 3398 .mask = mask_msi_irq, 3399 #ifdef CONFIG_INTR_REMAP 3400 .ack = ack_x2apic_edge, 3401 #ifdef CONFIG_SMP 3402 .set_affinity = ir_set_msi_irq_affinity, 3403 #endif 3404 #endif 3405 .retrigger = ioapic_retrigger_irq, 3406 }; 3407 3408 /* 3409 * Map the PCI dev to the corresponding remapping hardware unit 3410 * and allocate 'nvec' consecutive interrupt-remapping table entries 3411 * in it. 3412 */ 3413 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) 3414 { 3415 struct intel_iommu *iommu; 3416 int index; 3417 3418 iommu = map_dev_to_ir(dev); 3419 if (!iommu) { 3420 printk(KERN_ERR 3421 "Unable to map PCI %s to iommu\n", pci_name(dev)); 3422 return -ENOENT; 3423 } 3424 3425 index = alloc_irte(iommu, irq, nvec); 3426 if (index < 0) { 3427 printk(KERN_ERR 3428 "Unable to allocate %d IRTE for PCI %s\n", nvec, 3429 pci_name(dev)); 3430 return -ENOSPC; 3431 } 3432 return index; 3433 } 3434 3435 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq) 3436 { 3437 int ret; 3438 struct msi_msg msg; 3439 3440 ret = msi_compose_msg(dev, irq, &msg); 3441 if (ret < 0) 3442 return ret; 3443 3444 set_irq_msi(irq, msidesc); 3445 write_msi_msg(irq, &msg); 3446 3447 if (irq_remapped(irq)) { 3448 struct irq_desc *desc = irq_to_desc(irq); 3449 /* 3450 * irq migration in process context 3451 */ 3452 desc->status |= IRQ_MOVE_PCNTXT; 3453 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge"); 3454 } else 3455 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge"); 3456 3457 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq); 3458 3459 return 0; 3460 } 3461 3462 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) 3463 { 3464 unsigned int irq; 3465 int ret, sub_handle; 3466 struct msi_desc *msidesc; 3467 unsigned int irq_want; 3468 struct intel_iommu *iommu = NULL; 3469 int index = 0; 3470 3471 /* x86 doesn't support multiple MSI yet */ 3472 if (type == PCI_CAP_ID_MSI && nvec > 1) 3473 return 1; 3474 3475 irq_want = nr_irqs_gsi; 3476 sub_handle = 0; 3477 list_for_each_entry(msidesc, &dev->msi_list, list) { 3478 irq = create_irq_nr(irq_want); 3479 if (irq == 0) 3480 return -1; 3481 irq_want = irq + 1; 3482 if (!intr_remapping_enabled) 3483 goto no_ir; 3484 3485 if (!sub_handle) { 3486 /* 3487 * allocate the consecutive block of IRTE's 3488 * for 'nvec' 3489 */ 3490 index = msi_alloc_irte(dev, irq, nvec); 3491 if (index < 0) { 3492 ret = index; 3493 goto error; 3494 } 3495 } else { 3496 iommu = map_dev_to_ir(dev); 3497 if (!iommu) { 3498 ret = -ENOENT; 3499 goto error; 3500 } 3501 /* 3502 * setup the mapping between the irq and the IRTE 3503 * base index, the sub_handle pointing to the 3504 * appropriate interrupt remap table entry. 3505 */ 3506 set_irte_irq(irq, iommu, index, sub_handle); 3507 } 3508 no_ir: 3509 ret = setup_msi_irq(dev, msidesc, irq); 3510 if (ret < 0) 3511 goto error; 3512 sub_handle++; 3513 } 3514 return 0; 3515 3516 error: 3517 destroy_irq(irq); 3518 return ret; 3519 } 3520 3521 void arch_teardown_msi_irq(unsigned int irq) 3522 { 3523 destroy_irq(irq); 3524 } 3525 3526 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP) 3527 #ifdef CONFIG_SMP 3528 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3529 { 3530 struct irq_desc *desc = irq_to_desc(irq); 3531 struct irq_cfg *cfg; 3532 struct msi_msg msg; 3533 unsigned int dest; 3534 3535 dest = set_desc_affinity(desc, mask); 3536 if (dest == BAD_APICID) 3537 return; 3538 3539 cfg = desc->chip_data; 3540 3541 dmar_msi_read(irq, &msg); 3542 3543 msg.data &= ~MSI_DATA_VECTOR_MASK; 3544 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3545 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3546 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3547 3548 dmar_msi_write(irq, &msg); 3549 } 3550 3551 #endif /* CONFIG_SMP */ 3552 3553 struct irq_chip dmar_msi_type = { 3554 .name = "DMAR_MSI", 3555 .unmask = dmar_msi_unmask, 3556 .mask = dmar_msi_mask, 3557 .ack = ack_apic_edge, 3558 #ifdef CONFIG_SMP 3559 .set_affinity = dmar_msi_set_affinity, 3560 #endif 3561 .retrigger = ioapic_retrigger_irq, 3562 }; 3563 3564 int arch_setup_dmar_msi(unsigned int irq) 3565 { 3566 int ret; 3567 struct msi_msg msg; 3568 3569 ret = msi_compose_msg(NULL, irq, &msg); 3570 if (ret < 0) 3571 return ret; 3572 dmar_msi_write(irq, &msg); 3573 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, 3574 "edge"); 3575 return 0; 3576 } 3577 #endif 3578 3579 #ifdef CONFIG_HPET_TIMER 3580 3581 #ifdef CONFIG_SMP 3582 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3583 { 3584 struct irq_desc *desc = irq_to_desc(irq); 3585 struct irq_cfg *cfg; 3586 struct msi_msg msg; 3587 unsigned int dest; 3588 3589 dest = set_desc_affinity(desc, mask); 3590 if (dest == BAD_APICID) 3591 return; 3592 3593 cfg = desc->chip_data; 3594 3595 hpet_msi_read(irq, &msg); 3596 3597 msg.data &= ~MSI_DATA_VECTOR_MASK; 3598 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3599 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3600 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3601 3602 hpet_msi_write(irq, &msg); 3603 } 3604 3605 #endif /* CONFIG_SMP */ 3606 3607 static struct irq_chip hpet_msi_type = { 3608 .name = "HPET_MSI", 3609 .unmask = hpet_msi_unmask, 3610 .mask = hpet_msi_mask, 3611 .ack = ack_apic_edge, 3612 #ifdef CONFIG_SMP 3613 .set_affinity = hpet_msi_set_affinity, 3614 #endif 3615 .retrigger = ioapic_retrigger_irq, 3616 }; 3617 3618 int arch_setup_hpet_msi(unsigned int irq) 3619 { 3620 int ret; 3621 struct msi_msg msg; 3622 3623 ret = msi_compose_msg(NULL, irq, &msg); 3624 if (ret < 0) 3625 return ret; 3626 3627 hpet_msi_write(irq, &msg); 3628 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq, 3629 "edge"); 3630 3631 return 0; 3632 } 3633 #endif 3634 3635 #endif /* CONFIG_PCI_MSI */ 3636 /* 3637 * Hypertransport interrupt support 3638 */ 3639 #ifdef CONFIG_HT_IRQ 3640 3641 #ifdef CONFIG_SMP 3642 3643 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) 3644 { 3645 struct ht_irq_msg msg; 3646 fetch_ht_irq_msg(irq, &msg); 3647 3648 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); 3649 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); 3650 3651 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); 3652 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); 3653 3654 write_ht_irq_msg(irq, &msg); 3655 } 3656 3657 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask) 3658 { 3659 struct irq_desc *desc = irq_to_desc(irq); 3660 struct irq_cfg *cfg; 3661 unsigned int dest; 3662 3663 dest = set_desc_affinity(desc, mask); 3664 if (dest == BAD_APICID) 3665 return; 3666 3667 cfg = desc->chip_data; 3668 3669 target_ht_irq(irq, dest, cfg->vector); 3670 } 3671 3672 #endif 3673 3674 static struct irq_chip ht_irq_chip = { 3675 .name = "PCI-HT", 3676 .mask = mask_ht_irq, 3677 .unmask = unmask_ht_irq, 3678 .ack = ack_apic_edge, 3679 #ifdef CONFIG_SMP 3680 .set_affinity = set_ht_irq_affinity, 3681 #endif 3682 .retrigger = ioapic_retrigger_irq, 3683 }; 3684 3685 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) 3686 { 3687 struct irq_cfg *cfg; 3688 int err; 3689 3690 if (disable_apic) 3691 return -ENXIO; 3692 3693 cfg = irq_cfg(irq); 3694 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3695 if (!err) { 3696 struct ht_irq_msg msg; 3697 unsigned dest; 3698 3699 dest = apic->cpu_mask_to_apicid_and(cfg->domain, 3700 apic->target_cpus()); 3701 3702 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); 3703 3704 msg.address_lo = 3705 HT_IRQ_LOW_BASE | 3706 HT_IRQ_LOW_DEST_ID(dest) | 3707 HT_IRQ_LOW_VECTOR(cfg->vector) | 3708 ((apic->irq_dest_mode == 0) ? 3709 HT_IRQ_LOW_DM_PHYSICAL : 3710 HT_IRQ_LOW_DM_LOGICAL) | 3711 HT_IRQ_LOW_RQEOI_EDGE | 3712 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3713 HT_IRQ_LOW_MT_FIXED : 3714 HT_IRQ_LOW_MT_ARBITRATED) | 3715 HT_IRQ_LOW_IRQ_MASKED; 3716 3717 write_ht_irq_msg(irq, &msg); 3718 3719 set_irq_chip_and_handler_name(irq, &ht_irq_chip, 3720 handle_edge_irq, "edge"); 3721 3722 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq); 3723 } 3724 return err; 3725 } 3726 #endif /* CONFIG_HT_IRQ */ 3727 3728 #ifdef CONFIG_X86_UV 3729 /* 3730 * Re-target the irq to the specified CPU and enable the specified MMR located 3731 * on the specified blade to allow the sending of MSIs to the specified CPU. 3732 */ 3733 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade, 3734 unsigned long mmr_offset) 3735 { 3736 const struct cpumask *eligible_cpu = cpumask_of(cpu); 3737 struct irq_cfg *cfg; 3738 int mmr_pnode; 3739 unsigned long mmr_value; 3740 struct uv_IO_APIC_route_entry *entry; 3741 unsigned long flags; 3742 int err; 3743 3744 cfg = irq_cfg(irq); 3745 3746 err = assign_irq_vector(irq, cfg, eligible_cpu); 3747 if (err != 0) 3748 return err; 3749 3750 spin_lock_irqsave(&vector_lock, flags); 3751 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq, 3752 irq_name); 3753 spin_unlock_irqrestore(&vector_lock, flags); 3754 3755 mmr_value = 0; 3756 entry = (struct uv_IO_APIC_route_entry *)&mmr_value; 3757 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long)); 3758 3759 entry->vector = cfg->vector; 3760 entry->delivery_mode = apic->irq_delivery_mode; 3761 entry->dest_mode = apic->irq_dest_mode; 3762 entry->polarity = 0; 3763 entry->trigger = 0; 3764 entry->mask = 0; 3765 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu); 3766 3767 mmr_pnode = uv_blade_to_pnode(mmr_blade); 3768 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value); 3769 3770 return irq; 3771 } 3772 3773 /* 3774 * Disable the specified MMR located on the specified blade so that MSIs are 3775 * longer allowed to be sent. 3776 */ 3777 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset) 3778 { 3779 unsigned long mmr_value; 3780 struct uv_IO_APIC_route_entry *entry; 3781 int mmr_pnode; 3782 3783 mmr_value = 0; 3784 entry = (struct uv_IO_APIC_route_entry *)&mmr_value; 3785 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long)); 3786 3787 entry->mask = 1; 3788 3789 mmr_pnode = uv_blade_to_pnode(mmr_blade); 3790 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value); 3791 } 3792 #endif /* CONFIG_X86_64 */ 3793 3794 int __init io_apic_get_redir_entries (int ioapic) 3795 { 3796 union IO_APIC_reg_01 reg_01; 3797 unsigned long flags; 3798 3799 spin_lock_irqsave(&ioapic_lock, flags); 3800 reg_01.raw = io_apic_read(ioapic, 1); 3801 spin_unlock_irqrestore(&ioapic_lock, flags); 3802 3803 return reg_01.bits.entries; 3804 } 3805 3806 void __init probe_nr_irqs_gsi(void) 3807 { 3808 int nr = 0; 3809 3810 nr = acpi_probe_gsi(); 3811 if (nr > nr_irqs_gsi) { 3812 nr_irqs_gsi = nr; 3813 } else { 3814 /* for acpi=off or acpi is not compiled in */ 3815 int idx; 3816 3817 nr = 0; 3818 for (idx = 0; idx < nr_ioapics; idx++) 3819 nr += io_apic_get_redir_entries(idx) + 1; 3820 3821 if (nr > nr_irqs_gsi) 3822 nr_irqs_gsi = nr; 3823 } 3824 3825 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi); 3826 } 3827 3828 #ifdef CONFIG_SPARSE_IRQ 3829 int __init arch_probe_nr_irqs(void) 3830 { 3831 int nr; 3832 3833 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 3834 nr_irqs = NR_VECTORS * nr_cpu_ids; 3835 3836 nr = nr_irqs_gsi + 8 * nr_cpu_ids; 3837 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 3838 /* 3839 * for MSI and HT dyn irq 3840 */ 3841 nr += nr_irqs_gsi * 16; 3842 #endif 3843 if (nr < nr_irqs) 3844 nr_irqs = nr; 3845 3846 return 0; 3847 } 3848 #endif 3849 3850 /* -------------------------------------------------------------------------- 3851 ACPI-based IOAPIC Configuration 3852 -------------------------------------------------------------------------- */ 3853 3854 #ifdef CONFIG_ACPI 3855 3856 #ifdef CONFIG_X86_32 3857 int __init io_apic_get_unique_id(int ioapic, int apic_id) 3858 { 3859 union IO_APIC_reg_00 reg_00; 3860 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 3861 physid_mask_t tmp; 3862 unsigned long flags; 3863 int i = 0; 3864 3865 /* 3866 * The P4 platform supports up to 256 APIC IDs on two separate APIC 3867 * buses (one for LAPICs, one for IOAPICs), where predecessors only 3868 * supports up to 16 on one shared APIC bus. 3869 * 3870 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 3871 * advantage of new APIC bus architecture. 3872 */ 3873 3874 if (physids_empty(apic_id_map)) 3875 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map); 3876 3877 spin_lock_irqsave(&ioapic_lock, flags); 3878 reg_00.raw = io_apic_read(ioapic, 0); 3879 spin_unlock_irqrestore(&ioapic_lock, flags); 3880 3881 if (apic_id >= get_physical_broadcast()) { 3882 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 3883 "%d\n", ioapic, apic_id, reg_00.bits.ID); 3884 apic_id = reg_00.bits.ID; 3885 } 3886 3887 /* 3888 * Every APIC in a system must have a unique ID or we get lots of nice 3889 * 'stuck on smp_invalidate_needed IPI wait' messages. 3890 */ 3891 if (apic->check_apicid_used(apic_id_map, apic_id)) { 3892 3893 for (i = 0; i < get_physical_broadcast(); i++) { 3894 if (!apic->check_apicid_used(apic_id_map, i)) 3895 break; 3896 } 3897 3898 if (i == get_physical_broadcast()) 3899 panic("Max apic_id exceeded!\n"); 3900 3901 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 3902 "trying %d\n", ioapic, apic_id, i); 3903 3904 apic_id = i; 3905 } 3906 3907 tmp = apic->apicid_to_cpu_present(apic_id); 3908 physids_or(apic_id_map, apic_id_map, tmp); 3909 3910 if (reg_00.bits.ID != apic_id) { 3911 reg_00.bits.ID = apic_id; 3912 3913 spin_lock_irqsave(&ioapic_lock, flags); 3914 io_apic_write(ioapic, 0, reg_00.raw); 3915 reg_00.raw = io_apic_read(ioapic, 0); 3916 spin_unlock_irqrestore(&ioapic_lock, flags); 3917 3918 /* Sanity check */ 3919 if (reg_00.bits.ID != apic_id) { 3920 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); 3921 return -1; 3922 } 3923 } 3924 3925 apic_printk(APIC_VERBOSE, KERN_INFO 3926 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 3927 3928 return apic_id; 3929 } 3930 3931 int __init io_apic_get_version(int ioapic) 3932 { 3933 union IO_APIC_reg_01 reg_01; 3934 unsigned long flags; 3935 3936 spin_lock_irqsave(&ioapic_lock, flags); 3937 reg_01.raw = io_apic_read(ioapic, 1); 3938 spin_unlock_irqrestore(&ioapic_lock, flags); 3939 3940 return reg_01.bits.version; 3941 } 3942 #endif 3943 3944 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity) 3945 { 3946 struct irq_desc *desc; 3947 struct irq_cfg *cfg; 3948 int cpu = boot_cpu_id; 3949 3950 if (!IO_APIC_IRQ(irq)) { 3951 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", 3952 ioapic); 3953 return -EINVAL; 3954 } 3955 3956 desc = irq_to_desc_alloc_cpu(irq, cpu); 3957 if (!desc) { 3958 printk(KERN_INFO "can not get irq_desc %d\n", irq); 3959 return 0; 3960 } 3961 3962 /* 3963 * IRQs < 16 are already in the irq_2_pin[] map 3964 */ 3965 if (irq >= NR_IRQS_LEGACY) { 3966 cfg = desc->chip_data; 3967 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin); 3968 } 3969 3970 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity); 3971 3972 return 0; 3973 } 3974 3975 3976 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity) 3977 { 3978 int i; 3979 3980 if (skip_ioapic_setup) 3981 return -1; 3982 3983 for (i = 0; i < mp_irq_entries; i++) 3984 if (mp_irqs[i].irqtype == mp_INT && 3985 mp_irqs[i].srcbusirq == bus_irq) 3986 break; 3987 if (i >= mp_irq_entries) 3988 return -1; 3989 3990 *trigger = irq_trigger(i); 3991 *polarity = irq_polarity(i); 3992 return 0; 3993 } 3994 3995 #endif /* CONFIG_ACPI */ 3996 3997 /* 3998 * This function currently is only a helper for the i386 smp boot process where 3999 * we need to reprogram the ioredtbls to cater for the cpus which have come online 4000 * so mask in all cases should simply be apic->target_cpus() 4001 */ 4002 #ifdef CONFIG_SMP 4003 void __init setup_ioapic_dest(void) 4004 { 4005 int pin, ioapic, irq, irq_entry; 4006 struct irq_desc *desc; 4007 struct irq_cfg *cfg; 4008 const struct cpumask *mask; 4009 4010 if (skip_ioapic_setup == 1) 4011 return; 4012 4013 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) { 4014 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { 4015 irq_entry = find_irq_entry(ioapic, pin, mp_INT); 4016 if (irq_entry == -1) 4017 continue; 4018 irq = pin_2_irq(irq_entry, ioapic, pin); 4019 4020 /* setup_IO_APIC_irqs could fail to get vector for some device 4021 * when you have too many devices, because at that time only boot 4022 * cpu is online. 4023 */ 4024 desc = irq_to_desc(irq); 4025 cfg = desc->chip_data; 4026 if (!cfg->vector) { 4027 setup_IO_APIC_irq(ioapic, pin, irq, desc, 4028 irq_trigger(irq_entry), 4029 irq_polarity(irq_entry)); 4030 continue; 4031 4032 } 4033 4034 /* 4035 * Honour affinities which have been set in early boot 4036 */ 4037 if (desc->status & 4038 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET)) 4039 mask = desc->affinity; 4040 else 4041 mask = apic->target_cpus(); 4042 4043 if (intr_remapping_enabled) 4044 set_ir_ioapic_affinity_irq_desc(desc, mask); 4045 else 4046 set_ioapic_affinity_irq_desc(desc, mask); 4047 } 4048 4049 } 4050 } 4051 #endif 4052 4053 #define IOAPIC_RESOURCE_NAME_SIZE 11 4054 4055 static struct resource *ioapic_resources; 4056 4057 static struct resource * __init ioapic_setup_resources(void) 4058 { 4059 unsigned long n; 4060 struct resource *res; 4061 char *mem; 4062 int i; 4063 4064 if (nr_ioapics <= 0) 4065 return NULL; 4066 4067 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 4068 n *= nr_ioapics; 4069 4070 mem = alloc_bootmem(n); 4071 res = (void *)mem; 4072 4073 if (mem != NULL) { 4074 mem += sizeof(struct resource) * nr_ioapics; 4075 4076 for (i = 0; i < nr_ioapics; i++) { 4077 res[i].name = mem; 4078 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 4079 sprintf(mem, "IOAPIC %u", i); 4080 mem += IOAPIC_RESOURCE_NAME_SIZE; 4081 } 4082 } 4083 4084 ioapic_resources = res; 4085 4086 return res; 4087 } 4088 4089 void __init ioapic_init_mappings(void) 4090 { 4091 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 4092 struct resource *ioapic_res; 4093 int i; 4094 4095 ioapic_res = ioapic_setup_resources(); 4096 for (i = 0; i < nr_ioapics; i++) { 4097 if (smp_found_config) { 4098 ioapic_phys = mp_ioapics[i].apicaddr; 4099 #ifdef CONFIG_X86_32 4100 if (!ioapic_phys) { 4101 printk(KERN_ERR 4102 "WARNING: bogus zero IO-APIC " 4103 "address found in MPTABLE, " 4104 "disabling IO/APIC support!\n"); 4105 smp_found_config = 0; 4106 skip_ioapic_setup = 1; 4107 goto fake_ioapic_page; 4108 } 4109 #endif 4110 } else { 4111 #ifdef CONFIG_X86_32 4112 fake_ioapic_page: 4113 #endif 4114 ioapic_phys = (unsigned long) 4115 alloc_bootmem_pages(PAGE_SIZE); 4116 ioapic_phys = __pa(ioapic_phys); 4117 } 4118 set_fixmap_nocache(idx, ioapic_phys); 4119 apic_printk(APIC_VERBOSE, 4120 "mapped IOAPIC to %08lx (%08lx)\n", 4121 __fix_to_virt(idx), ioapic_phys); 4122 idx++; 4123 4124 if (ioapic_res != NULL) { 4125 ioapic_res->start = ioapic_phys; 4126 ioapic_res->end = ioapic_phys + (4 * 1024) - 1; 4127 ioapic_res++; 4128 } 4129 } 4130 } 4131 4132 static int __init ioapic_insert_resources(void) 4133 { 4134 int i; 4135 struct resource *r = ioapic_resources; 4136 4137 if (!r) { 4138 if (nr_ioapics > 0) { 4139 printk(KERN_ERR 4140 "IO APIC resources couldn't be allocated.\n"); 4141 return -1; 4142 } 4143 return 0; 4144 } 4145 4146 for (i = 0; i < nr_ioapics; i++) { 4147 insert_resource(&iomem_resource, r); 4148 r++; 4149 } 4150 4151 return 0; 4152 } 4153 4154 /* Insert the IO APIC resources after PCI initialization has occured to handle 4155 * IO APICS that are mapped in on a BAR in PCI space. */ 4156 late_initcall(ioapic_insert_resources); 4157