xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45 
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
64 
65 #include <asm/apic.h>
66 
67 #define __apicdebuginit(type) static type __init
68 
69 /*
70  *      Is the SiS APIC rmw bug present ?
71  *      -1 = don't know, 0 = no, 1 = yes
72  */
73 int sis_apic_bug = -1;
74 
75 static DEFINE_SPINLOCK(ioapic_lock);
76 static DEFINE_SPINLOCK(vector_lock);
77 
78 /*
79  * # of IRQ routing registers
80  */
81 int nr_ioapic_registers[MAX_IO_APICS];
82 
83 /* I/O APIC entries */
84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
85 int nr_ioapics;
86 
87 /* MP IRQ source entries */
88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
89 
90 /* # of MP IRQ source entries */
91 int mp_irq_entries;
92 
93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
94 int mp_bus_id_to_type[MAX_MP_BUSSES];
95 #endif
96 
97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
98 
99 int skip_ioapic_setup;
100 
101 void arch_disable_smp_support(void)
102 {
103 #ifdef CONFIG_PCI
104 	noioapicquirk = 1;
105 	noioapicreroute = -1;
106 #endif
107 	skip_ioapic_setup = 1;
108 }
109 
110 static int __init parse_noapic(char *str)
111 {
112 	/* disable IO-APIC */
113 	arch_disable_smp_support();
114 	return 0;
115 }
116 early_param("noapic", parse_noapic);
117 
118 struct irq_pin_list;
119 
120 /*
121  * This is performance-critical, we want to do it O(1)
122  *
123  * the indexing order of this array favors 1:1 mappings
124  * between pins and IRQs.
125  */
126 
127 struct irq_pin_list {
128 	int apic, pin;
129 	struct irq_pin_list *next;
130 };
131 
132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
133 {
134 	struct irq_pin_list *pin;
135 	int node;
136 
137 	node = cpu_to_node(cpu);
138 
139 	pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
140 
141 	return pin;
142 }
143 
144 struct irq_cfg {
145 	struct irq_pin_list *irq_2_pin;
146 	cpumask_var_t domain;
147 	cpumask_var_t old_domain;
148 	unsigned move_cleanup_count;
149 	u8 vector;
150 	u8 move_in_progress : 1;
151 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
152 	u8 move_desc_pending : 1;
153 #endif
154 };
155 
156 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
157 #ifdef CONFIG_SPARSE_IRQ
158 static struct irq_cfg irq_cfgx[] = {
159 #else
160 static struct irq_cfg irq_cfgx[NR_IRQS] = {
161 #endif
162 	[0]  = { .vector = IRQ0_VECTOR,  },
163 	[1]  = { .vector = IRQ1_VECTOR,  },
164 	[2]  = { .vector = IRQ2_VECTOR,  },
165 	[3]  = { .vector = IRQ3_VECTOR,  },
166 	[4]  = { .vector = IRQ4_VECTOR,  },
167 	[5]  = { .vector = IRQ5_VECTOR,  },
168 	[6]  = { .vector = IRQ6_VECTOR,  },
169 	[7]  = { .vector = IRQ7_VECTOR,  },
170 	[8]  = { .vector = IRQ8_VECTOR,  },
171 	[9]  = { .vector = IRQ9_VECTOR,  },
172 	[10] = { .vector = IRQ10_VECTOR, },
173 	[11] = { .vector = IRQ11_VECTOR, },
174 	[12] = { .vector = IRQ12_VECTOR, },
175 	[13] = { .vector = IRQ13_VECTOR, },
176 	[14] = { .vector = IRQ14_VECTOR, },
177 	[15] = { .vector = IRQ15_VECTOR, },
178 };
179 
180 int __init arch_early_irq_init(void)
181 {
182 	struct irq_cfg *cfg;
183 	struct irq_desc *desc;
184 	int count;
185 	int i;
186 
187 	cfg = irq_cfgx;
188 	count = ARRAY_SIZE(irq_cfgx);
189 
190 	for (i = 0; i < count; i++) {
191 		desc = irq_to_desc(i);
192 		desc->chip_data = &cfg[i];
193 		alloc_bootmem_cpumask_var(&cfg[i].domain);
194 		alloc_bootmem_cpumask_var(&cfg[i].old_domain);
195 		if (i < NR_IRQS_LEGACY)
196 			cpumask_setall(cfg[i].domain);
197 	}
198 
199 	return 0;
200 }
201 
202 #ifdef CONFIG_SPARSE_IRQ
203 static struct irq_cfg *irq_cfg(unsigned int irq)
204 {
205 	struct irq_cfg *cfg = NULL;
206 	struct irq_desc *desc;
207 
208 	desc = irq_to_desc(irq);
209 	if (desc)
210 		cfg = desc->chip_data;
211 
212 	return cfg;
213 }
214 
215 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
216 {
217 	struct irq_cfg *cfg;
218 	int node;
219 
220 	node = cpu_to_node(cpu);
221 
222 	cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
223 	if (cfg) {
224 		if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
225 			kfree(cfg);
226 			cfg = NULL;
227 		} else if (!alloc_cpumask_var_node(&cfg->old_domain,
228 							  GFP_ATOMIC, node)) {
229 			free_cpumask_var(cfg->domain);
230 			kfree(cfg);
231 			cfg = NULL;
232 		} else {
233 			cpumask_clear(cfg->domain);
234 			cpumask_clear(cfg->old_domain);
235 		}
236 	}
237 
238 	return cfg;
239 }
240 
241 int arch_init_chip_data(struct irq_desc *desc, int cpu)
242 {
243 	struct irq_cfg *cfg;
244 
245 	cfg = desc->chip_data;
246 	if (!cfg) {
247 		desc->chip_data = get_one_free_irq_cfg(cpu);
248 		if (!desc->chip_data) {
249 			printk(KERN_ERR "can not alloc irq_cfg\n");
250 			BUG_ON(1);
251 		}
252 	}
253 
254 	return 0;
255 }
256 
257 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
258 
259 static void
260 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
261 {
262 	struct irq_pin_list *old_entry, *head, *tail, *entry;
263 
264 	cfg->irq_2_pin = NULL;
265 	old_entry = old_cfg->irq_2_pin;
266 	if (!old_entry)
267 		return;
268 
269 	entry = get_one_free_irq_2_pin(cpu);
270 	if (!entry)
271 		return;
272 
273 	entry->apic	= old_entry->apic;
274 	entry->pin	= old_entry->pin;
275 	head		= entry;
276 	tail		= entry;
277 	old_entry	= old_entry->next;
278 	while (old_entry) {
279 		entry = get_one_free_irq_2_pin(cpu);
280 		if (!entry) {
281 			entry = head;
282 			while (entry) {
283 				head = entry->next;
284 				kfree(entry);
285 				entry = head;
286 			}
287 			/* still use the old one */
288 			return;
289 		}
290 		entry->apic	= old_entry->apic;
291 		entry->pin	= old_entry->pin;
292 		tail->next	= entry;
293 		tail		= entry;
294 		old_entry	= old_entry->next;
295 	}
296 
297 	tail->next = NULL;
298 	cfg->irq_2_pin = head;
299 }
300 
301 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
302 {
303 	struct irq_pin_list *entry, *next;
304 
305 	if (old_cfg->irq_2_pin == cfg->irq_2_pin)
306 		return;
307 
308 	entry = old_cfg->irq_2_pin;
309 
310 	while (entry) {
311 		next = entry->next;
312 		kfree(entry);
313 		entry = next;
314 	}
315 	old_cfg->irq_2_pin = NULL;
316 }
317 
318 void arch_init_copy_chip_data(struct irq_desc *old_desc,
319 				 struct irq_desc *desc, int cpu)
320 {
321 	struct irq_cfg *cfg;
322 	struct irq_cfg *old_cfg;
323 
324 	cfg = get_one_free_irq_cfg(cpu);
325 
326 	if (!cfg)
327 		return;
328 
329 	desc->chip_data = cfg;
330 
331 	old_cfg = old_desc->chip_data;
332 
333 	memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
334 
335 	init_copy_irq_2_pin(old_cfg, cfg, cpu);
336 }
337 
338 static void free_irq_cfg(struct irq_cfg *old_cfg)
339 {
340 	kfree(old_cfg);
341 }
342 
343 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
344 {
345 	struct irq_cfg *old_cfg, *cfg;
346 
347 	old_cfg = old_desc->chip_data;
348 	cfg = desc->chip_data;
349 
350 	if (old_cfg == cfg)
351 		return;
352 
353 	if (old_cfg) {
354 		free_irq_2_pin(old_cfg, cfg);
355 		free_irq_cfg(old_cfg);
356 		old_desc->chip_data = NULL;
357 	}
358 }
359 
360 static void
361 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
362 {
363 	struct irq_cfg *cfg = desc->chip_data;
364 
365 	if (!cfg->move_in_progress) {
366 		/* it means that domain is not changed */
367 		if (!cpumask_intersects(desc->affinity, mask))
368 			cfg->move_desc_pending = 1;
369 	}
370 }
371 #endif
372 
373 #else
374 static struct irq_cfg *irq_cfg(unsigned int irq)
375 {
376 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
377 }
378 
379 #endif
380 
381 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
382 static inline void
383 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
384 {
385 }
386 #endif
387 
388 struct io_apic {
389 	unsigned int index;
390 	unsigned int unused[3];
391 	unsigned int data;
392 	unsigned int unused2[11];
393 	unsigned int eoi;
394 };
395 
396 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
397 {
398 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
399 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
400 }
401 
402 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
403 {
404 	struct io_apic __iomem *io_apic = io_apic_base(apic);
405 	writel(vector, &io_apic->eoi);
406 }
407 
408 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
409 {
410 	struct io_apic __iomem *io_apic = io_apic_base(apic);
411 	writel(reg, &io_apic->index);
412 	return readl(&io_apic->data);
413 }
414 
415 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
416 {
417 	struct io_apic __iomem *io_apic = io_apic_base(apic);
418 	writel(reg, &io_apic->index);
419 	writel(value, &io_apic->data);
420 }
421 
422 /*
423  * Re-write a value: to be used for read-modify-write
424  * cycles where the read already set up the index register.
425  *
426  * Older SiS APIC requires we rewrite the index register
427  */
428 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
429 {
430 	struct io_apic __iomem *io_apic = io_apic_base(apic);
431 
432 	if (sis_apic_bug)
433 		writel(reg, &io_apic->index);
434 	writel(value, &io_apic->data);
435 }
436 
437 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
438 {
439 	struct irq_pin_list *entry;
440 	unsigned long flags;
441 
442 	spin_lock_irqsave(&ioapic_lock, flags);
443 	entry = cfg->irq_2_pin;
444 	for (;;) {
445 		unsigned int reg;
446 		int pin;
447 
448 		if (!entry)
449 			break;
450 		pin = entry->pin;
451 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
452 		/* Is the remote IRR bit set? */
453 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
454 			spin_unlock_irqrestore(&ioapic_lock, flags);
455 			return true;
456 		}
457 		if (!entry->next)
458 			break;
459 		entry = entry->next;
460 	}
461 	spin_unlock_irqrestore(&ioapic_lock, flags);
462 
463 	return false;
464 }
465 
466 union entry_union {
467 	struct { u32 w1, w2; };
468 	struct IO_APIC_route_entry entry;
469 };
470 
471 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
472 {
473 	union entry_union eu;
474 	unsigned long flags;
475 	spin_lock_irqsave(&ioapic_lock, flags);
476 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
477 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
478 	spin_unlock_irqrestore(&ioapic_lock, flags);
479 	return eu.entry;
480 }
481 
482 /*
483  * When we write a new IO APIC routing entry, we need to write the high
484  * word first! If the mask bit in the low word is clear, we will enable
485  * the interrupt, and we need to make sure the entry is fully populated
486  * before that happens.
487  */
488 static void
489 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
490 {
491 	union entry_union eu;
492 	eu.entry = e;
493 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
494 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
495 }
496 
497 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
498 {
499 	unsigned long flags;
500 	spin_lock_irqsave(&ioapic_lock, flags);
501 	__ioapic_write_entry(apic, pin, e);
502 	spin_unlock_irqrestore(&ioapic_lock, flags);
503 }
504 
505 /*
506  * When we mask an IO APIC routing entry, we need to write the low
507  * word first, in order to set the mask bit before we change the
508  * high bits!
509  */
510 static void ioapic_mask_entry(int apic, int pin)
511 {
512 	unsigned long flags;
513 	union entry_union eu = { .entry.mask = 1 };
514 
515 	spin_lock_irqsave(&ioapic_lock, flags);
516 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
517 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
518 	spin_unlock_irqrestore(&ioapic_lock, flags);
519 }
520 
521 #ifdef CONFIG_SMP
522 static void send_cleanup_vector(struct irq_cfg *cfg)
523 {
524 	cpumask_var_t cleanup_mask;
525 
526 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
527 		unsigned int i;
528 		cfg->move_cleanup_count = 0;
529 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
530 			cfg->move_cleanup_count++;
531 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
532 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
533 	} else {
534 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
535 		cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
536 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
537 		free_cpumask_var(cleanup_mask);
538 	}
539 	cfg->move_in_progress = 0;
540 }
541 
542 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
543 {
544 	int apic, pin;
545 	struct irq_pin_list *entry;
546 	u8 vector = cfg->vector;
547 
548 	entry = cfg->irq_2_pin;
549 	for (;;) {
550 		unsigned int reg;
551 
552 		if (!entry)
553 			break;
554 
555 		apic = entry->apic;
556 		pin = entry->pin;
557 		/*
558 		 * With interrupt-remapping, destination information comes
559 		 * from interrupt-remapping table entry.
560 		 */
561 		if (!irq_remapped(irq))
562 			io_apic_write(apic, 0x11 + pin*2, dest);
563 		reg = io_apic_read(apic, 0x10 + pin*2);
564 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
565 		reg |= vector;
566 		io_apic_modify(apic, 0x10 + pin*2, reg);
567 		if (!entry->next)
568 			break;
569 		entry = entry->next;
570 	}
571 }
572 
573 static int
574 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
575 
576 /*
577  * Either sets desc->affinity to a valid value, and returns
578  * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
579  * leaves desc->affinity untouched.
580  */
581 static unsigned int
582 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
583 {
584 	struct irq_cfg *cfg;
585 	unsigned int irq;
586 
587 	if (!cpumask_intersects(mask, cpu_online_mask))
588 		return BAD_APICID;
589 
590 	irq = desc->irq;
591 	cfg = desc->chip_data;
592 	if (assign_irq_vector(irq, cfg, mask))
593 		return BAD_APICID;
594 
595 	/* check that before desc->addinity get updated */
596 	set_extra_move_desc(desc, mask);
597 
598 	cpumask_copy(desc->affinity, mask);
599 
600 	return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
601 }
602 
603 static void
604 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
605 {
606 	struct irq_cfg *cfg;
607 	unsigned long flags;
608 	unsigned int dest;
609 	unsigned int irq;
610 
611 	irq = desc->irq;
612 	cfg = desc->chip_data;
613 
614 	spin_lock_irqsave(&ioapic_lock, flags);
615 	dest = set_desc_affinity(desc, mask);
616 	if (dest != BAD_APICID) {
617 		/* Only the high 8 bits are valid. */
618 		dest = SET_APIC_LOGICAL_ID(dest);
619 		__target_IO_APIC_irq(irq, dest, cfg);
620 	}
621 	spin_unlock_irqrestore(&ioapic_lock, flags);
622 }
623 
624 static void
625 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
626 {
627 	struct irq_desc *desc;
628 
629 	desc = irq_to_desc(irq);
630 
631 	set_ioapic_affinity_irq_desc(desc, mask);
632 }
633 #endif /* CONFIG_SMP */
634 
635 /*
636  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
637  * shared ISA-space IRQs, so we have to support them. We are super
638  * fast in the common case, and fast for shared ISA-space IRQs.
639  */
640 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
641 {
642 	struct irq_pin_list *entry;
643 
644 	entry = cfg->irq_2_pin;
645 	if (!entry) {
646 		entry = get_one_free_irq_2_pin(cpu);
647 		if (!entry) {
648 			printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
649 					apic, pin);
650 			return;
651 		}
652 		cfg->irq_2_pin = entry;
653 		entry->apic = apic;
654 		entry->pin = pin;
655 		return;
656 	}
657 
658 	while (entry->next) {
659 		/* not again, please */
660 		if (entry->apic == apic && entry->pin == pin)
661 			return;
662 
663 		entry = entry->next;
664 	}
665 
666 	entry->next = get_one_free_irq_2_pin(cpu);
667 	entry = entry->next;
668 	entry->apic = apic;
669 	entry->pin = pin;
670 }
671 
672 /*
673  * Reroute an IRQ to a different pin.
674  */
675 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
676 				      int oldapic, int oldpin,
677 				      int newapic, int newpin)
678 {
679 	struct irq_pin_list *entry = cfg->irq_2_pin;
680 	int replaced = 0;
681 
682 	while (entry) {
683 		if (entry->apic == oldapic && entry->pin == oldpin) {
684 			entry->apic = newapic;
685 			entry->pin = newpin;
686 			replaced = 1;
687 			/* every one is different, right? */
688 			break;
689 		}
690 		entry = entry->next;
691 	}
692 
693 	/* why? call replace before add? */
694 	if (!replaced)
695 		add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
696 }
697 
698 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
699 				int mask_and, int mask_or,
700 				void (*final)(struct irq_pin_list *entry))
701 {
702 	int pin;
703 	struct irq_pin_list *entry;
704 
705 	for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
706 		unsigned int reg;
707 		pin = entry->pin;
708 		reg = io_apic_read(entry->apic, 0x10 + pin * 2);
709 		reg &= mask_and;
710 		reg |= mask_or;
711 		io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
712 		if (final)
713 			final(entry);
714 	}
715 }
716 
717 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
718 {
719 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
720 }
721 
722 #ifdef CONFIG_X86_64
723 static void io_apic_sync(struct irq_pin_list *entry)
724 {
725 	/*
726 	 * Synchronize the IO-APIC and the CPU by doing
727 	 * a dummy read from the IO-APIC
728 	 */
729 	struct io_apic __iomem *io_apic;
730 	io_apic = io_apic_base(entry->apic);
731 	readl(&io_apic->data);
732 }
733 
734 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
735 {
736 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
737 }
738 #else /* CONFIG_X86_32 */
739 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
740 {
741 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
742 }
743 
744 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
745 {
746 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
747 			IO_APIC_REDIR_MASKED, NULL);
748 }
749 
750 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
751 {
752 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
753 			IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
754 }
755 #endif /* CONFIG_X86_32 */
756 
757 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
758 {
759 	struct irq_cfg *cfg = desc->chip_data;
760 	unsigned long flags;
761 
762 	BUG_ON(!cfg);
763 
764 	spin_lock_irqsave(&ioapic_lock, flags);
765 	__mask_IO_APIC_irq(cfg);
766 	spin_unlock_irqrestore(&ioapic_lock, flags);
767 }
768 
769 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
770 {
771 	struct irq_cfg *cfg = desc->chip_data;
772 	unsigned long flags;
773 
774 	spin_lock_irqsave(&ioapic_lock, flags);
775 	__unmask_IO_APIC_irq(cfg);
776 	spin_unlock_irqrestore(&ioapic_lock, flags);
777 }
778 
779 static void mask_IO_APIC_irq(unsigned int irq)
780 {
781 	struct irq_desc *desc = irq_to_desc(irq);
782 
783 	mask_IO_APIC_irq_desc(desc);
784 }
785 static void unmask_IO_APIC_irq(unsigned int irq)
786 {
787 	struct irq_desc *desc = irq_to_desc(irq);
788 
789 	unmask_IO_APIC_irq_desc(desc);
790 }
791 
792 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
793 {
794 	struct IO_APIC_route_entry entry;
795 
796 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
797 	entry = ioapic_read_entry(apic, pin);
798 	if (entry.delivery_mode == dest_SMI)
799 		return;
800 	/*
801 	 * Disable it in the IO-APIC irq-routing table:
802 	 */
803 	ioapic_mask_entry(apic, pin);
804 }
805 
806 static void clear_IO_APIC (void)
807 {
808 	int apic, pin;
809 
810 	for (apic = 0; apic < nr_ioapics; apic++)
811 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
812 			clear_IO_APIC_pin(apic, pin);
813 }
814 
815 #ifdef CONFIG_X86_32
816 /*
817  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
818  * specific CPU-side IRQs.
819  */
820 
821 #define MAX_PIRQS 8
822 static int pirq_entries[MAX_PIRQS] = {
823 	[0 ... MAX_PIRQS - 1] = -1
824 };
825 
826 static int __init ioapic_pirq_setup(char *str)
827 {
828 	int i, max;
829 	int ints[MAX_PIRQS+1];
830 
831 	get_options(str, ARRAY_SIZE(ints), ints);
832 
833 	apic_printk(APIC_VERBOSE, KERN_INFO
834 			"PIRQ redirection, working around broken MP-BIOS.\n");
835 	max = MAX_PIRQS;
836 	if (ints[0] < MAX_PIRQS)
837 		max = ints[0];
838 
839 	for (i = 0; i < max; i++) {
840 		apic_printk(APIC_VERBOSE, KERN_DEBUG
841 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
842 		/*
843 		 * PIRQs are mapped upside down, usually.
844 		 */
845 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
846 	}
847 	return 1;
848 }
849 
850 __setup("pirq=", ioapic_pirq_setup);
851 #endif /* CONFIG_X86_32 */
852 
853 #ifdef CONFIG_INTR_REMAP
854 /* I/O APIC RTE contents at the OS boot up */
855 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
856 
857 /*
858  * Saves all the IO-APIC RTE's
859  */
860 int save_IO_APIC_setup(void)
861 {
862 	union IO_APIC_reg_01 reg_01;
863 	unsigned long flags;
864 	int apic, pin;
865 
866 	/*
867 	 * The number of IO-APIC IRQ registers (== #pins):
868 	 */
869 	for (apic = 0; apic < nr_ioapics; apic++) {
870 		spin_lock_irqsave(&ioapic_lock, flags);
871 		reg_01.raw = io_apic_read(apic, 1);
872 		spin_unlock_irqrestore(&ioapic_lock, flags);
873 		nr_ioapic_registers[apic] = reg_01.bits.entries+1;
874 	}
875 
876 	for (apic = 0; apic < nr_ioapics; apic++) {
877 		early_ioapic_entries[apic] =
878 			kzalloc(sizeof(struct IO_APIC_route_entry) *
879 				nr_ioapic_registers[apic], GFP_KERNEL);
880 		if (!early_ioapic_entries[apic])
881 			goto nomem;
882 	}
883 
884 	for (apic = 0; apic < nr_ioapics; apic++)
885 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
886 			early_ioapic_entries[apic][pin] =
887 				ioapic_read_entry(apic, pin);
888 
889 	return 0;
890 
891 nomem:
892 	while (apic >= 0)
893 		kfree(early_ioapic_entries[apic--]);
894 	memset(early_ioapic_entries, 0,
895 		ARRAY_SIZE(early_ioapic_entries));
896 
897 	return -ENOMEM;
898 }
899 
900 void mask_IO_APIC_setup(void)
901 {
902 	int apic, pin;
903 
904 	for (apic = 0; apic < nr_ioapics; apic++) {
905 		if (!early_ioapic_entries[apic])
906 			break;
907 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
908 			struct IO_APIC_route_entry entry;
909 
910 			entry = early_ioapic_entries[apic][pin];
911 			if (!entry.mask) {
912 				entry.mask = 1;
913 				ioapic_write_entry(apic, pin, entry);
914 			}
915 		}
916 	}
917 }
918 
919 void restore_IO_APIC_setup(void)
920 {
921 	int apic, pin;
922 
923 	for (apic = 0; apic < nr_ioapics; apic++) {
924 		if (!early_ioapic_entries[apic])
925 			break;
926 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
927 			ioapic_write_entry(apic, pin,
928 					   early_ioapic_entries[apic][pin]);
929 		kfree(early_ioapic_entries[apic]);
930 		early_ioapic_entries[apic] = NULL;
931 	}
932 }
933 
934 void reinit_intr_remapped_IO_APIC(int intr_remapping)
935 {
936 	/*
937 	 * for now plain restore of previous settings.
938 	 * TBD: In the case of OS enabling interrupt-remapping,
939 	 * IO-APIC RTE's need to be setup to point to interrupt-remapping
940 	 * table entries. for now, do a plain restore, and wait for
941 	 * the setup_IO_APIC_irqs() to do proper initialization.
942 	 */
943 	restore_IO_APIC_setup();
944 }
945 #endif
946 
947 /*
948  * Find the IRQ entry number of a certain pin.
949  */
950 static int find_irq_entry(int apic, int pin, int type)
951 {
952 	int i;
953 
954 	for (i = 0; i < mp_irq_entries; i++)
955 		if (mp_irqs[i].irqtype == type &&
956 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
957 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
958 		    mp_irqs[i].dstirq == pin)
959 			return i;
960 
961 	return -1;
962 }
963 
964 /*
965  * Find the pin to which IRQ[irq] (ISA) is connected
966  */
967 static int __init find_isa_irq_pin(int irq, int type)
968 {
969 	int i;
970 
971 	for (i = 0; i < mp_irq_entries; i++) {
972 		int lbus = mp_irqs[i].srcbus;
973 
974 		if (test_bit(lbus, mp_bus_not_pci) &&
975 		    (mp_irqs[i].irqtype == type) &&
976 		    (mp_irqs[i].srcbusirq == irq))
977 
978 			return mp_irqs[i].dstirq;
979 	}
980 	return -1;
981 }
982 
983 static int __init find_isa_irq_apic(int irq, int type)
984 {
985 	int i;
986 
987 	for (i = 0; i < mp_irq_entries; i++) {
988 		int lbus = mp_irqs[i].srcbus;
989 
990 		if (test_bit(lbus, mp_bus_not_pci) &&
991 		    (mp_irqs[i].irqtype == type) &&
992 		    (mp_irqs[i].srcbusirq == irq))
993 			break;
994 	}
995 	if (i < mp_irq_entries) {
996 		int apic;
997 		for(apic = 0; apic < nr_ioapics; apic++) {
998 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
999 				return apic;
1000 		}
1001 	}
1002 
1003 	return -1;
1004 }
1005 
1006 /*
1007  * Find a specific PCI IRQ entry.
1008  * Not an __init, possibly needed by modules
1009  */
1010 static int pin_2_irq(int idx, int apic, int pin);
1011 
1012 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1013 {
1014 	int apic, i, best_guess = -1;
1015 
1016 	apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1017 		bus, slot, pin);
1018 	if (test_bit(bus, mp_bus_not_pci)) {
1019 		apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1020 		return -1;
1021 	}
1022 	for (i = 0; i < mp_irq_entries; i++) {
1023 		int lbus = mp_irqs[i].srcbus;
1024 
1025 		for (apic = 0; apic < nr_ioapics; apic++)
1026 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1027 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1028 				break;
1029 
1030 		if (!test_bit(lbus, mp_bus_not_pci) &&
1031 		    !mp_irqs[i].irqtype &&
1032 		    (bus == lbus) &&
1033 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1034 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1035 
1036 			if (!(apic || IO_APIC_IRQ(irq)))
1037 				continue;
1038 
1039 			if (pin == (mp_irqs[i].srcbusirq & 3))
1040 				return irq;
1041 			/*
1042 			 * Use the first all-but-pin matching entry as a
1043 			 * best-guess fuzzy result for broken mptables.
1044 			 */
1045 			if (best_guess < 0)
1046 				best_guess = irq;
1047 		}
1048 	}
1049 	return best_guess;
1050 }
1051 
1052 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1053 
1054 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1055 /*
1056  * EISA Edge/Level control register, ELCR
1057  */
1058 static int EISA_ELCR(unsigned int irq)
1059 {
1060 	if (irq < NR_IRQS_LEGACY) {
1061 		unsigned int port = 0x4d0 + (irq >> 3);
1062 		return (inb(port) >> (irq & 7)) & 1;
1063 	}
1064 	apic_printk(APIC_VERBOSE, KERN_INFO
1065 			"Broken MPtable reports ISA irq %d\n", irq);
1066 	return 0;
1067 }
1068 
1069 #endif
1070 
1071 /* ISA interrupts are always polarity zero edge triggered,
1072  * when listed as conforming in the MP table. */
1073 
1074 #define default_ISA_trigger(idx)	(0)
1075 #define default_ISA_polarity(idx)	(0)
1076 
1077 /* EISA interrupts are always polarity zero and can be edge or level
1078  * trigger depending on the ELCR value.  If an interrupt is listed as
1079  * EISA conforming in the MP table, that means its trigger type must
1080  * be read in from the ELCR */
1081 
1082 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
1083 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
1084 
1085 /* PCI interrupts are always polarity one level triggered,
1086  * when listed as conforming in the MP table. */
1087 
1088 #define default_PCI_trigger(idx)	(1)
1089 #define default_PCI_polarity(idx)	(1)
1090 
1091 /* MCA interrupts are always polarity zero level triggered,
1092  * when listed as conforming in the MP table. */
1093 
1094 #define default_MCA_trigger(idx)	(1)
1095 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
1096 
1097 static int MPBIOS_polarity(int idx)
1098 {
1099 	int bus = mp_irqs[idx].srcbus;
1100 	int polarity;
1101 
1102 	/*
1103 	 * Determine IRQ line polarity (high active or low active):
1104 	 */
1105 	switch (mp_irqs[idx].irqflag & 3)
1106 	{
1107 		case 0: /* conforms, ie. bus-type dependent polarity */
1108 			if (test_bit(bus, mp_bus_not_pci))
1109 				polarity = default_ISA_polarity(idx);
1110 			else
1111 				polarity = default_PCI_polarity(idx);
1112 			break;
1113 		case 1: /* high active */
1114 		{
1115 			polarity = 0;
1116 			break;
1117 		}
1118 		case 2: /* reserved */
1119 		{
1120 			printk(KERN_WARNING "broken BIOS!!\n");
1121 			polarity = 1;
1122 			break;
1123 		}
1124 		case 3: /* low active */
1125 		{
1126 			polarity = 1;
1127 			break;
1128 		}
1129 		default: /* invalid */
1130 		{
1131 			printk(KERN_WARNING "broken BIOS!!\n");
1132 			polarity = 1;
1133 			break;
1134 		}
1135 	}
1136 	return polarity;
1137 }
1138 
1139 static int MPBIOS_trigger(int idx)
1140 {
1141 	int bus = mp_irqs[idx].srcbus;
1142 	int trigger;
1143 
1144 	/*
1145 	 * Determine IRQ trigger mode (edge or level sensitive):
1146 	 */
1147 	switch ((mp_irqs[idx].irqflag>>2) & 3)
1148 	{
1149 		case 0: /* conforms, ie. bus-type dependent */
1150 			if (test_bit(bus, mp_bus_not_pci))
1151 				trigger = default_ISA_trigger(idx);
1152 			else
1153 				trigger = default_PCI_trigger(idx);
1154 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1155 			switch (mp_bus_id_to_type[bus]) {
1156 				case MP_BUS_ISA: /* ISA pin */
1157 				{
1158 					/* set before the switch */
1159 					break;
1160 				}
1161 				case MP_BUS_EISA: /* EISA pin */
1162 				{
1163 					trigger = default_EISA_trigger(idx);
1164 					break;
1165 				}
1166 				case MP_BUS_PCI: /* PCI pin */
1167 				{
1168 					/* set before the switch */
1169 					break;
1170 				}
1171 				case MP_BUS_MCA: /* MCA pin */
1172 				{
1173 					trigger = default_MCA_trigger(idx);
1174 					break;
1175 				}
1176 				default:
1177 				{
1178 					printk(KERN_WARNING "broken BIOS!!\n");
1179 					trigger = 1;
1180 					break;
1181 				}
1182 			}
1183 #endif
1184 			break;
1185 		case 1: /* edge */
1186 		{
1187 			trigger = 0;
1188 			break;
1189 		}
1190 		case 2: /* reserved */
1191 		{
1192 			printk(KERN_WARNING "broken BIOS!!\n");
1193 			trigger = 1;
1194 			break;
1195 		}
1196 		case 3: /* level */
1197 		{
1198 			trigger = 1;
1199 			break;
1200 		}
1201 		default: /* invalid */
1202 		{
1203 			printk(KERN_WARNING "broken BIOS!!\n");
1204 			trigger = 0;
1205 			break;
1206 		}
1207 	}
1208 	return trigger;
1209 }
1210 
1211 static inline int irq_polarity(int idx)
1212 {
1213 	return MPBIOS_polarity(idx);
1214 }
1215 
1216 static inline int irq_trigger(int idx)
1217 {
1218 	return MPBIOS_trigger(idx);
1219 }
1220 
1221 int (*ioapic_renumber_irq)(int ioapic, int irq);
1222 static int pin_2_irq(int idx, int apic, int pin)
1223 {
1224 	int irq, i;
1225 	int bus = mp_irqs[idx].srcbus;
1226 
1227 	/*
1228 	 * Debugging check, we are in big trouble if this message pops up!
1229 	 */
1230 	if (mp_irqs[idx].dstirq != pin)
1231 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1232 
1233 	if (test_bit(bus, mp_bus_not_pci)) {
1234 		irq = mp_irqs[idx].srcbusirq;
1235 	} else {
1236 		/*
1237 		 * PCI IRQs are mapped in order
1238 		 */
1239 		i = irq = 0;
1240 		while (i < apic)
1241 			irq += nr_ioapic_registers[i++];
1242 		irq += pin;
1243 		/*
1244                  * For MPS mode, so far only needed by ES7000 platform
1245                  */
1246 		if (ioapic_renumber_irq)
1247 			irq = ioapic_renumber_irq(apic, irq);
1248 	}
1249 
1250 #ifdef CONFIG_X86_32
1251 	/*
1252 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1253 	 */
1254 	if ((pin >= 16) && (pin <= 23)) {
1255 		if (pirq_entries[pin-16] != -1) {
1256 			if (!pirq_entries[pin-16]) {
1257 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1258 						"disabling PIRQ%d\n", pin-16);
1259 			} else {
1260 				irq = pirq_entries[pin-16];
1261 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1262 						"using PIRQ%d -> IRQ %d\n",
1263 						pin-16, irq);
1264 			}
1265 		}
1266 	}
1267 #endif
1268 
1269 	return irq;
1270 }
1271 
1272 void lock_vector_lock(void)
1273 {
1274 	/* Used to the online set of cpus does not change
1275 	 * during assign_irq_vector.
1276 	 */
1277 	spin_lock(&vector_lock);
1278 }
1279 
1280 void unlock_vector_lock(void)
1281 {
1282 	spin_unlock(&vector_lock);
1283 }
1284 
1285 static int
1286 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1287 {
1288 	/*
1289 	 * NOTE! The local APIC isn't very good at handling
1290 	 * multiple interrupts at the same interrupt level.
1291 	 * As the interrupt level is determined by taking the
1292 	 * vector number and shifting that right by 4, we
1293 	 * want to spread these out a bit so that they don't
1294 	 * all fall in the same interrupt level.
1295 	 *
1296 	 * Also, we've got to be careful not to trash gate
1297 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1298 	 */
1299 	static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1300 	unsigned int old_vector;
1301 	int cpu, err;
1302 	cpumask_var_t tmp_mask;
1303 
1304 	if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1305 		return -EBUSY;
1306 
1307 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1308 		return -ENOMEM;
1309 
1310 	old_vector = cfg->vector;
1311 	if (old_vector) {
1312 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1313 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1314 		if (!cpumask_empty(tmp_mask)) {
1315 			free_cpumask_var(tmp_mask);
1316 			return 0;
1317 		}
1318 	}
1319 
1320 	/* Only try and allocate irqs on cpus that are present */
1321 	err = -ENOSPC;
1322 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1323 		int new_cpu;
1324 		int vector, offset;
1325 
1326 		apic->vector_allocation_domain(cpu, tmp_mask);
1327 
1328 		vector = current_vector;
1329 		offset = current_offset;
1330 next:
1331 		vector += 8;
1332 		if (vector >= first_system_vector) {
1333 			/* If out of vectors on large boxen, must share them. */
1334 			offset = (offset + 1) % 8;
1335 			vector = FIRST_DEVICE_VECTOR + offset;
1336 		}
1337 		if (unlikely(current_vector == vector))
1338 			continue;
1339 
1340 		if (test_bit(vector, used_vectors))
1341 			goto next;
1342 
1343 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1344 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1345 				goto next;
1346 		/* Found one! */
1347 		current_vector = vector;
1348 		current_offset = offset;
1349 		if (old_vector) {
1350 			cfg->move_in_progress = 1;
1351 			cpumask_copy(cfg->old_domain, cfg->domain);
1352 		}
1353 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1354 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1355 		cfg->vector = vector;
1356 		cpumask_copy(cfg->domain, tmp_mask);
1357 		err = 0;
1358 		break;
1359 	}
1360 	free_cpumask_var(tmp_mask);
1361 	return err;
1362 }
1363 
1364 static int
1365 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1366 {
1367 	int err;
1368 	unsigned long flags;
1369 
1370 	spin_lock_irqsave(&vector_lock, flags);
1371 	err = __assign_irq_vector(irq, cfg, mask);
1372 	spin_unlock_irqrestore(&vector_lock, flags);
1373 	return err;
1374 }
1375 
1376 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1377 {
1378 	int cpu, vector;
1379 
1380 	BUG_ON(!cfg->vector);
1381 
1382 	vector = cfg->vector;
1383 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1384 		per_cpu(vector_irq, cpu)[vector] = -1;
1385 
1386 	cfg->vector = 0;
1387 	cpumask_clear(cfg->domain);
1388 
1389 	if (likely(!cfg->move_in_progress))
1390 		return;
1391 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1392 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1393 								vector++) {
1394 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1395 				continue;
1396 			per_cpu(vector_irq, cpu)[vector] = -1;
1397 			break;
1398 		}
1399 	}
1400 	cfg->move_in_progress = 0;
1401 }
1402 
1403 void __setup_vector_irq(int cpu)
1404 {
1405 	/* Initialize vector_irq on a new cpu */
1406 	/* This function must be called with vector_lock held */
1407 	int irq, vector;
1408 	struct irq_cfg *cfg;
1409 	struct irq_desc *desc;
1410 
1411 	/* Mark the inuse vectors */
1412 	for_each_irq_desc(irq, desc) {
1413 		cfg = desc->chip_data;
1414 		if (!cpumask_test_cpu(cpu, cfg->domain))
1415 			continue;
1416 		vector = cfg->vector;
1417 		per_cpu(vector_irq, cpu)[vector] = irq;
1418 	}
1419 	/* Mark the free vectors */
1420 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1421 		irq = per_cpu(vector_irq, cpu)[vector];
1422 		if (irq < 0)
1423 			continue;
1424 
1425 		cfg = irq_cfg(irq);
1426 		if (!cpumask_test_cpu(cpu, cfg->domain))
1427 			per_cpu(vector_irq, cpu)[vector] = -1;
1428 	}
1429 }
1430 
1431 static struct irq_chip ioapic_chip;
1432 static struct irq_chip ir_ioapic_chip;
1433 
1434 #define IOAPIC_AUTO     -1
1435 #define IOAPIC_EDGE     0
1436 #define IOAPIC_LEVEL    1
1437 
1438 #ifdef CONFIG_X86_32
1439 static inline int IO_APIC_irq_trigger(int irq)
1440 {
1441 	int apic, idx, pin;
1442 
1443 	for (apic = 0; apic < nr_ioapics; apic++) {
1444 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1445 			idx = find_irq_entry(apic, pin, mp_INT);
1446 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1447 				return irq_trigger(idx);
1448 		}
1449 	}
1450 	/*
1451          * nonexistent IRQs are edge default
1452          */
1453 	return 0;
1454 }
1455 #else
1456 static inline int IO_APIC_irq_trigger(int irq)
1457 {
1458 	return 1;
1459 }
1460 #endif
1461 
1462 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1463 {
1464 
1465 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1466 	    trigger == IOAPIC_LEVEL)
1467 		desc->status |= IRQ_LEVEL;
1468 	else
1469 		desc->status &= ~IRQ_LEVEL;
1470 
1471 	if (irq_remapped(irq)) {
1472 		desc->status |= IRQ_MOVE_PCNTXT;
1473 		if (trigger)
1474 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1475 						      handle_fasteoi_irq,
1476 						     "fasteoi");
1477 		else
1478 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1479 						      handle_edge_irq, "edge");
1480 		return;
1481 	}
1482 
1483 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1484 	    trigger == IOAPIC_LEVEL)
1485 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1486 					      handle_fasteoi_irq,
1487 					      "fasteoi");
1488 	else
1489 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1490 					      handle_edge_irq, "edge");
1491 }
1492 
1493 int setup_ioapic_entry(int apic_id, int irq,
1494 		       struct IO_APIC_route_entry *entry,
1495 		       unsigned int destination, int trigger,
1496 		       int polarity, int vector, int pin)
1497 {
1498 	/*
1499 	 * add it to the IO-APIC irq-routing table:
1500 	 */
1501 	memset(entry,0,sizeof(*entry));
1502 
1503 	if (intr_remapping_enabled) {
1504 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1505 		struct irte irte;
1506 		struct IR_IO_APIC_route_entry *ir_entry =
1507 			(struct IR_IO_APIC_route_entry *) entry;
1508 		int index;
1509 
1510 		if (!iommu)
1511 			panic("No mapping iommu for ioapic %d\n", apic_id);
1512 
1513 		index = alloc_irte(iommu, irq, 1);
1514 		if (index < 0)
1515 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1516 
1517 		memset(&irte, 0, sizeof(irte));
1518 
1519 		irte.present = 1;
1520 		irte.dst_mode = apic->irq_dest_mode;
1521 		/*
1522 		 * Trigger mode in the IRTE will always be edge, and the
1523 		 * actual level or edge trigger will be setup in the IO-APIC
1524 		 * RTE. This will help simplify level triggered irq migration.
1525 		 * For more details, see the comments above explainig IO-APIC
1526 		 * irq migration in the presence of interrupt-remapping.
1527 		 */
1528 		irte.trigger_mode = 0;
1529 		irte.dlvry_mode = apic->irq_delivery_mode;
1530 		irte.vector = vector;
1531 		irte.dest_id = IRTE_DEST(destination);
1532 
1533 		modify_irte(irq, &irte);
1534 
1535 		ir_entry->index2 = (index >> 15) & 0x1;
1536 		ir_entry->zero = 0;
1537 		ir_entry->format = 1;
1538 		ir_entry->index = (index & 0x7fff);
1539 		/*
1540 		 * IO-APIC RTE will be configured with virtual vector.
1541 		 * irq handler will do the explicit EOI to the io-apic.
1542 		 */
1543 		ir_entry->vector = pin;
1544 	} else {
1545 		entry->delivery_mode = apic->irq_delivery_mode;
1546 		entry->dest_mode = apic->irq_dest_mode;
1547 		entry->dest = destination;
1548 		entry->vector = vector;
1549 	}
1550 
1551 	entry->mask = 0;				/* enable IRQ */
1552 	entry->trigger = trigger;
1553 	entry->polarity = polarity;
1554 
1555 	/* Mask level triggered irqs.
1556 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1557 	 */
1558 	if (trigger)
1559 		entry->mask = 1;
1560 	return 0;
1561 }
1562 
1563 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1564 			      int trigger, int polarity)
1565 {
1566 	struct irq_cfg *cfg;
1567 	struct IO_APIC_route_entry entry;
1568 	unsigned int dest;
1569 
1570 	if (!IO_APIC_IRQ(irq))
1571 		return;
1572 
1573 	cfg = desc->chip_data;
1574 
1575 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1576 		return;
1577 
1578 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1579 
1580 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1581 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1582 		    "IRQ %d Mode:%i Active:%i)\n",
1583 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1584 		    irq, trigger, polarity);
1585 
1586 
1587 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1588 			       dest, trigger, polarity, cfg->vector, pin)) {
1589 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1590 		       mp_ioapics[apic_id].apicid, pin);
1591 		__clear_irq_vector(irq, cfg);
1592 		return;
1593 	}
1594 
1595 	ioapic_register_intr(irq, desc, trigger);
1596 	if (irq < NR_IRQS_LEGACY)
1597 		disable_8259A_irq(irq);
1598 
1599 	ioapic_write_entry(apic_id, pin, entry);
1600 }
1601 
1602 static void __init setup_IO_APIC_irqs(void)
1603 {
1604 	int apic_id, pin, idx, irq;
1605 	int notcon = 0;
1606 	struct irq_desc *desc;
1607 	struct irq_cfg *cfg;
1608 	int cpu = boot_cpu_id;
1609 
1610 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1611 
1612 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1613 		for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1614 
1615 			idx = find_irq_entry(apic_id, pin, mp_INT);
1616 			if (idx == -1) {
1617 				if (!notcon) {
1618 					notcon = 1;
1619 					apic_printk(APIC_VERBOSE,
1620 						KERN_DEBUG " %d-%d",
1621 						mp_ioapics[apic_id].apicid, pin);
1622 				} else
1623 					apic_printk(APIC_VERBOSE, " %d-%d",
1624 						mp_ioapics[apic_id].apicid, pin);
1625 				continue;
1626 			}
1627 			if (notcon) {
1628 				apic_printk(APIC_VERBOSE,
1629 					" (apicid-pin) not connected\n");
1630 				notcon = 0;
1631 			}
1632 
1633 			irq = pin_2_irq(idx, apic_id, pin);
1634 
1635 			/*
1636 			 * Skip the timer IRQ if there's a quirk handler
1637 			 * installed and if it returns 1:
1638 			 */
1639 			if (apic->multi_timer_check &&
1640 					apic->multi_timer_check(apic_id, irq))
1641 				continue;
1642 
1643 			desc = irq_to_desc_alloc_cpu(irq, cpu);
1644 			if (!desc) {
1645 				printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1646 				continue;
1647 			}
1648 			cfg = desc->chip_data;
1649 			add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1650 
1651 			setup_IO_APIC_irq(apic_id, pin, irq, desc,
1652 					irq_trigger(idx), irq_polarity(idx));
1653 		}
1654 	}
1655 
1656 	if (notcon)
1657 		apic_printk(APIC_VERBOSE,
1658 			" (apicid-pin) not connected\n");
1659 }
1660 
1661 /*
1662  * Set up the timer pin, possibly with the 8259A-master behind.
1663  */
1664 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1665 					int vector)
1666 {
1667 	struct IO_APIC_route_entry entry;
1668 
1669 	if (intr_remapping_enabled)
1670 		return;
1671 
1672 	memset(&entry, 0, sizeof(entry));
1673 
1674 	/*
1675 	 * We use logical delivery to get the timer IRQ
1676 	 * to the first CPU.
1677 	 */
1678 	entry.dest_mode = apic->irq_dest_mode;
1679 	entry.mask = 0;			/* don't mask IRQ for edge */
1680 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1681 	entry.delivery_mode = apic->irq_delivery_mode;
1682 	entry.polarity = 0;
1683 	entry.trigger = 0;
1684 	entry.vector = vector;
1685 
1686 	/*
1687 	 * The timer IRQ doesn't have to know that behind the
1688 	 * scene we may have a 8259A-master in AEOI mode ...
1689 	 */
1690 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1691 
1692 	/*
1693 	 * Add it to the IO-APIC irq-routing table:
1694 	 */
1695 	ioapic_write_entry(apic_id, pin, entry);
1696 }
1697 
1698 
1699 __apicdebuginit(void) print_IO_APIC(void)
1700 {
1701 	int apic, i;
1702 	union IO_APIC_reg_00 reg_00;
1703 	union IO_APIC_reg_01 reg_01;
1704 	union IO_APIC_reg_02 reg_02;
1705 	union IO_APIC_reg_03 reg_03;
1706 	unsigned long flags;
1707 	struct irq_cfg *cfg;
1708 	struct irq_desc *desc;
1709 	unsigned int irq;
1710 
1711 	if (apic_verbosity == APIC_QUIET)
1712 		return;
1713 
1714 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1715 	for (i = 0; i < nr_ioapics; i++)
1716 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1717 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1718 
1719 	/*
1720 	 * We are a bit conservative about what we expect.  We have to
1721 	 * know about every hardware change ASAP.
1722 	 */
1723 	printk(KERN_INFO "testing the IO APIC.......................\n");
1724 
1725 	for (apic = 0; apic < nr_ioapics; apic++) {
1726 
1727 	spin_lock_irqsave(&ioapic_lock, flags);
1728 	reg_00.raw = io_apic_read(apic, 0);
1729 	reg_01.raw = io_apic_read(apic, 1);
1730 	if (reg_01.bits.version >= 0x10)
1731 		reg_02.raw = io_apic_read(apic, 2);
1732 	if (reg_01.bits.version >= 0x20)
1733 		reg_03.raw = io_apic_read(apic, 3);
1734 	spin_unlock_irqrestore(&ioapic_lock, flags);
1735 
1736 	printk("\n");
1737 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1738 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1739 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1740 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1741 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1742 
1743 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1744 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1745 
1746 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1747 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1748 
1749 	/*
1750 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1751 	 * but the value of reg_02 is read as the previous read register
1752 	 * value, so ignore it if reg_02 == reg_01.
1753 	 */
1754 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1755 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1756 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1757 	}
1758 
1759 	/*
1760 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1761 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1762 	 * register value, so ignore it if reg_03 == reg_0[12].
1763 	 */
1764 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1765 	    reg_03.raw != reg_01.raw) {
1766 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1767 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1768 	}
1769 
1770 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1771 
1772 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1773 			  " Stat Dmod Deli Vect:   \n");
1774 
1775 	for (i = 0; i <= reg_01.bits.entries; i++) {
1776 		struct IO_APIC_route_entry entry;
1777 
1778 		entry = ioapic_read_entry(apic, i);
1779 
1780 		printk(KERN_DEBUG " %02x %03X ",
1781 			i,
1782 			entry.dest
1783 		);
1784 
1785 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1786 			entry.mask,
1787 			entry.trigger,
1788 			entry.irr,
1789 			entry.polarity,
1790 			entry.delivery_status,
1791 			entry.dest_mode,
1792 			entry.delivery_mode,
1793 			entry.vector
1794 		);
1795 	}
1796 	}
1797 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1798 	for_each_irq_desc(irq, desc) {
1799 		struct irq_pin_list *entry;
1800 
1801 		cfg = desc->chip_data;
1802 		entry = cfg->irq_2_pin;
1803 		if (!entry)
1804 			continue;
1805 		printk(KERN_DEBUG "IRQ%d ", irq);
1806 		for (;;) {
1807 			printk("-> %d:%d", entry->apic, entry->pin);
1808 			if (!entry->next)
1809 				break;
1810 			entry = entry->next;
1811 		}
1812 		printk("\n");
1813 	}
1814 
1815 	printk(KERN_INFO ".................................... done.\n");
1816 
1817 	return;
1818 }
1819 
1820 __apicdebuginit(void) print_APIC_bitfield(int base)
1821 {
1822 	unsigned int v;
1823 	int i, j;
1824 
1825 	if (apic_verbosity == APIC_QUIET)
1826 		return;
1827 
1828 	printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1829 	for (i = 0; i < 8; i++) {
1830 		v = apic_read(base + i*0x10);
1831 		for (j = 0; j < 32; j++) {
1832 			if (v & (1<<j))
1833 				printk("1");
1834 			else
1835 				printk("0");
1836 		}
1837 		printk("\n");
1838 	}
1839 }
1840 
1841 __apicdebuginit(void) print_local_APIC(void *dummy)
1842 {
1843 	unsigned int v, ver, maxlvt;
1844 	u64 icr;
1845 
1846 	if (apic_verbosity == APIC_QUIET)
1847 		return;
1848 
1849 	printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1850 		smp_processor_id(), hard_smp_processor_id());
1851 	v = apic_read(APIC_ID);
1852 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1853 	v = apic_read(APIC_LVR);
1854 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1855 	ver = GET_APIC_VERSION(v);
1856 	maxlvt = lapic_get_maxlvt();
1857 
1858 	v = apic_read(APIC_TASKPRI);
1859 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1860 
1861 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1862 		if (!APIC_XAPIC(ver)) {
1863 			v = apic_read(APIC_ARBPRI);
1864 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1865 			       v & APIC_ARBPRI_MASK);
1866 		}
1867 		v = apic_read(APIC_PROCPRI);
1868 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1869 	}
1870 
1871 	/*
1872 	 * Remote read supported only in the 82489DX and local APIC for
1873 	 * Pentium processors.
1874 	 */
1875 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1876 		v = apic_read(APIC_RRR);
1877 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1878 	}
1879 
1880 	v = apic_read(APIC_LDR);
1881 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1882 	if (!x2apic_enabled()) {
1883 		v = apic_read(APIC_DFR);
1884 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1885 	}
1886 	v = apic_read(APIC_SPIV);
1887 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1888 
1889 	printk(KERN_DEBUG "... APIC ISR field:\n");
1890 	print_APIC_bitfield(APIC_ISR);
1891 	printk(KERN_DEBUG "... APIC TMR field:\n");
1892 	print_APIC_bitfield(APIC_TMR);
1893 	printk(KERN_DEBUG "... APIC IRR field:\n");
1894 	print_APIC_bitfield(APIC_IRR);
1895 
1896 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1897 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1898 			apic_write(APIC_ESR, 0);
1899 
1900 		v = apic_read(APIC_ESR);
1901 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1902 	}
1903 
1904 	icr = apic_icr_read();
1905 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1906 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1907 
1908 	v = apic_read(APIC_LVTT);
1909 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1910 
1911 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1912 		v = apic_read(APIC_LVTPC);
1913 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1914 	}
1915 	v = apic_read(APIC_LVT0);
1916 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1917 	v = apic_read(APIC_LVT1);
1918 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1919 
1920 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1921 		v = apic_read(APIC_LVTERR);
1922 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1923 	}
1924 
1925 	v = apic_read(APIC_TMICT);
1926 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1927 	v = apic_read(APIC_TMCCT);
1928 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1929 	v = apic_read(APIC_TDCR);
1930 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1931 	printk("\n");
1932 }
1933 
1934 __apicdebuginit(void) print_all_local_APICs(void)
1935 {
1936 	int cpu;
1937 
1938 	preempt_disable();
1939 	for_each_online_cpu(cpu)
1940 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1941 	preempt_enable();
1942 }
1943 
1944 __apicdebuginit(void) print_PIC(void)
1945 {
1946 	unsigned int v;
1947 	unsigned long flags;
1948 
1949 	if (apic_verbosity == APIC_QUIET)
1950 		return;
1951 
1952 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1953 
1954 	spin_lock_irqsave(&i8259A_lock, flags);
1955 
1956 	v = inb(0xa1) << 8 | inb(0x21);
1957 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1958 
1959 	v = inb(0xa0) << 8 | inb(0x20);
1960 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1961 
1962 	outb(0x0b,0xa0);
1963 	outb(0x0b,0x20);
1964 	v = inb(0xa0) << 8 | inb(0x20);
1965 	outb(0x0a,0xa0);
1966 	outb(0x0a,0x20);
1967 
1968 	spin_unlock_irqrestore(&i8259A_lock, flags);
1969 
1970 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1971 
1972 	v = inb(0x4d1) << 8 | inb(0x4d0);
1973 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1974 }
1975 
1976 __apicdebuginit(int) print_all_ICs(void)
1977 {
1978 	print_PIC();
1979 	print_all_local_APICs();
1980 	print_IO_APIC();
1981 
1982 	return 0;
1983 }
1984 
1985 fs_initcall(print_all_ICs);
1986 
1987 
1988 /* Where if anywhere is the i8259 connect in external int mode */
1989 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1990 
1991 void __init enable_IO_APIC(void)
1992 {
1993 	union IO_APIC_reg_01 reg_01;
1994 	int i8259_apic, i8259_pin;
1995 	int apic;
1996 	unsigned long flags;
1997 
1998 	/*
1999 	 * The number of IO-APIC IRQ registers (== #pins):
2000 	 */
2001 	for (apic = 0; apic < nr_ioapics; apic++) {
2002 		spin_lock_irqsave(&ioapic_lock, flags);
2003 		reg_01.raw = io_apic_read(apic, 1);
2004 		spin_unlock_irqrestore(&ioapic_lock, flags);
2005 		nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2006 	}
2007 	for(apic = 0; apic < nr_ioapics; apic++) {
2008 		int pin;
2009 		/* See if any of the pins is in ExtINT mode */
2010 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2011 			struct IO_APIC_route_entry entry;
2012 			entry = ioapic_read_entry(apic, pin);
2013 
2014 			/* If the interrupt line is enabled and in ExtInt mode
2015 			 * I have found the pin where the i8259 is connected.
2016 			 */
2017 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2018 				ioapic_i8259.apic = apic;
2019 				ioapic_i8259.pin  = pin;
2020 				goto found_i8259;
2021 			}
2022 		}
2023 	}
2024  found_i8259:
2025 	/* Look to see what if the MP table has reported the ExtINT */
2026 	/* If we could not find the appropriate pin by looking at the ioapic
2027 	 * the i8259 probably is not connected the ioapic but give the
2028 	 * mptable a chance anyway.
2029 	 */
2030 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
2031 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2032 	/* Trust the MP table if nothing is setup in the hardware */
2033 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2034 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2035 		ioapic_i8259.pin  = i8259_pin;
2036 		ioapic_i8259.apic = i8259_apic;
2037 	}
2038 	/* Complain if the MP table and the hardware disagree */
2039 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2040 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2041 	{
2042 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2043 	}
2044 
2045 	/*
2046 	 * Do not trust the IO-APIC being empty at bootup
2047 	 */
2048 	clear_IO_APIC();
2049 }
2050 
2051 /*
2052  * Not an __init, needed by the reboot code
2053  */
2054 void disable_IO_APIC(void)
2055 {
2056 	/*
2057 	 * Clear the IO-APIC before rebooting:
2058 	 */
2059 	clear_IO_APIC();
2060 
2061 	/*
2062 	 * If the i8259 is routed through an IOAPIC
2063 	 * Put that IOAPIC in virtual wire mode
2064 	 * so legacy interrupts can be delivered.
2065 	 *
2066 	 * With interrupt-remapping, for now we will use virtual wire A mode,
2067 	 * as virtual wire B is little complex (need to configure both
2068 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
2069 	 * As this gets called during crash dump, keep this simple for now.
2070 	 */
2071 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2072 		struct IO_APIC_route_entry entry;
2073 
2074 		memset(&entry, 0, sizeof(entry));
2075 		entry.mask            = 0; /* Enabled */
2076 		entry.trigger         = 0; /* Edge */
2077 		entry.irr             = 0;
2078 		entry.polarity        = 0; /* High */
2079 		entry.delivery_status = 0;
2080 		entry.dest_mode       = 0; /* Physical */
2081 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
2082 		entry.vector          = 0;
2083 		entry.dest            = read_apic_id();
2084 
2085 		/*
2086 		 * Add it to the IO-APIC irq-routing table:
2087 		 */
2088 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2089 	}
2090 
2091 	/*
2092 	 * Use virtual wire A mode when interrupt remapping is enabled.
2093 	 */
2094 	disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2095 }
2096 
2097 #ifdef CONFIG_X86_32
2098 /*
2099  * function to set the IO-APIC physical IDs based on the
2100  * values stored in the MPC table.
2101  *
2102  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2103  */
2104 
2105 static void __init setup_ioapic_ids_from_mpc(void)
2106 {
2107 	union IO_APIC_reg_00 reg_00;
2108 	physid_mask_t phys_id_present_map;
2109 	int apic_id;
2110 	int i;
2111 	unsigned char old_id;
2112 	unsigned long flags;
2113 
2114 	if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2115 		return;
2116 
2117 	/*
2118 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2119 	 * no meaning without the serial APIC bus.
2120 	 */
2121 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2122 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2123 		return;
2124 	/*
2125 	 * This is broken; anything with a real cpu count has to
2126 	 * circumvent this idiocy regardless.
2127 	 */
2128 	phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2129 
2130 	/*
2131 	 * Set the IOAPIC ID to the value stored in the MPC table.
2132 	 */
2133 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2134 
2135 		/* Read the register 0 value */
2136 		spin_lock_irqsave(&ioapic_lock, flags);
2137 		reg_00.raw = io_apic_read(apic_id, 0);
2138 		spin_unlock_irqrestore(&ioapic_lock, flags);
2139 
2140 		old_id = mp_ioapics[apic_id].apicid;
2141 
2142 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2143 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2144 				apic_id, mp_ioapics[apic_id].apicid);
2145 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2146 				reg_00.bits.ID);
2147 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2148 		}
2149 
2150 		/*
2151 		 * Sanity check, is the ID really free? Every APIC in a
2152 		 * system must have a unique ID or we get lots of nice
2153 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2154 		 */
2155 		if (apic->check_apicid_used(phys_id_present_map,
2156 					mp_ioapics[apic_id].apicid)) {
2157 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2158 				apic_id, mp_ioapics[apic_id].apicid);
2159 			for (i = 0; i < get_physical_broadcast(); i++)
2160 				if (!physid_isset(i, phys_id_present_map))
2161 					break;
2162 			if (i >= get_physical_broadcast())
2163 				panic("Max APIC ID exceeded!\n");
2164 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2165 				i);
2166 			physid_set(i, phys_id_present_map);
2167 			mp_ioapics[apic_id].apicid = i;
2168 		} else {
2169 			physid_mask_t tmp;
2170 			tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2171 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2172 					"phys_id_present_map\n",
2173 					mp_ioapics[apic_id].apicid);
2174 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2175 		}
2176 
2177 
2178 		/*
2179 		 * We need to adjust the IRQ routing table
2180 		 * if the ID changed.
2181 		 */
2182 		if (old_id != mp_ioapics[apic_id].apicid)
2183 			for (i = 0; i < mp_irq_entries; i++)
2184 				if (mp_irqs[i].dstapic == old_id)
2185 					mp_irqs[i].dstapic
2186 						= mp_ioapics[apic_id].apicid;
2187 
2188 		/*
2189 		 * Read the right value from the MPC table and
2190 		 * write it into the ID register.
2191 		 */
2192 		apic_printk(APIC_VERBOSE, KERN_INFO
2193 			"...changing IO-APIC physical APIC ID to %d ...",
2194 			mp_ioapics[apic_id].apicid);
2195 
2196 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2197 		spin_lock_irqsave(&ioapic_lock, flags);
2198 		io_apic_write(apic_id, 0, reg_00.raw);
2199 		spin_unlock_irqrestore(&ioapic_lock, flags);
2200 
2201 		/*
2202 		 * Sanity check
2203 		 */
2204 		spin_lock_irqsave(&ioapic_lock, flags);
2205 		reg_00.raw = io_apic_read(apic_id, 0);
2206 		spin_unlock_irqrestore(&ioapic_lock, flags);
2207 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2208 			printk("could not set ID!\n");
2209 		else
2210 			apic_printk(APIC_VERBOSE, " ok.\n");
2211 	}
2212 }
2213 #endif
2214 
2215 int no_timer_check __initdata;
2216 
2217 static int __init notimercheck(char *s)
2218 {
2219 	no_timer_check = 1;
2220 	return 1;
2221 }
2222 __setup("no_timer_check", notimercheck);
2223 
2224 /*
2225  * There is a nasty bug in some older SMP boards, their mptable lies
2226  * about the timer IRQ. We do the following to work around the situation:
2227  *
2228  *	- timer IRQ defaults to IO-APIC IRQ
2229  *	- if this function detects that timer IRQs are defunct, then we fall
2230  *	  back to ISA timer IRQs
2231  */
2232 static int __init timer_irq_works(void)
2233 {
2234 	unsigned long t1 = jiffies;
2235 	unsigned long flags;
2236 
2237 	if (no_timer_check)
2238 		return 1;
2239 
2240 	local_save_flags(flags);
2241 	local_irq_enable();
2242 	/* Let ten ticks pass... */
2243 	mdelay((10 * 1000) / HZ);
2244 	local_irq_restore(flags);
2245 
2246 	/*
2247 	 * Expect a few ticks at least, to be sure some possible
2248 	 * glue logic does not lock up after one or two first
2249 	 * ticks in a non-ExtINT mode.  Also the local APIC
2250 	 * might have cached one ExtINT interrupt.  Finally, at
2251 	 * least one tick may be lost due to delays.
2252 	 */
2253 
2254 	/* jiffies wrap? */
2255 	if (time_after(jiffies, t1 + 4))
2256 		return 1;
2257 	return 0;
2258 }
2259 
2260 /*
2261  * In the SMP+IOAPIC case it might happen that there are an unspecified
2262  * number of pending IRQ events unhandled. These cases are very rare,
2263  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2264  * better to do it this way as thus we do not have to be aware of
2265  * 'pending' interrupts in the IRQ path, except at this point.
2266  */
2267 /*
2268  * Edge triggered needs to resend any interrupt
2269  * that was delayed but this is now handled in the device
2270  * independent code.
2271  */
2272 
2273 /*
2274  * Starting up a edge-triggered IO-APIC interrupt is
2275  * nasty - we need to make sure that we get the edge.
2276  * If it is already asserted for some reason, we need
2277  * return 1 to indicate that is was pending.
2278  *
2279  * This is not complete - we should be able to fake
2280  * an edge even if it isn't on the 8259A...
2281  */
2282 
2283 static unsigned int startup_ioapic_irq(unsigned int irq)
2284 {
2285 	int was_pending = 0;
2286 	unsigned long flags;
2287 	struct irq_cfg *cfg;
2288 
2289 	spin_lock_irqsave(&ioapic_lock, flags);
2290 	if (irq < NR_IRQS_LEGACY) {
2291 		disable_8259A_irq(irq);
2292 		if (i8259A_irq_pending(irq))
2293 			was_pending = 1;
2294 	}
2295 	cfg = irq_cfg(irq);
2296 	__unmask_IO_APIC_irq(cfg);
2297 	spin_unlock_irqrestore(&ioapic_lock, flags);
2298 
2299 	return was_pending;
2300 }
2301 
2302 #ifdef CONFIG_X86_64
2303 static int ioapic_retrigger_irq(unsigned int irq)
2304 {
2305 
2306 	struct irq_cfg *cfg = irq_cfg(irq);
2307 	unsigned long flags;
2308 
2309 	spin_lock_irqsave(&vector_lock, flags);
2310 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2311 	spin_unlock_irqrestore(&vector_lock, flags);
2312 
2313 	return 1;
2314 }
2315 #else
2316 static int ioapic_retrigger_irq(unsigned int irq)
2317 {
2318 	apic->send_IPI_self(irq_cfg(irq)->vector);
2319 
2320 	return 1;
2321 }
2322 #endif
2323 
2324 /*
2325  * Level and edge triggered IO-APIC interrupts need different handling,
2326  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2327  * handled with the level-triggered descriptor, but that one has slightly
2328  * more overhead. Level-triggered interrupts cannot be handled with the
2329  * edge-triggered handler, without risking IRQ storms and other ugly
2330  * races.
2331  */
2332 
2333 #ifdef CONFIG_SMP
2334 
2335 #ifdef CONFIG_INTR_REMAP
2336 
2337 /*
2338  * Migrate the IO-APIC irq in the presence of intr-remapping.
2339  *
2340  * For both level and edge triggered, irq migration is a simple atomic
2341  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2342  *
2343  * For level triggered, we eliminate the io-apic RTE modification (with the
2344  * updated vector information), by using a virtual vector (io-apic pin number).
2345  * Real vector that is used for interrupting cpu will be coming from
2346  * the interrupt-remapping table entry.
2347  */
2348 static void
2349 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2350 {
2351 	struct irq_cfg *cfg;
2352 	struct irte irte;
2353 	unsigned int dest;
2354 	unsigned int irq;
2355 
2356 	if (!cpumask_intersects(mask, cpu_online_mask))
2357 		return;
2358 
2359 	irq = desc->irq;
2360 	if (get_irte(irq, &irte))
2361 		return;
2362 
2363 	cfg = desc->chip_data;
2364 	if (assign_irq_vector(irq, cfg, mask))
2365 		return;
2366 
2367 	set_extra_move_desc(desc, mask);
2368 
2369 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2370 
2371 	irte.vector = cfg->vector;
2372 	irte.dest_id = IRTE_DEST(dest);
2373 
2374 	/*
2375 	 * Modified the IRTE and flushes the Interrupt entry cache.
2376 	 */
2377 	modify_irte(irq, &irte);
2378 
2379 	if (cfg->move_in_progress)
2380 		send_cleanup_vector(cfg);
2381 
2382 	cpumask_copy(desc->affinity, mask);
2383 }
2384 
2385 /*
2386  * Migrates the IRQ destination in the process context.
2387  */
2388 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2389 					    const struct cpumask *mask)
2390 {
2391 	migrate_ioapic_irq_desc(desc, mask);
2392 }
2393 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2394 				       const struct cpumask *mask)
2395 {
2396 	struct irq_desc *desc = irq_to_desc(irq);
2397 
2398 	set_ir_ioapic_affinity_irq_desc(desc, mask);
2399 }
2400 #else
2401 static inline void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2402 						   const struct cpumask *mask)
2403 {
2404 }
2405 #endif
2406 
2407 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2408 {
2409 	unsigned vector, me;
2410 
2411 	ack_APIC_irq();
2412 	exit_idle();
2413 	irq_enter();
2414 
2415 	me = smp_processor_id();
2416 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2417 		unsigned int irq;
2418 		unsigned int irr;
2419 		struct irq_desc *desc;
2420 		struct irq_cfg *cfg;
2421 		irq = __get_cpu_var(vector_irq)[vector];
2422 
2423 		if (irq == -1)
2424 			continue;
2425 
2426 		desc = irq_to_desc(irq);
2427 		if (!desc)
2428 			continue;
2429 
2430 		cfg = irq_cfg(irq);
2431 		spin_lock(&desc->lock);
2432 		if (!cfg->move_cleanup_count)
2433 			goto unlock;
2434 
2435 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2436 			goto unlock;
2437 
2438 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2439 		/*
2440 		 * Check if the vector that needs to be cleanedup is
2441 		 * registered at the cpu's IRR. If so, then this is not
2442 		 * the best time to clean it up. Lets clean it up in the
2443 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2444 		 * to myself.
2445 		 */
2446 		if (irr  & (1 << (vector % 32))) {
2447 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2448 			goto unlock;
2449 		}
2450 		__get_cpu_var(vector_irq)[vector] = -1;
2451 		cfg->move_cleanup_count--;
2452 unlock:
2453 		spin_unlock(&desc->lock);
2454 	}
2455 
2456 	irq_exit();
2457 }
2458 
2459 static void irq_complete_move(struct irq_desc **descp)
2460 {
2461 	struct irq_desc *desc = *descp;
2462 	struct irq_cfg *cfg = desc->chip_data;
2463 	unsigned vector, me;
2464 
2465 	if (likely(!cfg->move_in_progress)) {
2466 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2467 		if (likely(!cfg->move_desc_pending))
2468 			return;
2469 
2470 		/* domain has not changed, but affinity did */
2471 		me = smp_processor_id();
2472 		if (cpumask_test_cpu(me, desc->affinity)) {
2473 			*descp = desc = move_irq_desc(desc, me);
2474 			/* get the new one */
2475 			cfg = desc->chip_data;
2476 			cfg->move_desc_pending = 0;
2477 		}
2478 #endif
2479 		return;
2480 	}
2481 
2482 	vector = ~get_irq_regs()->orig_ax;
2483 	me = smp_processor_id();
2484 
2485 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) {
2486 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2487 		*descp = desc = move_irq_desc(desc, me);
2488 		/* get the new one */
2489 		cfg = desc->chip_data;
2490 #endif
2491 		send_cleanup_vector(cfg);
2492 	}
2493 }
2494 #else
2495 static inline void irq_complete_move(struct irq_desc **descp) {}
2496 #endif
2497 
2498 #ifdef CONFIG_INTR_REMAP
2499 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2500 {
2501 	int apic, pin;
2502 	struct irq_pin_list *entry;
2503 
2504 	entry = cfg->irq_2_pin;
2505 	for (;;) {
2506 
2507 		if (!entry)
2508 			break;
2509 
2510 		apic = entry->apic;
2511 		pin = entry->pin;
2512 		io_apic_eoi(apic, pin);
2513 		entry = entry->next;
2514 	}
2515 }
2516 
2517 static void
2518 eoi_ioapic_irq(struct irq_desc *desc)
2519 {
2520 	struct irq_cfg *cfg;
2521 	unsigned long flags;
2522 	unsigned int irq;
2523 
2524 	irq = desc->irq;
2525 	cfg = desc->chip_data;
2526 
2527 	spin_lock_irqsave(&ioapic_lock, flags);
2528 	__eoi_ioapic_irq(irq, cfg);
2529 	spin_unlock_irqrestore(&ioapic_lock, flags);
2530 }
2531 
2532 static void ack_x2apic_level(unsigned int irq)
2533 {
2534 	struct irq_desc *desc = irq_to_desc(irq);
2535 	ack_x2APIC_irq();
2536 	eoi_ioapic_irq(desc);
2537 }
2538 
2539 static void ack_x2apic_edge(unsigned int irq)
2540 {
2541 	ack_x2APIC_irq();
2542 }
2543 
2544 #endif
2545 
2546 static void ack_apic_edge(unsigned int irq)
2547 {
2548 	struct irq_desc *desc = irq_to_desc(irq);
2549 
2550 	irq_complete_move(&desc);
2551 	move_native_irq(irq);
2552 	ack_APIC_irq();
2553 }
2554 
2555 atomic_t irq_mis_count;
2556 
2557 static void ack_apic_level(unsigned int irq)
2558 {
2559 	struct irq_desc *desc = irq_to_desc(irq);
2560 
2561 #ifdef CONFIG_X86_32
2562 	unsigned long v;
2563 	int i;
2564 #endif
2565 	struct irq_cfg *cfg;
2566 	int do_unmask_irq = 0;
2567 
2568 	irq_complete_move(&desc);
2569 #ifdef CONFIG_GENERIC_PENDING_IRQ
2570 	/* If we are moving the irq we need to mask it */
2571 	if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2572 		do_unmask_irq = 1;
2573 		mask_IO_APIC_irq_desc(desc);
2574 	}
2575 #endif
2576 
2577 #ifdef CONFIG_X86_32
2578 	/*
2579 	* It appears there is an erratum which affects at least version 0x11
2580 	* of I/O APIC (that's the 82093AA and cores integrated into various
2581 	* chipsets).  Under certain conditions a level-triggered interrupt is
2582 	* erroneously delivered as edge-triggered one but the respective IRR
2583 	* bit gets set nevertheless.  As a result the I/O unit expects an EOI
2584 	* message but it will never arrive and further interrupts are blocked
2585 	* from the source.  The exact reason is so far unknown, but the
2586 	* phenomenon was observed when two consecutive interrupt requests
2587 	* from a given source get delivered to the same CPU and the source is
2588 	* temporarily disabled in between.
2589 	*
2590 	* A workaround is to simulate an EOI message manually.  We achieve it
2591 	* by setting the trigger mode to edge and then to level when the edge
2592 	* trigger mode gets detected in the TMR of a local APIC for a
2593 	* level-triggered interrupt.  We mask the source for the time of the
2594 	* operation to prevent an edge-triggered interrupt escaping meanwhile.
2595 	* The idea is from Manfred Spraul.  --macro
2596 	*/
2597 	cfg = desc->chip_data;
2598 	i = cfg->vector;
2599 
2600 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2601 #endif
2602 
2603 	/*
2604 	 * We must acknowledge the irq before we move it or the acknowledge will
2605 	 * not propagate properly.
2606 	 */
2607 	ack_APIC_irq();
2608 
2609 	/* Now we can move and renable the irq */
2610 	if (unlikely(do_unmask_irq)) {
2611 		/* Only migrate the irq if the ack has been received.
2612 		 *
2613 		 * On rare occasions the broadcast level triggered ack gets
2614 		 * delayed going to ioapics, and if we reprogram the
2615 		 * vector while Remote IRR is still set the irq will never
2616 		 * fire again.
2617 		 *
2618 		 * To prevent this scenario we read the Remote IRR bit
2619 		 * of the ioapic.  This has two effects.
2620 		 * - On any sane system the read of the ioapic will
2621 		 *   flush writes (and acks) going to the ioapic from
2622 		 *   this cpu.
2623 		 * - We get to see if the ACK has actually been delivered.
2624 		 *
2625 		 * Based on failed experiments of reprogramming the
2626 		 * ioapic entry from outside of irq context starting
2627 		 * with masking the ioapic entry and then polling until
2628 		 * Remote IRR was clear before reprogramming the
2629 		 * ioapic I don't trust the Remote IRR bit to be
2630 		 * completey accurate.
2631 		 *
2632 		 * However there appears to be no other way to plug
2633 		 * this race, so if the Remote IRR bit is not
2634 		 * accurate and is causing problems then it is a hardware bug
2635 		 * and you can go talk to the chipset vendor about it.
2636 		 */
2637 		cfg = desc->chip_data;
2638 		if (!io_apic_level_ack_pending(cfg))
2639 			move_masked_irq(irq);
2640 		unmask_IO_APIC_irq_desc(desc);
2641 	}
2642 
2643 #ifdef CONFIG_X86_32
2644 	if (!(v & (1 << (i & 0x1f)))) {
2645 		atomic_inc(&irq_mis_count);
2646 		spin_lock(&ioapic_lock);
2647 		__mask_and_edge_IO_APIC_irq(cfg);
2648 		__unmask_and_level_IO_APIC_irq(cfg);
2649 		spin_unlock(&ioapic_lock);
2650 	}
2651 #endif
2652 }
2653 
2654 static struct irq_chip ioapic_chip __read_mostly = {
2655 	.name		= "IO-APIC",
2656 	.startup	= startup_ioapic_irq,
2657 	.mask		= mask_IO_APIC_irq,
2658 	.unmask		= unmask_IO_APIC_irq,
2659 	.ack		= ack_apic_edge,
2660 	.eoi		= ack_apic_level,
2661 #ifdef CONFIG_SMP
2662 	.set_affinity	= set_ioapic_affinity_irq,
2663 #endif
2664 	.retrigger	= ioapic_retrigger_irq,
2665 };
2666 
2667 static struct irq_chip ir_ioapic_chip __read_mostly = {
2668 	.name		= "IR-IO-APIC",
2669 	.startup	= startup_ioapic_irq,
2670 	.mask		= mask_IO_APIC_irq,
2671 	.unmask		= unmask_IO_APIC_irq,
2672 #ifdef CONFIG_INTR_REMAP
2673 	.ack		= ack_x2apic_edge,
2674 	.eoi		= ack_x2apic_level,
2675 #ifdef CONFIG_SMP
2676 	.set_affinity	= set_ir_ioapic_affinity_irq,
2677 #endif
2678 #endif
2679 	.retrigger	= ioapic_retrigger_irq,
2680 };
2681 
2682 static inline void init_IO_APIC_traps(void)
2683 {
2684 	int irq;
2685 	struct irq_desc *desc;
2686 	struct irq_cfg *cfg;
2687 
2688 	/*
2689 	 * NOTE! The local APIC isn't very good at handling
2690 	 * multiple interrupts at the same interrupt level.
2691 	 * As the interrupt level is determined by taking the
2692 	 * vector number and shifting that right by 4, we
2693 	 * want to spread these out a bit so that they don't
2694 	 * all fall in the same interrupt level.
2695 	 *
2696 	 * Also, we've got to be careful not to trash gate
2697 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2698 	 */
2699 	for_each_irq_desc(irq, desc) {
2700 		cfg = desc->chip_data;
2701 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2702 			/*
2703 			 * Hmm.. We don't have an entry for this,
2704 			 * so default to an old-fashioned 8259
2705 			 * interrupt if we can..
2706 			 */
2707 			if (irq < NR_IRQS_LEGACY)
2708 				make_8259A_irq(irq);
2709 			else
2710 				/* Strange. Oh, well.. */
2711 				desc->chip = &no_irq_chip;
2712 		}
2713 	}
2714 }
2715 
2716 /*
2717  * The local APIC irq-chip implementation:
2718  */
2719 
2720 static void mask_lapic_irq(unsigned int irq)
2721 {
2722 	unsigned long v;
2723 
2724 	v = apic_read(APIC_LVT0);
2725 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2726 }
2727 
2728 static void unmask_lapic_irq(unsigned int irq)
2729 {
2730 	unsigned long v;
2731 
2732 	v = apic_read(APIC_LVT0);
2733 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2734 }
2735 
2736 static void ack_lapic_irq(unsigned int irq)
2737 {
2738 	ack_APIC_irq();
2739 }
2740 
2741 static struct irq_chip lapic_chip __read_mostly = {
2742 	.name		= "local-APIC",
2743 	.mask		= mask_lapic_irq,
2744 	.unmask		= unmask_lapic_irq,
2745 	.ack		= ack_lapic_irq,
2746 };
2747 
2748 static void lapic_register_intr(int irq, struct irq_desc *desc)
2749 {
2750 	desc->status &= ~IRQ_LEVEL;
2751 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2752 				      "edge");
2753 }
2754 
2755 static void __init setup_nmi(void)
2756 {
2757 	/*
2758 	 * Dirty trick to enable the NMI watchdog ...
2759 	 * We put the 8259A master into AEOI mode and
2760 	 * unmask on all local APICs LVT0 as NMI.
2761 	 *
2762 	 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2763 	 * is from Maciej W. Rozycki - so we do not have to EOI from
2764 	 * the NMI handler or the timer interrupt.
2765 	 */
2766 	apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2767 
2768 	enable_NMI_through_LVT0();
2769 
2770 	apic_printk(APIC_VERBOSE, " done.\n");
2771 }
2772 
2773 /*
2774  * This looks a bit hackish but it's about the only one way of sending
2775  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2776  * not support the ExtINT mode, unfortunately.  We need to send these
2777  * cycles as some i82489DX-based boards have glue logic that keeps the
2778  * 8259A interrupt line asserted until INTA.  --macro
2779  */
2780 static inline void __init unlock_ExtINT_logic(void)
2781 {
2782 	int apic, pin, i;
2783 	struct IO_APIC_route_entry entry0, entry1;
2784 	unsigned char save_control, save_freq_select;
2785 
2786 	pin  = find_isa_irq_pin(8, mp_INT);
2787 	if (pin == -1) {
2788 		WARN_ON_ONCE(1);
2789 		return;
2790 	}
2791 	apic = find_isa_irq_apic(8, mp_INT);
2792 	if (apic == -1) {
2793 		WARN_ON_ONCE(1);
2794 		return;
2795 	}
2796 
2797 	entry0 = ioapic_read_entry(apic, pin);
2798 	clear_IO_APIC_pin(apic, pin);
2799 
2800 	memset(&entry1, 0, sizeof(entry1));
2801 
2802 	entry1.dest_mode = 0;			/* physical delivery */
2803 	entry1.mask = 0;			/* unmask IRQ now */
2804 	entry1.dest = hard_smp_processor_id();
2805 	entry1.delivery_mode = dest_ExtINT;
2806 	entry1.polarity = entry0.polarity;
2807 	entry1.trigger = 0;
2808 	entry1.vector = 0;
2809 
2810 	ioapic_write_entry(apic, pin, entry1);
2811 
2812 	save_control = CMOS_READ(RTC_CONTROL);
2813 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2814 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2815 		   RTC_FREQ_SELECT);
2816 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2817 
2818 	i = 100;
2819 	while (i-- > 0) {
2820 		mdelay(10);
2821 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2822 			i -= 10;
2823 	}
2824 
2825 	CMOS_WRITE(save_control, RTC_CONTROL);
2826 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2827 	clear_IO_APIC_pin(apic, pin);
2828 
2829 	ioapic_write_entry(apic, pin, entry0);
2830 }
2831 
2832 static int disable_timer_pin_1 __initdata;
2833 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2834 static int __init disable_timer_pin_setup(char *arg)
2835 {
2836 	disable_timer_pin_1 = 1;
2837 	return 0;
2838 }
2839 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2840 
2841 int timer_through_8259 __initdata;
2842 
2843 /*
2844  * This code may look a bit paranoid, but it's supposed to cooperate with
2845  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2846  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2847  * fanatically on his truly buggy board.
2848  *
2849  * FIXME: really need to revamp this for all platforms.
2850  */
2851 static inline void __init check_timer(void)
2852 {
2853 	struct irq_desc *desc = irq_to_desc(0);
2854 	struct irq_cfg *cfg = desc->chip_data;
2855 	int cpu = boot_cpu_id;
2856 	int apic1, pin1, apic2, pin2;
2857 	unsigned long flags;
2858 	int no_pin1 = 0;
2859 
2860 	local_irq_save(flags);
2861 
2862 	/*
2863 	 * get/set the timer IRQ vector:
2864 	 */
2865 	disable_8259A_irq(0);
2866 	assign_irq_vector(0, cfg, apic->target_cpus());
2867 
2868 	/*
2869 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2870 	 * wire has to be disabled in the local APIC.  Also
2871 	 * timer interrupts need to be acknowledged manually in
2872 	 * the 8259A for the i82489DX when using the NMI
2873 	 * watchdog as that APIC treats NMIs as level-triggered.
2874 	 * The AEOI mode will finish them in the 8259A
2875 	 * automatically.
2876 	 */
2877 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2878 	init_8259A(1);
2879 #ifdef CONFIG_X86_32
2880 	{
2881 		unsigned int ver;
2882 
2883 		ver = apic_read(APIC_LVR);
2884 		ver = GET_APIC_VERSION(ver);
2885 		timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2886 	}
2887 #endif
2888 
2889 	pin1  = find_isa_irq_pin(0, mp_INT);
2890 	apic1 = find_isa_irq_apic(0, mp_INT);
2891 	pin2  = ioapic_i8259.pin;
2892 	apic2 = ioapic_i8259.apic;
2893 
2894 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2895 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2896 		    cfg->vector, apic1, pin1, apic2, pin2);
2897 
2898 	/*
2899 	 * Some BIOS writers are clueless and report the ExtINTA
2900 	 * I/O APIC input from the cascaded 8259A as the timer
2901 	 * interrupt input.  So just in case, if only one pin
2902 	 * was found above, try it both directly and through the
2903 	 * 8259A.
2904 	 */
2905 	if (pin1 == -1) {
2906 		if (intr_remapping_enabled)
2907 			panic("BIOS bug: timer not connected to IO-APIC");
2908 		pin1 = pin2;
2909 		apic1 = apic2;
2910 		no_pin1 = 1;
2911 	} else if (pin2 == -1) {
2912 		pin2 = pin1;
2913 		apic2 = apic1;
2914 	}
2915 
2916 	if (pin1 != -1) {
2917 		/*
2918 		 * Ok, does IRQ0 through the IOAPIC work?
2919 		 */
2920 		if (no_pin1) {
2921 			add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2922 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2923 		} else {
2924 			/* for edge trigger, setup_IO_APIC_irq already
2925 			 * leave it unmasked.
2926 			 * so only need to unmask if it is level-trigger
2927 			 * do we really have level trigger timer?
2928 			 */
2929 			int idx;
2930 			idx = find_irq_entry(apic1, pin1, mp_INT);
2931 			if (idx != -1 && irq_trigger(idx))
2932 				unmask_IO_APIC_irq_desc(desc);
2933 		}
2934 		if (timer_irq_works()) {
2935 			if (nmi_watchdog == NMI_IO_APIC) {
2936 				setup_nmi();
2937 				enable_8259A_irq(0);
2938 			}
2939 			if (disable_timer_pin_1 > 0)
2940 				clear_IO_APIC_pin(0, pin1);
2941 			goto out;
2942 		}
2943 		if (intr_remapping_enabled)
2944 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2945 		local_irq_disable();
2946 		clear_IO_APIC_pin(apic1, pin1);
2947 		if (!no_pin1)
2948 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2949 				    "8254 timer not connected to IO-APIC\n");
2950 
2951 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2952 			    "(IRQ0) through the 8259A ...\n");
2953 		apic_printk(APIC_QUIET, KERN_INFO
2954 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2955 		/*
2956 		 * legacy devices should be connected to IO APIC #0
2957 		 */
2958 		replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2959 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2960 		enable_8259A_irq(0);
2961 		if (timer_irq_works()) {
2962 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2963 			timer_through_8259 = 1;
2964 			if (nmi_watchdog == NMI_IO_APIC) {
2965 				disable_8259A_irq(0);
2966 				setup_nmi();
2967 				enable_8259A_irq(0);
2968 			}
2969 			goto out;
2970 		}
2971 		/*
2972 		 * Cleanup, just in case ...
2973 		 */
2974 		local_irq_disable();
2975 		disable_8259A_irq(0);
2976 		clear_IO_APIC_pin(apic2, pin2);
2977 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2978 	}
2979 
2980 	if (nmi_watchdog == NMI_IO_APIC) {
2981 		apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2982 			    "through the IO-APIC - disabling NMI Watchdog!\n");
2983 		nmi_watchdog = NMI_NONE;
2984 	}
2985 #ifdef CONFIG_X86_32
2986 	timer_ack = 0;
2987 #endif
2988 
2989 	apic_printk(APIC_QUIET, KERN_INFO
2990 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2991 
2992 	lapic_register_intr(0, desc);
2993 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
2994 	enable_8259A_irq(0);
2995 
2996 	if (timer_irq_works()) {
2997 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2998 		goto out;
2999 	}
3000 	local_irq_disable();
3001 	disable_8259A_irq(0);
3002 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3003 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3004 
3005 	apic_printk(APIC_QUIET, KERN_INFO
3006 		    "...trying to set up timer as ExtINT IRQ...\n");
3007 
3008 	init_8259A(0);
3009 	make_8259A_irq(0);
3010 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3011 
3012 	unlock_ExtINT_logic();
3013 
3014 	if (timer_irq_works()) {
3015 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3016 		goto out;
3017 	}
3018 	local_irq_disable();
3019 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3020 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3021 		"report.  Then try booting with the 'noapic' option.\n");
3022 out:
3023 	local_irq_restore(flags);
3024 }
3025 
3026 /*
3027  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3028  * to devices.  However there may be an I/O APIC pin available for
3029  * this interrupt regardless.  The pin may be left unconnected, but
3030  * typically it will be reused as an ExtINT cascade interrupt for
3031  * the master 8259A.  In the MPS case such a pin will normally be
3032  * reported as an ExtINT interrupt in the MP table.  With ACPI
3033  * there is no provision for ExtINT interrupts, and in the absence
3034  * of an override it would be treated as an ordinary ISA I/O APIC
3035  * interrupt, that is edge-triggered and unmasked by default.  We
3036  * used to do this, but it caused problems on some systems because
3037  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3038  * the same ExtINT cascade interrupt to drive the local APIC of the
3039  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3040  * the I/O APIC in all cases now.  No actual device should request
3041  * it anyway.  --macro
3042  */
3043 #define PIC_IRQS	(1 << PIC_CASCADE_IR)
3044 
3045 void __init setup_IO_APIC(void)
3046 {
3047 
3048 	/*
3049 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3050 	 */
3051 
3052 	io_apic_irqs = ~PIC_IRQS;
3053 
3054 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3055 	/*
3056          * Set up IO-APIC IRQ routing.
3057          */
3058 #ifdef CONFIG_X86_32
3059 	if (!acpi_ioapic)
3060 		setup_ioapic_ids_from_mpc();
3061 #endif
3062 	sync_Arb_IDs();
3063 	setup_IO_APIC_irqs();
3064 	init_IO_APIC_traps();
3065 	check_timer();
3066 }
3067 
3068 /*
3069  *      Called after all the initialization is done. If we didnt find any
3070  *      APIC bugs then we can allow the modify fast path
3071  */
3072 
3073 static int __init io_apic_bug_finalize(void)
3074 {
3075 	if (sis_apic_bug == -1)
3076 		sis_apic_bug = 0;
3077 	return 0;
3078 }
3079 
3080 late_initcall(io_apic_bug_finalize);
3081 
3082 struct sysfs_ioapic_data {
3083 	struct sys_device dev;
3084 	struct IO_APIC_route_entry entry[0];
3085 };
3086 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3087 
3088 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3089 {
3090 	struct IO_APIC_route_entry *entry;
3091 	struct sysfs_ioapic_data *data;
3092 	int i;
3093 
3094 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3095 	entry = data->entry;
3096 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3097 		*entry = ioapic_read_entry(dev->id, i);
3098 
3099 	return 0;
3100 }
3101 
3102 static int ioapic_resume(struct sys_device *dev)
3103 {
3104 	struct IO_APIC_route_entry *entry;
3105 	struct sysfs_ioapic_data *data;
3106 	unsigned long flags;
3107 	union IO_APIC_reg_00 reg_00;
3108 	int i;
3109 
3110 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3111 	entry = data->entry;
3112 
3113 	spin_lock_irqsave(&ioapic_lock, flags);
3114 	reg_00.raw = io_apic_read(dev->id, 0);
3115 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3116 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3117 		io_apic_write(dev->id, 0, reg_00.raw);
3118 	}
3119 	spin_unlock_irqrestore(&ioapic_lock, flags);
3120 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3121 		ioapic_write_entry(dev->id, i, entry[i]);
3122 
3123 	return 0;
3124 }
3125 
3126 static struct sysdev_class ioapic_sysdev_class = {
3127 	.name = "ioapic",
3128 	.suspend = ioapic_suspend,
3129 	.resume = ioapic_resume,
3130 };
3131 
3132 static int __init ioapic_init_sysfs(void)
3133 {
3134 	struct sys_device * dev;
3135 	int i, size, error;
3136 
3137 	error = sysdev_class_register(&ioapic_sysdev_class);
3138 	if (error)
3139 		return error;
3140 
3141 	for (i = 0; i < nr_ioapics; i++ ) {
3142 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3143 			* sizeof(struct IO_APIC_route_entry);
3144 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3145 		if (!mp_ioapic_data[i]) {
3146 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3147 			continue;
3148 		}
3149 		dev = &mp_ioapic_data[i]->dev;
3150 		dev->id = i;
3151 		dev->cls = &ioapic_sysdev_class;
3152 		error = sysdev_register(dev);
3153 		if (error) {
3154 			kfree(mp_ioapic_data[i]);
3155 			mp_ioapic_data[i] = NULL;
3156 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3157 			continue;
3158 		}
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 device_initcall(ioapic_init_sysfs);
3165 
3166 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3167 /*
3168  * Dynamic irq allocate and deallocation
3169  */
3170 unsigned int create_irq_nr(unsigned int irq_want)
3171 {
3172 	/* Allocate an unused irq */
3173 	unsigned int irq;
3174 	unsigned int new;
3175 	unsigned long flags;
3176 	struct irq_cfg *cfg_new = NULL;
3177 	int cpu = boot_cpu_id;
3178 	struct irq_desc *desc_new = NULL;
3179 
3180 	irq = 0;
3181 	if (irq_want < nr_irqs_gsi)
3182 		irq_want = nr_irqs_gsi;
3183 
3184 	spin_lock_irqsave(&vector_lock, flags);
3185 	for (new = irq_want; new < nr_irqs; new++) {
3186 		desc_new = irq_to_desc_alloc_cpu(new, cpu);
3187 		if (!desc_new) {
3188 			printk(KERN_INFO "can not get irq_desc for %d\n", new);
3189 			continue;
3190 		}
3191 		cfg_new = desc_new->chip_data;
3192 
3193 		if (cfg_new->vector != 0)
3194 			continue;
3195 		if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3196 			irq = new;
3197 		break;
3198 	}
3199 	spin_unlock_irqrestore(&vector_lock, flags);
3200 
3201 	if (irq > 0) {
3202 		dynamic_irq_init(irq);
3203 		/* restore it, in case dynamic_irq_init clear it */
3204 		if (desc_new)
3205 			desc_new->chip_data = cfg_new;
3206 	}
3207 	return irq;
3208 }
3209 
3210 int create_irq(void)
3211 {
3212 	unsigned int irq_want;
3213 	int irq;
3214 
3215 	irq_want = nr_irqs_gsi;
3216 	irq = create_irq_nr(irq_want);
3217 
3218 	if (irq == 0)
3219 		irq = -1;
3220 
3221 	return irq;
3222 }
3223 
3224 void destroy_irq(unsigned int irq)
3225 {
3226 	unsigned long flags;
3227 	struct irq_cfg *cfg;
3228 	struct irq_desc *desc;
3229 
3230 	/* store it, in case dynamic_irq_cleanup clear it */
3231 	desc = irq_to_desc(irq);
3232 	cfg = desc->chip_data;
3233 	dynamic_irq_cleanup(irq);
3234 	/* connect back irq_cfg */
3235 	if (desc)
3236 		desc->chip_data = cfg;
3237 
3238 	free_irte(irq);
3239 	spin_lock_irqsave(&vector_lock, flags);
3240 	__clear_irq_vector(irq, cfg);
3241 	spin_unlock_irqrestore(&vector_lock, flags);
3242 }
3243 
3244 /*
3245  * MSI message composition
3246  */
3247 #ifdef CONFIG_PCI_MSI
3248 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3249 {
3250 	struct irq_cfg *cfg;
3251 	int err;
3252 	unsigned dest;
3253 
3254 	if (disable_apic)
3255 		return -ENXIO;
3256 
3257 	cfg = irq_cfg(irq);
3258 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3259 	if (err)
3260 		return err;
3261 
3262 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3263 
3264 	if (irq_remapped(irq)) {
3265 		struct irte irte;
3266 		int ir_index;
3267 		u16 sub_handle;
3268 
3269 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3270 		BUG_ON(ir_index == -1);
3271 
3272 		memset (&irte, 0, sizeof(irte));
3273 
3274 		irte.present = 1;
3275 		irte.dst_mode = apic->irq_dest_mode;
3276 		irte.trigger_mode = 0; /* edge */
3277 		irte.dlvry_mode = apic->irq_delivery_mode;
3278 		irte.vector = cfg->vector;
3279 		irte.dest_id = IRTE_DEST(dest);
3280 
3281 		modify_irte(irq, &irte);
3282 
3283 		msg->address_hi = MSI_ADDR_BASE_HI;
3284 		msg->data = sub_handle;
3285 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3286 				  MSI_ADDR_IR_SHV |
3287 				  MSI_ADDR_IR_INDEX1(ir_index) |
3288 				  MSI_ADDR_IR_INDEX2(ir_index);
3289 	} else {
3290 		if (x2apic_enabled())
3291 			msg->address_hi = MSI_ADDR_BASE_HI |
3292 					  MSI_ADDR_EXT_DEST_ID(dest);
3293 		else
3294 			msg->address_hi = MSI_ADDR_BASE_HI;
3295 
3296 		msg->address_lo =
3297 			MSI_ADDR_BASE_LO |
3298 			((apic->irq_dest_mode == 0) ?
3299 				MSI_ADDR_DEST_MODE_PHYSICAL:
3300 				MSI_ADDR_DEST_MODE_LOGICAL) |
3301 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3302 				MSI_ADDR_REDIRECTION_CPU:
3303 				MSI_ADDR_REDIRECTION_LOWPRI) |
3304 			MSI_ADDR_DEST_ID(dest);
3305 
3306 		msg->data =
3307 			MSI_DATA_TRIGGER_EDGE |
3308 			MSI_DATA_LEVEL_ASSERT |
3309 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3310 				MSI_DATA_DELIVERY_FIXED:
3311 				MSI_DATA_DELIVERY_LOWPRI) |
3312 			MSI_DATA_VECTOR(cfg->vector);
3313 	}
3314 	return err;
3315 }
3316 
3317 #ifdef CONFIG_SMP
3318 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3319 {
3320 	struct irq_desc *desc = irq_to_desc(irq);
3321 	struct irq_cfg *cfg;
3322 	struct msi_msg msg;
3323 	unsigned int dest;
3324 
3325 	dest = set_desc_affinity(desc, mask);
3326 	if (dest == BAD_APICID)
3327 		return;
3328 
3329 	cfg = desc->chip_data;
3330 
3331 	read_msi_msg_desc(desc, &msg);
3332 
3333 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3334 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3335 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3336 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3337 
3338 	write_msi_msg_desc(desc, &msg);
3339 }
3340 #ifdef CONFIG_INTR_REMAP
3341 /*
3342  * Migrate the MSI irq to another cpumask. This migration is
3343  * done in the process context using interrupt-remapping hardware.
3344  */
3345 static void
3346 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3347 {
3348 	struct irq_desc *desc = irq_to_desc(irq);
3349 	struct irq_cfg *cfg = desc->chip_data;
3350 	unsigned int dest;
3351 	struct irte irte;
3352 
3353 	if (get_irte(irq, &irte))
3354 		return;
3355 
3356 	dest = set_desc_affinity(desc, mask);
3357 	if (dest == BAD_APICID)
3358 		return;
3359 
3360 	irte.vector = cfg->vector;
3361 	irte.dest_id = IRTE_DEST(dest);
3362 
3363 	/*
3364 	 * atomically update the IRTE with the new destination and vector.
3365 	 */
3366 	modify_irte(irq, &irte);
3367 
3368 	/*
3369 	 * After this point, all the interrupts will start arriving
3370 	 * at the new destination. So, time to cleanup the previous
3371 	 * vector allocation.
3372 	 */
3373 	if (cfg->move_in_progress)
3374 		send_cleanup_vector(cfg);
3375 }
3376 
3377 #endif
3378 #endif /* CONFIG_SMP */
3379 
3380 /*
3381  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3382  * which implement the MSI or MSI-X Capability Structure.
3383  */
3384 static struct irq_chip msi_chip = {
3385 	.name		= "PCI-MSI",
3386 	.unmask		= unmask_msi_irq,
3387 	.mask		= mask_msi_irq,
3388 	.ack		= ack_apic_edge,
3389 #ifdef CONFIG_SMP
3390 	.set_affinity	= set_msi_irq_affinity,
3391 #endif
3392 	.retrigger	= ioapic_retrigger_irq,
3393 };
3394 
3395 static struct irq_chip msi_ir_chip = {
3396 	.name		= "IR-PCI-MSI",
3397 	.unmask		= unmask_msi_irq,
3398 	.mask		= mask_msi_irq,
3399 #ifdef CONFIG_INTR_REMAP
3400 	.ack		= ack_x2apic_edge,
3401 #ifdef CONFIG_SMP
3402 	.set_affinity	= ir_set_msi_irq_affinity,
3403 #endif
3404 #endif
3405 	.retrigger	= ioapic_retrigger_irq,
3406 };
3407 
3408 /*
3409  * Map the PCI dev to the corresponding remapping hardware unit
3410  * and allocate 'nvec' consecutive interrupt-remapping table entries
3411  * in it.
3412  */
3413 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3414 {
3415 	struct intel_iommu *iommu;
3416 	int index;
3417 
3418 	iommu = map_dev_to_ir(dev);
3419 	if (!iommu) {
3420 		printk(KERN_ERR
3421 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3422 		return -ENOENT;
3423 	}
3424 
3425 	index = alloc_irte(iommu, irq, nvec);
3426 	if (index < 0) {
3427 		printk(KERN_ERR
3428 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3429 		       pci_name(dev));
3430 		return -ENOSPC;
3431 	}
3432 	return index;
3433 }
3434 
3435 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3436 {
3437 	int ret;
3438 	struct msi_msg msg;
3439 
3440 	ret = msi_compose_msg(dev, irq, &msg);
3441 	if (ret < 0)
3442 		return ret;
3443 
3444 	set_irq_msi(irq, msidesc);
3445 	write_msi_msg(irq, &msg);
3446 
3447 	if (irq_remapped(irq)) {
3448 		struct irq_desc *desc = irq_to_desc(irq);
3449 		/*
3450 		 * irq migration in process context
3451 		 */
3452 		desc->status |= IRQ_MOVE_PCNTXT;
3453 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3454 	} else
3455 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3456 
3457 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3458 
3459 	return 0;
3460 }
3461 
3462 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3463 {
3464 	unsigned int irq;
3465 	int ret, sub_handle;
3466 	struct msi_desc *msidesc;
3467 	unsigned int irq_want;
3468 	struct intel_iommu *iommu = NULL;
3469 	int index = 0;
3470 
3471 	/* x86 doesn't support multiple MSI yet */
3472 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3473 		return 1;
3474 
3475 	irq_want = nr_irqs_gsi;
3476 	sub_handle = 0;
3477 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3478 		irq = create_irq_nr(irq_want);
3479 		if (irq == 0)
3480 			return -1;
3481 		irq_want = irq + 1;
3482 		if (!intr_remapping_enabled)
3483 			goto no_ir;
3484 
3485 		if (!sub_handle) {
3486 			/*
3487 			 * allocate the consecutive block of IRTE's
3488 			 * for 'nvec'
3489 			 */
3490 			index = msi_alloc_irte(dev, irq, nvec);
3491 			if (index < 0) {
3492 				ret = index;
3493 				goto error;
3494 			}
3495 		} else {
3496 			iommu = map_dev_to_ir(dev);
3497 			if (!iommu) {
3498 				ret = -ENOENT;
3499 				goto error;
3500 			}
3501 			/*
3502 			 * setup the mapping between the irq and the IRTE
3503 			 * base index, the sub_handle pointing to the
3504 			 * appropriate interrupt remap table entry.
3505 			 */
3506 			set_irte_irq(irq, iommu, index, sub_handle);
3507 		}
3508 no_ir:
3509 		ret = setup_msi_irq(dev, msidesc, irq);
3510 		if (ret < 0)
3511 			goto error;
3512 		sub_handle++;
3513 	}
3514 	return 0;
3515 
3516 error:
3517 	destroy_irq(irq);
3518 	return ret;
3519 }
3520 
3521 void arch_teardown_msi_irq(unsigned int irq)
3522 {
3523 	destroy_irq(irq);
3524 }
3525 
3526 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3527 #ifdef CONFIG_SMP
3528 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3529 {
3530 	struct irq_desc *desc = irq_to_desc(irq);
3531 	struct irq_cfg *cfg;
3532 	struct msi_msg msg;
3533 	unsigned int dest;
3534 
3535 	dest = set_desc_affinity(desc, mask);
3536 	if (dest == BAD_APICID)
3537 		return;
3538 
3539 	cfg = desc->chip_data;
3540 
3541 	dmar_msi_read(irq, &msg);
3542 
3543 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3544 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3545 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3546 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3547 
3548 	dmar_msi_write(irq, &msg);
3549 }
3550 
3551 #endif /* CONFIG_SMP */
3552 
3553 struct irq_chip dmar_msi_type = {
3554 	.name = "DMAR_MSI",
3555 	.unmask = dmar_msi_unmask,
3556 	.mask = dmar_msi_mask,
3557 	.ack = ack_apic_edge,
3558 #ifdef CONFIG_SMP
3559 	.set_affinity = dmar_msi_set_affinity,
3560 #endif
3561 	.retrigger = ioapic_retrigger_irq,
3562 };
3563 
3564 int arch_setup_dmar_msi(unsigned int irq)
3565 {
3566 	int ret;
3567 	struct msi_msg msg;
3568 
3569 	ret = msi_compose_msg(NULL, irq, &msg);
3570 	if (ret < 0)
3571 		return ret;
3572 	dmar_msi_write(irq, &msg);
3573 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3574 		"edge");
3575 	return 0;
3576 }
3577 #endif
3578 
3579 #ifdef CONFIG_HPET_TIMER
3580 
3581 #ifdef CONFIG_SMP
3582 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3583 {
3584 	struct irq_desc *desc = irq_to_desc(irq);
3585 	struct irq_cfg *cfg;
3586 	struct msi_msg msg;
3587 	unsigned int dest;
3588 
3589 	dest = set_desc_affinity(desc, mask);
3590 	if (dest == BAD_APICID)
3591 		return;
3592 
3593 	cfg = desc->chip_data;
3594 
3595 	hpet_msi_read(irq, &msg);
3596 
3597 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3598 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3599 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3600 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3601 
3602 	hpet_msi_write(irq, &msg);
3603 }
3604 
3605 #endif /* CONFIG_SMP */
3606 
3607 static struct irq_chip hpet_msi_type = {
3608 	.name = "HPET_MSI",
3609 	.unmask = hpet_msi_unmask,
3610 	.mask = hpet_msi_mask,
3611 	.ack = ack_apic_edge,
3612 #ifdef CONFIG_SMP
3613 	.set_affinity = hpet_msi_set_affinity,
3614 #endif
3615 	.retrigger = ioapic_retrigger_irq,
3616 };
3617 
3618 int arch_setup_hpet_msi(unsigned int irq)
3619 {
3620 	int ret;
3621 	struct msi_msg msg;
3622 
3623 	ret = msi_compose_msg(NULL, irq, &msg);
3624 	if (ret < 0)
3625 		return ret;
3626 
3627 	hpet_msi_write(irq, &msg);
3628 	set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3629 		"edge");
3630 
3631 	return 0;
3632 }
3633 #endif
3634 
3635 #endif /* CONFIG_PCI_MSI */
3636 /*
3637  * Hypertransport interrupt support
3638  */
3639 #ifdef CONFIG_HT_IRQ
3640 
3641 #ifdef CONFIG_SMP
3642 
3643 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3644 {
3645 	struct ht_irq_msg msg;
3646 	fetch_ht_irq_msg(irq, &msg);
3647 
3648 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3649 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3650 
3651 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3652 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3653 
3654 	write_ht_irq_msg(irq, &msg);
3655 }
3656 
3657 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3658 {
3659 	struct irq_desc *desc = irq_to_desc(irq);
3660 	struct irq_cfg *cfg;
3661 	unsigned int dest;
3662 
3663 	dest = set_desc_affinity(desc, mask);
3664 	if (dest == BAD_APICID)
3665 		return;
3666 
3667 	cfg = desc->chip_data;
3668 
3669 	target_ht_irq(irq, dest, cfg->vector);
3670 }
3671 
3672 #endif
3673 
3674 static struct irq_chip ht_irq_chip = {
3675 	.name		= "PCI-HT",
3676 	.mask		= mask_ht_irq,
3677 	.unmask		= unmask_ht_irq,
3678 	.ack		= ack_apic_edge,
3679 #ifdef CONFIG_SMP
3680 	.set_affinity	= set_ht_irq_affinity,
3681 #endif
3682 	.retrigger	= ioapic_retrigger_irq,
3683 };
3684 
3685 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3686 {
3687 	struct irq_cfg *cfg;
3688 	int err;
3689 
3690 	if (disable_apic)
3691 		return -ENXIO;
3692 
3693 	cfg = irq_cfg(irq);
3694 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3695 	if (!err) {
3696 		struct ht_irq_msg msg;
3697 		unsigned dest;
3698 
3699 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3700 						    apic->target_cpus());
3701 
3702 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3703 
3704 		msg.address_lo =
3705 			HT_IRQ_LOW_BASE |
3706 			HT_IRQ_LOW_DEST_ID(dest) |
3707 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3708 			((apic->irq_dest_mode == 0) ?
3709 				HT_IRQ_LOW_DM_PHYSICAL :
3710 				HT_IRQ_LOW_DM_LOGICAL) |
3711 			HT_IRQ_LOW_RQEOI_EDGE |
3712 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3713 				HT_IRQ_LOW_MT_FIXED :
3714 				HT_IRQ_LOW_MT_ARBITRATED) |
3715 			HT_IRQ_LOW_IRQ_MASKED;
3716 
3717 		write_ht_irq_msg(irq, &msg);
3718 
3719 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3720 					      handle_edge_irq, "edge");
3721 
3722 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3723 	}
3724 	return err;
3725 }
3726 #endif /* CONFIG_HT_IRQ */
3727 
3728 #ifdef CONFIG_X86_UV
3729 /*
3730  * Re-target the irq to the specified CPU and enable the specified MMR located
3731  * on the specified blade to allow the sending of MSIs to the specified CPU.
3732  */
3733 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3734 		       unsigned long mmr_offset)
3735 {
3736 	const struct cpumask *eligible_cpu = cpumask_of(cpu);
3737 	struct irq_cfg *cfg;
3738 	int mmr_pnode;
3739 	unsigned long mmr_value;
3740 	struct uv_IO_APIC_route_entry *entry;
3741 	unsigned long flags;
3742 	int err;
3743 
3744 	cfg = irq_cfg(irq);
3745 
3746 	err = assign_irq_vector(irq, cfg, eligible_cpu);
3747 	if (err != 0)
3748 		return err;
3749 
3750 	spin_lock_irqsave(&vector_lock, flags);
3751 	set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3752 				      irq_name);
3753 	spin_unlock_irqrestore(&vector_lock, flags);
3754 
3755 	mmr_value = 0;
3756 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3757 	BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3758 
3759 	entry->vector = cfg->vector;
3760 	entry->delivery_mode = apic->irq_delivery_mode;
3761 	entry->dest_mode = apic->irq_dest_mode;
3762 	entry->polarity = 0;
3763 	entry->trigger = 0;
3764 	entry->mask = 0;
3765 	entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3766 
3767 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3768 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3769 
3770 	return irq;
3771 }
3772 
3773 /*
3774  * Disable the specified MMR located on the specified blade so that MSIs are
3775  * longer allowed to be sent.
3776  */
3777 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3778 {
3779 	unsigned long mmr_value;
3780 	struct uv_IO_APIC_route_entry *entry;
3781 	int mmr_pnode;
3782 
3783 	mmr_value = 0;
3784 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3785 	BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3786 
3787 	entry->mask = 1;
3788 
3789 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3790 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3791 }
3792 #endif /* CONFIG_X86_64 */
3793 
3794 int __init io_apic_get_redir_entries (int ioapic)
3795 {
3796 	union IO_APIC_reg_01	reg_01;
3797 	unsigned long flags;
3798 
3799 	spin_lock_irqsave(&ioapic_lock, flags);
3800 	reg_01.raw = io_apic_read(ioapic, 1);
3801 	spin_unlock_irqrestore(&ioapic_lock, flags);
3802 
3803 	return reg_01.bits.entries;
3804 }
3805 
3806 void __init probe_nr_irqs_gsi(void)
3807 {
3808 	int nr = 0;
3809 
3810 	nr = acpi_probe_gsi();
3811 	if (nr > nr_irqs_gsi) {
3812 		nr_irqs_gsi = nr;
3813 	} else {
3814 		/* for acpi=off or acpi is not compiled in */
3815 		int idx;
3816 
3817 		nr = 0;
3818 		for (idx = 0; idx < nr_ioapics; idx++)
3819 			nr += io_apic_get_redir_entries(idx) + 1;
3820 
3821 		if (nr > nr_irqs_gsi)
3822 			nr_irqs_gsi = nr;
3823 	}
3824 
3825 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3826 }
3827 
3828 #ifdef CONFIG_SPARSE_IRQ
3829 int __init arch_probe_nr_irqs(void)
3830 {
3831 	int nr;
3832 
3833 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3834 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3835 
3836 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3837 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3838 	/*
3839 	 * for MSI and HT dyn irq
3840 	 */
3841 	nr += nr_irqs_gsi * 16;
3842 #endif
3843 	if (nr < nr_irqs)
3844 		nr_irqs = nr;
3845 
3846 	return 0;
3847 }
3848 #endif
3849 
3850 /* --------------------------------------------------------------------------
3851                           ACPI-based IOAPIC Configuration
3852    -------------------------------------------------------------------------- */
3853 
3854 #ifdef CONFIG_ACPI
3855 
3856 #ifdef CONFIG_X86_32
3857 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3858 {
3859 	union IO_APIC_reg_00 reg_00;
3860 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3861 	physid_mask_t tmp;
3862 	unsigned long flags;
3863 	int i = 0;
3864 
3865 	/*
3866 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3867 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3868 	 * supports up to 16 on one shared APIC bus.
3869 	 *
3870 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3871 	 *      advantage of new APIC bus architecture.
3872 	 */
3873 
3874 	if (physids_empty(apic_id_map))
3875 		apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3876 
3877 	spin_lock_irqsave(&ioapic_lock, flags);
3878 	reg_00.raw = io_apic_read(ioapic, 0);
3879 	spin_unlock_irqrestore(&ioapic_lock, flags);
3880 
3881 	if (apic_id >= get_physical_broadcast()) {
3882 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3883 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3884 		apic_id = reg_00.bits.ID;
3885 	}
3886 
3887 	/*
3888 	 * Every APIC in a system must have a unique ID or we get lots of nice
3889 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3890 	 */
3891 	if (apic->check_apicid_used(apic_id_map, apic_id)) {
3892 
3893 		for (i = 0; i < get_physical_broadcast(); i++) {
3894 			if (!apic->check_apicid_used(apic_id_map, i))
3895 				break;
3896 		}
3897 
3898 		if (i == get_physical_broadcast())
3899 			panic("Max apic_id exceeded!\n");
3900 
3901 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3902 			"trying %d\n", ioapic, apic_id, i);
3903 
3904 		apic_id = i;
3905 	}
3906 
3907 	tmp = apic->apicid_to_cpu_present(apic_id);
3908 	physids_or(apic_id_map, apic_id_map, tmp);
3909 
3910 	if (reg_00.bits.ID != apic_id) {
3911 		reg_00.bits.ID = apic_id;
3912 
3913 		spin_lock_irqsave(&ioapic_lock, flags);
3914 		io_apic_write(ioapic, 0, reg_00.raw);
3915 		reg_00.raw = io_apic_read(ioapic, 0);
3916 		spin_unlock_irqrestore(&ioapic_lock, flags);
3917 
3918 		/* Sanity check */
3919 		if (reg_00.bits.ID != apic_id) {
3920 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3921 			return -1;
3922 		}
3923 	}
3924 
3925 	apic_printk(APIC_VERBOSE, KERN_INFO
3926 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3927 
3928 	return apic_id;
3929 }
3930 
3931 int __init io_apic_get_version(int ioapic)
3932 {
3933 	union IO_APIC_reg_01	reg_01;
3934 	unsigned long flags;
3935 
3936 	spin_lock_irqsave(&ioapic_lock, flags);
3937 	reg_01.raw = io_apic_read(ioapic, 1);
3938 	spin_unlock_irqrestore(&ioapic_lock, flags);
3939 
3940 	return reg_01.bits.version;
3941 }
3942 #endif
3943 
3944 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3945 {
3946 	struct irq_desc *desc;
3947 	struct irq_cfg *cfg;
3948 	int cpu = boot_cpu_id;
3949 
3950 	if (!IO_APIC_IRQ(irq)) {
3951 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3952 			ioapic);
3953 		return -EINVAL;
3954 	}
3955 
3956 	desc = irq_to_desc_alloc_cpu(irq, cpu);
3957 	if (!desc) {
3958 		printk(KERN_INFO "can not get irq_desc %d\n", irq);
3959 		return 0;
3960 	}
3961 
3962 	/*
3963 	 * IRQs < 16 are already in the irq_2_pin[] map
3964 	 */
3965 	if (irq >= NR_IRQS_LEGACY) {
3966 		cfg = desc->chip_data;
3967 		add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3968 	}
3969 
3970 	setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3971 
3972 	return 0;
3973 }
3974 
3975 
3976 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3977 {
3978 	int i;
3979 
3980 	if (skip_ioapic_setup)
3981 		return -1;
3982 
3983 	for (i = 0; i < mp_irq_entries; i++)
3984 		if (mp_irqs[i].irqtype == mp_INT &&
3985 		    mp_irqs[i].srcbusirq == bus_irq)
3986 			break;
3987 	if (i >= mp_irq_entries)
3988 		return -1;
3989 
3990 	*trigger = irq_trigger(i);
3991 	*polarity = irq_polarity(i);
3992 	return 0;
3993 }
3994 
3995 #endif /* CONFIG_ACPI */
3996 
3997 /*
3998  * This function currently is only a helper for the i386 smp boot process where
3999  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4000  * so mask in all cases should simply be apic->target_cpus()
4001  */
4002 #ifdef CONFIG_SMP
4003 void __init setup_ioapic_dest(void)
4004 {
4005 	int pin, ioapic, irq, irq_entry;
4006 	struct irq_desc *desc;
4007 	struct irq_cfg *cfg;
4008 	const struct cpumask *mask;
4009 
4010 	if (skip_ioapic_setup == 1)
4011 		return;
4012 
4013 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4014 		for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4015 			irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4016 			if (irq_entry == -1)
4017 				continue;
4018 			irq = pin_2_irq(irq_entry, ioapic, pin);
4019 
4020 			/* setup_IO_APIC_irqs could fail to get vector for some device
4021 			 * when you have too many devices, because at that time only boot
4022 			 * cpu is online.
4023 			 */
4024 			desc = irq_to_desc(irq);
4025 			cfg = desc->chip_data;
4026 			if (!cfg->vector) {
4027 				setup_IO_APIC_irq(ioapic, pin, irq, desc,
4028 						  irq_trigger(irq_entry),
4029 						  irq_polarity(irq_entry));
4030 				continue;
4031 
4032 			}
4033 
4034 			/*
4035 			 * Honour affinities which have been set in early boot
4036 			 */
4037 			if (desc->status &
4038 			    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4039 				mask = desc->affinity;
4040 			else
4041 				mask = apic->target_cpus();
4042 
4043 			if (intr_remapping_enabled)
4044 				set_ir_ioapic_affinity_irq_desc(desc, mask);
4045 			else
4046 				set_ioapic_affinity_irq_desc(desc, mask);
4047 		}
4048 
4049 	}
4050 }
4051 #endif
4052 
4053 #define IOAPIC_RESOURCE_NAME_SIZE 11
4054 
4055 static struct resource *ioapic_resources;
4056 
4057 static struct resource * __init ioapic_setup_resources(void)
4058 {
4059 	unsigned long n;
4060 	struct resource *res;
4061 	char *mem;
4062 	int i;
4063 
4064 	if (nr_ioapics <= 0)
4065 		return NULL;
4066 
4067 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4068 	n *= nr_ioapics;
4069 
4070 	mem = alloc_bootmem(n);
4071 	res = (void *)mem;
4072 
4073 	if (mem != NULL) {
4074 		mem += sizeof(struct resource) * nr_ioapics;
4075 
4076 		for (i = 0; i < nr_ioapics; i++) {
4077 			res[i].name = mem;
4078 			res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4079 			sprintf(mem,  "IOAPIC %u", i);
4080 			mem += IOAPIC_RESOURCE_NAME_SIZE;
4081 		}
4082 	}
4083 
4084 	ioapic_resources = res;
4085 
4086 	return res;
4087 }
4088 
4089 void __init ioapic_init_mappings(void)
4090 {
4091 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4092 	struct resource *ioapic_res;
4093 	int i;
4094 
4095 	ioapic_res = ioapic_setup_resources();
4096 	for (i = 0; i < nr_ioapics; i++) {
4097 		if (smp_found_config) {
4098 			ioapic_phys = mp_ioapics[i].apicaddr;
4099 #ifdef CONFIG_X86_32
4100 			if (!ioapic_phys) {
4101 				printk(KERN_ERR
4102 				       "WARNING: bogus zero IO-APIC "
4103 				       "address found in MPTABLE, "
4104 				       "disabling IO/APIC support!\n");
4105 				smp_found_config = 0;
4106 				skip_ioapic_setup = 1;
4107 				goto fake_ioapic_page;
4108 			}
4109 #endif
4110 		} else {
4111 #ifdef CONFIG_X86_32
4112 fake_ioapic_page:
4113 #endif
4114 			ioapic_phys = (unsigned long)
4115 				alloc_bootmem_pages(PAGE_SIZE);
4116 			ioapic_phys = __pa(ioapic_phys);
4117 		}
4118 		set_fixmap_nocache(idx, ioapic_phys);
4119 		apic_printk(APIC_VERBOSE,
4120 			    "mapped IOAPIC to %08lx (%08lx)\n",
4121 			    __fix_to_virt(idx), ioapic_phys);
4122 		idx++;
4123 
4124 		if (ioapic_res != NULL) {
4125 			ioapic_res->start = ioapic_phys;
4126 			ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4127 			ioapic_res++;
4128 		}
4129 	}
4130 }
4131 
4132 static int __init ioapic_insert_resources(void)
4133 {
4134 	int i;
4135 	struct resource *r = ioapic_resources;
4136 
4137 	if (!r) {
4138 		if (nr_ioapics > 0) {
4139 			printk(KERN_ERR
4140 				"IO APIC resources couldn't be allocated.\n");
4141 			return -1;
4142 		}
4143 		return 0;
4144 	}
4145 
4146 	for (i = 0; i < nr_ioapics; i++) {
4147 		insert_resource(&iomem_resource, r);
4148 		r++;
4149 	}
4150 
4151 	return 0;
4152 }
4153 
4154 /* Insert the IO APIC resources after PCI initialization has occured to handle
4155  * IO APICS that are mapped in on a BAR in PCI space. */
4156 late_initcall(ioapic_insert_resources);
4157