xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision b627b4ed)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45 
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
64 
65 #include <asm/apic.h>
66 
67 #define __apicdebuginit(type) static type __init
68 
69 /*
70  *      Is the SiS APIC rmw bug present ?
71  *      -1 = don't know, 0 = no, 1 = yes
72  */
73 int sis_apic_bug = -1;
74 
75 static DEFINE_SPINLOCK(ioapic_lock);
76 static DEFINE_SPINLOCK(vector_lock);
77 
78 /*
79  * # of IRQ routing registers
80  */
81 int nr_ioapic_registers[MAX_IO_APICS];
82 
83 /* I/O APIC entries */
84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
85 int nr_ioapics;
86 
87 /* MP IRQ source entries */
88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
89 
90 /* # of MP IRQ source entries */
91 int mp_irq_entries;
92 
93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
94 int mp_bus_id_to_type[MAX_MP_BUSSES];
95 #endif
96 
97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
98 
99 int skip_ioapic_setup;
100 
101 void arch_disable_smp_support(void)
102 {
103 #ifdef CONFIG_PCI
104 	noioapicquirk = 1;
105 	noioapicreroute = -1;
106 #endif
107 	skip_ioapic_setup = 1;
108 }
109 
110 static int __init parse_noapic(char *str)
111 {
112 	/* disable IO-APIC */
113 	arch_disable_smp_support();
114 	return 0;
115 }
116 early_param("noapic", parse_noapic);
117 
118 struct irq_pin_list;
119 
120 /*
121  * This is performance-critical, we want to do it O(1)
122  *
123  * the indexing order of this array favors 1:1 mappings
124  * between pins and IRQs.
125  */
126 
127 struct irq_pin_list {
128 	int apic, pin;
129 	struct irq_pin_list *next;
130 };
131 
132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
133 {
134 	struct irq_pin_list *pin;
135 	int node;
136 
137 	node = cpu_to_node(cpu);
138 
139 	pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
140 
141 	return pin;
142 }
143 
144 struct irq_cfg {
145 	struct irq_pin_list *irq_2_pin;
146 	cpumask_var_t domain;
147 	cpumask_var_t old_domain;
148 	unsigned move_cleanup_count;
149 	u8 vector;
150 	u8 move_in_progress : 1;
151 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
152 	u8 move_desc_pending : 1;
153 #endif
154 };
155 
156 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
157 #ifdef CONFIG_SPARSE_IRQ
158 static struct irq_cfg irq_cfgx[] = {
159 #else
160 static struct irq_cfg irq_cfgx[NR_IRQS] = {
161 #endif
162 	[0]  = { .vector = IRQ0_VECTOR,  },
163 	[1]  = { .vector = IRQ1_VECTOR,  },
164 	[2]  = { .vector = IRQ2_VECTOR,  },
165 	[3]  = { .vector = IRQ3_VECTOR,  },
166 	[4]  = { .vector = IRQ4_VECTOR,  },
167 	[5]  = { .vector = IRQ5_VECTOR,  },
168 	[6]  = { .vector = IRQ6_VECTOR,  },
169 	[7]  = { .vector = IRQ7_VECTOR,  },
170 	[8]  = { .vector = IRQ8_VECTOR,  },
171 	[9]  = { .vector = IRQ9_VECTOR,  },
172 	[10] = { .vector = IRQ10_VECTOR, },
173 	[11] = { .vector = IRQ11_VECTOR, },
174 	[12] = { .vector = IRQ12_VECTOR, },
175 	[13] = { .vector = IRQ13_VECTOR, },
176 	[14] = { .vector = IRQ14_VECTOR, },
177 	[15] = { .vector = IRQ15_VECTOR, },
178 };
179 
180 int __init arch_early_irq_init(void)
181 {
182 	struct irq_cfg *cfg;
183 	struct irq_desc *desc;
184 	int count;
185 	int i;
186 
187 	cfg = irq_cfgx;
188 	count = ARRAY_SIZE(irq_cfgx);
189 
190 	for (i = 0; i < count; i++) {
191 		desc = irq_to_desc(i);
192 		desc->chip_data = &cfg[i];
193 		alloc_bootmem_cpumask_var(&cfg[i].domain);
194 		alloc_bootmem_cpumask_var(&cfg[i].old_domain);
195 		if (i < NR_IRQS_LEGACY)
196 			cpumask_setall(cfg[i].domain);
197 	}
198 
199 	return 0;
200 }
201 
202 #ifdef CONFIG_SPARSE_IRQ
203 static struct irq_cfg *irq_cfg(unsigned int irq)
204 {
205 	struct irq_cfg *cfg = NULL;
206 	struct irq_desc *desc;
207 
208 	desc = irq_to_desc(irq);
209 	if (desc)
210 		cfg = desc->chip_data;
211 
212 	return cfg;
213 }
214 
215 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
216 {
217 	struct irq_cfg *cfg;
218 	int node;
219 
220 	node = cpu_to_node(cpu);
221 
222 	cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
223 	if (cfg) {
224 		if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
225 			kfree(cfg);
226 			cfg = NULL;
227 		} else if (!alloc_cpumask_var_node(&cfg->old_domain,
228 							  GFP_ATOMIC, node)) {
229 			free_cpumask_var(cfg->domain);
230 			kfree(cfg);
231 			cfg = NULL;
232 		} else {
233 			cpumask_clear(cfg->domain);
234 			cpumask_clear(cfg->old_domain);
235 		}
236 	}
237 
238 	return cfg;
239 }
240 
241 int arch_init_chip_data(struct irq_desc *desc, int cpu)
242 {
243 	struct irq_cfg *cfg;
244 
245 	cfg = desc->chip_data;
246 	if (!cfg) {
247 		desc->chip_data = get_one_free_irq_cfg(cpu);
248 		if (!desc->chip_data) {
249 			printk(KERN_ERR "can not alloc irq_cfg\n");
250 			BUG_ON(1);
251 		}
252 	}
253 
254 	return 0;
255 }
256 
257 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
258 
259 static void
260 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
261 {
262 	struct irq_pin_list *old_entry, *head, *tail, *entry;
263 
264 	cfg->irq_2_pin = NULL;
265 	old_entry = old_cfg->irq_2_pin;
266 	if (!old_entry)
267 		return;
268 
269 	entry = get_one_free_irq_2_pin(cpu);
270 	if (!entry)
271 		return;
272 
273 	entry->apic	= old_entry->apic;
274 	entry->pin	= old_entry->pin;
275 	head		= entry;
276 	tail		= entry;
277 	old_entry	= old_entry->next;
278 	while (old_entry) {
279 		entry = get_one_free_irq_2_pin(cpu);
280 		if (!entry) {
281 			entry = head;
282 			while (entry) {
283 				head = entry->next;
284 				kfree(entry);
285 				entry = head;
286 			}
287 			/* still use the old one */
288 			return;
289 		}
290 		entry->apic	= old_entry->apic;
291 		entry->pin	= old_entry->pin;
292 		tail->next	= entry;
293 		tail		= entry;
294 		old_entry	= old_entry->next;
295 	}
296 
297 	tail->next = NULL;
298 	cfg->irq_2_pin = head;
299 }
300 
301 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
302 {
303 	struct irq_pin_list *entry, *next;
304 
305 	if (old_cfg->irq_2_pin == cfg->irq_2_pin)
306 		return;
307 
308 	entry = old_cfg->irq_2_pin;
309 
310 	while (entry) {
311 		next = entry->next;
312 		kfree(entry);
313 		entry = next;
314 	}
315 	old_cfg->irq_2_pin = NULL;
316 }
317 
318 void arch_init_copy_chip_data(struct irq_desc *old_desc,
319 				 struct irq_desc *desc, int cpu)
320 {
321 	struct irq_cfg *cfg;
322 	struct irq_cfg *old_cfg;
323 
324 	cfg = get_one_free_irq_cfg(cpu);
325 
326 	if (!cfg)
327 		return;
328 
329 	desc->chip_data = cfg;
330 
331 	old_cfg = old_desc->chip_data;
332 
333 	memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
334 
335 	init_copy_irq_2_pin(old_cfg, cfg, cpu);
336 }
337 
338 static void free_irq_cfg(struct irq_cfg *old_cfg)
339 {
340 	kfree(old_cfg);
341 }
342 
343 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
344 {
345 	struct irq_cfg *old_cfg, *cfg;
346 
347 	old_cfg = old_desc->chip_data;
348 	cfg = desc->chip_data;
349 
350 	if (old_cfg == cfg)
351 		return;
352 
353 	if (old_cfg) {
354 		free_irq_2_pin(old_cfg, cfg);
355 		free_irq_cfg(old_cfg);
356 		old_desc->chip_data = NULL;
357 	}
358 }
359 
360 static void
361 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
362 {
363 	struct irq_cfg *cfg = desc->chip_data;
364 
365 	if (!cfg->move_in_progress) {
366 		/* it means that domain is not changed */
367 		if (!cpumask_intersects(desc->affinity, mask))
368 			cfg->move_desc_pending = 1;
369 	}
370 }
371 #endif
372 
373 #else
374 static struct irq_cfg *irq_cfg(unsigned int irq)
375 {
376 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
377 }
378 
379 #endif
380 
381 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
382 static inline void
383 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
384 {
385 }
386 #endif
387 
388 struct io_apic {
389 	unsigned int index;
390 	unsigned int unused[3];
391 	unsigned int data;
392 	unsigned int unused2[11];
393 	unsigned int eoi;
394 };
395 
396 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
397 {
398 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
399 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
400 }
401 
402 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
403 {
404 	struct io_apic __iomem *io_apic = io_apic_base(apic);
405 	writel(vector, &io_apic->eoi);
406 }
407 
408 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
409 {
410 	struct io_apic __iomem *io_apic = io_apic_base(apic);
411 	writel(reg, &io_apic->index);
412 	return readl(&io_apic->data);
413 }
414 
415 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
416 {
417 	struct io_apic __iomem *io_apic = io_apic_base(apic);
418 	writel(reg, &io_apic->index);
419 	writel(value, &io_apic->data);
420 }
421 
422 /*
423  * Re-write a value: to be used for read-modify-write
424  * cycles where the read already set up the index register.
425  *
426  * Older SiS APIC requires we rewrite the index register
427  */
428 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
429 {
430 	struct io_apic __iomem *io_apic = io_apic_base(apic);
431 
432 	if (sis_apic_bug)
433 		writel(reg, &io_apic->index);
434 	writel(value, &io_apic->data);
435 }
436 
437 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
438 {
439 	struct irq_pin_list *entry;
440 	unsigned long flags;
441 
442 	spin_lock_irqsave(&ioapic_lock, flags);
443 	entry = cfg->irq_2_pin;
444 	for (;;) {
445 		unsigned int reg;
446 		int pin;
447 
448 		if (!entry)
449 			break;
450 		pin = entry->pin;
451 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
452 		/* Is the remote IRR bit set? */
453 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
454 			spin_unlock_irqrestore(&ioapic_lock, flags);
455 			return true;
456 		}
457 		if (!entry->next)
458 			break;
459 		entry = entry->next;
460 	}
461 	spin_unlock_irqrestore(&ioapic_lock, flags);
462 
463 	return false;
464 }
465 
466 union entry_union {
467 	struct { u32 w1, w2; };
468 	struct IO_APIC_route_entry entry;
469 };
470 
471 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
472 {
473 	union entry_union eu;
474 	unsigned long flags;
475 	spin_lock_irqsave(&ioapic_lock, flags);
476 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
477 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
478 	spin_unlock_irqrestore(&ioapic_lock, flags);
479 	return eu.entry;
480 }
481 
482 /*
483  * When we write a new IO APIC routing entry, we need to write the high
484  * word first! If the mask bit in the low word is clear, we will enable
485  * the interrupt, and we need to make sure the entry is fully populated
486  * before that happens.
487  */
488 static void
489 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
490 {
491 	union entry_union eu;
492 	eu.entry = e;
493 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
494 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
495 }
496 
497 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
498 {
499 	unsigned long flags;
500 	spin_lock_irqsave(&ioapic_lock, flags);
501 	__ioapic_write_entry(apic, pin, e);
502 	spin_unlock_irqrestore(&ioapic_lock, flags);
503 }
504 
505 /*
506  * When we mask an IO APIC routing entry, we need to write the low
507  * word first, in order to set the mask bit before we change the
508  * high bits!
509  */
510 static void ioapic_mask_entry(int apic, int pin)
511 {
512 	unsigned long flags;
513 	union entry_union eu = { .entry.mask = 1 };
514 
515 	spin_lock_irqsave(&ioapic_lock, flags);
516 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
517 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
518 	spin_unlock_irqrestore(&ioapic_lock, flags);
519 }
520 
521 #ifdef CONFIG_SMP
522 static void send_cleanup_vector(struct irq_cfg *cfg)
523 {
524 	cpumask_var_t cleanup_mask;
525 
526 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
527 		unsigned int i;
528 		cfg->move_cleanup_count = 0;
529 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
530 			cfg->move_cleanup_count++;
531 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
532 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
533 	} else {
534 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
535 		cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
536 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
537 		free_cpumask_var(cleanup_mask);
538 	}
539 	cfg->move_in_progress = 0;
540 }
541 
542 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
543 {
544 	int apic, pin;
545 	struct irq_pin_list *entry;
546 	u8 vector = cfg->vector;
547 
548 	entry = cfg->irq_2_pin;
549 	for (;;) {
550 		unsigned int reg;
551 
552 		if (!entry)
553 			break;
554 
555 		apic = entry->apic;
556 		pin = entry->pin;
557 		/*
558 		 * With interrupt-remapping, destination information comes
559 		 * from interrupt-remapping table entry.
560 		 */
561 		if (!irq_remapped(irq))
562 			io_apic_write(apic, 0x11 + pin*2, dest);
563 		reg = io_apic_read(apic, 0x10 + pin*2);
564 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
565 		reg |= vector;
566 		io_apic_modify(apic, 0x10 + pin*2, reg);
567 		if (!entry->next)
568 			break;
569 		entry = entry->next;
570 	}
571 }
572 
573 static int
574 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
575 
576 /*
577  * Either sets desc->affinity to a valid value, and returns
578  * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
579  * leaves desc->affinity untouched.
580  */
581 static unsigned int
582 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
583 {
584 	struct irq_cfg *cfg;
585 	unsigned int irq;
586 
587 	if (!cpumask_intersects(mask, cpu_online_mask))
588 		return BAD_APICID;
589 
590 	irq = desc->irq;
591 	cfg = desc->chip_data;
592 	if (assign_irq_vector(irq, cfg, mask))
593 		return BAD_APICID;
594 
595 	/* check that before desc->addinity get updated */
596 	set_extra_move_desc(desc, mask);
597 
598 	cpumask_copy(desc->affinity, mask);
599 
600 	return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
601 }
602 
603 static void
604 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
605 {
606 	struct irq_cfg *cfg;
607 	unsigned long flags;
608 	unsigned int dest;
609 	unsigned int irq;
610 
611 	irq = desc->irq;
612 	cfg = desc->chip_data;
613 
614 	spin_lock_irqsave(&ioapic_lock, flags);
615 	dest = set_desc_affinity(desc, mask);
616 	if (dest != BAD_APICID) {
617 		/* Only the high 8 bits are valid. */
618 		dest = SET_APIC_LOGICAL_ID(dest);
619 		__target_IO_APIC_irq(irq, dest, cfg);
620 	}
621 	spin_unlock_irqrestore(&ioapic_lock, flags);
622 }
623 
624 static void
625 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
626 {
627 	struct irq_desc *desc;
628 
629 	desc = irq_to_desc(irq);
630 
631 	set_ioapic_affinity_irq_desc(desc, mask);
632 }
633 #endif /* CONFIG_SMP */
634 
635 /*
636  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
637  * shared ISA-space IRQs, so we have to support them. We are super
638  * fast in the common case, and fast for shared ISA-space IRQs.
639  */
640 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
641 {
642 	struct irq_pin_list *entry;
643 
644 	entry = cfg->irq_2_pin;
645 	if (!entry) {
646 		entry = get_one_free_irq_2_pin(cpu);
647 		if (!entry) {
648 			printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
649 					apic, pin);
650 			return;
651 		}
652 		cfg->irq_2_pin = entry;
653 		entry->apic = apic;
654 		entry->pin = pin;
655 		return;
656 	}
657 
658 	while (entry->next) {
659 		/* not again, please */
660 		if (entry->apic == apic && entry->pin == pin)
661 			return;
662 
663 		entry = entry->next;
664 	}
665 
666 	entry->next = get_one_free_irq_2_pin(cpu);
667 	entry = entry->next;
668 	entry->apic = apic;
669 	entry->pin = pin;
670 }
671 
672 /*
673  * Reroute an IRQ to a different pin.
674  */
675 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
676 				      int oldapic, int oldpin,
677 				      int newapic, int newpin)
678 {
679 	struct irq_pin_list *entry = cfg->irq_2_pin;
680 	int replaced = 0;
681 
682 	while (entry) {
683 		if (entry->apic == oldapic && entry->pin == oldpin) {
684 			entry->apic = newapic;
685 			entry->pin = newpin;
686 			replaced = 1;
687 			/* every one is different, right? */
688 			break;
689 		}
690 		entry = entry->next;
691 	}
692 
693 	/* why? call replace before add? */
694 	if (!replaced)
695 		add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
696 }
697 
698 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
699 				int mask_and, int mask_or,
700 				void (*final)(struct irq_pin_list *entry))
701 {
702 	int pin;
703 	struct irq_pin_list *entry;
704 
705 	for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
706 		unsigned int reg;
707 		pin = entry->pin;
708 		reg = io_apic_read(entry->apic, 0x10 + pin * 2);
709 		reg &= mask_and;
710 		reg |= mask_or;
711 		io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
712 		if (final)
713 			final(entry);
714 	}
715 }
716 
717 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
718 {
719 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
720 }
721 
722 #ifdef CONFIG_X86_64
723 static void io_apic_sync(struct irq_pin_list *entry)
724 {
725 	/*
726 	 * Synchronize the IO-APIC and the CPU by doing
727 	 * a dummy read from the IO-APIC
728 	 */
729 	struct io_apic __iomem *io_apic;
730 	io_apic = io_apic_base(entry->apic);
731 	readl(&io_apic->data);
732 }
733 
734 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
735 {
736 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
737 }
738 #else /* CONFIG_X86_32 */
739 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
740 {
741 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
742 }
743 
744 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
745 {
746 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
747 			IO_APIC_REDIR_MASKED, NULL);
748 }
749 
750 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
751 {
752 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
753 			IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
754 }
755 #endif /* CONFIG_X86_32 */
756 
757 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
758 {
759 	struct irq_cfg *cfg = desc->chip_data;
760 	unsigned long flags;
761 
762 	BUG_ON(!cfg);
763 
764 	spin_lock_irqsave(&ioapic_lock, flags);
765 	__mask_IO_APIC_irq(cfg);
766 	spin_unlock_irqrestore(&ioapic_lock, flags);
767 }
768 
769 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
770 {
771 	struct irq_cfg *cfg = desc->chip_data;
772 	unsigned long flags;
773 
774 	spin_lock_irqsave(&ioapic_lock, flags);
775 	__unmask_IO_APIC_irq(cfg);
776 	spin_unlock_irqrestore(&ioapic_lock, flags);
777 }
778 
779 static void mask_IO_APIC_irq(unsigned int irq)
780 {
781 	struct irq_desc *desc = irq_to_desc(irq);
782 
783 	mask_IO_APIC_irq_desc(desc);
784 }
785 static void unmask_IO_APIC_irq(unsigned int irq)
786 {
787 	struct irq_desc *desc = irq_to_desc(irq);
788 
789 	unmask_IO_APIC_irq_desc(desc);
790 }
791 
792 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
793 {
794 	struct IO_APIC_route_entry entry;
795 
796 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
797 	entry = ioapic_read_entry(apic, pin);
798 	if (entry.delivery_mode == dest_SMI)
799 		return;
800 	/*
801 	 * Disable it in the IO-APIC irq-routing table:
802 	 */
803 	ioapic_mask_entry(apic, pin);
804 }
805 
806 static void clear_IO_APIC (void)
807 {
808 	int apic, pin;
809 
810 	for (apic = 0; apic < nr_ioapics; apic++)
811 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
812 			clear_IO_APIC_pin(apic, pin);
813 }
814 
815 #ifdef CONFIG_X86_32
816 /*
817  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
818  * specific CPU-side IRQs.
819  */
820 
821 #define MAX_PIRQS 8
822 static int pirq_entries[MAX_PIRQS] = {
823 	[0 ... MAX_PIRQS - 1] = -1
824 };
825 
826 static int __init ioapic_pirq_setup(char *str)
827 {
828 	int i, max;
829 	int ints[MAX_PIRQS+1];
830 
831 	get_options(str, ARRAY_SIZE(ints), ints);
832 
833 	apic_printk(APIC_VERBOSE, KERN_INFO
834 			"PIRQ redirection, working around broken MP-BIOS.\n");
835 	max = MAX_PIRQS;
836 	if (ints[0] < MAX_PIRQS)
837 		max = ints[0];
838 
839 	for (i = 0; i < max; i++) {
840 		apic_printk(APIC_VERBOSE, KERN_DEBUG
841 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
842 		/*
843 		 * PIRQs are mapped upside down, usually.
844 		 */
845 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
846 	}
847 	return 1;
848 }
849 
850 __setup("pirq=", ioapic_pirq_setup);
851 #endif /* CONFIG_X86_32 */
852 
853 #ifdef CONFIG_INTR_REMAP
854 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
855 {
856 	int apic;
857 	struct IO_APIC_route_entry **ioapic_entries;
858 
859 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
860 				GFP_ATOMIC);
861 	if (!ioapic_entries)
862 		return 0;
863 
864 	for (apic = 0; apic < nr_ioapics; apic++) {
865 		ioapic_entries[apic] =
866 			kzalloc(sizeof(struct IO_APIC_route_entry) *
867 				nr_ioapic_registers[apic], GFP_ATOMIC);
868 		if (!ioapic_entries[apic])
869 			goto nomem;
870 	}
871 
872 	return ioapic_entries;
873 
874 nomem:
875 	while (--apic >= 0)
876 		kfree(ioapic_entries[apic]);
877 	kfree(ioapic_entries);
878 
879 	return 0;
880 }
881 
882 /*
883  * Saves all the IO-APIC RTE's
884  */
885 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
886 {
887 	int apic, pin;
888 
889 	if (!ioapic_entries)
890 		return -ENOMEM;
891 
892 	for (apic = 0; apic < nr_ioapics; apic++) {
893 		if (!ioapic_entries[apic])
894 			return -ENOMEM;
895 
896 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
897 			ioapic_entries[apic][pin] =
898 				ioapic_read_entry(apic, pin);
899 	}
900 
901 	return 0;
902 }
903 
904 /*
905  * Mask all IO APIC entries.
906  */
907 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
908 {
909 	int apic, pin;
910 
911 	if (!ioapic_entries)
912 		return;
913 
914 	for (apic = 0; apic < nr_ioapics; apic++) {
915 		if (!ioapic_entries[apic])
916 			break;
917 
918 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
919 			struct IO_APIC_route_entry entry;
920 
921 			entry = ioapic_entries[apic][pin];
922 			if (!entry.mask) {
923 				entry.mask = 1;
924 				ioapic_write_entry(apic, pin, entry);
925 			}
926 		}
927 	}
928 }
929 
930 /*
931  * Restore IO APIC entries which was saved in ioapic_entries.
932  */
933 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
934 {
935 	int apic, pin;
936 
937 	if (!ioapic_entries)
938 		return -ENOMEM;
939 
940 	for (apic = 0; apic < nr_ioapics; apic++) {
941 		if (!ioapic_entries[apic])
942 			return -ENOMEM;
943 
944 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
945 			ioapic_write_entry(apic, pin,
946 					ioapic_entries[apic][pin]);
947 	}
948 	return 0;
949 }
950 
951 void reinit_intr_remapped_IO_APIC(int intr_remapping,
952 	struct IO_APIC_route_entry **ioapic_entries)
953 
954 {
955 	/*
956 	 * for now plain restore of previous settings.
957 	 * TBD: In the case of OS enabling interrupt-remapping,
958 	 * IO-APIC RTE's need to be setup to point to interrupt-remapping
959 	 * table entries. for now, do a plain restore, and wait for
960 	 * the setup_IO_APIC_irqs() to do proper initialization.
961 	 */
962 	restore_IO_APIC_setup(ioapic_entries);
963 }
964 
965 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
966 {
967 	int apic;
968 
969 	for (apic = 0; apic < nr_ioapics; apic++)
970 		kfree(ioapic_entries[apic]);
971 
972 	kfree(ioapic_entries);
973 }
974 #endif
975 
976 /*
977  * Find the IRQ entry number of a certain pin.
978  */
979 static int find_irq_entry(int apic, int pin, int type)
980 {
981 	int i;
982 
983 	for (i = 0; i < mp_irq_entries; i++)
984 		if (mp_irqs[i].irqtype == type &&
985 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
986 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
987 		    mp_irqs[i].dstirq == pin)
988 			return i;
989 
990 	return -1;
991 }
992 
993 /*
994  * Find the pin to which IRQ[irq] (ISA) is connected
995  */
996 static int __init find_isa_irq_pin(int irq, int type)
997 {
998 	int i;
999 
1000 	for (i = 0; i < mp_irq_entries; i++) {
1001 		int lbus = mp_irqs[i].srcbus;
1002 
1003 		if (test_bit(lbus, mp_bus_not_pci) &&
1004 		    (mp_irqs[i].irqtype == type) &&
1005 		    (mp_irqs[i].srcbusirq == irq))
1006 
1007 			return mp_irqs[i].dstirq;
1008 	}
1009 	return -1;
1010 }
1011 
1012 static int __init find_isa_irq_apic(int irq, int type)
1013 {
1014 	int i;
1015 
1016 	for (i = 0; i < mp_irq_entries; i++) {
1017 		int lbus = mp_irqs[i].srcbus;
1018 
1019 		if (test_bit(lbus, mp_bus_not_pci) &&
1020 		    (mp_irqs[i].irqtype == type) &&
1021 		    (mp_irqs[i].srcbusirq == irq))
1022 			break;
1023 	}
1024 	if (i < mp_irq_entries) {
1025 		int apic;
1026 		for(apic = 0; apic < nr_ioapics; apic++) {
1027 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
1028 				return apic;
1029 		}
1030 	}
1031 
1032 	return -1;
1033 }
1034 
1035 /*
1036  * Find a specific PCI IRQ entry.
1037  * Not an __init, possibly needed by modules
1038  */
1039 static int pin_2_irq(int idx, int apic, int pin);
1040 
1041 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1042 {
1043 	int apic, i, best_guess = -1;
1044 
1045 	apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1046 		bus, slot, pin);
1047 	if (test_bit(bus, mp_bus_not_pci)) {
1048 		apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1049 		return -1;
1050 	}
1051 	for (i = 0; i < mp_irq_entries; i++) {
1052 		int lbus = mp_irqs[i].srcbus;
1053 
1054 		for (apic = 0; apic < nr_ioapics; apic++)
1055 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1056 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1057 				break;
1058 
1059 		if (!test_bit(lbus, mp_bus_not_pci) &&
1060 		    !mp_irqs[i].irqtype &&
1061 		    (bus == lbus) &&
1062 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1063 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1064 
1065 			if (!(apic || IO_APIC_IRQ(irq)))
1066 				continue;
1067 
1068 			if (pin == (mp_irqs[i].srcbusirq & 3))
1069 				return irq;
1070 			/*
1071 			 * Use the first all-but-pin matching entry as a
1072 			 * best-guess fuzzy result for broken mptables.
1073 			 */
1074 			if (best_guess < 0)
1075 				best_guess = irq;
1076 		}
1077 	}
1078 	return best_guess;
1079 }
1080 
1081 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1082 
1083 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1084 /*
1085  * EISA Edge/Level control register, ELCR
1086  */
1087 static int EISA_ELCR(unsigned int irq)
1088 {
1089 	if (irq < NR_IRQS_LEGACY) {
1090 		unsigned int port = 0x4d0 + (irq >> 3);
1091 		return (inb(port) >> (irq & 7)) & 1;
1092 	}
1093 	apic_printk(APIC_VERBOSE, KERN_INFO
1094 			"Broken MPtable reports ISA irq %d\n", irq);
1095 	return 0;
1096 }
1097 
1098 #endif
1099 
1100 /* ISA interrupts are always polarity zero edge triggered,
1101  * when listed as conforming in the MP table. */
1102 
1103 #define default_ISA_trigger(idx)	(0)
1104 #define default_ISA_polarity(idx)	(0)
1105 
1106 /* EISA interrupts are always polarity zero and can be edge or level
1107  * trigger depending on the ELCR value.  If an interrupt is listed as
1108  * EISA conforming in the MP table, that means its trigger type must
1109  * be read in from the ELCR */
1110 
1111 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
1112 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
1113 
1114 /* PCI interrupts are always polarity one level triggered,
1115  * when listed as conforming in the MP table. */
1116 
1117 #define default_PCI_trigger(idx)	(1)
1118 #define default_PCI_polarity(idx)	(1)
1119 
1120 /* MCA interrupts are always polarity zero level triggered,
1121  * when listed as conforming in the MP table. */
1122 
1123 #define default_MCA_trigger(idx)	(1)
1124 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
1125 
1126 static int MPBIOS_polarity(int idx)
1127 {
1128 	int bus = mp_irqs[idx].srcbus;
1129 	int polarity;
1130 
1131 	/*
1132 	 * Determine IRQ line polarity (high active or low active):
1133 	 */
1134 	switch (mp_irqs[idx].irqflag & 3)
1135 	{
1136 		case 0: /* conforms, ie. bus-type dependent polarity */
1137 			if (test_bit(bus, mp_bus_not_pci))
1138 				polarity = default_ISA_polarity(idx);
1139 			else
1140 				polarity = default_PCI_polarity(idx);
1141 			break;
1142 		case 1: /* high active */
1143 		{
1144 			polarity = 0;
1145 			break;
1146 		}
1147 		case 2: /* reserved */
1148 		{
1149 			printk(KERN_WARNING "broken BIOS!!\n");
1150 			polarity = 1;
1151 			break;
1152 		}
1153 		case 3: /* low active */
1154 		{
1155 			polarity = 1;
1156 			break;
1157 		}
1158 		default: /* invalid */
1159 		{
1160 			printk(KERN_WARNING "broken BIOS!!\n");
1161 			polarity = 1;
1162 			break;
1163 		}
1164 	}
1165 	return polarity;
1166 }
1167 
1168 static int MPBIOS_trigger(int idx)
1169 {
1170 	int bus = mp_irqs[idx].srcbus;
1171 	int trigger;
1172 
1173 	/*
1174 	 * Determine IRQ trigger mode (edge or level sensitive):
1175 	 */
1176 	switch ((mp_irqs[idx].irqflag>>2) & 3)
1177 	{
1178 		case 0: /* conforms, ie. bus-type dependent */
1179 			if (test_bit(bus, mp_bus_not_pci))
1180 				trigger = default_ISA_trigger(idx);
1181 			else
1182 				trigger = default_PCI_trigger(idx);
1183 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1184 			switch (mp_bus_id_to_type[bus]) {
1185 				case MP_BUS_ISA: /* ISA pin */
1186 				{
1187 					/* set before the switch */
1188 					break;
1189 				}
1190 				case MP_BUS_EISA: /* EISA pin */
1191 				{
1192 					trigger = default_EISA_trigger(idx);
1193 					break;
1194 				}
1195 				case MP_BUS_PCI: /* PCI pin */
1196 				{
1197 					/* set before the switch */
1198 					break;
1199 				}
1200 				case MP_BUS_MCA: /* MCA pin */
1201 				{
1202 					trigger = default_MCA_trigger(idx);
1203 					break;
1204 				}
1205 				default:
1206 				{
1207 					printk(KERN_WARNING "broken BIOS!!\n");
1208 					trigger = 1;
1209 					break;
1210 				}
1211 			}
1212 #endif
1213 			break;
1214 		case 1: /* edge */
1215 		{
1216 			trigger = 0;
1217 			break;
1218 		}
1219 		case 2: /* reserved */
1220 		{
1221 			printk(KERN_WARNING "broken BIOS!!\n");
1222 			trigger = 1;
1223 			break;
1224 		}
1225 		case 3: /* level */
1226 		{
1227 			trigger = 1;
1228 			break;
1229 		}
1230 		default: /* invalid */
1231 		{
1232 			printk(KERN_WARNING "broken BIOS!!\n");
1233 			trigger = 0;
1234 			break;
1235 		}
1236 	}
1237 	return trigger;
1238 }
1239 
1240 static inline int irq_polarity(int idx)
1241 {
1242 	return MPBIOS_polarity(idx);
1243 }
1244 
1245 static inline int irq_trigger(int idx)
1246 {
1247 	return MPBIOS_trigger(idx);
1248 }
1249 
1250 int (*ioapic_renumber_irq)(int ioapic, int irq);
1251 static int pin_2_irq(int idx, int apic, int pin)
1252 {
1253 	int irq, i;
1254 	int bus = mp_irqs[idx].srcbus;
1255 
1256 	/*
1257 	 * Debugging check, we are in big trouble if this message pops up!
1258 	 */
1259 	if (mp_irqs[idx].dstirq != pin)
1260 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1261 
1262 	if (test_bit(bus, mp_bus_not_pci)) {
1263 		irq = mp_irqs[idx].srcbusirq;
1264 	} else {
1265 		/*
1266 		 * PCI IRQs are mapped in order
1267 		 */
1268 		i = irq = 0;
1269 		while (i < apic)
1270 			irq += nr_ioapic_registers[i++];
1271 		irq += pin;
1272 		/*
1273                  * For MPS mode, so far only needed by ES7000 platform
1274                  */
1275 		if (ioapic_renumber_irq)
1276 			irq = ioapic_renumber_irq(apic, irq);
1277 	}
1278 
1279 #ifdef CONFIG_X86_32
1280 	/*
1281 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1282 	 */
1283 	if ((pin >= 16) && (pin <= 23)) {
1284 		if (pirq_entries[pin-16] != -1) {
1285 			if (!pirq_entries[pin-16]) {
1286 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1287 						"disabling PIRQ%d\n", pin-16);
1288 			} else {
1289 				irq = pirq_entries[pin-16];
1290 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1291 						"using PIRQ%d -> IRQ %d\n",
1292 						pin-16, irq);
1293 			}
1294 		}
1295 	}
1296 #endif
1297 
1298 	return irq;
1299 }
1300 
1301 void lock_vector_lock(void)
1302 {
1303 	/* Used to the online set of cpus does not change
1304 	 * during assign_irq_vector.
1305 	 */
1306 	spin_lock(&vector_lock);
1307 }
1308 
1309 void unlock_vector_lock(void)
1310 {
1311 	spin_unlock(&vector_lock);
1312 }
1313 
1314 static int
1315 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1316 {
1317 	/*
1318 	 * NOTE! The local APIC isn't very good at handling
1319 	 * multiple interrupts at the same interrupt level.
1320 	 * As the interrupt level is determined by taking the
1321 	 * vector number and shifting that right by 4, we
1322 	 * want to spread these out a bit so that they don't
1323 	 * all fall in the same interrupt level.
1324 	 *
1325 	 * Also, we've got to be careful not to trash gate
1326 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1327 	 */
1328 	static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1329 	unsigned int old_vector;
1330 	int cpu, err;
1331 	cpumask_var_t tmp_mask;
1332 
1333 	if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1334 		return -EBUSY;
1335 
1336 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1337 		return -ENOMEM;
1338 
1339 	old_vector = cfg->vector;
1340 	if (old_vector) {
1341 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1342 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1343 		if (!cpumask_empty(tmp_mask)) {
1344 			free_cpumask_var(tmp_mask);
1345 			return 0;
1346 		}
1347 	}
1348 
1349 	/* Only try and allocate irqs on cpus that are present */
1350 	err = -ENOSPC;
1351 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1352 		int new_cpu;
1353 		int vector, offset;
1354 
1355 		apic->vector_allocation_domain(cpu, tmp_mask);
1356 
1357 		vector = current_vector;
1358 		offset = current_offset;
1359 next:
1360 		vector += 8;
1361 		if (vector >= first_system_vector) {
1362 			/* If out of vectors on large boxen, must share them. */
1363 			offset = (offset + 1) % 8;
1364 			vector = FIRST_DEVICE_VECTOR + offset;
1365 		}
1366 		if (unlikely(current_vector == vector))
1367 			continue;
1368 
1369 		if (test_bit(vector, used_vectors))
1370 			goto next;
1371 
1372 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1373 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1374 				goto next;
1375 		/* Found one! */
1376 		current_vector = vector;
1377 		current_offset = offset;
1378 		if (old_vector) {
1379 			cfg->move_in_progress = 1;
1380 			cpumask_copy(cfg->old_domain, cfg->domain);
1381 		}
1382 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1383 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1384 		cfg->vector = vector;
1385 		cpumask_copy(cfg->domain, tmp_mask);
1386 		err = 0;
1387 		break;
1388 	}
1389 	free_cpumask_var(tmp_mask);
1390 	return err;
1391 }
1392 
1393 static int
1394 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1395 {
1396 	int err;
1397 	unsigned long flags;
1398 
1399 	spin_lock_irqsave(&vector_lock, flags);
1400 	err = __assign_irq_vector(irq, cfg, mask);
1401 	spin_unlock_irqrestore(&vector_lock, flags);
1402 	return err;
1403 }
1404 
1405 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1406 {
1407 	int cpu, vector;
1408 
1409 	BUG_ON(!cfg->vector);
1410 
1411 	vector = cfg->vector;
1412 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1413 		per_cpu(vector_irq, cpu)[vector] = -1;
1414 
1415 	cfg->vector = 0;
1416 	cpumask_clear(cfg->domain);
1417 
1418 	if (likely(!cfg->move_in_progress))
1419 		return;
1420 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1421 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1422 								vector++) {
1423 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1424 				continue;
1425 			per_cpu(vector_irq, cpu)[vector] = -1;
1426 			break;
1427 		}
1428 	}
1429 	cfg->move_in_progress = 0;
1430 }
1431 
1432 void __setup_vector_irq(int cpu)
1433 {
1434 	/* Initialize vector_irq on a new cpu */
1435 	/* This function must be called with vector_lock held */
1436 	int irq, vector;
1437 	struct irq_cfg *cfg;
1438 	struct irq_desc *desc;
1439 
1440 	/* Mark the inuse vectors */
1441 	for_each_irq_desc(irq, desc) {
1442 		cfg = desc->chip_data;
1443 		if (!cpumask_test_cpu(cpu, cfg->domain))
1444 			continue;
1445 		vector = cfg->vector;
1446 		per_cpu(vector_irq, cpu)[vector] = irq;
1447 	}
1448 	/* Mark the free vectors */
1449 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1450 		irq = per_cpu(vector_irq, cpu)[vector];
1451 		if (irq < 0)
1452 			continue;
1453 
1454 		cfg = irq_cfg(irq);
1455 		if (!cpumask_test_cpu(cpu, cfg->domain))
1456 			per_cpu(vector_irq, cpu)[vector] = -1;
1457 	}
1458 }
1459 
1460 static struct irq_chip ioapic_chip;
1461 static struct irq_chip ir_ioapic_chip;
1462 
1463 #define IOAPIC_AUTO     -1
1464 #define IOAPIC_EDGE     0
1465 #define IOAPIC_LEVEL    1
1466 
1467 #ifdef CONFIG_X86_32
1468 static inline int IO_APIC_irq_trigger(int irq)
1469 {
1470 	int apic, idx, pin;
1471 
1472 	for (apic = 0; apic < nr_ioapics; apic++) {
1473 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1474 			idx = find_irq_entry(apic, pin, mp_INT);
1475 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1476 				return irq_trigger(idx);
1477 		}
1478 	}
1479 	/*
1480          * nonexistent IRQs are edge default
1481          */
1482 	return 0;
1483 }
1484 #else
1485 static inline int IO_APIC_irq_trigger(int irq)
1486 {
1487 	return 1;
1488 }
1489 #endif
1490 
1491 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1492 {
1493 
1494 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1495 	    trigger == IOAPIC_LEVEL)
1496 		desc->status |= IRQ_LEVEL;
1497 	else
1498 		desc->status &= ~IRQ_LEVEL;
1499 
1500 	if (irq_remapped(irq)) {
1501 		desc->status |= IRQ_MOVE_PCNTXT;
1502 		if (trigger)
1503 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1504 						      handle_fasteoi_irq,
1505 						     "fasteoi");
1506 		else
1507 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1508 						      handle_edge_irq, "edge");
1509 		return;
1510 	}
1511 
1512 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1513 	    trigger == IOAPIC_LEVEL)
1514 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1515 					      handle_fasteoi_irq,
1516 					      "fasteoi");
1517 	else
1518 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1519 					      handle_edge_irq, "edge");
1520 }
1521 
1522 int setup_ioapic_entry(int apic_id, int irq,
1523 		       struct IO_APIC_route_entry *entry,
1524 		       unsigned int destination, int trigger,
1525 		       int polarity, int vector, int pin)
1526 {
1527 	/*
1528 	 * add it to the IO-APIC irq-routing table:
1529 	 */
1530 	memset(entry,0,sizeof(*entry));
1531 
1532 	if (intr_remapping_enabled) {
1533 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1534 		struct irte irte;
1535 		struct IR_IO_APIC_route_entry *ir_entry =
1536 			(struct IR_IO_APIC_route_entry *) entry;
1537 		int index;
1538 
1539 		if (!iommu)
1540 			panic("No mapping iommu for ioapic %d\n", apic_id);
1541 
1542 		index = alloc_irte(iommu, irq, 1);
1543 		if (index < 0)
1544 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1545 
1546 		memset(&irte, 0, sizeof(irte));
1547 
1548 		irte.present = 1;
1549 		irte.dst_mode = apic->irq_dest_mode;
1550 		/*
1551 		 * Trigger mode in the IRTE will always be edge, and the
1552 		 * actual level or edge trigger will be setup in the IO-APIC
1553 		 * RTE. This will help simplify level triggered irq migration.
1554 		 * For more details, see the comments above explainig IO-APIC
1555 		 * irq migration in the presence of interrupt-remapping.
1556 		 */
1557 		irte.trigger_mode = 0;
1558 		irte.dlvry_mode = apic->irq_delivery_mode;
1559 		irte.vector = vector;
1560 		irte.dest_id = IRTE_DEST(destination);
1561 
1562 		modify_irte(irq, &irte);
1563 
1564 		ir_entry->index2 = (index >> 15) & 0x1;
1565 		ir_entry->zero = 0;
1566 		ir_entry->format = 1;
1567 		ir_entry->index = (index & 0x7fff);
1568 		/*
1569 		 * IO-APIC RTE will be configured with virtual vector.
1570 		 * irq handler will do the explicit EOI to the io-apic.
1571 		 */
1572 		ir_entry->vector = pin;
1573 	} else {
1574 		entry->delivery_mode = apic->irq_delivery_mode;
1575 		entry->dest_mode = apic->irq_dest_mode;
1576 		entry->dest = destination;
1577 		entry->vector = vector;
1578 	}
1579 
1580 	entry->mask = 0;				/* enable IRQ */
1581 	entry->trigger = trigger;
1582 	entry->polarity = polarity;
1583 
1584 	/* Mask level triggered irqs.
1585 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1586 	 */
1587 	if (trigger)
1588 		entry->mask = 1;
1589 	return 0;
1590 }
1591 
1592 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1593 			      int trigger, int polarity)
1594 {
1595 	struct irq_cfg *cfg;
1596 	struct IO_APIC_route_entry entry;
1597 	unsigned int dest;
1598 
1599 	if (!IO_APIC_IRQ(irq))
1600 		return;
1601 
1602 	cfg = desc->chip_data;
1603 
1604 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1605 		return;
1606 
1607 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1608 
1609 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1610 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1611 		    "IRQ %d Mode:%i Active:%i)\n",
1612 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1613 		    irq, trigger, polarity);
1614 
1615 
1616 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1617 			       dest, trigger, polarity, cfg->vector, pin)) {
1618 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1619 		       mp_ioapics[apic_id].apicid, pin);
1620 		__clear_irq_vector(irq, cfg);
1621 		return;
1622 	}
1623 
1624 	ioapic_register_intr(irq, desc, trigger);
1625 	if (irq < NR_IRQS_LEGACY)
1626 		disable_8259A_irq(irq);
1627 
1628 	ioapic_write_entry(apic_id, pin, entry);
1629 }
1630 
1631 static void __init setup_IO_APIC_irqs(void)
1632 {
1633 	int apic_id, pin, idx, irq;
1634 	int notcon = 0;
1635 	struct irq_desc *desc;
1636 	struct irq_cfg *cfg;
1637 	int cpu = boot_cpu_id;
1638 
1639 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1640 
1641 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1642 		for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1643 
1644 			idx = find_irq_entry(apic_id, pin, mp_INT);
1645 			if (idx == -1) {
1646 				if (!notcon) {
1647 					notcon = 1;
1648 					apic_printk(APIC_VERBOSE,
1649 						KERN_DEBUG " %d-%d",
1650 						mp_ioapics[apic_id].apicid, pin);
1651 				} else
1652 					apic_printk(APIC_VERBOSE, " %d-%d",
1653 						mp_ioapics[apic_id].apicid, pin);
1654 				continue;
1655 			}
1656 			if (notcon) {
1657 				apic_printk(APIC_VERBOSE,
1658 					" (apicid-pin) not connected\n");
1659 				notcon = 0;
1660 			}
1661 
1662 			irq = pin_2_irq(idx, apic_id, pin);
1663 
1664 			/*
1665 			 * Skip the timer IRQ if there's a quirk handler
1666 			 * installed and if it returns 1:
1667 			 */
1668 			if (apic->multi_timer_check &&
1669 					apic->multi_timer_check(apic_id, irq))
1670 				continue;
1671 
1672 			desc = irq_to_desc_alloc_cpu(irq, cpu);
1673 			if (!desc) {
1674 				printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1675 				continue;
1676 			}
1677 			cfg = desc->chip_data;
1678 			add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1679 
1680 			setup_IO_APIC_irq(apic_id, pin, irq, desc,
1681 					irq_trigger(idx), irq_polarity(idx));
1682 		}
1683 	}
1684 
1685 	if (notcon)
1686 		apic_printk(APIC_VERBOSE,
1687 			" (apicid-pin) not connected\n");
1688 }
1689 
1690 /*
1691  * Set up the timer pin, possibly with the 8259A-master behind.
1692  */
1693 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1694 					int vector)
1695 {
1696 	struct IO_APIC_route_entry entry;
1697 
1698 	if (intr_remapping_enabled)
1699 		return;
1700 
1701 	memset(&entry, 0, sizeof(entry));
1702 
1703 	/*
1704 	 * We use logical delivery to get the timer IRQ
1705 	 * to the first CPU.
1706 	 */
1707 	entry.dest_mode = apic->irq_dest_mode;
1708 	entry.mask = 0;			/* don't mask IRQ for edge */
1709 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1710 	entry.delivery_mode = apic->irq_delivery_mode;
1711 	entry.polarity = 0;
1712 	entry.trigger = 0;
1713 	entry.vector = vector;
1714 
1715 	/*
1716 	 * The timer IRQ doesn't have to know that behind the
1717 	 * scene we may have a 8259A-master in AEOI mode ...
1718 	 */
1719 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1720 
1721 	/*
1722 	 * Add it to the IO-APIC irq-routing table:
1723 	 */
1724 	ioapic_write_entry(apic_id, pin, entry);
1725 }
1726 
1727 
1728 __apicdebuginit(void) print_IO_APIC(void)
1729 {
1730 	int apic, i;
1731 	union IO_APIC_reg_00 reg_00;
1732 	union IO_APIC_reg_01 reg_01;
1733 	union IO_APIC_reg_02 reg_02;
1734 	union IO_APIC_reg_03 reg_03;
1735 	unsigned long flags;
1736 	struct irq_cfg *cfg;
1737 	struct irq_desc *desc;
1738 	unsigned int irq;
1739 
1740 	if (apic_verbosity == APIC_QUIET)
1741 		return;
1742 
1743 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1744 	for (i = 0; i < nr_ioapics; i++)
1745 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1746 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1747 
1748 	/*
1749 	 * We are a bit conservative about what we expect.  We have to
1750 	 * know about every hardware change ASAP.
1751 	 */
1752 	printk(KERN_INFO "testing the IO APIC.......................\n");
1753 
1754 	for (apic = 0; apic < nr_ioapics; apic++) {
1755 
1756 	spin_lock_irqsave(&ioapic_lock, flags);
1757 	reg_00.raw = io_apic_read(apic, 0);
1758 	reg_01.raw = io_apic_read(apic, 1);
1759 	if (reg_01.bits.version >= 0x10)
1760 		reg_02.raw = io_apic_read(apic, 2);
1761 	if (reg_01.bits.version >= 0x20)
1762 		reg_03.raw = io_apic_read(apic, 3);
1763 	spin_unlock_irqrestore(&ioapic_lock, flags);
1764 
1765 	printk("\n");
1766 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1767 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1768 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1769 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1770 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1771 
1772 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1773 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1774 
1775 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1776 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1777 
1778 	/*
1779 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1780 	 * but the value of reg_02 is read as the previous read register
1781 	 * value, so ignore it if reg_02 == reg_01.
1782 	 */
1783 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1784 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1785 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1786 	}
1787 
1788 	/*
1789 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1790 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1791 	 * register value, so ignore it if reg_03 == reg_0[12].
1792 	 */
1793 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1794 	    reg_03.raw != reg_01.raw) {
1795 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1796 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1797 	}
1798 
1799 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1800 
1801 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1802 			  " Stat Dmod Deli Vect:   \n");
1803 
1804 	for (i = 0; i <= reg_01.bits.entries; i++) {
1805 		struct IO_APIC_route_entry entry;
1806 
1807 		entry = ioapic_read_entry(apic, i);
1808 
1809 		printk(KERN_DEBUG " %02x %03X ",
1810 			i,
1811 			entry.dest
1812 		);
1813 
1814 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1815 			entry.mask,
1816 			entry.trigger,
1817 			entry.irr,
1818 			entry.polarity,
1819 			entry.delivery_status,
1820 			entry.dest_mode,
1821 			entry.delivery_mode,
1822 			entry.vector
1823 		);
1824 	}
1825 	}
1826 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1827 	for_each_irq_desc(irq, desc) {
1828 		struct irq_pin_list *entry;
1829 
1830 		cfg = desc->chip_data;
1831 		entry = cfg->irq_2_pin;
1832 		if (!entry)
1833 			continue;
1834 		printk(KERN_DEBUG "IRQ%d ", irq);
1835 		for (;;) {
1836 			printk("-> %d:%d", entry->apic, entry->pin);
1837 			if (!entry->next)
1838 				break;
1839 			entry = entry->next;
1840 		}
1841 		printk("\n");
1842 	}
1843 
1844 	printk(KERN_INFO ".................................... done.\n");
1845 
1846 	return;
1847 }
1848 
1849 __apicdebuginit(void) print_APIC_bitfield(int base)
1850 {
1851 	unsigned int v;
1852 	int i, j;
1853 
1854 	if (apic_verbosity == APIC_QUIET)
1855 		return;
1856 
1857 	printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1858 	for (i = 0; i < 8; i++) {
1859 		v = apic_read(base + i*0x10);
1860 		for (j = 0; j < 32; j++) {
1861 			if (v & (1<<j))
1862 				printk("1");
1863 			else
1864 				printk("0");
1865 		}
1866 		printk("\n");
1867 	}
1868 }
1869 
1870 __apicdebuginit(void) print_local_APIC(void *dummy)
1871 {
1872 	unsigned int v, ver, maxlvt;
1873 	u64 icr;
1874 
1875 	if (apic_verbosity == APIC_QUIET)
1876 		return;
1877 
1878 	printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1879 		smp_processor_id(), hard_smp_processor_id());
1880 	v = apic_read(APIC_ID);
1881 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1882 	v = apic_read(APIC_LVR);
1883 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1884 	ver = GET_APIC_VERSION(v);
1885 	maxlvt = lapic_get_maxlvt();
1886 
1887 	v = apic_read(APIC_TASKPRI);
1888 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1889 
1890 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1891 		if (!APIC_XAPIC(ver)) {
1892 			v = apic_read(APIC_ARBPRI);
1893 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1894 			       v & APIC_ARBPRI_MASK);
1895 		}
1896 		v = apic_read(APIC_PROCPRI);
1897 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1898 	}
1899 
1900 	/*
1901 	 * Remote read supported only in the 82489DX and local APIC for
1902 	 * Pentium processors.
1903 	 */
1904 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1905 		v = apic_read(APIC_RRR);
1906 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1907 	}
1908 
1909 	v = apic_read(APIC_LDR);
1910 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1911 	if (!x2apic_enabled()) {
1912 		v = apic_read(APIC_DFR);
1913 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1914 	}
1915 	v = apic_read(APIC_SPIV);
1916 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1917 
1918 	printk(KERN_DEBUG "... APIC ISR field:\n");
1919 	print_APIC_bitfield(APIC_ISR);
1920 	printk(KERN_DEBUG "... APIC TMR field:\n");
1921 	print_APIC_bitfield(APIC_TMR);
1922 	printk(KERN_DEBUG "... APIC IRR field:\n");
1923 	print_APIC_bitfield(APIC_IRR);
1924 
1925 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1926 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1927 			apic_write(APIC_ESR, 0);
1928 
1929 		v = apic_read(APIC_ESR);
1930 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1931 	}
1932 
1933 	icr = apic_icr_read();
1934 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1935 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1936 
1937 	v = apic_read(APIC_LVTT);
1938 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1939 
1940 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1941 		v = apic_read(APIC_LVTPC);
1942 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1943 	}
1944 	v = apic_read(APIC_LVT0);
1945 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1946 	v = apic_read(APIC_LVT1);
1947 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1948 
1949 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1950 		v = apic_read(APIC_LVTERR);
1951 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1952 	}
1953 
1954 	v = apic_read(APIC_TMICT);
1955 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1956 	v = apic_read(APIC_TMCCT);
1957 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1958 	v = apic_read(APIC_TDCR);
1959 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1960 	printk("\n");
1961 }
1962 
1963 __apicdebuginit(void) print_all_local_APICs(void)
1964 {
1965 	int cpu;
1966 
1967 	preempt_disable();
1968 	for_each_online_cpu(cpu)
1969 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1970 	preempt_enable();
1971 }
1972 
1973 __apicdebuginit(void) print_PIC(void)
1974 {
1975 	unsigned int v;
1976 	unsigned long flags;
1977 
1978 	if (apic_verbosity == APIC_QUIET)
1979 		return;
1980 
1981 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1982 
1983 	spin_lock_irqsave(&i8259A_lock, flags);
1984 
1985 	v = inb(0xa1) << 8 | inb(0x21);
1986 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1987 
1988 	v = inb(0xa0) << 8 | inb(0x20);
1989 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1990 
1991 	outb(0x0b,0xa0);
1992 	outb(0x0b,0x20);
1993 	v = inb(0xa0) << 8 | inb(0x20);
1994 	outb(0x0a,0xa0);
1995 	outb(0x0a,0x20);
1996 
1997 	spin_unlock_irqrestore(&i8259A_lock, flags);
1998 
1999 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
2000 
2001 	v = inb(0x4d1) << 8 | inb(0x4d0);
2002 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
2003 }
2004 
2005 __apicdebuginit(int) print_all_ICs(void)
2006 {
2007 	print_PIC();
2008 	print_all_local_APICs();
2009 	print_IO_APIC();
2010 
2011 	return 0;
2012 }
2013 
2014 fs_initcall(print_all_ICs);
2015 
2016 
2017 /* Where if anywhere is the i8259 connect in external int mode */
2018 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
2019 
2020 void __init enable_IO_APIC(void)
2021 {
2022 	union IO_APIC_reg_01 reg_01;
2023 	int i8259_apic, i8259_pin;
2024 	int apic;
2025 	unsigned long flags;
2026 
2027 	/*
2028 	 * The number of IO-APIC IRQ registers (== #pins):
2029 	 */
2030 	for (apic = 0; apic < nr_ioapics; apic++) {
2031 		spin_lock_irqsave(&ioapic_lock, flags);
2032 		reg_01.raw = io_apic_read(apic, 1);
2033 		spin_unlock_irqrestore(&ioapic_lock, flags);
2034 		nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2035 	}
2036 	for(apic = 0; apic < nr_ioapics; apic++) {
2037 		int pin;
2038 		/* See if any of the pins is in ExtINT mode */
2039 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2040 			struct IO_APIC_route_entry entry;
2041 			entry = ioapic_read_entry(apic, pin);
2042 
2043 			/* If the interrupt line is enabled and in ExtInt mode
2044 			 * I have found the pin where the i8259 is connected.
2045 			 */
2046 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2047 				ioapic_i8259.apic = apic;
2048 				ioapic_i8259.pin  = pin;
2049 				goto found_i8259;
2050 			}
2051 		}
2052 	}
2053  found_i8259:
2054 	/* Look to see what if the MP table has reported the ExtINT */
2055 	/* If we could not find the appropriate pin by looking at the ioapic
2056 	 * the i8259 probably is not connected the ioapic but give the
2057 	 * mptable a chance anyway.
2058 	 */
2059 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
2060 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2061 	/* Trust the MP table if nothing is setup in the hardware */
2062 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2063 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2064 		ioapic_i8259.pin  = i8259_pin;
2065 		ioapic_i8259.apic = i8259_apic;
2066 	}
2067 	/* Complain if the MP table and the hardware disagree */
2068 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2069 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2070 	{
2071 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2072 	}
2073 
2074 	/*
2075 	 * Do not trust the IO-APIC being empty at bootup
2076 	 */
2077 	clear_IO_APIC();
2078 }
2079 
2080 /*
2081  * Not an __init, needed by the reboot code
2082  */
2083 void disable_IO_APIC(void)
2084 {
2085 	/*
2086 	 * Clear the IO-APIC before rebooting:
2087 	 */
2088 	clear_IO_APIC();
2089 
2090 	/*
2091 	 * If the i8259 is routed through an IOAPIC
2092 	 * Put that IOAPIC in virtual wire mode
2093 	 * so legacy interrupts can be delivered.
2094 	 *
2095 	 * With interrupt-remapping, for now we will use virtual wire A mode,
2096 	 * as virtual wire B is little complex (need to configure both
2097 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
2098 	 * As this gets called during crash dump, keep this simple for now.
2099 	 */
2100 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2101 		struct IO_APIC_route_entry entry;
2102 
2103 		memset(&entry, 0, sizeof(entry));
2104 		entry.mask            = 0; /* Enabled */
2105 		entry.trigger         = 0; /* Edge */
2106 		entry.irr             = 0;
2107 		entry.polarity        = 0; /* High */
2108 		entry.delivery_status = 0;
2109 		entry.dest_mode       = 0; /* Physical */
2110 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
2111 		entry.vector          = 0;
2112 		entry.dest            = read_apic_id();
2113 
2114 		/*
2115 		 * Add it to the IO-APIC irq-routing table:
2116 		 */
2117 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2118 	}
2119 
2120 	/*
2121 	 * Use virtual wire A mode when interrupt remapping is enabled.
2122 	 */
2123 	disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2124 }
2125 
2126 #ifdef CONFIG_X86_32
2127 /*
2128  * function to set the IO-APIC physical IDs based on the
2129  * values stored in the MPC table.
2130  *
2131  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2132  */
2133 
2134 static void __init setup_ioapic_ids_from_mpc(void)
2135 {
2136 	union IO_APIC_reg_00 reg_00;
2137 	physid_mask_t phys_id_present_map;
2138 	int apic_id;
2139 	int i;
2140 	unsigned char old_id;
2141 	unsigned long flags;
2142 
2143 	if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2144 		return;
2145 
2146 	/*
2147 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2148 	 * no meaning without the serial APIC bus.
2149 	 */
2150 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2151 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2152 		return;
2153 	/*
2154 	 * This is broken; anything with a real cpu count has to
2155 	 * circumvent this idiocy regardless.
2156 	 */
2157 	phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2158 
2159 	/*
2160 	 * Set the IOAPIC ID to the value stored in the MPC table.
2161 	 */
2162 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2163 
2164 		/* Read the register 0 value */
2165 		spin_lock_irqsave(&ioapic_lock, flags);
2166 		reg_00.raw = io_apic_read(apic_id, 0);
2167 		spin_unlock_irqrestore(&ioapic_lock, flags);
2168 
2169 		old_id = mp_ioapics[apic_id].apicid;
2170 
2171 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2172 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2173 				apic_id, mp_ioapics[apic_id].apicid);
2174 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2175 				reg_00.bits.ID);
2176 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2177 		}
2178 
2179 		/*
2180 		 * Sanity check, is the ID really free? Every APIC in a
2181 		 * system must have a unique ID or we get lots of nice
2182 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2183 		 */
2184 		if (apic->check_apicid_used(phys_id_present_map,
2185 					mp_ioapics[apic_id].apicid)) {
2186 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2187 				apic_id, mp_ioapics[apic_id].apicid);
2188 			for (i = 0; i < get_physical_broadcast(); i++)
2189 				if (!physid_isset(i, phys_id_present_map))
2190 					break;
2191 			if (i >= get_physical_broadcast())
2192 				panic("Max APIC ID exceeded!\n");
2193 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2194 				i);
2195 			physid_set(i, phys_id_present_map);
2196 			mp_ioapics[apic_id].apicid = i;
2197 		} else {
2198 			physid_mask_t tmp;
2199 			tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2200 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2201 					"phys_id_present_map\n",
2202 					mp_ioapics[apic_id].apicid);
2203 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2204 		}
2205 
2206 
2207 		/*
2208 		 * We need to adjust the IRQ routing table
2209 		 * if the ID changed.
2210 		 */
2211 		if (old_id != mp_ioapics[apic_id].apicid)
2212 			for (i = 0; i < mp_irq_entries; i++)
2213 				if (mp_irqs[i].dstapic == old_id)
2214 					mp_irqs[i].dstapic
2215 						= mp_ioapics[apic_id].apicid;
2216 
2217 		/*
2218 		 * Read the right value from the MPC table and
2219 		 * write it into the ID register.
2220 		 */
2221 		apic_printk(APIC_VERBOSE, KERN_INFO
2222 			"...changing IO-APIC physical APIC ID to %d ...",
2223 			mp_ioapics[apic_id].apicid);
2224 
2225 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2226 		spin_lock_irqsave(&ioapic_lock, flags);
2227 		io_apic_write(apic_id, 0, reg_00.raw);
2228 		spin_unlock_irqrestore(&ioapic_lock, flags);
2229 
2230 		/*
2231 		 * Sanity check
2232 		 */
2233 		spin_lock_irqsave(&ioapic_lock, flags);
2234 		reg_00.raw = io_apic_read(apic_id, 0);
2235 		spin_unlock_irqrestore(&ioapic_lock, flags);
2236 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2237 			printk("could not set ID!\n");
2238 		else
2239 			apic_printk(APIC_VERBOSE, " ok.\n");
2240 	}
2241 }
2242 #endif
2243 
2244 int no_timer_check __initdata;
2245 
2246 static int __init notimercheck(char *s)
2247 {
2248 	no_timer_check = 1;
2249 	return 1;
2250 }
2251 __setup("no_timer_check", notimercheck);
2252 
2253 /*
2254  * There is a nasty bug in some older SMP boards, their mptable lies
2255  * about the timer IRQ. We do the following to work around the situation:
2256  *
2257  *	- timer IRQ defaults to IO-APIC IRQ
2258  *	- if this function detects that timer IRQs are defunct, then we fall
2259  *	  back to ISA timer IRQs
2260  */
2261 static int __init timer_irq_works(void)
2262 {
2263 	unsigned long t1 = jiffies;
2264 	unsigned long flags;
2265 
2266 	if (no_timer_check)
2267 		return 1;
2268 
2269 	local_save_flags(flags);
2270 	local_irq_enable();
2271 	/* Let ten ticks pass... */
2272 	mdelay((10 * 1000) / HZ);
2273 	local_irq_restore(flags);
2274 
2275 	/*
2276 	 * Expect a few ticks at least, to be sure some possible
2277 	 * glue logic does not lock up after one or two first
2278 	 * ticks in a non-ExtINT mode.  Also the local APIC
2279 	 * might have cached one ExtINT interrupt.  Finally, at
2280 	 * least one tick may be lost due to delays.
2281 	 */
2282 
2283 	/* jiffies wrap? */
2284 	if (time_after(jiffies, t1 + 4))
2285 		return 1;
2286 	return 0;
2287 }
2288 
2289 /*
2290  * In the SMP+IOAPIC case it might happen that there are an unspecified
2291  * number of pending IRQ events unhandled. These cases are very rare,
2292  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2293  * better to do it this way as thus we do not have to be aware of
2294  * 'pending' interrupts in the IRQ path, except at this point.
2295  */
2296 /*
2297  * Edge triggered needs to resend any interrupt
2298  * that was delayed but this is now handled in the device
2299  * independent code.
2300  */
2301 
2302 /*
2303  * Starting up a edge-triggered IO-APIC interrupt is
2304  * nasty - we need to make sure that we get the edge.
2305  * If it is already asserted for some reason, we need
2306  * return 1 to indicate that is was pending.
2307  *
2308  * This is not complete - we should be able to fake
2309  * an edge even if it isn't on the 8259A...
2310  */
2311 
2312 static unsigned int startup_ioapic_irq(unsigned int irq)
2313 {
2314 	int was_pending = 0;
2315 	unsigned long flags;
2316 	struct irq_cfg *cfg;
2317 
2318 	spin_lock_irqsave(&ioapic_lock, flags);
2319 	if (irq < NR_IRQS_LEGACY) {
2320 		disable_8259A_irq(irq);
2321 		if (i8259A_irq_pending(irq))
2322 			was_pending = 1;
2323 	}
2324 	cfg = irq_cfg(irq);
2325 	__unmask_IO_APIC_irq(cfg);
2326 	spin_unlock_irqrestore(&ioapic_lock, flags);
2327 
2328 	return was_pending;
2329 }
2330 
2331 #ifdef CONFIG_X86_64
2332 static int ioapic_retrigger_irq(unsigned int irq)
2333 {
2334 
2335 	struct irq_cfg *cfg = irq_cfg(irq);
2336 	unsigned long flags;
2337 
2338 	spin_lock_irqsave(&vector_lock, flags);
2339 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2340 	spin_unlock_irqrestore(&vector_lock, flags);
2341 
2342 	return 1;
2343 }
2344 #else
2345 static int ioapic_retrigger_irq(unsigned int irq)
2346 {
2347 	apic->send_IPI_self(irq_cfg(irq)->vector);
2348 
2349 	return 1;
2350 }
2351 #endif
2352 
2353 /*
2354  * Level and edge triggered IO-APIC interrupts need different handling,
2355  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2356  * handled with the level-triggered descriptor, but that one has slightly
2357  * more overhead. Level-triggered interrupts cannot be handled with the
2358  * edge-triggered handler, without risking IRQ storms and other ugly
2359  * races.
2360  */
2361 
2362 #ifdef CONFIG_SMP
2363 
2364 #ifdef CONFIG_INTR_REMAP
2365 
2366 /*
2367  * Migrate the IO-APIC irq in the presence of intr-remapping.
2368  *
2369  * For both level and edge triggered, irq migration is a simple atomic
2370  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2371  *
2372  * For level triggered, we eliminate the io-apic RTE modification (with the
2373  * updated vector information), by using a virtual vector (io-apic pin number).
2374  * Real vector that is used for interrupting cpu will be coming from
2375  * the interrupt-remapping table entry.
2376  */
2377 static void
2378 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2379 {
2380 	struct irq_cfg *cfg;
2381 	struct irte irte;
2382 	unsigned int dest;
2383 	unsigned int irq;
2384 
2385 	if (!cpumask_intersects(mask, cpu_online_mask))
2386 		return;
2387 
2388 	irq = desc->irq;
2389 	if (get_irte(irq, &irte))
2390 		return;
2391 
2392 	cfg = desc->chip_data;
2393 	if (assign_irq_vector(irq, cfg, mask))
2394 		return;
2395 
2396 	set_extra_move_desc(desc, mask);
2397 
2398 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2399 
2400 	irte.vector = cfg->vector;
2401 	irte.dest_id = IRTE_DEST(dest);
2402 
2403 	/*
2404 	 * Modified the IRTE and flushes the Interrupt entry cache.
2405 	 */
2406 	modify_irte(irq, &irte);
2407 
2408 	if (cfg->move_in_progress)
2409 		send_cleanup_vector(cfg);
2410 
2411 	cpumask_copy(desc->affinity, mask);
2412 }
2413 
2414 /*
2415  * Migrates the IRQ destination in the process context.
2416  */
2417 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2418 					    const struct cpumask *mask)
2419 {
2420 	migrate_ioapic_irq_desc(desc, mask);
2421 }
2422 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2423 				       const struct cpumask *mask)
2424 {
2425 	struct irq_desc *desc = irq_to_desc(irq);
2426 
2427 	set_ir_ioapic_affinity_irq_desc(desc, mask);
2428 }
2429 #else
2430 static inline void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2431 						   const struct cpumask *mask)
2432 {
2433 }
2434 #endif
2435 
2436 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2437 {
2438 	unsigned vector, me;
2439 
2440 	ack_APIC_irq();
2441 	exit_idle();
2442 	irq_enter();
2443 
2444 	me = smp_processor_id();
2445 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2446 		unsigned int irq;
2447 		unsigned int irr;
2448 		struct irq_desc *desc;
2449 		struct irq_cfg *cfg;
2450 		irq = __get_cpu_var(vector_irq)[vector];
2451 
2452 		if (irq == -1)
2453 			continue;
2454 
2455 		desc = irq_to_desc(irq);
2456 		if (!desc)
2457 			continue;
2458 
2459 		cfg = irq_cfg(irq);
2460 		spin_lock(&desc->lock);
2461 		if (!cfg->move_cleanup_count)
2462 			goto unlock;
2463 
2464 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2465 			goto unlock;
2466 
2467 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2468 		/*
2469 		 * Check if the vector that needs to be cleanedup is
2470 		 * registered at the cpu's IRR. If so, then this is not
2471 		 * the best time to clean it up. Lets clean it up in the
2472 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2473 		 * to myself.
2474 		 */
2475 		if (irr  & (1 << (vector % 32))) {
2476 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2477 			goto unlock;
2478 		}
2479 		__get_cpu_var(vector_irq)[vector] = -1;
2480 		cfg->move_cleanup_count--;
2481 unlock:
2482 		spin_unlock(&desc->lock);
2483 	}
2484 
2485 	irq_exit();
2486 }
2487 
2488 static void irq_complete_move(struct irq_desc **descp)
2489 {
2490 	struct irq_desc *desc = *descp;
2491 	struct irq_cfg *cfg = desc->chip_data;
2492 	unsigned vector, me;
2493 
2494 	if (likely(!cfg->move_in_progress)) {
2495 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2496 		if (likely(!cfg->move_desc_pending))
2497 			return;
2498 
2499 		/* domain has not changed, but affinity did */
2500 		me = smp_processor_id();
2501 		if (cpumask_test_cpu(me, desc->affinity)) {
2502 			*descp = desc = move_irq_desc(desc, me);
2503 			/* get the new one */
2504 			cfg = desc->chip_data;
2505 			cfg->move_desc_pending = 0;
2506 		}
2507 #endif
2508 		return;
2509 	}
2510 
2511 	vector = ~get_irq_regs()->orig_ax;
2512 	me = smp_processor_id();
2513 
2514 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) {
2515 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2516 		*descp = desc = move_irq_desc(desc, me);
2517 		/* get the new one */
2518 		cfg = desc->chip_data;
2519 #endif
2520 		send_cleanup_vector(cfg);
2521 	}
2522 }
2523 #else
2524 static inline void irq_complete_move(struct irq_desc **descp) {}
2525 #endif
2526 
2527 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2528 {
2529 	int apic, pin;
2530 	struct irq_pin_list *entry;
2531 
2532 	entry = cfg->irq_2_pin;
2533 	for (;;) {
2534 
2535 		if (!entry)
2536 			break;
2537 
2538 		apic = entry->apic;
2539 		pin = entry->pin;
2540 		io_apic_eoi(apic, pin);
2541 		entry = entry->next;
2542 	}
2543 }
2544 
2545 static void
2546 eoi_ioapic_irq(struct irq_desc *desc)
2547 {
2548 	struct irq_cfg *cfg;
2549 	unsigned long flags;
2550 	unsigned int irq;
2551 
2552 	irq = desc->irq;
2553 	cfg = desc->chip_data;
2554 
2555 	spin_lock_irqsave(&ioapic_lock, flags);
2556 	__eoi_ioapic_irq(irq, cfg);
2557 	spin_unlock_irqrestore(&ioapic_lock, flags);
2558 }
2559 
2560 #ifdef CONFIG_X86_X2APIC
2561 static void ack_x2apic_level(unsigned int irq)
2562 {
2563 	struct irq_desc *desc = irq_to_desc(irq);
2564 	ack_x2APIC_irq();
2565 	eoi_ioapic_irq(desc);
2566 }
2567 
2568 static void ack_x2apic_edge(unsigned int irq)
2569 {
2570 	ack_x2APIC_irq();
2571 }
2572 #endif
2573 
2574 static void ack_apic_edge(unsigned int irq)
2575 {
2576 	struct irq_desc *desc = irq_to_desc(irq);
2577 
2578 	irq_complete_move(&desc);
2579 	move_native_irq(irq);
2580 	ack_APIC_irq();
2581 }
2582 
2583 atomic_t irq_mis_count;
2584 
2585 static void ack_apic_level(unsigned int irq)
2586 {
2587 	struct irq_desc *desc = irq_to_desc(irq);
2588 
2589 #ifdef CONFIG_X86_32
2590 	unsigned long v;
2591 	int i;
2592 #endif
2593 	struct irq_cfg *cfg;
2594 	int do_unmask_irq = 0;
2595 
2596 	irq_complete_move(&desc);
2597 #ifdef CONFIG_GENERIC_PENDING_IRQ
2598 	/* If we are moving the irq we need to mask it */
2599 	if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2600 		do_unmask_irq = 1;
2601 		mask_IO_APIC_irq_desc(desc);
2602 	}
2603 #endif
2604 
2605 #ifdef CONFIG_X86_32
2606 	/*
2607 	* It appears there is an erratum which affects at least version 0x11
2608 	* of I/O APIC (that's the 82093AA and cores integrated into various
2609 	* chipsets).  Under certain conditions a level-triggered interrupt is
2610 	* erroneously delivered as edge-triggered one but the respective IRR
2611 	* bit gets set nevertheless.  As a result the I/O unit expects an EOI
2612 	* message but it will never arrive and further interrupts are blocked
2613 	* from the source.  The exact reason is so far unknown, but the
2614 	* phenomenon was observed when two consecutive interrupt requests
2615 	* from a given source get delivered to the same CPU and the source is
2616 	* temporarily disabled in between.
2617 	*
2618 	* A workaround is to simulate an EOI message manually.  We achieve it
2619 	* by setting the trigger mode to edge and then to level when the edge
2620 	* trigger mode gets detected in the TMR of a local APIC for a
2621 	* level-triggered interrupt.  We mask the source for the time of the
2622 	* operation to prevent an edge-triggered interrupt escaping meanwhile.
2623 	* The idea is from Manfred Spraul.  --macro
2624 	*/
2625 	cfg = desc->chip_data;
2626 	i = cfg->vector;
2627 
2628 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2629 #endif
2630 
2631 	/*
2632 	 * We must acknowledge the irq before we move it or the acknowledge will
2633 	 * not propagate properly.
2634 	 */
2635 	ack_APIC_irq();
2636 
2637 	if (irq_remapped(irq))
2638 		eoi_ioapic_irq(desc);
2639 
2640 	/* Now we can move and renable the irq */
2641 	if (unlikely(do_unmask_irq)) {
2642 		/* Only migrate the irq if the ack has been received.
2643 		 *
2644 		 * On rare occasions the broadcast level triggered ack gets
2645 		 * delayed going to ioapics, and if we reprogram the
2646 		 * vector while Remote IRR is still set the irq will never
2647 		 * fire again.
2648 		 *
2649 		 * To prevent this scenario we read the Remote IRR bit
2650 		 * of the ioapic.  This has two effects.
2651 		 * - On any sane system the read of the ioapic will
2652 		 *   flush writes (and acks) going to the ioapic from
2653 		 *   this cpu.
2654 		 * - We get to see if the ACK has actually been delivered.
2655 		 *
2656 		 * Based on failed experiments of reprogramming the
2657 		 * ioapic entry from outside of irq context starting
2658 		 * with masking the ioapic entry and then polling until
2659 		 * Remote IRR was clear before reprogramming the
2660 		 * ioapic I don't trust the Remote IRR bit to be
2661 		 * completey accurate.
2662 		 *
2663 		 * However there appears to be no other way to plug
2664 		 * this race, so if the Remote IRR bit is not
2665 		 * accurate and is causing problems then it is a hardware bug
2666 		 * and you can go talk to the chipset vendor about it.
2667 		 */
2668 		cfg = desc->chip_data;
2669 		if (!io_apic_level_ack_pending(cfg))
2670 			move_masked_irq(irq);
2671 		unmask_IO_APIC_irq_desc(desc);
2672 	}
2673 
2674 #ifdef CONFIG_X86_32
2675 	if (!(v & (1 << (i & 0x1f)))) {
2676 		atomic_inc(&irq_mis_count);
2677 		spin_lock(&ioapic_lock);
2678 		__mask_and_edge_IO_APIC_irq(cfg);
2679 		__unmask_and_level_IO_APIC_irq(cfg);
2680 		spin_unlock(&ioapic_lock);
2681 	}
2682 #endif
2683 }
2684 
2685 #ifdef CONFIG_INTR_REMAP
2686 static void ir_ack_apic_edge(unsigned int irq)
2687 {
2688 #ifdef CONFIG_X86_X2APIC
2689        if (x2apic_enabled())
2690                return ack_x2apic_edge(irq);
2691 #endif
2692        return ack_apic_edge(irq);
2693 }
2694 
2695 static void ir_ack_apic_level(unsigned int irq)
2696 {
2697 #ifdef CONFIG_X86_X2APIC
2698        if (x2apic_enabled())
2699                return ack_x2apic_level(irq);
2700 #endif
2701        return ack_apic_level(irq);
2702 }
2703 #endif /* CONFIG_INTR_REMAP */
2704 
2705 static struct irq_chip ioapic_chip __read_mostly = {
2706 	.name		= "IO-APIC",
2707 	.startup	= startup_ioapic_irq,
2708 	.mask		= mask_IO_APIC_irq,
2709 	.unmask		= unmask_IO_APIC_irq,
2710 	.ack		= ack_apic_edge,
2711 	.eoi		= ack_apic_level,
2712 #ifdef CONFIG_SMP
2713 	.set_affinity	= set_ioapic_affinity_irq,
2714 #endif
2715 	.retrigger	= ioapic_retrigger_irq,
2716 };
2717 
2718 static struct irq_chip ir_ioapic_chip __read_mostly = {
2719 	.name		= "IR-IO-APIC",
2720 	.startup	= startup_ioapic_irq,
2721 	.mask		= mask_IO_APIC_irq,
2722 	.unmask		= unmask_IO_APIC_irq,
2723 #ifdef CONFIG_INTR_REMAP
2724 	.ack		= ir_ack_apic_edge,
2725 	.eoi		= ir_ack_apic_level,
2726 #ifdef CONFIG_SMP
2727 	.set_affinity	= set_ir_ioapic_affinity_irq,
2728 #endif
2729 #endif
2730 	.retrigger	= ioapic_retrigger_irq,
2731 };
2732 
2733 static inline void init_IO_APIC_traps(void)
2734 {
2735 	int irq;
2736 	struct irq_desc *desc;
2737 	struct irq_cfg *cfg;
2738 
2739 	/*
2740 	 * NOTE! The local APIC isn't very good at handling
2741 	 * multiple interrupts at the same interrupt level.
2742 	 * As the interrupt level is determined by taking the
2743 	 * vector number and shifting that right by 4, we
2744 	 * want to spread these out a bit so that they don't
2745 	 * all fall in the same interrupt level.
2746 	 *
2747 	 * Also, we've got to be careful not to trash gate
2748 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2749 	 */
2750 	for_each_irq_desc(irq, desc) {
2751 		cfg = desc->chip_data;
2752 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2753 			/*
2754 			 * Hmm.. We don't have an entry for this,
2755 			 * so default to an old-fashioned 8259
2756 			 * interrupt if we can..
2757 			 */
2758 			if (irq < NR_IRQS_LEGACY)
2759 				make_8259A_irq(irq);
2760 			else
2761 				/* Strange. Oh, well.. */
2762 				desc->chip = &no_irq_chip;
2763 		}
2764 	}
2765 }
2766 
2767 /*
2768  * The local APIC irq-chip implementation:
2769  */
2770 
2771 static void mask_lapic_irq(unsigned int irq)
2772 {
2773 	unsigned long v;
2774 
2775 	v = apic_read(APIC_LVT0);
2776 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2777 }
2778 
2779 static void unmask_lapic_irq(unsigned int irq)
2780 {
2781 	unsigned long v;
2782 
2783 	v = apic_read(APIC_LVT0);
2784 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2785 }
2786 
2787 static void ack_lapic_irq(unsigned int irq)
2788 {
2789 	ack_APIC_irq();
2790 }
2791 
2792 static struct irq_chip lapic_chip __read_mostly = {
2793 	.name		= "local-APIC",
2794 	.mask		= mask_lapic_irq,
2795 	.unmask		= unmask_lapic_irq,
2796 	.ack		= ack_lapic_irq,
2797 };
2798 
2799 static void lapic_register_intr(int irq, struct irq_desc *desc)
2800 {
2801 	desc->status &= ~IRQ_LEVEL;
2802 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2803 				      "edge");
2804 }
2805 
2806 static void __init setup_nmi(void)
2807 {
2808 	/*
2809 	 * Dirty trick to enable the NMI watchdog ...
2810 	 * We put the 8259A master into AEOI mode and
2811 	 * unmask on all local APICs LVT0 as NMI.
2812 	 *
2813 	 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2814 	 * is from Maciej W. Rozycki - so we do not have to EOI from
2815 	 * the NMI handler or the timer interrupt.
2816 	 */
2817 	apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2818 
2819 	enable_NMI_through_LVT0();
2820 
2821 	apic_printk(APIC_VERBOSE, " done.\n");
2822 }
2823 
2824 /*
2825  * This looks a bit hackish but it's about the only one way of sending
2826  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2827  * not support the ExtINT mode, unfortunately.  We need to send these
2828  * cycles as some i82489DX-based boards have glue logic that keeps the
2829  * 8259A interrupt line asserted until INTA.  --macro
2830  */
2831 static inline void __init unlock_ExtINT_logic(void)
2832 {
2833 	int apic, pin, i;
2834 	struct IO_APIC_route_entry entry0, entry1;
2835 	unsigned char save_control, save_freq_select;
2836 
2837 	pin  = find_isa_irq_pin(8, mp_INT);
2838 	if (pin == -1) {
2839 		WARN_ON_ONCE(1);
2840 		return;
2841 	}
2842 	apic = find_isa_irq_apic(8, mp_INT);
2843 	if (apic == -1) {
2844 		WARN_ON_ONCE(1);
2845 		return;
2846 	}
2847 
2848 	entry0 = ioapic_read_entry(apic, pin);
2849 	clear_IO_APIC_pin(apic, pin);
2850 
2851 	memset(&entry1, 0, sizeof(entry1));
2852 
2853 	entry1.dest_mode = 0;			/* physical delivery */
2854 	entry1.mask = 0;			/* unmask IRQ now */
2855 	entry1.dest = hard_smp_processor_id();
2856 	entry1.delivery_mode = dest_ExtINT;
2857 	entry1.polarity = entry0.polarity;
2858 	entry1.trigger = 0;
2859 	entry1.vector = 0;
2860 
2861 	ioapic_write_entry(apic, pin, entry1);
2862 
2863 	save_control = CMOS_READ(RTC_CONTROL);
2864 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2865 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2866 		   RTC_FREQ_SELECT);
2867 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2868 
2869 	i = 100;
2870 	while (i-- > 0) {
2871 		mdelay(10);
2872 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2873 			i -= 10;
2874 	}
2875 
2876 	CMOS_WRITE(save_control, RTC_CONTROL);
2877 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2878 	clear_IO_APIC_pin(apic, pin);
2879 
2880 	ioapic_write_entry(apic, pin, entry0);
2881 }
2882 
2883 static int disable_timer_pin_1 __initdata;
2884 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2885 static int __init disable_timer_pin_setup(char *arg)
2886 {
2887 	disable_timer_pin_1 = 1;
2888 	return 0;
2889 }
2890 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2891 
2892 int timer_through_8259 __initdata;
2893 
2894 /*
2895  * This code may look a bit paranoid, but it's supposed to cooperate with
2896  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2897  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2898  * fanatically on his truly buggy board.
2899  *
2900  * FIXME: really need to revamp this for all platforms.
2901  */
2902 static inline void __init check_timer(void)
2903 {
2904 	struct irq_desc *desc = irq_to_desc(0);
2905 	struct irq_cfg *cfg = desc->chip_data;
2906 	int cpu = boot_cpu_id;
2907 	int apic1, pin1, apic2, pin2;
2908 	unsigned long flags;
2909 	int no_pin1 = 0;
2910 
2911 	local_irq_save(flags);
2912 
2913 	/*
2914 	 * get/set the timer IRQ vector:
2915 	 */
2916 	disable_8259A_irq(0);
2917 	assign_irq_vector(0, cfg, apic->target_cpus());
2918 
2919 	/*
2920 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2921 	 * wire has to be disabled in the local APIC.  Also
2922 	 * timer interrupts need to be acknowledged manually in
2923 	 * the 8259A for the i82489DX when using the NMI
2924 	 * watchdog as that APIC treats NMIs as level-triggered.
2925 	 * The AEOI mode will finish them in the 8259A
2926 	 * automatically.
2927 	 */
2928 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2929 	init_8259A(1);
2930 #ifdef CONFIG_X86_32
2931 	{
2932 		unsigned int ver;
2933 
2934 		ver = apic_read(APIC_LVR);
2935 		ver = GET_APIC_VERSION(ver);
2936 		timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2937 	}
2938 #endif
2939 
2940 	pin1  = find_isa_irq_pin(0, mp_INT);
2941 	apic1 = find_isa_irq_apic(0, mp_INT);
2942 	pin2  = ioapic_i8259.pin;
2943 	apic2 = ioapic_i8259.apic;
2944 
2945 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2946 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2947 		    cfg->vector, apic1, pin1, apic2, pin2);
2948 
2949 	/*
2950 	 * Some BIOS writers are clueless and report the ExtINTA
2951 	 * I/O APIC input from the cascaded 8259A as the timer
2952 	 * interrupt input.  So just in case, if only one pin
2953 	 * was found above, try it both directly and through the
2954 	 * 8259A.
2955 	 */
2956 	if (pin1 == -1) {
2957 		if (intr_remapping_enabled)
2958 			panic("BIOS bug: timer not connected to IO-APIC");
2959 		pin1 = pin2;
2960 		apic1 = apic2;
2961 		no_pin1 = 1;
2962 	} else if (pin2 == -1) {
2963 		pin2 = pin1;
2964 		apic2 = apic1;
2965 	}
2966 
2967 	if (pin1 != -1) {
2968 		/*
2969 		 * Ok, does IRQ0 through the IOAPIC work?
2970 		 */
2971 		if (no_pin1) {
2972 			add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2973 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2974 		} else {
2975 			/* for edge trigger, setup_IO_APIC_irq already
2976 			 * leave it unmasked.
2977 			 * so only need to unmask if it is level-trigger
2978 			 * do we really have level trigger timer?
2979 			 */
2980 			int idx;
2981 			idx = find_irq_entry(apic1, pin1, mp_INT);
2982 			if (idx != -1 && irq_trigger(idx))
2983 				unmask_IO_APIC_irq_desc(desc);
2984 		}
2985 		if (timer_irq_works()) {
2986 			if (nmi_watchdog == NMI_IO_APIC) {
2987 				setup_nmi();
2988 				enable_8259A_irq(0);
2989 			}
2990 			if (disable_timer_pin_1 > 0)
2991 				clear_IO_APIC_pin(0, pin1);
2992 			goto out;
2993 		}
2994 		if (intr_remapping_enabled)
2995 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2996 		local_irq_disable();
2997 		clear_IO_APIC_pin(apic1, pin1);
2998 		if (!no_pin1)
2999 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
3000 				    "8254 timer not connected to IO-APIC\n");
3001 
3002 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
3003 			    "(IRQ0) through the 8259A ...\n");
3004 		apic_printk(APIC_QUIET, KERN_INFO
3005 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
3006 		/*
3007 		 * legacy devices should be connected to IO APIC #0
3008 		 */
3009 		replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
3010 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
3011 		enable_8259A_irq(0);
3012 		if (timer_irq_works()) {
3013 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
3014 			timer_through_8259 = 1;
3015 			if (nmi_watchdog == NMI_IO_APIC) {
3016 				disable_8259A_irq(0);
3017 				setup_nmi();
3018 				enable_8259A_irq(0);
3019 			}
3020 			goto out;
3021 		}
3022 		/*
3023 		 * Cleanup, just in case ...
3024 		 */
3025 		local_irq_disable();
3026 		disable_8259A_irq(0);
3027 		clear_IO_APIC_pin(apic2, pin2);
3028 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
3029 	}
3030 
3031 	if (nmi_watchdog == NMI_IO_APIC) {
3032 		apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3033 			    "through the IO-APIC - disabling NMI Watchdog!\n");
3034 		nmi_watchdog = NMI_NONE;
3035 	}
3036 #ifdef CONFIG_X86_32
3037 	timer_ack = 0;
3038 #endif
3039 
3040 	apic_printk(APIC_QUIET, KERN_INFO
3041 		    "...trying to set up timer as Virtual Wire IRQ...\n");
3042 
3043 	lapic_register_intr(0, desc);
3044 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
3045 	enable_8259A_irq(0);
3046 
3047 	if (timer_irq_works()) {
3048 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3049 		goto out;
3050 	}
3051 	local_irq_disable();
3052 	disable_8259A_irq(0);
3053 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3054 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3055 
3056 	apic_printk(APIC_QUIET, KERN_INFO
3057 		    "...trying to set up timer as ExtINT IRQ...\n");
3058 
3059 	init_8259A(0);
3060 	make_8259A_irq(0);
3061 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3062 
3063 	unlock_ExtINT_logic();
3064 
3065 	if (timer_irq_works()) {
3066 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3067 		goto out;
3068 	}
3069 	local_irq_disable();
3070 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3071 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3072 		"report.  Then try booting with the 'noapic' option.\n");
3073 out:
3074 	local_irq_restore(flags);
3075 }
3076 
3077 /*
3078  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3079  * to devices.  However there may be an I/O APIC pin available for
3080  * this interrupt regardless.  The pin may be left unconnected, but
3081  * typically it will be reused as an ExtINT cascade interrupt for
3082  * the master 8259A.  In the MPS case such a pin will normally be
3083  * reported as an ExtINT interrupt in the MP table.  With ACPI
3084  * there is no provision for ExtINT interrupts, and in the absence
3085  * of an override it would be treated as an ordinary ISA I/O APIC
3086  * interrupt, that is edge-triggered and unmasked by default.  We
3087  * used to do this, but it caused problems on some systems because
3088  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3089  * the same ExtINT cascade interrupt to drive the local APIC of the
3090  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3091  * the I/O APIC in all cases now.  No actual device should request
3092  * it anyway.  --macro
3093  */
3094 #define PIC_IRQS	(1 << PIC_CASCADE_IR)
3095 
3096 void __init setup_IO_APIC(void)
3097 {
3098 
3099 	/*
3100 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3101 	 */
3102 
3103 	io_apic_irqs = ~PIC_IRQS;
3104 
3105 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3106 	/*
3107          * Set up IO-APIC IRQ routing.
3108          */
3109 #ifdef CONFIG_X86_32
3110 	if (!acpi_ioapic)
3111 		setup_ioapic_ids_from_mpc();
3112 #endif
3113 	sync_Arb_IDs();
3114 	setup_IO_APIC_irqs();
3115 	init_IO_APIC_traps();
3116 	check_timer();
3117 }
3118 
3119 /*
3120  *      Called after all the initialization is done. If we didnt find any
3121  *      APIC bugs then we can allow the modify fast path
3122  */
3123 
3124 static int __init io_apic_bug_finalize(void)
3125 {
3126 	if (sis_apic_bug == -1)
3127 		sis_apic_bug = 0;
3128 	return 0;
3129 }
3130 
3131 late_initcall(io_apic_bug_finalize);
3132 
3133 struct sysfs_ioapic_data {
3134 	struct sys_device dev;
3135 	struct IO_APIC_route_entry entry[0];
3136 };
3137 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3138 
3139 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3140 {
3141 	struct IO_APIC_route_entry *entry;
3142 	struct sysfs_ioapic_data *data;
3143 	int i;
3144 
3145 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3146 	entry = data->entry;
3147 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3148 		*entry = ioapic_read_entry(dev->id, i);
3149 
3150 	return 0;
3151 }
3152 
3153 static int ioapic_resume(struct sys_device *dev)
3154 {
3155 	struct IO_APIC_route_entry *entry;
3156 	struct sysfs_ioapic_data *data;
3157 	unsigned long flags;
3158 	union IO_APIC_reg_00 reg_00;
3159 	int i;
3160 
3161 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3162 	entry = data->entry;
3163 
3164 	spin_lock_irqsave(&ioapic_lock, flags);
3165 	reg_00.raw = io_apic_read(dev->id, 0);
3166 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3167 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3168 		io_apic_write(dev->id, 0, reg_00.raw);
3169 	}
3170 	spin_unlock_irqrestore(&ioapic_lock, flags);
3171 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3172 		ioapic_write_entry(dev->id, i, entry[i]);
3173 
3174 	return 0;
3175 }
3176 
3177 static struct sysdev_class ioapic_sysdev_class = {
3178 	.name = "ioapic",
3179 	.suspend = ioapic_suspend,
3180 	.resume = ioapic_resume,
3181 };
3182 
3183 static int __init ioapic_init_sysfs(void)
3184 {
3185 	struct sys_device * dev;
3186 	int i, size, error;
3187 
3188 	error = sysdev_class_register(&ioapic_sysdev_class);
3189 	if (error)
3190 		return error;
3191 
3192 	for (i = 0; i < nr_ioapics; i++ ) {
3193 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3194 			* sizeof(struct IO_APIC_route_entry);
3195 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3196 		if (!mp_ioapic_data[i]) {
3197 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3198 			continue;
3199 		}
3200 		dev = &mp_ioapic_data[i]->dev;
3201 		dev->id = i;
3202 		dev->cls = &ioapic_sysdev_class;
3203 		error = sysdev_register(dev);
3204 		if (error) {
3205 			kfree(mp_ioapic_data[i]);
3206 			mp_ioapic_data[i] = NULL;
3207 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3208 			continue;
3209 		}
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 device_initcall(ioapic_init_sysfs);
3216 
3217 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3218 /*
3219  * Dynamic irq allocate and deallocation
3220  */
3221 unsigned int create_irq_nr(unsigned int irq_want)
3222 {
3223 	/* Allocate an unused irq */
3224 	unsigned int irq;
3225 	unsigned int new;
3226 	unsigned long flags;
3227 	struct irq_cfg *cfg_new = NULL;
3228 	int cpu = boot_cpu_id;
3229 	struct irq_desc *desc_new = NULL;
3230 
3231 	irq = 0;
3232 	if (irq_want < nr_irqs_gsi)
3233 		irq_want = nr_irqs_gsi;
3234 
3235 	spin_lock_irqsave(&vector_lock, flags);
3236 	for (new = irq_want; new < nr_irqs; new++) {
3237 		desc_new = irq_to_desc_alloc_cpu(new, cpu);
3238 		if (!desc_new) {
3239 			printk(KERN_INFO "can not get irq_desc for %d\n", new);
3240 			continue;
3241 		}
3242 		cfg_new = desc_new->chip_data;
3243 
3244 		if (cfg_new->vector != 0)
3245 			continue;
3246 		if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3247 			irq = new;
3248 		break;
3249 	}
3250 	spin_unlock_irqrestore(&vector_lock, flags);
3251 
3252 	if (irq > 0) {
3253 		dynamic_irq_init(irq);
3254 		/* restore it, in case dynamic_irq_init clear it */
3255 		if (desc_new)
3256 			desc_new->chip_data = cfg_new;
3257 	}
3258 	return irq;
3259 }
3260 
3261 int create_irq(void)
3262 {
3263 	unsigned int irq_want;
3264 	int irq;
3265 
3266 	irq_want = nr_irqs_gsi;
3267 	irq = create_irq_nr(irq_want);
3268 
3269 	if (irq == 0)
3270 		irq = -1;
3271 
3272 	return irq;
3273 }
3274 
3275 void destroy_irq(unsigned int irq)
3276 {
3277 	unsigned long flags;
3278 	struct irq_cfg *cfg;
3279 	struct irq_desc *desc;
3280 
3281 	/* store it, in case dynamic_irq_cleanup clear it */
3282 	desc = irq_to_desc(irq);
3283 	cfg = desc->chip_data;
3284 	dynamic_irq_cleanup(irq);
3285 	/* connect back irq_cfg */
3286 	if (desc)
3287 		desc->chip_data = cfg;
3288 
3289 	free_irte(irq);
3290 	spin_lock_irqsave(&vector_lock, flags);
3291 	__clear_irq_vector(irq, cfg);
3292 	spin_unlock_irqrestore(&vector_lock, flags);
3293 }
3294 
3295 /*
3296  * MSI message composition
3297  */
3298 #ifdef CONFIG_PCI_MSI
3299 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3300 {
3301 	struct irq_cfg *cfg;
3302 	int err;
3303 	unsigned dest;
3304 
3305 	if (disable_apic)
3306 		return -ENXIO;
3307 
3308 	cfg = irq_cfg(irq);
3309 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3310 	if (err)
3311 		return err;
3312 
3313 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3314 
3315 	if (irq_remapped(irq)) {
3316 		struct irte irte;
3317 		int ir_index;
3318 		u16 sub_handle;
3319 
3320 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3321 		BUG_ON(ir_index == -1);
3322 
3323 		memset (&irte, 0, sizeof(irte));
3324 
3325 		irte.present = 1;
3326 		irte.dst_mode = apic->irq_dest_mode;
3327 		irte.trigger_mode = 0; /* edge */
3328 		irte.dlvry_mode = apic->irq_delivery_mode;
3329 		irte.vector = cfg->vector;
3330 		irte.dest_id = IRTE_DEST(dest);
3331 
3332 		modify_irte(irq, &irte);
3333 
3334 		msg->address_hi = MSI_ADDR_BASE_HI;
3335 		msg->data = sub_handle;
3336 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3337 				  MSI_ADDR_IR_SHV |
3338 				  MSI_ADDR_IR_INDEX1(ir_index) |
3339 				  MSI_ADDR_IR_INDEX2(ir_index);
3340 	} else {
3341 		if (x2apic_enabled())
3342 			msg->address_hi = MSI_ADDR_BASE_HI |
3343 					  MSI_ADDR_EXT_DEST_ID(dest);
3344 		else
3345 			msg->address_hi = MSI_ADDR_BASE_HI;
3346 
3347 		msg->address_lo =
3348 			MSI_ADDR_BASE_LO |
3349 			((apic->irq_dest_mode == 0) ?
3350 				MSI_ADDR_DEST_MODE_PHYSICAL:
3351 				MSI_ADDR_DEST_MODE_LOGICAL) |
3352 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3353 				MSI_ADDR_REDIRECTION_CPU:
3354 				MSI_ADDR_REDIRECTION_LOWPRI) |
3355 			MSI_ADDR_DEST_ID(dest);
3356 
3357 		msg->data =
3358 			MSI_DATA_TRIGGER_EDGE |
3359 			MSI_DATA_LEVEL_ASSERT |
3360 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3361 				MSI_DATA_DELIVERY_FIXED:
3362 				MSI_DATA_DELIVERY_LOWPRI) |
3363 			MSI_DATA_VECTOR(cfg->vector);
3364 	}
3365 	return err;
3366 }
3367 
3368 #ifdef CONFIG_SMP
3369 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3370 {
3371 	struct irq_desc *desc = irq_to_desc(irq);
3372 	struct irq_cfg *cfg;
3373 	struct msi_msg msg;
3374 	unsigned int dest;
3375 
3376 	dest = set_desc_affinity(desc, mask);
3377 	if (dest == BAD_APICID)
3378 		return;
3379 
3380 	cfg = desc->chip_data;
3381 
3382 	read_msi_msg_desc(desc, &msg);
3383 
3384 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3385 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3386 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3387 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3388 
3389 	write_msi_msg_desc(desc, &msg);
3390 }
3391 #ifdef CONFIG_INTR_REMAP
3392 /*
3393  * Migrate the MSI irq to another cpumask. This migration is
3394  * done in the process context using interrupt-remapping hardware.
3395  */
3396 static void
3397 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3398 {
3399 	struct irq_desc *desc = irq_to_desc(irq);
3400 	struct irq_cfg *cfg = desc->chip_data;
3401 	unsigned int dest;
3402 	struct irte irte;
3403 
3404 	if (get_irte(irq, &irte))
3405 		return;
3406 
3407 	dest = set_desc_affinity(desc, mask);
3408 	if (dest == BAD_APICID)
3409 		return;
3410 
3411 	irte.vector = cfg->vector;
3412 	irte.dest_id = IRTE_DEST(dest);
3413 
3414 	/*
3415 	 * atomically update the IRTE with the new destination and vector.
3416 	 */
3417 	modify_irte(irq, &irte);
3418 
3419 	/*
3420 	 * After this point, all the interrupts will start arriving
3421 	 * at the new destination. So, time to cleanup the previous
3422 	 * vector allocation.
3423 	 */
3424 	if (cfg->move_in_progress)
3425 		send_cleanup_vector(cfg);
3426 }
3427 
3428 #endif
3429 #endif /* CONFIG_SMP */
3430 
3431 /*
3432  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3433  * which implement the MSI or MSI-X Capability Structure.
3434  */
3435 static struct irq_chip msi_chip = {
3436 	.name		= "PCI-MSI",
3437 	.unmask		= unmask_msi_irq,
3438 	.mask		= mask_msi_irq,
3439 	.ack		= ack_apic_edge,
3440 #ifdef CONFIG_SMP
3441 	.set_affinity	= set_msi_irq_affinity,
3442 #endif
3443 	.retrigger	= ioapic_retrigger_irq,
3444 };
3445 
3446 static struct irq_chip msi_ir_chip = {
3447 	.name		= "IR-PCI-MSI",
3448 	.unmask		= unmask_msi_irq,
3449 	.mask		= mask_msi_irq,
3450 #ifdef CONFIG_INTR_REMAP
3451 	.ack		= ir_ack_apic_edge,
3452 #ifdef CONFIG_SMP
3453 	.set_affinity	= ir_set_msi_irq_affinity,
3454 #endif
3455 #endif
3456 	.retrigger	= ioapic_retrigger_irq,
3457 };
3458 
3459 /*
3460  * Map the PCI dev to the corresponding remapping hardware unit
3461  * and allocate 'nvec' consecutive interrupt-remapping table entries
3462  * in it.
3463  */
3464 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3465 {
3466 	struct intel_iommu *iommu;
3467 	int index;
3468 
3469 	iommu = map_dev_to_ir(dev);
3470 	if (!iommu) {
3471 		printk(KERN_ERR
3472 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3473 		return -ENOENT;
3474 	}
3475 
3476 	index = alloc_irte(iommu, irq, nvec);
3477 	if (index < 0) {
3478 		printk(KERN_ERR
3479 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3480 		       pci_name(dev));
3481 		return -ENOSPC;
3482 	}
3483 	return index;
3484 }
3485 
3486 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3487 {
3488 	int ret;
3489 	struct msi_msg msg;
3490 
3491 	ret = msi_compose_msg(dev, irq, &msg);
3492 	if (ret < 0)
3493 		return ret;
3494 
3495 	set_irq_msi(irq, msidesc);
3496 	write_msi_msg(irq, &msg);
3497 
3498 	if (irq_remapped(irq)) {
3499 		struct irq_desc *desc = irq_to_desc(irq);
3500 		/*
3501 		 * irq migration in process context
3502 		 */
3503 		desc->status |= IRQ_MOVE_PCNTXT;
3504 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3505 	} else
3506 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3507 
3508 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3509 
3510 	return 0;
3511 }
3512 
3513 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3514 {
3515 	unsigned int irq;
3516 	int ret, sub_handle;
3517 	struct msi_desc *msidesc;
3518 	unsigned int irq_want;
3519 	struct intel_iommu *iommu = NULL;
3520 	int index = 0;
3521 
3522 	/* x86 doesn't support multiple MSI yet */
3523 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3524 		return 1;
3525 
3526 	irq_want = nr_irqs_gsi;
3527 	sub_handle = 0;
3528 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3529 		irq = create_irq_nr(irq_want);
3530 		if (irq == 0)
3531 			return -1;
3532 		irq_want = irq + 1;
3533 		if (!intr_remapping_enabled)
3534 			goto no_ir;
3535 
3536 		if (!sub_handle) {
3537 			/*
3538 			 * allocate the consecutive block of IRTE's
3539 			 * for 'nvec'
3540 			 */
3541 			index = msi_alloc_irte(dev, irq, nvec);
3542 			if (index < 0) {
3543 				ret = index;
3544 				goto error;
3545 			}
3546 		} else {
3547 			iommu = map_dev_to_ir(dev);
3548 			if (!iommu) {
3549 				ret = -ENOENT;
3550 				goto error;
3551 			}
3552 			/*
3553 			 * setup the mapping between the irq and the IRTE
3554 			 * base index, the sub_handle pointing to the
3555 			 * appropriate interrupt remap table entry.
3556 			 */
3557 			set_irte_irq(irq, iommu, index, sub_handle);
3558 		}
3559 no_ir:
3560 		ret = setup_msi_irq(dev, msidesc, irq);
3561 		if (ret < 0)
3562 			goto error;
3563 		sub_handle++;
3564 	}
3565 	return 0;
3566 
3567 error:
3568 	destroy_irq(irq);
3569 	return ret;
3570 }
3571 
3572 void arch_teardown_msi_irq(unsigned int irq)
3573 {
3574 	destroy_irq(irq);
3575 }
3576 
3577 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3578 #ifdef CONFIG_SMP
3579 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3580 {
3581 	struct irq_desc *desc = irq_to_desc(irq);
3582 	struct irq_cfg *cfg;
3583 	struct msi_msg msg;
3584 	unsigned int dest;
3585 
3586 	dest = set_desc_affinity(desc, mask);
3587 	if (dest == BAD_APICID)
3588 		return;
3589 
3590 	cfg = desc->chip_data;
3591 
3592 	dmar_msi_read(irq, &msg);
3593 
3594 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3595 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3596 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3597 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3598 
3599 	dmar_msi_write(irq, &msg);
3600 }
3601 
3602 #endif /* CONFIG_SMP */
3603 
3604 struct irq_chip dmar_msi_type = {
3605 	.name = "DMAR_MSI",
3606 	.unmask = dmar_msi_unmask,
3607 	.mask = dmar_msi_mask,
3608 	.ack = ack_apic_edge,
3609 #ifdef CONFIG_SMP
3610 	.set_affinity = dmar_msi_set_affinity,
3611 #endif
3612 	.retrigger = ioapic_retrigger_irq,
3613 };
3614 
3615 int arch_setup_dmar_msi(unsigned int irq)
3616 {
3617 	int ret;
3618 	struct msi_msg msg;
3619 
3620 	ret = msi_compose_msg(NULL, irq, &msg);
3621 	if (ret < 0)
3622 		return ret;
3623 	dmar_msi_write(irq, &msg);
3624 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3625 		"edge");
3626 	return 0;
3627 }
3628 #endif
3629 
3630 #ifdef CONFIG_HPET_TIMER
3631 
3632 #ifdef CONFIG_SMP
3633 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3634 {
3635 	struct irq_desc *desc = irq_to_desc(irq);
3636 	struct irq_cfg *cfg;
3637 	struct msi_msg msg;
3638 	unsigned int dest;
3639 
3640 	dest = set_desc_affinity(desc, mask);
3641 	if (dest == BAD_APICID)
3642 		return;
3643 
3644 	cfg = desc->chip_data;
3645 
3646 	hpet_msi_read(irq, &msg);
3647 
3648 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3649 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3650 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3651 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3652 
3653 	hpet_msi_write(irq, &msg);
3654 }
3655 
3656 #endif /* CONFIG_SMP */
3657 
3658 static struct irq_chip hpet_msi_type = {
3659 	.name = "HPET_MSI",
3660 	.unmask = hpet_msi_unmask,
3661 	.mask = hpet_msi_mask,
3662 	.ack = ack_apic_edge,
3663 #ifdef CONFIG_SMP
3664 	.set_affinity = hpet_msi_set_affinity,
3665 #endif
3666 	.retrigger = ioapic_retrigger_irq,
3667 };
3668 
3669 int arch_setup_hpet_msi(unsigned int irq)
3670 {
3671 	int ret;
3672 	struct msi_msg msg;
3673 
3674 	ret = msi_compose_msg(NULL, irq, &msg);
3675 	if (ret < 0)
3676 		return ret;
3677 
3678 	hpet_msi_write(irq, &msg);
3679 	set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3680 		"edge");
3681 
3682 	return 0;
3683 }
3684 #endif
3685 
3686 #endif /* CONFIG_PCI_MSI */
3687 /*
3688  * Hypertransport interrupt support
3689  */
3690 #ifdef CONFIG_HT_IRQ
3691 
3692 #ifdef CONFIG_SMP
3693 
3694 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3695 {
3696 	struct ht_irq_msg msg;
3697 	fetch_ht_irq_msg(irq, &msg);
3698 
3699 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3700 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3701 
3702 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3703 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3704 
3705 	write_ht_irq_msg(irq, &msg);
3706 }
3707 
3708 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3709 {
3710 	struct irq_desc *desc = irq_to_desc(irq);
3711 	struct irq_cfg *cfg;
3712 	unsigned int dest;
3713 
3714 	dest = set_desc_affinity(desc, mask);
3715 	if (dest == BAD_APICID)
3716 		return;
3717 
3718 	cfg = desc->chip_data;
3719 
3720 	target_ht_irq(irq, dest, cfg->vector);
3721 }
3722 
3723 #endif
3724 
3725 static struct irq_chip ht_irq_chip = {
3726 	.name		= "PCI-HT",
3727 	.mask		= mask_ht_irq,
3728 	.unmask		= unmask_ht_irq,
3729 	.ack		= ack_apic_edge,
3730 #ifdef CONFIG_SMP
3731 	.set_affinity	= set_ht_irq_affinity,
3732 #endif
3733 	.retrigger	= ioapic_retrigger_irq,
3734 };
3735 
3736 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3737 {
3738 	struct irq_cfg *cfg;
3739 	int err;
3740 
3741 	if (disable_apic)
3742 		return -ENXIO;
3743 
3744 	cfg = irq_cfg(irq);
3745 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3746 	if (!err) {
3747 		struct ht_irq_msg msg;
3748 		unsigned dest;
3749 
3750 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3751 						    apic->target_cpus());
3752 
3753 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3754 
3755 		msg.address_lo =
3756 			HT_IRQ_LOW_BASE |
3757 			HT_IRQ_LOW_DEST_ID(dest) |
3758 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3759 			((apic->irq_dest_mode == 0) ?
3760 				HT_IRQ_LOW_DM_PHYSICAL :
3761 				HT_IRQ_LOW_DM_LOGICAL) |
3762 			HT_IRQ_LOW_RQEOI_EDGE |
3763 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3764 				HT_IRQ_LOW_MT_FIXED :
3765 				HT_IRQ_LOW_MT_ARBITRATED) |
3766 			HT_IRQ_LOW_IRQ_MASKED;
3767 
3768 		write_ht_irq_msg(irq, &msg);
3769 
3770 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3771 					      handle_edge_irq, "edge");
3772 
3773 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3774 	}
3775 	return err;
3776 }
3777 #endif /* CONFIG_HT_IRQ */
3778 
3779 #ifdef CONFIG_X86_UV
3780 /*
3781  * Re-target the irq to the specified CPU and enable the specified MMR located
3782  * on the specified blade to allow the sending of MSIs to the specified CPU.
3783  */
3784 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3785 		       unsigned long mmr_offset)
3786 {
3787 	const struct cpumask *eligible_cpu = cpumask_of(cpu);
3788 	struct irq_cfg *cfg;
3789 	int mmr_pnode;
3790 	unsigned long mmr_value;
3791 	struct uv_IO_APIC_route_entry *entry;
3792 	unsigned long flags;
3793 	int err;
3794 
3795 	cfg = irq_cfg(irq);
3796 
3797 	err = assign_irq_vector(irq, cfg, eligible_cpu);
3798 	if (err != 0)
3799 		return err;
3800 
3801 	spin_lock_irqsave(&vector_lock, flags);
3802 	set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3803 				      irq_name);
3804 	spin_unlock_irqrestore(&vector_lock, flags);
3805 
3806 	mmr_value = 0;
3807 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3808 	BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3809 
3810 	entry->vector = cfg->vector;
3811 	entry->delivery_mode = apic->irq_delivery_mode;
3812 	entry->dest_mode = apic->irq_dest_mode;
3813 	entry->polarity = 0;
3814 	entry->trigger = 0;
3815 	entry->mask = 0;
3816 	entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3817 
3818 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3819 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3820 
3821 	return irq;
3822 }
3823 
3824 /*
3825  * Disable the specified MMR located on the specified blade so that MSIs are
3826  * longer allowed to be sent.
3827  */
3828 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3829 {
3830 	unsigned long mmr_value;
3831 	struct uv_IO_APIC_route_entry *entry;
3832 	int mmr_pnode;
3833 
3834 	mmr_value = 0;
3835 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3836 	BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3837 
3838 	entry->mask = 1;
3839 
3840 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3841 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3842 }
3843 #endif /* CONFIG_X86_64 */
3844 
3845 int __init io_apic_get_redir_entries (int ioapic)
3846 {
3847 	union IO_APIC_reg_01	reg_01;
3848 	unsigned long flags;
3849 
3850 	spin_lock_irqsave(&ioapic_lock, flags);
3851 	reg_01.raw = io_apic_read(ioapic, 1);
3852 	spin_unlock_irqrestore(&ioapic_lock, flags);
3853 
3854 	return reg_01.bits.entries;
3855 }
3856 
3857 void __init probe_nr_irqs_gsi(void)
3858 {
3859 	int nr = 0;
3860 
3861 	nr = acpi_probe_gsi();
3862 	if (nr > nr_irqs_gsi) {
3863 		nr_irqs_gsi = nr;
3864 	} else {
3865 		/* for acpi=off or acpi is not compiled in */
3866 		int idx;
3867 
3868 		nr = 0;
3869 		for (idx = 0; idx < nr_ioapics; idx++)
3870 			nr += io_apic_get_redir_entries(idx) + 1;
3871 
3872 		if (nr > nr_irqs_gsi)
3873 			nr_irqs_gsi = nr;
3874 	}
3875 
3876 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3877 }
3878 
3879 #ifdef CONFIG_SPARSE_IRQ
3880 int __init arch_probe_nr_irqs(void)
3881 {
3882 	int nr;
3883 
3884 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3885 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3886 
3887 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3888 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3889 	/*
3890 	 * for MSI and HT dyn irq
3891 	 */
3892 	nr += nr_irqs_gsi * 16;
3893 #endif
3894 	if (nr < nr_irqs)
3895 		nr_irqs = nr;
3896 
3897 	return 0;
3898 }
3899 #endif
3900 
3901 /* --------------------------------------------------------------------------
3902                           ACPI-based IOAPIC Configuration
3903    -------------------------------------------------------------------------- */
3904 
3905 #ifdef CONFIG_ACPI
3906 
3907 #ifdef CONFIG_X86_32
3908 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3909 {
3910 	union IO_APIC_reg_00 reg_00;
3911 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3912 	physid_mask_t tmp;
3913 	unsigned long flags;
3914 	int i = 0;
3915 
3916 	/*
3917 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3918 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3919 	 * supports up to 16 on one shared APIC bus.
3920 	 *
3921 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3922 	 *      advantage of new APIC bus architecture.
3923 	 */
3924 
3925 	if (physids_empty(apic_id_map))
3926 		apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3927 
3928 	spin_lock_irqsave(&ioapic_lock, flags);
3929 	reg_00.raw = io_apic_read(ioapic, 0);
3930 	spin_unlock_irqrestore(&ioapic_lock, flags);
3931 
3932 	if (apic_id >= get_physical_broadcast()) {
3933 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3934 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3935 		apic_id = reg_00.bits.ID;
3936 	}
3937 
3938 	/*
3939 	 * Every APIC in a system must have a unique ID or we get lots of nice
3940 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3941 	 */
3942 	if (apic->check_apicid_used(apic_id_map, apic_id)) {
3943 
3944 		for (i = 0; i < get_physical_broadcast(); i++) {
3945 			if (!apic->check_apicid_used(apic_id_map, i))
3946 				break;
3947 		}
3948 
3949 		if (i == get_physical_broadcast())
3950 			panic("Max apic_id exceeded!\n");
3951 
3952 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3953 			"trying %d\n", ioapic, apic_id, i);
3954 
3955 		apic_id = i;
3956 	}
3957 
3958 	tmp = apic->apicid_to_cpu_present(apic_id);
3959 	physids_or(apic_id_map, apic_id_map, tmp);
3960 
3961 	if (reg_00.bits.ID != apic_id) {
3962 		reg_00.bits.ID = apic_id;
3963 
3964 		spin_lock_irqsave(&ioapic_lock, flags);
3965 		io_apic_write(ioapic, 0, reg_00.raw);
3966 		reg_00.raw = io_apic_read(ioapic, 0);
3967 		spin_unlock_irqrestore(&ioapic_lock, flags);
3968 
3969 		/* Sanity check */
3970 		if (reg_00.bits.ID != apic_id) {
3971 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3972 			return -1;
3973 		}
3974 	}
3975 
3976 	apic_printk(APIC_VERBOSE, KERN_INFO
3977 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3978 
3979 	return apic_id;
3980 }
3981 
3982 int __init io_apic_get_version(int ioapic)
3983 {
3984 	union IO_APIC_reg_01	reg_01;
3985 	unsigned long flags;
3986 
3987 	spin_lock_irqsave(&ioapic_lock, flags);
3988 	reg_01.raw = io_apic_read(ioapic, 1);
3989 	spin_unlock_irqrestore(&ioapic_lock, flags);
3990 
3991 	return reg_01.bits.version;
3992 }
3993 #endif
3994 
3995 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3996 {
3997 	struct irq_desc *desc;
3998 	struct irq_cfg *cfg;
3999 	int cpu = boot_cpu_id;
4000 
4001 	if (!IO_APIC_IRQ(irq)) {
4002 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
4003 			ioapic);
4004 		return -EINVAL;
4005 	}
4006 
4007 	desc = irq_to_desc_alloc_cpu(irq, cpu);
4008 	if (!desc) {
4009 		printk(KERN_INFO "can not get irq_desc %d\n", irq);
4010 		return 0;
4011 	}
4012 
4013 	/*
4014 	 * IRQs < 16 are already in the irq_2_pin[] map
4015 	 */
4016 	if (irq >= NR_IRQS_LEGACY) {
4017 		cfg = desc->chip_data;
4018 		add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
4019 	}
4020 
4021 	setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
4022 
4023 	return 0;
4024 }
4025 
4026 
4027 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4028 {
4029 	int i;
4030 
4031 	if (skip_ioapic_setup)
4032 		return -1;
4033 
4034 	for (i = 0; i < mp_irq_entries; i++)
4035 		if (mp_irqs[i].irqtype == mp_INT &&
4036 		    mp_irqs[i].srcbusirq == bus_irq)
4037 			break;
4038 	if (i >= mp_irq_entries)
4039 		return -1;
4040 
4041 	*trigger = irq_trigger(i);
4042 	*polarity = irq_polarity(i);
4043 	return 0;
4044 }
4045 
4046 #endif /* CONFIG_ACPI */
4047 
4048 /*
4049  * This function currently is only a helper for the i386 smp boot process where
4050  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4051  * so mask in all cases should simply be apic->target_cpus()
4052  */
4053 #ifdef CONFIG_SMP
4054 void __init setup_ioapic_dest(void)
4055 {
4056 	int pin, ioapic, irq, irq_entry;
4057 	struct irq_desc *desc;
4058 	struct irq_cfg *cfg;
4059 	const struct cpumask *mask;
4060 
4061 	if (skip_ioapic_setup == 1)
4062 		return;
4063 
4064 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4065 		for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4066 			irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4067 			if (irq_entry == -1)
4068 				continue;
4069 			irq = pin_2_irq(irq_entry, ioapic, pin);
4070 
4071 			/* setup_IO_APIC_irqs could fail to get vector for some device
4072 			 * when you have too many devices, because at that time only boot
4073 			 * cpu is online.
4074 			 */
4075 			desc = irq_to_desc(irq);
4076 			cfg = desc->chip_data;
4077 			if (!cfg->vector) {
4078 				setup_IO_APIC_irq(ioapic, pin, irq, desc,
4079 						  irq_trigger(irq_entry),
4080 						  irq_polarity(irq_entry));
4081 				continue;
4082 
4083 			}
4084 
4085 			/*
4086 			 * Honour affinities which have been set in early boot
4087 			 */
4088 			if (desc->status &
4089 			    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4090 				mask = desc->affinity;
4091 			else
4092 				mask = apic->target_cpus();
4093 
4094 			if (intr_remapping_enabled)
4095 				set_ir_ioapic_affinity_irq_desc(desc, mask);
4096 			else
4097 				set_ioapic_affinity_irq_desc(desc, mask);
4098 		}
4099 
4100 	}
4101 }
4102 #endif
4103 
4104 #define IOAPIC_RESOURCE_NAME_SIZE 11
4105 
4106 static struct resource *ioapic_resources;
4107 
4108 static struct resource * __init ioapic_setup_resources(void)
4109 {
4110 	unsigned long n;
4111 	struct resource *res;
4112 	char *mem;
4113 	int i;
4114 
4115 	if (nr_ioapics <= 0)
4116 		return NULL;
4117 
4118 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4119 	n *= nr_ioapics;
4120 
4121 	mem = alloc_bootmem(n);
4122 	res = (void *)mem;
4123 
4124 	if (mem != NULL) {
4125 		mem += sizeof(struct resource) * nr_ioapics;
4126 
4127 		for (i = 0; i < nr_ioapics; i++) {
4128 			res[i].name = mem;
4129 			res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4130 			sprintf(mem,  "IOAPIC %u", i);
4131 			mem += IOAPIC_RESOURCE_NAME_SIZE;
4132 		}
4133 	}
4134 
4135 	ioapic_resources = res;
4136 
4137 	return res;
4138 }
4139 
4140 void __init ioapic_init_mappings(void)
4141 {
4142 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4143 	struct resource *ioapic_res;
4144 	int i;
4145 
4146 	ioapic_res = ioapic_setup_resources();
4147 	for (i = 0; i < nr_ioapics; i++) {
4148 		if (smp_found_config) {
4149 			ioapic_phys = mp_ioapics[i].apicaddr;
4150 #ifdef CONFIG_X86_32
4151 			if (!ioapic_phys) {
4152 				printk(KERN_ERR
4153 				       "WARNING: bogus zero IO-APIC "
4154 				       "address found in MPTABLE, "
4155 				       "disabling IO/APIC support!\n");
4156 				smp_found_config = 0;
4157 				skip_ioapic_setup = 1;
4158 				goto fake_ioapic_page;
4159 			}
4160 #endif
4161 		} else {
4162 #ifdef CONFIG_X86_32
4163 fake_ioapic_page:
4164 #endif
4165 			ioapic_phys = (unsigned long)
4166 				alloc_bootmem_pages(PAGE_SIZE);
4167 			ioapic_phys = __pa(ioapic_phys);
4168 		}
4169 		set_fixmap_nocache(idx, ioapic_phys);
4170 		apic_printk(APIC_VERBOSE,
4171 			    "mapped IOAPIC to %08lx (%08lx)\n",
4172 			    __fix_to_virt(idx), ioapic_phys);
4173 		idx++;
4174 
4175 		if (ioapic_res != NULL) {
4176 			ioapic_res->start = ioapic_phys;
4177 			ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4178 			ioapic_res++;
4179 		}
4180 	}
4181 }
4182 
4183 static int __init ioapic_insert_resources(void)
4184 {
4185 	int i;
4186 	struct resource *r = ioapic_resources;
4187 
4188 	if (!r) {
4189 		if (nr_ioapics > 0) {
4190 			printk(KERN_ERR
4191 				"IO APIC resources couldn't be allocated.\n");
4192 			return -1;
4193 		}
4194 		return 0;
4195 	}
4196 
4197 	for (i = 0; i < nr_ioapics; i++) {
4198 		insert_resource(&iomem_resource, r);
4199 		r++;
4200 	}
4201 
4202 	return 0;
4203 }
4204 
4205 /* Insert the IO APIC resources after PCI initialization has occured to handle
4206  * IO APICS that are mapped in on a BAR in PCI space. */
4207 late_initcall(ioapic_insert_resources);
4208