xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision 95c96174)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46 
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 
64 #include <asm/apic.h>
65 
66 #define __apicdebuginit(type) static type __init
67 
68 #define for_each_irq_pin(entry, head) \
69 	for (entry = head; entry; entry = entry->next)
70 
71 static void		__init __ioapic_init_mappings(void);
72 
73 static unsigned int	__io_apic_read  (unsigned int apic, unsigned int reg);
74 static void		__io_apic_write (unsigned int apic, unsigned int reg, unsigned int val);
75 static void		__io_apic_modify(unsigned int apic, unsigned int reg, unsigned int val);
76 
77 static struct io_apic_ops io_apic_ops = {
78 	.init	= __ioapic_init_mappings,
79 	.read	= __io_apic_read,
80 	.write	= __io_apic_write,
81 	.modify = __io_apic_modify,
82 };
83 
84 void __init set_io_apic_ops(const struct io_apic_ops *ops)
85 {
86 	io_apic_ops = *ops;
87 }
88 
89 /*
90  *      Is the SiS APIC rmw bug present ?
91  *      -1 = don't know, 0 = no, 1 = yes
92  */
93 int sis_apic_bug = -1;
94 
95 static DEFINE_RAW_SPINLOCK(ioapic_lock);
96 static DEFINE_RAW_SPINLOCK(vector_lock);
97 
98 static struct ioapic {
99 	/*
100 	 * # of IRQ routing registers
101 	 */
102 	int nr_registers;
103 	/*
104 	 * Saved state during suspend/resume, or while enabling intr-remap.
105 	 */
106 	struct IO_APIC_route_entry *saved_registers;
107 	/* I/O APIC config */
108 	struct mpc_ioapic mp_config;
109 	/* IO APIC gsi routing info */
110 	struct mp_ioapic_gsi  gsi_config;
111 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
112 } ioapics[MAX_IO_APICS];
113 
114 #define mpc_ioapic_ver(ioapic_idx)	ioapics[ioapic_idx].mp_config.apicver
115 
116 int mpc_ioapic_id(int ioapic_idx)
117 {
118 	return ioapics[ioapic_idx].mp_config.apicid;
119 }
120 
121 unsigned int mpc_ioapic_addr(int ioapic_idx)
122 {
123 	return ioapics[ioapic_idx].mp_config.apicaddr;
124 }
125 
126 struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int ioapic_idx)
127 {
128 	return &ioapics[ioapic_idx].gsi_config;
129 }
130 
131 int nr_ioapics;
132 
133 /* The one past the highest gsi number used */
134 u32 gsi_top;
135 
136 /* MP IRQ source entries */
137 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
138 
139 /* # of MP IRQ source entries */
140 int mp_irq_entries;
141 
142 /* GSI interrupts */
143 static int nr_irqs_gsi = NR_IRQS_LEGACY;
144 
145 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
146 int mp_bus_id_to_type[MAX_MP_BUSSES];
147 #endif
148 
149 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
150 
151 int skip_ioapic_setup;
152 
153 /**
154  * disable_ioapic_support() - disables ioapic support at runtime
155  */
156 void disable_ioapic_support(void)
157 {
158 #ifdef CONFIG_PCI
159 	noioapicquirk = 1;
160 	noioapicreroute = -1;
161 #endif
162 	skip_ioapic_setup = 1;
163 }
164 
165 static int __init parse_noapic(char *str)
166 {
167 	/* disable IO-APIC */
168 	disable_ioapic_support();
169 	return 0;
170 }
171 early_param("noapic", parse_noapic);
172 
173 static int io_apic_setup_irq_pin(unsigned int irq, int node,
174 				 struct io_apic_irq_attr *attr);
175 
176 /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
177 void mp_save_irq(struct mpc_intsrc *m)
178 {
179 	int i;
180 
181 	apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
182 		" IRQ %02x, APIC ID %x, APIC INT %02x\n",
183 		m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
184 		m->srcbusirq, m->dstapic, m->dstirq);
185 
186 	for (i = 0; i < mp_irq_entries; i++) {
187 		if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
188 			return;
189 	}
190 
191 	memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
192 	if (++mp_irq_entries == MAX_IRQ_SOURCES)
193 		panic("Max # of irq sources exceeded!!\n");
194 }
195 
196 struct irq_pin_list {
197 	int apic, pin;
198 	struct irq_pin_list *next;
199 };
200 
201 static struct irq_pin_list *alloc_irq_pin_list(int node)
202 {
203 	return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
204 }
205 
206 
207 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
208 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
209 
210 int __init arch_early_irq_init(void)
211 {
212 	struct irq_cfg *cfg;
213 	int count, node, i;
214 
215 	if (!legacy_pic->nr_legacy_irqs)
216 		io_apic_irqs = ~0UL;
217 
218 	for (i = 0; i < nr_ioapics; i++) {
219 		ioapics[i].saved_registers =
220 			kzalloc(sizeof(struct IO_APIC_route_entry) *
221 				ioapics[i].nr_registers, GFP_KERNEL);
222 		if (!ioapics[i].saved_registers)
223 			pr_err("IOAPIC %d: suspend/resume impossible!\n", i);
224 	}
225 
226 	cfg = irq_cfgx;
227 	count = ARRAY_SIZE(irq_cfgx);
228 	node = cpu_to_node(0);
229 
230 	/* Make sure the legacy interrupts are marked in the bitmap */
231 	irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
232 
233 	for (i = 0; i < count; i++) {
234 		irq_set_chip_data(i, &cfg[i]);
235 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
236 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
237 		/*
238 		 * For legacy IRQ's, start with assigning irq0 to irq15 to
239 		 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
240 		 */
241 		if (i < legacy_pic->nr_legacy_irqs) {
242 			cfg[i].vector = IRQ0_VECTOR + i;
243 			cpumask_set_cpu(0, cfg[i].domain);
244 		}
245 	}
246 
247 	return 0;
248 }
249 
250 static struct irq_cfg *irq_cfg(unsigned int irq)
251 {
252 	return irq_get_chip_data(irq);
253 }
254 
255 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
256 {
257 	struct irq_cfg *cfg;
258 
259 	cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
260 	if (!cfg)
261 		return NULL;
262 	if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
263 		goto out_cfg;
264 	if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
265 		goto out_domain;
266 	return cfg;
267 out_domain:
268 	free_cpumask_var(cfg->domain);
269 out_cfg:
270 	kfree(cfg);
271 	return NULL;
272 }
273 
274 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
275 {
276 	if (!cfg)
277 		return;
278 	irq_set_chip_data(at, NULL);
279 	free_cpumask_var(cfg->domain);
280 	free_cpumask_var(cfg->old_domain);
281 	kfree(cfg);
282 }
283 
284 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
285 {
286 	int res = irq_alloc_desc_at(at, node);
287 	struct irq_cfg *cfg;
288 
289 	if (res < 0) {
290 		if (res != -EEXIST)
291 			return NULL;
292 		cfg = irq_get_chip_data(at);
293 		if (cfg)
294 			return cfg;
295 	}
296 
297 	cfg = alloc_irq_cfg(at, node);
298 	if (cfg)
299 		irq_set_chip_data(at, cfg);
300 	else
301 		irq_free_desc(at);
302 	return cfg;
303 }
304 
305 static int alloc_irq_from(unsigned int from, int node)
306 {
307 	return irq_alloc_desc_from(from, node);
308 }
309 
310 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
311 {
312 	free_irq_cfg(at, cfg);
313 	irq_free_desc(at);
314 }
315 
316 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
317 {
318 	return io_apic_ops.read(apic, reg);
319 }
320 
321 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
322 {
323 	io_apic_ops.write(apic, reg, value);
324 }
325 
326 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
327 {
328 	io_apic_ops.modify(apic, reg, value);
329 }
330 
331 
332 struct io_apic {
333 	unsigned int index;
334 	unsigned int unused[3];
335 	unsigned int data;
336 	unsigned int unused2[11];
337 	unsigned int eoi;
338 };
339 
340 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
341 {
342 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
343 		+ (mpc_ioapic_addr(idx) & ~PAGE_MASK);
344 }
345 
346 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
347 {
348 	struct io_apic __iomem *io_apic = io_apic_base(apic);
349 	writel(vector, &io_apic->eoi);
350 }
351 
352 static unsigned int __io_apic_read(unsigned int apic, unsigned int reg)
353 {
354 	struct io_apic __iomem *io_apic = io_apic_base(apic);
355 	writel(reg, &io_apic->index);
356 	return readl(&io_apic->data);
357 }
358 
359 static void __io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
360 {
361 	struct io_apic __iomem *io_apic = io_apic_base(apic);
362 
363 	writel(reg, &io_apic->index);
364 	writel(value, &io_apic->data);
365 }
366 
367 /*
368  * Re-write a value: to be used for read-modify-write
369  * cycles where the read already set up the index register.
370  *
371  * Older SiS APIC requires we rewrite the index register
372  */
373 static void __io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
374 {
375 	struct io_apic __iomem *io_apic = io_apic_base(apic);
376 
377 	if (sis_apic_bug)
378 		writel(reg, &io_apic->index);
379 	writel(value, &io_apic->data);
380 }
381 
382 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
383 {
384 	struct irq_pin_list *entry;
385 	unsigned long flags;
386 
387 	raw_spin_lock_irqsave(&ioapic_lock, flags);
388 	for_each_irq_pin(entry, cfg->irq_2_pin) {
389 		unsigned int reg;
390 		int pin;
391 
392 		pin = entry->pin;
393 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
394 		/* Is the remote IRR bit set? */
395 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
396 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
397 			return true;
398 		}
399 	}
400 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
401 
402 	return false;
403 }
404 
405 union entry_union {
406 	struct { u32 w1, w2; };
407 	struct IO_APIC_route_entry entry;
408 };
409 
410 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin)
411 {
412 	union entry_union eu;
413 
414 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
415 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
416 
417 	return eu.entry;
418 }
419 
420 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
421 {
422 	union entry_union eu;
423 	unsigned long flags;
424 
425 	raw_spin_lock_irqsave(&ioapic_lock, flags);
426 	eu.entry = __ioapic_read_entry(apic, pin);
427 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
428 
429 	return eu.entry;
430 }
431 
432 /*
433  * When we write a new IO APIC routing entry, we need to write the high
434  * word first! If the mask bit in the low word is clear, we will enable
435  * the interrupt, and we need to make sure the entry is fully populated
436  * before that happens.
437  */
438 static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
439 {
440 	union entry_union eu = {{0, 0}};
441 
442 	eu.entry = e;
443 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
444 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
445 }
446 
447 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
448 {
449 	unsigned long flags;
450 
451 	raw_spin_lock_irqsave(&ioapic_lock, flags);
452 	__ioapic_write_entry(apic, pin, e);
453 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
454 }
455 
456 /*
457  * When we mask an IO APIC routing entry, we need to write the low
458  * word first, in order to set the mask bit before we change the
459  * high bits!
460  */
461 static void ioapic_mask_entry(int apic, int pin)
462 {
463 	unsigned long flags;
464 	union entry_union eu = { .entry.mask = 1 };
465 
466 	raw_spin_lock_irqsave(&ioapic_lock, flags);
467 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
468 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
469 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
470 }
471 
472 /*
473  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
474  * shared ISA-space IRQs, so we have to support them. We are super
475  * fast in the common case, and fast for shared ISA-space IRQs.
476  */
477 static int __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
478 {
479 	struct irq_pin_list **last, *entry;
480 
481 	/* don't allow duplicates */
482 	last = &cfg->irq_2_pin;
483 	for_each_irq_pin(entry, cfg->irq_2_pin) {
484 		if (entry->apic == apic && entry->pin == pin)
485 			return 0;
486 		last = &entry->next;
487 	}
488 
489 	entry = alloc_irq_pin_list(node);
490 	if (!entry) {
491 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
492 				node, apic, pin);
493 		return -ENOMEM;
494 	}
495 	entry->apic = apic;
496 	entry->pin = pin;
497 
498 	*last = entry;
499 	return 0;
500 }
501 
502 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
503 {
504 	if (__add_pin_to_irq_node(cfg, node, apic, pin))
505 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
506 }
507 
508 /*
509  * Reroute an IRQ to a different pin.
510  */
511 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
512 					   int oldapic, int oldpin,
513 					   int newapic, int newpin)
514 {
515 	struct irq_pin_list *entry;
516 
517 	for_each_irq_pin(entry, cfg->irq_2_pin) {
518 		if (entry->apic == oldapic && entry->pin == oldpin) {
519 			entry->apic = newapic;
520 			entry->pin = newpin;
521 			/* every one is different, right? */
522 			return;
523 		}
524 	}
525 
526 	/* old apic/pin didn't exist, so just add new ones */
527 	add_pin_to_irq_node(cfg, node, newapic, newpin);
528 }
529 
530 static void __io_apic_modify_irq(struct irq_pin_list *entry,
531 				 int mask_and, int mask_or,
532 				 void (*final)(struct irq_pin_list *entry))
533 {
534 	unsigned int reg, pin;
535 
536 	pin = entry->pin;
537 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
538 	reg &= mask_and;
539 	reg |= mask_or;
540 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
541 	if (final)
542 		final(entry);
543 }
544 
545 static void io_apic_modify_irq(struct irq_cfg *cfg,
546 			       int mask_and, int mask_or,
547 			       void (*final)(struct irq_pin_list *entry))
548 {
549 	struct irq_pin_list *entry;
550 
551 	for_each_irq_pin(entry, cfg->irq_2_pin)
552 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
553 }
554 
555 static void io_apic_sync(struct irq_pin_list *entry)
556 {
557 	/*
558 	 * Synchronize the IO-APIC and the CPU by doing
559 	 * a dummy read from the IO-APIC
560 	 */
561 	struct io_apic __iomem *io_apic;
562 
563 	io_apic = io_apic_base(entry->apic);
564 	readl(&io_apic->data);
565 }
566 
567 static void mask_ioapic(struct irq_cfg *cfg)
568 {
569 	unsigned long flags;
570 
571 	raw_spin_lock_irqsave(&ioapic_lock, flags);
572 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
573 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
574 }
575 
576 static void mask_ioapic_irq(struct irq_data *data)
577 {
578 	mask_ioapic(data->chip_data);
579 }
580 
581 static void __unmask_ioapic(struct irq_cfg *cfg)
582 {
583 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
584 }
585 
586 static void unmask_ioapic(struct irq_cfg *cfg)
587 {
588 	unsigned long flags;
589 
590 	raw_spin_lock_irqsave(&ioapic_lock, flags);
591 	__unmask_ioapic(cfg);
592 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
593 }
594 
595 static void unmask_ioapic_irq(struct irq_data *data)
596 {
597 	unmask_ioapic(data->chip_data);
598 }
599 
600 /*
601  * IO-APIC versions below 0x20 don't support EOI register.
602  * For the record, here is the information about various versions:
603  *     0Xh     82489DX
604  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
605  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
606  *     30h-FFh Reserved
607  *
608  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
609  * version as 0x2. This is an error with documentation and these ICH chips
610  * use io-apic's of version 0x20.
611  *
612  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
613  * Otherwise, we simulate the EOI message manually by changing the trigger
614  * mode to edge and then back to level, with RTE being masked during this.
615  */
616 static void __eoi_ioapic_pin(int apic, int pin, int vector, struct irq_cfg *cfg)
617 {
618 	if (mpc_ioapic_ver(apic) >= 0x20) {
619 		/*
620 		 * Intr-remapping uses pin number as the virtual vector
621 		 * in the RTE. Actual vector is programmed in
622 		 * intr-remapping table entry. Hence for the io-apic
623 		 * EOI we use the pin number.
624 		 */
625 		if (cfg && irq_remapped(cfg))
626 			io_apic_eoi(apic, pin);
627 		else
628 			io_apic_eoi(apic, vector);
629 	} else {
630 		struct IO_APIC_route_entry entry, entry1;
631 
632 		entry = entry1 = __ioapic_read_entry(apic, pin);
633 
634 		/*
635 		 * Mask the entry and change the trigger mode to edge.
636 		 */
637 		entry1.mask = 1;
638 		entry1.trigger = IOAPIC_EDGE;
639 
640 		__ioapic_write_entry(apic, pin, entry1);
641 
642 		/*
643 		 * Restore the previous level triggered entry.
644 		 */
645 		__ioapic_write_entry(apic, pin, entry);
646 	}
647 }
648 
649 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
650 {
651 	struct irq_pin_list *entry;
652 	unsigned long flags;
653 
654 	raw_spin_lock_irqsave(&ioapic_lock, flags);
655 	for_each_irq_pin(entry, cfg->irq_2_pin)
656 		__eoi_ioapic_pin(entry->apic, entry->pin, cfg->vector, cfg);
657 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
658 }
659 
660 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
661 {
662 	struct IO_APIC_route_entry entry;
663 
664 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
665 	entry = ioapic_read_entry(apic, pin);
666 	if (entry.delivery_mode == dest_SMI)
667 		return;
668 
669 	/*
670 	 * Make sure the entry is masked and re-read the contents to check
671 	 * if it is a level triggered pin and if the remote-IRR is set.
672 	 */
673 	if (!entry.mask) {
674 		entry.mask = 1;
675 		ioapic_write_entry(apic, pin, entry);
676 		entry = ioapic_read_entry(apic, pin);
677 	}
678 
679 	if (entry.irr) {
680 		unsigned long flags;
681 
682 		/*
683 		 * Make sure the trigger mode is set to level. Explicit EOI
684 		 * doesn't clear the remote-IRR if the trigger mode is not
685 		 * set to level.
686 		 */
687 		if (!entry.trigger) {
688 			entry.trigger = IOAPIC_LEVEL;
689 			ioapic_write_entry(apic, pin, entry);
690 		}
691 
692 		raw_spin_lock_irqsave(&ioapic_lock, flags);
693 		__eoi_ioapic_pin(apic, pin, entry.vector, NULL);
694 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
695 	}
696 
697 	/*
698 	 * Clear the rest of the bits in the IO-APIC RTE except for the mask
699 	 * bit.
700 	 */
701 	ioapic_mask_entry(apic, pin);
702 	entry = ioapic_read_entry(apic, pin);
703 	if (entry.irr)
704 		printk(KERN_ERR "Unable to reset IRR for apic: %d, pin :%d\n",
705 		       mpc_ioapic_id(apic), pin);
706 }
707 
708 static void clear_IO_APIC (void)
709 {
710 	int apic, pin;
711 
712 	for (apic = 0; apic < nr_ioapics; apic++)
713 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
714 			clear_IO_APIC_pin(apic, pin);
715 }
716 
717 #ifdef CONFIG_X86_32
718 /*
719  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
720  * specific CPU-side IRQs.
721  */
722 
723 #define MAX_PIRQS 8
724 static int pirq_entries[MAX_PIRQS] = {
725 	[0 ... MAX_PIRQS - 1] = -1
726 };
727 
728 static int __init ioapic_pirq_setup(char *str)
729 {
730 	int i, max;
731 	int ints[MAX_PIRQS+1];
732 
733 	get_options(str, ARRAY_SIZE(ints), ints);
734 
735 	apic_printk(APIC_VERBOSE, KERN_INFO
736 			"PIRQ redirection, working around broken MP-BIOS.\n");
737 	max = MAX_PIRQS;
738 	if (ints[0] < MAX_PIRQS)
739 		max = ints[0];
740 
741 	for (i = 0; i < max; i++) {
742 		apic_printk(APIC_VERBOSE, KERN_DEBUG
743 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
744 		/*
745 		 * PIRQs are mapped upside down, usually.
746 		 */
747 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
748 	}
749 	return 1;
750 }
751 
752 __setup("pirq=", ioapic_pirq_setup);
753 #endif /* CONFIG_X86_32 */
754 
755 /*
756  * Saves all the IO-APIC RTE's
757  */
758 int save_ioapic_entries(void)
759 {
760 	int apic, pin;
761 	int err = 0;
762 
763 	for (apic = 0; apic < nr_ioapics; apic++) {
764 		if (!ioapics[apic].saved_registers) {
765 			err = -ENOMEM;
766 			continue;
767 		}
768 
769 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
770 			ioapics[apic].saved_registers[pin] =
771 				ioapic_read_entry(apic, pin);
772 	}
773 
774 	return err;
775 }
776 
777 /*
778  * Mask all IO APIC entries.
779  */
780 void mask_ioapic_entries(void)
781 {
782 	int apic, pin;
783 
784 	for (apic = 0; apic < nr_ioapics; apic++) {
785 		if (!ioapics[apic].saved_registers)
786 			continue;
787 
788 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
789 			struct IO_APIC_route_entry entry;
790 
791 			entry = ioapics[apic].saved_registers[pin];
792 			if (!entry.mask) {
793 				entry.mask = 1;
794 				ioapic_write_entry(apic, pin, entry);
795 			}
796 		}
797 	}
798 }
799 
800 /*
801  * Restore IO APIC entries which was saved in the ioapic structure.
802  */
803 int restore_ioapic_entries(void)
804 {
805 	int apic, pin;
806 
807 	for (apic = 0; apic < nr_ioapics; apic++) {
808 		if (!ioapics[apic].saved_registers)
809 			continue;
810 
811 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
812 			ioapic_write_entry(apic, pin,
813 					   ioapics[apic].saved_registers[pin]);
814 	}
815 	return 0;
816 }
817 
818 /*
819  * Find the IRQ entry number of a certain pin.
820  */
821 static int find_irq_entry(int ioapic_idx, int pin, int type)
822 {
823 	int i;
824 
825 	for (i = 0; i < mp_irq_entries; i++)
826 		if (mp_irqs[i].irqtype == type &&
827 		    (mp_irqs[i].dstapic == mpc_ioapic_id(ioapic_idx) ||
828 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
829 		    mp_irqs[i].dstirq == pin)
830 			return i;
831 
832 	return -1;
833 }
834 
835 /*
836  * Find the pin to which IRQ[irq] (ISA) is connected
837  */
838 static int __init find_isa_irq_pin(int irq, int type)
839 {
840 	int i;
841 
842 	for (i = 0; i < mp_irq_entries; i++) {
843 		int lbus = mp_irqs[i].srcbus;
844 
845 		if (test_bit(lbus, mp_bus_not_pci) &&
846 		    (mp_irqs[i].irqtype == type) &&
847 		    (mp_irqs[i].srcbusirq == irq))
848 
849 			return mp_irqs[i].dstirq;
850 	}
851 	return -1;
852 }
853 
854 static int __init find_isa_irq_apic(int irq, int type)
855 {
856 	int i;
857 
858 	for (i = 0; i < mp_irq_entries; i++) {
859 		int lbus = mp_irqs[i].srcbus;
860 
861 		if (test_bit(lbus, mp_bus_not_pci) &&
862 		    (mp_irqs[i].irqtype == type) &&
863 		    (mp_irqs[i].srcbusirq == irq))
864 			break;
865 	}
866 
867 	if (i < mp_irq_entries) {
868 		int ioapic_idx;
869 
870 		for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++)
871 			if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic)
872 				return ioapic_idx;
873 	}
874 
875 	return -1;
876 }
877 
878 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
879 /*
880  * EISA Edge/Level control register, ELCR
881  */
882 static int EISA_ELCR(unsigned int irq)
883 {
884 	if (irq < legacy_pic->nr_legacy_irqs) {
885 		unsigned int port = 0x4d0 + (irq >> 3);
886 		return (inb(port) >> (irq & 7)) & 1;
887 	}
888 	apic_printk(APIC_VERBOSE, KERN_INFO
889 			"Broken MPtable reports ISA irq %d\n", irq);
890 	return 0;
891 }
892 
893 #endif
894 
895 /* ISA interrupts are always polarity zero edge triggered,
896  * when listed as conforming in the MP table. */
897 
898 #define default_ISA_trigger(idx)	(0)
899 #define default_ISA_polarity(idx)	(0)
900 
901 /* EISA interrupts are always polarity zero and can be edge or level
902  * trigger depending on the ELCR value.  If an interrupt is listed as
903  * EISA conforming in the MP table, that means its trigger type must
904  * be read in from the ELCR */
905 
906 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
907 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
908 
909 /* PCI interrupts are always polarity one level triggered,
910  * when listed as conforming in the MP table. */
911 
912 #define default_PCI_trigger(idx)	(1)
913 #define default_PCI_polarity(idx)	(1)
914 
915 /* MCA interrupts are always polarity zero level triggered,
916  * when listed as conforming in the MP table. */
917 
918 #define default_MCA_trigger(idx)	(1)
919 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
920 
921 static int irq_polarity(int idx)
922 {
923 	int bus = mp_irqs[idx].srcbus;
924 	int polarity;
925 
926 	/*
927 	 * Determine IRQ line polarity (high active or low active):
928 	 */
929 	switch (mp_irqs[idx].irqflag & 3)
930 	{
931 		case 0: /* conforms, ie. bus-type dependent polarity */
932 			if (test_bit(bus, mp_bus_not_pci))
933 				polarity = default_ISA_polarity(idx);
934 			else
935 				polarity = default_PCI_polarity(idx);
936 			break;
937 		case 1: /* high active */
938 		{
939 			polarity = 0;
940 			break;
941 		}
942 		case 2: /* reserved */
943 		{
944 			printk(KERN_WARNING "broken BIOS!!\n");
945 			polarity = 1;
946 			break;
947 		}
948 		case 3: /* low active */
949 		{
950 			polarity = 1;
951 			break;
952 		}
953 		default: /* invalid */
954 		{
955 			printk(KERN_WARNING "broken BIOS!!\n");
956 			polarity = 1;
957 			break;
958 		}
959 	}
960 	return polarity;
961 }
962 
963 static int irq_trigger(int idx)
964 {
965 	int bus = mp_irqs[idx].srcbus;
966 	int trigger;
967 
968 	/*
969 	 * Determine IRQ trigger mode (edge or level sensitive):
970 	 */
971 	switch ((mp_irqs[idx].irqflag>>2) & 3)
972 	{
973 		case 0: /* conforms, ie. bus-type dependent */
974 			if (test_bit(bus, mp_bus_not_pci))
975 				trigger = default_ISA_trigger(idx);
976 			else
977 				trigger = default_PCI_trigger(idx);
978 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
979 			switch (mp_bus_id_to_type[bus]) {
980 				case MP_BUS_ISA: /* ISA pin */
981 				{
982 					/* set before the switch */
983 					break;
984 				}
985 				case MP_BUS_EISA: /* EISA pin */
986 				{
987 					trigger = default_EISA_trigger(idx);
988 					break;
989 				}
990 				case MP_BUS_PCI: /* PCI pin */
991 				{
992 					/* set before the switch */
993 					break;
994 				}
995 				case MP_BUS_MCA: /* MCA pin */
996 				{
997 					trigger = default_MCA_trigger(idx);
998 					break;
999 				}
1000 				default:
1001 				{
1002 					printk(KERN_WARNING "broken BIOS!!\n");
1003 					trigger = 1;
1004 					break;
1005 				}
1006 			}
1007 #endif
1008 			break;
1009 		case 1: /* edge */
1010 		{
1011 			trigger = 0;
1012 			break;
1013 		}
1014 		case 2: /* reserved */
1015 		{
1016 			printk(KERN_WARNING "broken BIOS!!\n");
1017 			trigger = 1;
1018 			break;
1019 		}
1020 		case 3: /* level */
1021 		{
1022 			trigger = 1;
1023 			break;
1024 		}
1025 		default: /* invalid */
1026 		{
1027 			printk(KERN_WARNING "broken BIOS!!\n");
1028 			trigger = 0;
1029 			break;
1030 		}
1031 	}
1032 	return trigger;
1033 }
1034 
1035 static int pin_2_irq(int idx, int apic, int pin)
1036 {
1037 	int irq;
1038 	int bus = mp_irqs[idx].srcbus;
1039 	struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(apic);
1040 
1041 	/*
1042 	 * Debugging check, we are in big trouble if this message pops up!
1043 	 */
1044 	if (mp_irqs[idx].dstirq != pin)
1045 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1046 
1047 	if (test_bit(bus, mp_bus_not_pci)) {
1048 		irq = mp_irqs[idx].srcbusirq;
1049 	} else {
1050 		u32 gsi = gsi_cfg->gsi_base + pin;
1051 
1052 		if (gsi >= NR_IRQS_LEGACY)
1053 			irq = gsi;
1054 		else
1055 			irq = gsi_top + gsi;
1056 	}
1057 
1058 #ifdef CONFIG_X86_32
1059 	/*
1060 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1061 	 */
1062 	if ((pin >= 16) && (pin <= 23)) {
1063 		if (pirq_entries[pin-16] != -1) {
1064 			if (!pirq_entries[pin-16]) {
1065 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1066 						"disabling PIRQ%d\n", pin-16);
1067 			} else {
1068 				irq = pirq_entries[pin-16];
1069 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1070 						"using PIRQ%d -> IRQ %d\n",
1071 						pin-16, irq);
1072 			}
1073 		}
1074 	}
1075 #endif
1076 
1077 	return irq;
1078 }
1079 
1080 /*
1081  * Find a specific PCI IRQ entry.
1082  * Not an __init, possibly needed by modules
1083  */
1084 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1085 				struct io_apic_irq_attr *irq_attr)
1086 {
1087 	int ioapic_idx, i, best_guess = -1;
1088 
1089 	apic_printk(APIC_DEBUG,
1090 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1091 		    bus, slot, pin);
1092 	if (test_bit(bus, mp_bus_not_pci)) {
1093 		apic_printk(APIC_VERBOSE,
1094 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1095 		return -1;
1096 	}
1097 	for (i = 0; i < mp_irq_entries; i++) {
1098 		int lbus = mp_irqs[i].srcbus;
1099 
1100 		for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++)
1101 			if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic ||
1102 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1103 				break;
1104 
1105 		if (!test_bit(lbus, mp_bus_not_pci) &&
1106 		    !mp_irqs[i].irqtype &&
1107 		    (bus == lbus) &&
1108 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1109 			int irq = pin_2_irq(i, ioapic_idx, mp_irqs[i].dstirq);
1110 
1111 			if (!(ioapic_idx || IO_APIC_IRQ(irq)))
1112 				continue;
1113 
1114 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1115 				set_io_apic_irq_attr(irq_attr, ioapic_idx,
1116 						     mp_irqs[i].dstirq,
1117 						     irq_trigger(i),
1118 						     irq_polarity(i));
1119 				return irq;
1120 			}
1121 			/*
1122 			 * Use the first all-but-pin matching entry as a
1123 			 * best-guess fuzzy result for broken mptables.
1124 			 */
1125 			if (best_guess < 0) {
1126 				set_io_apic_irq_attr(irq_attr, ioapic_idx,
1127 						     mp_irqs[i].dstirq,
1128 						     irq_trigger(i),
1129 						     irq_polarity(i));
1130 				best_guess = irq;
1131 			}
1132 		}
1133 	}
1134 	return best_guess;
1135 }
1136 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1137 
1138 void lock_vector_lock(void)
1139 {
1140 	/* Used to the online set of cpus does not change
1141 	 * during assign_irq_vector.
1142 	 */
1143 	raw_spin_lock(&vector_lock);
1144 }
1145 
1146 void unlock_vector_lock(void)
1147 {
1148 	raw_spin_unlock(&vector_lock);
1149 }
1150 
1151 static int
1152 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1153 {
1154 	/*
1155 	 * NOTE! The local APIC isn't very good at handling
1156 	 * multiple interrupts at the same interrupt level.
1157 	 * As the interrupt level is determined by taking the
1158 	 * vector number and shifting that right by 4, we
1159 	 * want to spread these out a bit so that they don't
1160 	 * all fall in the same interrupt level.
1161 	 *
1162 	 * Also, we've got to be careful not to trash gate
1163 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1164 	 */
1165 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1166 	static int current_offset = VECTOR_OFFSET_START % 8;
1167 	unsigned int old_vector;
1168 	int cpu, err;
1169 	cpumask_var_t tmp_mask;
1170 
1171 	if (cfg->move_in_progress)
1172 		return -EBUSY;
1173 
1174 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1175 		return -ENOMEM;
1176 
1177 	old_vector = cfg->vector;
1178 	if (old_vector) {
1179 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1180 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1181 		if (!cpumask_empty(tmp_mask)) {
1182 			free_cpumask_var(tmp_mask);
1183 			return 0;
1184 		}
1185 	}
1186 
1187 	/* Only try and allocate irqs on cpus that are present */
1188 	err = -ENOSPC;
1189 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1190 		int new_cpu;
1191 		int vector, offset;
1192 
1193 		apic->vector_allocation_domain(cpu, tmp_mask);
1194 
1195 		vector = current_vector;
1196 		offset = current_offset;
1197 next:
1198 		vector += 8;
1199 		if (vector >= first_system_vector) {
1200 			/* If out of vectors on large boxen, must share them. */
1201 			offset = (offset + 1) % 8;
1202 			vector = FIRST_EXTERNAL_VECTOR + offset;
1203 		}
1204 		if (unlikely(current_vector == vector))
1205 			continue;
1206 
1207 		if (test_bit(vector, used_vectors))
1208 			goto next;
1209 
1210 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1211 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1212 				goto next;
1213 		/* Found one! */
1214 		current_vector = vector;
1215 		current_offset = offset;
1216 		if (old_vector) {
1217 			cfg->move_in_progress = 1;
1218 			cpumask_copy(cfg->old_domain, cfg->domain);
1219 		}
1220 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1221 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1222 		cfg->vector = vector;
1223 		cpumask_copy(cfg->domain, tmp_mask);
1224 		err = 0;
1225 		break;
1226 	}
1227 	free_cpumask_var(tmp_mask);
1228 	return err;
1229 }
1230 
1231 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1232 {
1233 	int err;
1234 	unsigned long flags;
1235 
1236 	raw_spin_lock_irqsave(&vector_lock, flags);
1237 	err = __assign_irq_vector(irq, cfg, mask);
1238 	raw_spin_unlock_irqrestore(&vector_lock, flags);
1239 	return err;
1240 }
1241 
1242 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1243 {
1244 	int cpu, vector;
1245 
1246 	BUG_ON(!cfg->vector);
1247 
1248 	vector = cfg->vector;
1249 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1250 		per_cpu(vector_irq, cpu)[vector] = -1;
1251 
1252 	cfg->vector = 0;
1253 	cpumask_clear(cfg->domain);
1254 
1255 	if (likely(!cfg->move_in_progress))
1256 		return;
1257 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1258 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1259 								vector++) {
1260 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1261 				continue;
1262 			per_cpu(vector_irq, cpu)[vector] = -1;
1263 			break;
1264 		}
1265 	}
1266 	cfg->move_in_progress = 0;
1267 }
1268 
1269 void __setup_vector_irq(int cpu)
1270 {
1271 	/* Initialize vector_irq on a new cpu */
1272 	int irq, vector;
1273 	struct irq_cfg *cfg;
1274 
1275 	/*
1276 	 * vector_lock will make sure that we don't run into irq vector
1277 	 * assignments that might be happening on another cpu in parallel,
1278 	 * while we setup our initial vector to irq mappings.
1279 	 */
1280 	raw_spin_lock(&vector_lock);
1281 	/* Mark the inuse vectors */
1282 	for_each_active_irq(irq) {
1283 		cfg = irq_get_chip_data(irq);
1284 		if (!cfg)
1285 			continue;
1286 		/*
1287 		 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1288 		 * will be part of the irq_cfg's domain.
1289 		 */
1290 		if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1291 			cpumask_set_cpu(cpu, cfg->domain);
1292 
1293 		if (!cpumask_test_cpu(cpu, cfg->domain))
1294 			continue;
1295 		vector = cfg->vector;
1296 		per_cpu(vector_irq, cpu)[vector] = irq;
1297 	}
1298 	/* Mark the free vectors */
1299 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1300 		irq = per_cpu(vector_irq, cpu)[vector];
1301 		if (irq < 0)
1302 			continue;
1303 
1304 		cfg = irq_cfg(irq);
1305 		if (!cpumask_test_cpu(cpu, cfg->domain))
1306 			per_cpu(vector_irq, cpu)[vector] = -1;
1307 	}
1308 	raw_spin_unlock(&vector_lock);
1309 }
1310 
1311 static struct irq_chip ioapic_chip;
1312 
1313 #ifdef CONFIG_X86_32
1314 static inline int IO_APIC_irq_trigger(int irq)
1315 {
1316 	int apic, idx, pin;
1317 
1318 	for (apic = 0; apic < nr_ioapics; apic++) {
1319 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
1320 			idx = find_irq_entry(apic, pin, mp_INT);
1321 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1322 				return irq_trigger(idx);
1323 		}
1324 	}
1325 	/*
1326          * nonexistent IRQs are edge default
1327          */
1328 	return 0;
1329 }
1330 #else
1331 static inline int IO_APIC_irq_trigger(int irq)
1332 {
1333 	return 1;
1334 }
1335 #endif
1336 
1337 static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg,
1338 				 unsigned long trigger)
1339 {
1340 	struct irq_chip *chip = &ioapic_chip;
1341 	irq_flow_handler_t hdl;
1342 	bool fasteoi;
1343 
1344 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1345 	    trigger == IOAPIC_LEVEL) {
1346 		irq_set_status_flags(irq, IRQ_LEVEL);
1347 		fasteoi = true;
1348 	} else {
1349 		irq_clear_status_flags(irq, IRQ_LEVEL);
1350 		fasteoi = false;
1351 	}
1352 
1353 	if (irq_remapped(cfg)) {
1354 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1355 		irq_remap_modify_chip_defaults(chip);
1356 		fasteoi = trigger != 0;
1357 	}
1358 
1359 	hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
1360 	irq_set_chip_and_handler_name(irq, chip, hdl,
1361 				      fasteoi ? "fasteoi" : "edge");
1362 }
1363 
1364 
1365 static int setup_ir_ioapic_entry(int irq,
1366 			      struct IR_IO_APIC_route_entry *entry,
1367 			      unsigned int destination, int vector,
1368 			      struct io_apic_irq_attr *attr)
1369 {
1370 	int index;
1371 	struct irte irte;
1372 	int ioapic_id = mpc_ioapic_id(attr->ioapic);
1373 	struct intel_iommu *iommu = map_ioapic_to_ir(ioapic_id);
1374 
1375 	if (!iommu) {
1376 		pr_warn("No mapping iommu for ioapic %d\n", ioapic_id);
1377 		return -ENODEV;
1378 	}
1379 
1380 	index = alloc_irte(iommu, irq, 1);
1381 	if (index < 0) {
1382 		pr_warn("Failed to allocate IRTE for ioapic %d\n", ioapic_id);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	prepare_irte(&irte, vector, destination);
1387 
1388 	/* Set source-id of interrupt request */
1389 	set_ioapic_sid(&irte, ioapic_id);
1390 
1391 	modify_irte(irq, &irte);
1392 
1393 	apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
1394 		"Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
1395 		"Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
1396 		"Avail:%X Vector:%02X Dest:%08X "
1397 		"SID:%04X SQ:%X SVT:%X)\n",
1398 		attr->ioapic, irte.present, irte.fpd, irte.dst_mode,
1399 		irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
1400 		irte.avail, irte.vector, irte.dest_id,
1401 		irte.sid, irte.sq, irte.svt);
1402 
1403 	memset(entry, 0, sizeof(*entry));
1404 
1405 	entry->index2	= (index >> 15) & 0x1;
1406 	entry->zero	= 0;
1407 	entry->format	= 1;
1408 	entry->index	= (index & 0x7fff);
1409 	/*
1410 	 * IO-APIC RTE will be configured with virtual vector.
1411 	 * irq handler will do the explicit EOI to the io-apic.
1412 	 */
1413 	entry->vector	= attr->ioapic_pin;
1414 	entry->mask	= 0;			/* enable IRQ */
1415 	entry->trigger	= attr->trigger;
1416 	entry->polarity	= attr->polarity;
1417 
1418 	/* Mask level triggered irqs.
1419 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1420 	 */
1421 	if (attr->trigger)
1422 		entry->mask = 1;
1423 
1424 	return 0;
1425 }
1426 
1427 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
1428 			       unsigned int destination, int vector,
1429 			       struct io_apic_irq_attr *attr)
1430 {
1431 	if (intr_remapping_enabled)
1432 		return setup_ir_ioapic_entry(irq,
1433 			 (struct IR_IO_APIC_route_entry *)entry,
1434 			 destination, vector, attr);
1435 
1436 	memset(entry, 0, sizeof(*entry));
1437 
1438 	entry->delivery_mode = apic->irq_delivery_mode;
1439 	entry->dest_mode     = apic->irq_dest_mode;
1440 	entry->dest	     = destination;
1441 	entry->vector	     = vector;
1442 	entry->mask	     = 0;			/* enable IRQ */
1443 	entry->trigger	     = attr->trigger;
1444 	entry->polarity	     = attr->polarity;
1445 
1446 	/*
1447 	 * Mask level triggered irqs.
1448 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1449 	 */
1450 	if (attr->trigger)
1451 		entry->mask = 1;
1452 
1453 	return 0;
1454 }
1455 
1456 static void setup_ioapic_irq(unsigned int irq, struct irq_cfg *cfg,
1457 				struct io_apic_irq_attr *attr)
1458 {
1459 	struct IO_APIC_route_entry entry;
1460 	unsigned int dest;
1461 
1462 	if (!IO_APIC_IRQ(irq))
1463 		return;
1464 	/*
1465 	 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1466 	 * controllers like 8259. Now that IO-APIC can handle this irq, update
1467 	 * the cfg->domain.
1468 	 */
1469 	if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1470 		apic->vector_allocation_domain(0, cfg->domain);
1471 
1472 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1473 		return;
1474 
1475 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1476 
1477 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1478 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1479 		    "IRQ %d Mode:%i Active:%i Dest:%d)\n",
1480 		    attr->ioapic, mpc_ioapic_id(attr->ioapic), attr->ioapic_pin,
1481 		    cfg->vector, irq, attr->trigger, attr->polarity, dest);
1482 
1483 	if (setup_ioapic_entry(irq, &entry, dest, cfg->vector, attr)) {
1484 		pr_warn("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1485 			mpc_ioapic_id(attr->ioapic), attr->ioapic_pin);
1486 		__clear_irq_vector(irq, cfg);
1487 
1488 		return;
1489 	}
1490 
1491 	ioapic_register_intr(irq, cfg, attr->trigger);
1492 	if (irq < legacy_pic->nr_legacy_irqs)
1493 		legacy_pic->mask(irq);
1494 
1495 	ioapic_write_entry(attr->ioapic, attr->ioapic_pin, entry);
1496 }
1497 
1498 static bool __init io_apic_pin_not_connected(int idx, int ioapic_idx, int pin)
1499 {
1500 	if (idx != -1)
1501 		return false;
1502 
1503 	apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
1504 		    mpc_ioapic_id(ioapic_idx), pin);
1505 	return true;
1506 }
1507 
1508 static void __init __io_apic_setup_irqs(unsigned int ioapic_idx)
1509 {
1510 	int idx, node = cpu_to_node(0);
1511 	struct io_apic_irq_attr attr;
1512 	unsigned int pin, irq;
1513 
1514 	for (pin = 0; pin < ioapics[ioapic_idx].nr_registers; pin++) {
1515 		idx = find_irq_entry(ioapic_idx, pin, mp_INT);
1516 		if (io_apic_pin_not_connected(idx, ioapic_idx, pin))
1517 			continue;
1518 
1519 		irq = pin_2_irq(idx, ioapic_idx, pin);
1520 
1521 		if ((ioapic_idx > 0) && (irq > 16))
1522 			continue;
1523 
1524 		/*
1525 		 * Skip the timer IRQ if there's a quirk handler
1526 		 * installed and if it returns 1:
1527 		 */
1528 		if (apic->multi_timer_check &&
1529 		    apic->multi_timer_check(ioapic_idx, irq))
1530 			continue;
1531 
1532 		set_io_apic_irq_attr(&attr, ioapic_idx, pin, irq_trigger(idx),
1533 				     irq_polarity(idx));
1534 
1535 		io_apic_setup_irq_pin(irq, node, &attr);
1536 	}
1537 }
1538 
1539 static void __init setup_IO_APIC_irqs(void)
1540 {
1541 	unsigned int ioapic_idx;
1542 
1543 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1544 
1545 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++)
1546 		__io_apic_setup_irqs(ioapic_idx);
1547 }
1548 
1549 /*
1550  * for the gsit that is not in first ioapic
1551  * but could not use acpi_register_gsi()
1552  * like some special sci in IBM x3330
1553  */
1554 void setup_IO_APIC_irq_extra(u32 gsi)
1555 {
1556 	int ioapic_idx = 0, pin, idx, irq, node = cpu_to_node(0);
1557 	struct io_apic_irq_attr attr;
1558 
1559 	/*
1560 	 * Convert 'gsi' to 'ioapic.pin'.
1561 	 */
1562 	ioapic_idx = mp_find_ioapic(gsi);
1563 	if (ioapic_idx < 0)
1564 		return;
1565 
1566 	pin = mp_find_ioapic_pin(ioapic_idx, gsi);
1567 	idx = find_irq_entry(ioapic_idx, pin, mp_INT);
1568 	if (idx == -1)
1569 		return;
1570 
1571 	irq = pin_2_irq(idx, ioapic_idx, pin);
1572 
1573 	/* Only handle the non legacy irqs on secondary ioapics */
1574 	if (ioapic_idx == 0 || irq < NR_IRQS_LEGACY)
1575 		return;
1576 
1577 	set_io_apic_irq_attr(&attr, ioapic_idx, pin, irq_trigger(idx),
1578 			     irq_polarity(idx));
1579 
1580 	io_apic_setup_irq_pin_once(irq, node, &attr);
1581 }
1582 
1583 /*
1584  * Set up the timer pin, possibly with the 8259A-master behind.
1585  */
1586 static void __init setup_timer_IRQ0_pin(unsigned int ioapic_idx,
1587 					 unsigned int pin, int vector)
1588 {
1589 	struct IO_APIC_route_entry entry;
1590 
1591 	if (intr_remapping_enabled)
1592 		return;
1593 
1594 	memset(&entry, 0, sizeof(entry));
1595 
1596 	/*
1597 	 * We use logical delivery to get the timer IRQ
1598 	 * to the first CPU.
1599 	 */
1600 	entry.dest_mode = apic->irq_dest_mode;
1601 	entry.mask = 0;			/* don't mask IRQ for edge */
1602 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1603 	entry.delivery_mode = apic->irq_delivery_mode;
1604 	entry.polarity = 0;
1605 	entry.trigger = 0;
1606 	entry.vector = vector;
1607 
1608 	/*
1609 	 * The timer IRQ doesn't have to know that behind the
1610 	 * scene we may have a 8259A-master in AEOI mode ...
1611 	 */
1612 	irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
1613 				      "edge");
1614 
1615 	/*
1616 	 * Add it to the IO-APIC irq-routing table:
1617 	 */
1618 	ioapic_write_entry(ioapic_idx, pin, entry);
1619 }
1620 
1621 __apicdebuginit(void) print_IO_APIC(int ioapic_idx)
1622 {
1623 	int i;
1624 	union IO_APIC_reg_00 reg_00;
1625 	union IO_APIC_reg_01 reg_01;
1626 	union IO_APIC_reg_02 reg_02;
1627 	union IO_APIC_reg_03 reg_03;
1628 	unsigned long flags;
1629 
1630 	raw_spin_lock_irqsave(&ioapic_lock, flags);
1631 	reg_00.raw = io_apic_read(ioapic_idx, 0);
1632 	reg_01.raw = io_apic_read(ioapic_idx, 1);
1633 	if (reg_01.bits.version >= 0x10)
1634 		reg_02.raw = io_apic_read(ioapic_idx, 2);
1635 	if (reg_01.bits.version >= 0x20)
1636 		reg_03.raw = io_apic_read(ioapic_idx, 3);
1637 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1638 
1639 	printk("\n");
1640 	printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(ioapic_idx));
1641 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1642 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1643 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1644 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1645 
1646 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1647 	printk(KERN_DEBUG ".......     : max redirection entries: %02X\n",
1648 		reg_01.bits.entries);
1649 
1650 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1651 	printk(KERN_DEBUG ".......     : IO APIC version: %02X\n",
1652 		reg_01.bits.version);
1653 
1654 	/*
1655 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1656 	 * but the value of reg_02 is read as the previous read register
1657 	 * value, so ignore it if reg_02 == reg_01.
1658 	 */
1659 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1660 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1661 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1662 	}
1663 
1664 	/*
1665 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1666 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1667 	 * register value, so ignore it if reg_03 == reg_0[12].
1668 	 */
1669 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1670 	    reg_03.raw != reg_01.raw) {
1671 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1672 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1673 	}
1674 
1675 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1676 
1677 	if (intr_remapping_enabled) {
1678 		printk(KERN_DEBUG " NR Indx Fmt Mask Trig IRR"
1679 			" Pol Stat Indx2 Zero Vect:\n");
1680 	} else {
1681 		printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1682 			" Stat Dmod Deli Vect:\n");
1683 	}
1684 
1685 	for (i = 0; i <= reg_01.bits.entries; i++) {
1686 		if (intr_remapping_enabled) {
1687 			struct IO_APIC_route_entry entry;
1688 			struct IR_IO_APIC_route_entry *ir_entry;
1689 
1690 			entry = ioapic_read_entry(ioapic_idx, i);
1691 			ir_entry = (struct IR_IO_APIC_route_entry *) &entry;
1692 			printk(KERN_DEBUG " %02x %04X ",
1693 				i,
1694 				ir_entry->index
1695 			);
1696 			printk("%1d   %1d    %1d    %1d   %1d   "
1697 				"%1d    %1d     %X    %02X\n",
1698 				ir_entry->format,
1699 				ir_entry->mask,
1700 				ir_entry->trigger,
1701 				ir_entry->irr,
1702 				ir_entry->polarity,
1703 				ir_entry->delivery_status,
1704 				ir_entry->index2,
1705 				ir_entry->zero,
1706 				ir_entry->vector
1707 			);
1708 		} else {
1709 			struct IO_APIC_route_entry entry;
1710 
1711 			entry = ioapic_read_entry(ioapic_idx, i);
1712 			printk(KERN_DEBUG " %02x %02X  ",
1713 				i,
1714 				entry.dest
1715 			);
1716 			printk("%1d    %1d    %1d   %1d   %1d    "
1717 				"%1d    %1d    %02X\n",
1718 				entry.mask,
1719 				entry.trigger,
1720 				entry.irr,
1721 				entry.polarity,
1722 				entry.delivery_status,
1723 				entry.dest_mode,
1724 				entry.delivery_mode,
1725 				entry.vector
1726 			);
1727 		}
1728 	}
1729 }
1730 
1731 __apicdebuginit(void) print_IO_APICs(void)
1732 {
1733 	int ioapic_idx;
1734 	struct irq_cfg *cfg;
1735 	unsigned int irq;
1736 	struct irq_chip *chip;
1737 
1738 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1739 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++)
1740 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1741 		       mpc_ioapic_id(ioapic_idx),
1742 		       ioapics[ioapic_idx].nr_registers);
1743 
1744 	/*
1745 	 * We are a bit conservative about what we expect.  We have to
1746 	 * know about every hardware change ASAP.
1747 	 */
1748 	printk(KERN_INFO "testing the IO APIC.......................\n");
1749 
1750 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++)
1751 		print_IO_APIC(ioapic_idx);
1752 
1753 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1754 	for_each_active_irq(irq) {
1755 		struct irq_pin_list *entry;
1756 
1757 		chip = irq_get_chip(irq);
1758 		if (chip != &ioapic_chip)
1759 			continue;
1760 
1761 		cfg = irq_get_chip_data(irq);
1762 		if (!cfg)
1763 			continue;
1764 		entry = cfg->irq_2_pin;
1765 		if (!entry)
1766 			continue;
1767 		printk(KERN_DEBUG "IRQ%d ", irq);
1768 		for_each_irq_pin(entry, cfg->irq_2_pin)
1769 			printk("-> %d:%d", entry->apic, entry->pin);
1770 		printk("\n");
1771 	}
1772 
1773 	printk(KERN_INFO ".................................... done.\n");
1774 }
1775 
1776 __apicdebuginit(void) print_APIC_field(int base)
1777 {
1778 	int i;
1779 
1780 	printk(KERN_DEBUG);
1781 
1782 	for (i = 0; i < 8; i++)
1783 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1784 
1785 	printk(KERN_CONT "\n");
1786 }
1787 
1788 __apicdebuginit(void) print_local_APIC(void *dummy)
1789 {
1790 	unsigned int i, v, ver, maxlvt;
1791 	u64 icr;
1792 
1793 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1794 		smp_processor_id(), hard_smp_processor_id());
1795 	v = apic_read(APIC_ID);
1796 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1797 	v = apic_read(APIC_LVR);
1798 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1799 	ver = GET_APIC_VERSION(v);
1800 	maxlvt = lapic_get_maxlvt();
1801 
1802 	v = apic_read(APIC_TASKPRI);
1803 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1804 
1805 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1806 		if (!APIC_XAPIC(ver)) {
1807 			v = apic_read(APIC_ARBPRI);
1808 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1809 			       v & APIC_ARBPRI_MASK);
1810 		}
1811 		v = apic_read(APIC_PROCPRI);
1812 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1813 	}
1814 
1815 	/*
1816 	 * Remote read supported only in the 82489DX and local APIC for
1817 	 * Pentium processors.
1818 	 */
1819 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1820 		v = apic_read(APIC_RRR);
1821 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1822 	}
1823 
1824 	v = apic_read(APIC_LDR);
1825 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1826 	if (!x2apic_enabled()) {
1827 		v = apic_read(APIC_DFR);
1828 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1829 	}
1830 	v = apic_read(APIC_SPIV);
1831 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1832 
1833 	printk(KERN_DEBUG "... APIC ISR field:\n");
1834 	print_APIC_field(APIC_ISR);
1835 	printk(KERN_DEBUG "... APIC TMR field:\n");
1836 	print_APIC_field(APIC_TMR);
1837 	printk(KERN_DEBUG "... APIC IRR field:\n");
1838 	print_APIC_field(APIC_IRR);
1839 
1840 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1841 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1842 			apic_write(APIC_ESR, 0);
1843 
1844 		v = apic_read(APIC_ESR);
1845 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1846 	}
1847 
1848 	icr = apic_icr_read();
1849 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1850 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1851 
1852 	v = apic_read(APIC_LVTT);
1853 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1854 
1855 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1856 		v = apic_read(APIC_LVTPC);
1857 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1858 	}
1859 	v = apic_read(APIC_LVT0);
1860 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1861 	v = apic_read(APIC_LVT1);
1862 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1863 
1864 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1865 		v = apic_read(APIC_LVTERR);
1866 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1867 	}
1868 
1869 	v = apic_read(APIC_TMICT);
1870 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1871 	v = apic_read(APIC_TMCCT);
1872 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1873 	v = apic_read(APIC_TDCR);
1874 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1875 
1876 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1877 		v = apic_read(APIC_EFEAT);
1878 		maxlvt = (v >> 16) & 0xff;
1879 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1880 		v = apic_read(APIC_ECTRL);
1881 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1882 		for (i = 0; i < maxlvt; i++) {
1883 			v = apic_read(APIC_EILVTn(i));
1884 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1885 		}
1886 	}
1887 	printk("\n");
1888 }
1889 
1890 __apicdebuginit(void) print_local_APICs(int maxcpu)
1891 {
1892 	int cpu;
1893 
1894 	if (!maxcpu)
1895 		return;
1896 
1897 	preempt_disable();
1898 	for_each_online_cpu(cpu) {
1899 		if (cpu >= maxcpu)
1900 			break;
1901 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1902 	}
1903 	preempt_enable();
1904 }
1905 
1906 __apicdebuginit(void) print_PIC(void)
1907 {
1908 	unsigned int v;
1909 	unsigned long flags;
1910 
1911 	if (!legacy_pic->nr_legacy_irqs)
1912 		return;
1913 
1914 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1915 
1916 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1917 
1918 	v = inb(0xa1) << 8 | inb(0x21);
1919 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1920 
1921 	v = inb(0xa0) << 8 | inb(0x20);
1922 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1923 
1924 	outb(0x0b,0xa0);
1925 	outb(0x0b,0x20);
1926 	v = inb(0xa0) << 8 | inb(0x20);
1927 	outb(0x0a,0xa0);
1928 	outb(0x0a,0x20);
1929 
1930 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1931 
1932 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1933 
1934 	v = inb(0x4d1) << 8 | inb(0x4d0);
1935 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1936 }
1937 
1938 static int __initdata show_lapic = 1;
1939 static __init int setup_show_lapic(char *arg)
1940 {
1941 	int num = -1;
1942 
1943 	if (strcmp(arg, "all") == 0) {
1944 		show_lapic = CONFIG_NR_CPUS;
1945 	} else {
1946 		get_option(&arg, &num);
1947 		if (num >= 0)
1948 			show_lapic = num;
1949 	}
1950 
1951 	return 1;
1952 }
1953 __setup("show_lapic=", setup_show_lapic);
1954 
1955 __apicdebuginit(int) print_ICs(void)
1956 {
1957 	if (apic_verbosity == APIC_QUIET)
1958 		return 0;
1959 
1960 	print_PIC();
1961 
1962 	/* don't print out if apic is not there */
1963 	if (!cpu_has_apic && !apic_from_smp_config())
1964 		return 0;
1965 
1966 	print_local_APICs(show_lapic);
1967 	print_IO_APICs();
1968 
1969 	return 0;
1970 }
1971 
1972 late_initcall(print_ICs);
1973 
1974 
1975 /* Where if anywhere is the i8259 connect in external int mode */
1976 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1977 
1978 void __init enable_IO_APIC(void)
1979 {
1980 	int i8259_apic, i8259_pin;
1981 	int apic;
1982 
1983 	if (!legacy_pic->nr_legacy_irqs)
1984 		return;
1985 
1986 	for(apic = 0; apic < nr_ioapics; apic++) {
1987 		int pin;
1988 		/* See if any of the pins is in ExtINT mode */
1989 		for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
1990 			struct IO_APIC_route_entry entry;
1991 			entry = ioapic_read_entry(apic, pin);
1992 
1993 			/* If the interrupt line is enabled and in ExtInt mode
1994 			 * I have found the pin where the i8259 is connected.
1995 			 */
1996 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1997 				ioapic_i8259.apic = apic;
1998 				ioapic_i8259.pin  = pin;
1999 				goto found_i8259;
2000 			}
2001 		}
2002 	}
2003  found_i8259:
2004 	/* Look to see what if the MP table has reported the ExtINT */
2005 	/* If we could not find the appropriate pin by looking at the ioapic
2006 	 * the i8259 probably is not connected the ioapic but give the
2007 	 * mptable a chance anyway.
2008 	 */
2009 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
2010 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2011 	/* Trust the MP table if nothing is setup in the hardware */
2012 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2013 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2014 		ioapic_i8259.pin  = i8259_pin;
2015 		ioapic_i8259.apic = i8259_apic;
2016 	}
2017 	/* Complain if the MP table and the hardware disagree */
2018 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2019 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2020 	{
2021 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2022 	}
2023 
2024 	/*
2025 	 * Do not trust the IO-APIC being empty at bootup
2026 	 */
2027 	clear_IO_APIC();
2028 }
2029 
2030 /*
2031  * Not an __init, needed by the reboot code
2032  */
2033 void disable_IO_APIC(void)
2034 {
2035 	/*
2036 	 * Clear the IO-APIC before rebooting:
2037 	 */
2038 	clear_IO_APIC();
2039 
2040 	if (!legacy_pic->nr_legacy_irqs)
2041 		return;
2042 
2043 	/*
2044 	 * If the i8259 is routed through an IOAPIC
2045 	 * Put that IOAPIC in virtual wire mode
2046 	 * so legacy interrupts can be delivered.
2047 	 *
2048 	 * With interrupt-remapping, for now we will use virtual wire A mode,
2049 	 * as virtual wire B is little complex (need to configure both
2050 	 * IOAPIC RTE as well as interrupt-remapping table entry).
2051 	 * As this gets called during crash dump, keep this simple for now.
2052 	 */
2053 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2054 		struct IO_APIC_route_entry entry;
2055 
2056 		memset(&entry, 0, sizeof(entry));
2057 		entry.mask            = 0; /* Enabled */
2058 		entry.trigger         = 0; /* Edge */
2059 		entry.irr             = 0;
2060 		entry.polarity        = 0; /* High */
2061 		entry.delivery_status = 0;
2062 		entry.dest_mode       = 0; /* Physical */
2063 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
2064 		entry.vector          = 0;
2065 		entry.dest            = read_apic_id();
2066 
2067 		/*
2068 		 * Add it to the IO-APIC irq-routing table:
2069 		 */
2070 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2071 	}
2072 
2073 	/*
2074 	 * Use virtual wire A mode when interrupt remapping is enabled.
2075 	 */
2076 	if (cpu_has_apic || apic_from_smp_config())
2077 		disconnect_bsp_APIC(!intr_remapping_enabled &&
2078 				ioapic_i8259.pin != -1);
2079 }
2080 
2081 #ifdef CONFIG_X86_32
2082 /*
2083  * function to set the IO-APIC physical IDs based on the
2084  * values stored in the MPC table.
2085  *
2086  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2087  */
2088 void __init setup_ioapic_ids_from_mpc_nocheck(void)
2089 {
2090 	union IO_APIC_reg_00 reg_00;
2091 	physid_mask_t phys_id_present_map;
2092 	int ioapic_idx;
2093 	int i;
2094 	unsigned char old_id;
2095 	unsigned long flags;
2096 
2097 	/*
2098 	 * This is broken; anything with a real cpu count has to
2099 	 * circumvent this idiocy regardless.
2100 	 */
2101 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
2102 
2103 	/*
2104 	 * Set the IOAPIC ID to the value stored in the MPC table.
2105 	 */
2106 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
2107 		/* Read the register 0 value */
2108 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2109 		reg_00.raw = io_apic_read(ioapic_idx, 0);
2110 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2111 
2112 		old_id = mpc_ioapic_id(ioapic_idx);
2113 
2114 		if (mpc_ioapic_id(ioapic_idx) >= get_physical_broadcast()) {
2115 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2116 				ioapic_idx, mpc_ioapic_id(ioapic_idx));
2117 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2118 				reg_00.bits.ID);
2119 			ioapics[ioapic_idx].mp_config.apicid = reg_00.bits.ID;
2120 		}
2121 
2122 		/*
2123 		 * Sanity check, is the ID really free? Every APIC in a
2124 		 * system must have a unique ID or we get lots of nice
2125 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2126 		 */
2127 		if (apic->check_apicid_used(&phys_id_present_map,
2128 					    mpc_ioapic_id(ioapic_idx))) {
2129 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2130 				ioapic_idx, mpc_ioapic_id(ioapic_idx));
2131 			for (i = 0; i < get_physical_broadcast(); i++)
2132 				if (!physid_isset(i, phys_id_present_map))
2133 					break;
2134 			if (i >= get_physical_broadcast())
2135 				panic("Max APIC ID exceeded!\n");
2136 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2137 				i);
2138 			physid_set(i, phys_id_present_map);
2139 			ioapics[ioapic_idx].mp_config.apicid = i;
2140 		} else {
2141 			physid_mask_t tmp;
2142 			apic->apicid_to_cpu_present(mpc_ioapic_id(ioapic_idx),
2143 						    &tmp);
2144 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2145 					"phys_id_present_map\n",
2146 					mpc_ioapic_id(ioapic_idx));
2147 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2148 		}
2149 
2150 		/*
2151 		 * We need to adjust the IRQ routing table
2152 		 * if the ID changed.
2153 		 */
2154 		if (old_id != mpc_ioapic_id(ioapic_idx))
2155 			for (i = 0; i < mp_irq_entries; i++)
2156 				if (mp_irqs[i].dstapic == old_id)
2157 					mp_irqs[i].dstapic
2158 						= mpc_ioapic_id(ioapic_idx);
2159 
2160 		/*
2161 		 * Update the ID register according to the right value
2162 		 * from the MPC table if they are different.
2163 		 */
2164 		if (mpc_ioapic_id(ioapic_idx) == reg_00.bits.ID)
2165 			continue;
2166 
2167 		apic_printk(APIC_VERBOSE, KERN_INFO
2168 			"...changing IO-APIC physical APIC ID to %d ...",
2169 			mpc_ioapic_id(ioapic_idx));
2170 
2171 		reg_00.bits.ID = mpc_ioapic_id(ioapic_idx);
2172 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2173 		io_apic_write(ioapic_idx, 0, reg_00.raw);
2174 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2175 
2176 		/*
2177 		 * Sanity check
2178 		 */
2179 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2180 		reg_00.raw = io_apic_read(ioapic_idx, 0);
2181 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2182 		if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx))
2183 			printk("could not set ID!\n");
2184 		else
2185 			apic_printk(APIC_VERBOSE, " ok.\n");
2186 	}
2187 }
2188 
2189 void __init setup_ioapic_ids_from_mpc(void)
2190 {
2191 
2192 	if (acpi_ioapic)
2193 		return;
2194 	/*
2195 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2196 	 * no meaning without the serial APIC bus.
2197 	 */
2198 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2199 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2200 		return;
2201 	setup_ioapic_ids_from_mpc_nocheck();
2202 }
2203 #endif
2204 
2205 int no_timer_check __initdata;
2206 
2207 static int __init notimercheck(char *s)
2208 {
2209 	no_timer_check = 1;
2210 	return 1;
2211 }
2212 __setup("no_timer_check", notimercheck);
2213 
2214 /*
2215  * There is a nasty bug in some older SMP boards, their mptable lies
2216  * about the timer IRQ. We do the following to work around the situation:
2217  *
2218  *	- timer IRQ defaults to IO-APIC IRQ
2219  *	- if this function detects that timer IRQs are defunct, then we fall
2220  *	  back to ISA timer IRQs
2221  */
2222 static int __init timer_irq_works(void)
2223 {
2224 	unsigned long t1 = jiffies;
2225 	unsigned long flags;
2226 
2227 	if (no_timer_check)
2228 		return 1;
2229 
2230 	local_save_flags(flags);
2231 	local_irq_enable();
2232 	/* Let ten ticks pass... */
2233 	mdelay((10 * 1000) / HZ);
2234 	local_irq_restore(flags);
2235 
2236 	/*
2237 	 * Expect a few ticks at least, to be sure some possible
2238 	 * glue logic does not lock up after one or two first
2239 	 * ticks in a non-ExtINT mode.  Also the local APIC
2240 	 * might have cached one ExtINT interrupt.  Finally, at
2241 	 * least one tick may be lost due to delays.
2242 	 */
2243 
2244 	/* jiffies wrap? */
2245 	if (time_after(jiffies, t1 + 4))
2246 		return 1;
2247 	return 0;
2248 }
2249 
2250 /*
2251  * In the SMP+IOAPIC case it might happen that there are an unspecified
2252  * number of pending IRQ events unhandled. These cases are very rare,
2253  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2254  * better to do it this way as thus we do not have to be aware of
2255  * 'pending' interrupts in the IRQ path, except at this point.
2256  */
2257 /*
2258  * Edge triggered needs to resend any interrupt
2259  * that was delayed but this is now handled in the device
2260  * independent code.
2261  */
2262 
2263 /*
2264  * Starting up a edge-triggered IO-APIC interrupt is
2265  * nasty - we need to make sure that we get the edge.
2266  * If it is already asserted for some reason, we need
2267  * return 1 to indicate that is was pending.
2268  *
2269  * This is not complete - we should be able to fake
2270  * an edge even if it isn't on the 8259A...
2271  */
2272 
2273 static unsigned int startup_ioapic_irq(struct irq_data *data)
2274 {
2275 	int was_pending = 0, irq = data->irq;
2276 	unsigned long flags;
2277 
2278 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2279 	if (irq < legacy_pic->nr_legacy_irqs) {
2280 		legacy_pic->mask(irq);
2281 		if (legacy_pic->irq_pending(irq))
2282 			was_pending = 1;
2283 	}
2284 	__unmask_ioapic(data->chip_data);
2285 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2286 
2287 	return was_pending;
2288 }
2289 
2290 static int ioapic_retrigger_irq(struct irq_data *data)
2291 {
2292 	struct irq_cfg *cfg = data->chip_data;
2293 	unsigned long flags;
2294 
2295 	raw_spin_lock_irqsave(&vector_lock, flags);
2296 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2297 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2298 
2299 	return 1;
2300 }
2301 
2302 /*
2303  * Level and edge triggered IO-APIC interrupts need different handling,
2304  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2305  * handled with the level-triggered descriptor, but that one has slightly
2306  * more overhead. Level-triggered interrupts cannot be handled with the
2307  * edge-triggered handler, without risking IRQ storms and other ugly
2308  * races.
2309  */
2310 
2311 #ifdef CONFIG_SMP
2312 void send_cleanup_vector(struct irq_cfg *cfg)
2313 {
2314 	cpumask_var_t cleanup_mask;
2315 
2316 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2317 		unsigned int i;
2318 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2319 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2320 	} else {
2321 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2322 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2323 		free_cpumask_var(cleanup_mask);
2324 	}
2325 	cfg->move_in_progress = 0;
2326 }
2327 
2328 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2329 {
2330 	int apic, pin;
2331 	struct irq_pin_list *entry;
2332 	u8 vector = cfg->vector;
2333 
2334 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2335 		unsigned int reg;
2336 
2337 		apic = entry->apic;
2338 		pin = entry->pin;
2339 		/*
2340 		 * With interrupt-remapping, destination information comes
2341 		 * from interrupt-remapping table entry.
2342 		 */
2343 		if (!irq_remapped(cfg))
2344 			io_apic_write(apic, 0x11 + pin*2, dest);
2345 		reg = io_apic_read(apic, 0x10 + pin*2);
2346 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2347 		reg |= vector;
2348 		io_apic_modify(apic, 0x10 + pin*2, reg);
2349 	}
2350 }
2351 
2352 /*
2353  * Either sets data->affinity to a valid value, and returns
2354  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2355  * leaves data->affinity untouched.
2356  */
2357 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2358 			  unsigned int *dest_id)
2359 {
2360 	struct irq_cfg *cfg = data->chip_data;
2361 
2362 	if (!cpumask_intersects(mask, cpu_online_mask))
2363 		return -1;
2364 
2365 	if (assign_irq_vector(data->irq, data->chip_data, mask))
2366 		return -1;
2367 
2368 	cpumask_copy(data->affinity, mask);
2369 
2370 	*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2371 	return 0;
2372 }
2373 
2374 static int
2375 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2376 		    bool force)
2377 {
2378 	unsigned int dest, irq = data->irq;
2379 	unsigned long flags;
2380 	int ret;
2381 
2382 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2383 	ret = __ioapic_set_affinity(data, mask, &dest);
2384 	if (!ret) {
2385 		/* Only the high 8 bits are valid. */
2386 		dest = SET_APIC_LOGICAL_ID(dest);
2387 		__target_IO_APIC_irq(irq, dest, data->chip_data);
2388 	}
2389 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2390 	return ret;
2391 }
2392 
2393 #ifdef CONFIG_IRQ_REMAP
2394 
2395 /*
2396  * Migrate the IO-APIC irq in the presence of intr-remapping.
2397  *
2398  * For both level and edge triggered, irq migration is a simple atomic
2399  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2400  *
2401  * For level triggered, we eliminate the io-apic RTE modification (with the
2402  * updated vector information), by using a virtual vector (io-apic pin number).
2403  * Real vector that is used for interrupting cpu will be coming from
2404  * the interrupt-remapping table entry.
2405  *
2406  * As the migration is a simple atomic update of IRTE, the same mechanism
2407  * is used to migrate MSI irq's in the presence of interrupt-remapping.
2408  */
2409 static int
2410 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2411 		       bool force)
2412 {
2413 	struct irq_cfg *cfg = data->chip_data;
2414 	unsigned int dest, irq = data->irq;
2415 	struct irte irte;
2416 
2417 	if (!cpumask_intersects(mask, cpu_online_mask))
2418 		return -EINVAL;
2419 
2420 	if (get_irte(irq, &irte))
2421 		return -EBUSY;
2422 
2423 	if (assign_irq_vector(irq, cfg, mask))
2424 		return -EBUSY;
2425 
2426 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2427 
2428 	irte.vector = cfg->vector;
2429 	irte.dest_id = IRTE_DEST(dest);
2430 
2431 	/*
2432 	 * Atomically updates the IRTE with the new destination, vector
2433 	 * and flushes the interrupt entry cache.
2434 	 */
2435 	modify_irte(irq, &irte);
2436 
2437 	/*
2438 	 * After this point, all the interrupts will start arriving
2439 	 * at the new destination. So, time to cleanup the previous
2440 	 * vector allocation.
2441 	 */
2442 	if (cfg->move_in_progress)
2443 		send_cleanup_vector(cfg);
2444 
2445 	cpumask_copy(data->affinity, mask);
2446 	return 0;
2447 }
2448 
2449 #else
2450 static inline int
2451 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2452 		       bool force)
2453 {
2454 	return 0;
2455 }
2456 #endif
2457 
2458 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2459 {
2460 	unsigned vector, me;
2461 
2462 	ack_APIC_irq();
2463 	irq_enter();
2464 	exit_idle();
2465 
2466 	me = smp_processor_id();
2467 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2468 		unsigned int irq;
2469 		unsigned int irr;
2470 		struct irq_desc *desc;
2471 		struct irq_cfg *cfg;
2472 		irq = __this_cpu_read(vector_irq[vector]);
2473 
2474 		if (irq == -1)
2475 			continue;
2476 
2477 		desc = irq_to_desc(irq);
2478 		if (!desc)
2479 			continue;
2480 
2481 		cfg = irq_cfg(irq);
2482 		raw_spin_lock(&desc->lock);
2483 
2484 		/*
2485 		 * Check if the irq migration is in progress. If so, we
2486 		 * haven't received the cleanup request yet for this irq.
2487 		 */
2488 		if (cfg->move_in_progress)
2489 			goto unlock;
2490 
2491 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2492 			goto unlock;
2493 
2494 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2495 		/*
2496 		 * Check if the vector that needs to be cleanedup is
2497 		 * registered at the cpu's IRR. If so, then this is not
2498 		 * the best time to clean it up. Lets clean it up in the
2499 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2500 		 * to myself.
2501 		 */
2502 		if (irr  & (1 << (vector % 32))) {
2503 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2504 			goto unlock;
2505 		}
2506 		__this_cpu_write(vector_irq[vector], -1);
2507 unlock:
2508 		raw_spin_unlock(&desc->lock);
2509 	}
2510 
2511 	irq_exit();
2512 }
2513 
2514 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2515 {
2516 	unsigned me;
2517 
2518 	if (likely(!cfg->move_in_progress))
2519 		return;
2520 
2521 	me = smp_processor_id();
2522 
2523 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2524 		send_cleanup_vector(cfg);
2525 }
2526 
2527 static void irq_complete_move(struct irq_cfg *cfg)
2528 {
2529 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2530 }
2531 
2532 void irq_force_complete_move(int irq)
2533 {
2534 	struct irq_cfg *cfg = irq_get_chip_data(irq);
2535 
2536 	if (!cfg)
2537 		return;
2538 
2539 	__irq_complete_move(cfg, cfg->vector);
2540 }
2541 #else
2542 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2543 #endif
2544 
2545 static void ack_apic_edge(struct irq_data *data)
2546 {
2547 	irq_complete_move(data->chip_data);
2548 	irq_move_irq(data);
2549 	ack_APIC_irq();
2550 }
2551 
2552 atomic_t irq_mis_count;
2553 
2554 #ifdef CONFIG_GENERIC_PENDING_IRQ
2555 static inline bool ioapic_irqd_mask(struct irq_data *data, struct irq_cfg *cfg)
2556 {
2557 	/* If we are moving the irq we need to mask it */
2558 	if (unlikely(irqd_is_setaffinity_pending(data))) {
2559 		mask_ioapic(cfg);
2560 		return true;
2561 	}
2562 	return false;
2563 }
2564 
2565 static inline void ioapic_irqd_unmask(struct irq_data *data,
2566 				      struct irq_cfg *cfg, bool masked)
2567 {
2568 	if (unlikely(masked)) {
2569 		/* Only migrate the irq if the ack has been received.
2570 		 *
2571 		 * On rare occasions the broadcast level triggered ack gets
2572 		 * delayed going to ioapics, and if we reprogram the
2573 		 * vector while Remote IRR is still set the irq will never
2574 		 * fire again.
2575 		 *
2576 		 * To prevent this scenario we read the Remote IRR bit
2577 		 * of the ioapic.  This has two effects.
2578 		 * - On any sane system the read of the ioapic will
2579 		 *   flush writes (and acks) going to the ioapic from
2580 		 *   this cpu.
2581 		 * - We get to see if the ACK has actually been delivered.
2582 		 *
2583 		 * Based on failed experiments of reprogramming the
2584 		 * ioapic entry from outside of irq context starting
2585 		 * with masking the ioapic entry and then polling until
2586 		 * Remote IRR was clear before reprogramming the
2587 		 * ioapic I don't trust the Remote IRR bit to be
2588 		 * completey accurate.
2589 		 *
2590 		 * However there appears to be no other way to plug
2591 		 * this race, so if the Remote IRR bit is not
2592 		 * accurate and is causing problems then it is a hardware bug
2593 		 * and you can go talk to the chipset vendor about it.
2594 		 */
2595 		if (!io_apic_level_ack_pending(cfg))
2596 			irq_move_masked_irq(data);
2597 		unmask_ioapic(cfg);
2598 	}
2599 }
2600 #else
2601 static inline bool ioapic_irqd_mask(struct irq_data *data, struct irq_cfg *cfg)
2602 {
2603 	return false;
2604 }
2605 static inline void ioapic_irqd_unmask(struct irq_data *data,
2606 				      struct irq_cfg *cfg, bool masked)
2607 {
2608 }
2609 #endif
2610 
2611 static void ack_apic_level(struct irq_data *data)
2612 {
2613 	struct irq_cfg *cfg = data->chip_data;
2614 	int i, irq = data->irq;
2615 	unsigned long v;
2616 	bool masked;
2617 
2618 	irq_complete_move(cfg);
2619 	masked = ioapic_irqd_mask(data, cfg);
2620 
2621 	/*
2622 	 * It appears there is an erratum which affects at least version 0x11
2623 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2624 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2625 	 * erroneously delivered as edge-triggered one but the respective IRR
2626 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2627 	 * message but it will never arrive and further interrupts are blocked
2628 	 * from the source.  The exact reason is so far unknown, but the
2629 	 * phenomenon was observed when two consecutive interrupt requests
2630 	 * from a given source get delivered to the same CPU and the source is
2631 	 * temporarily disabled in between.
2632 	 *
2633 	 * A workaround is to simulate an EOI message manually.  We achieve it
2634 	 * by setting the trigger mode to edge and then to level when the edge
2635 	 * trigger mode gets detected in the TMR of a local APIC for a
2636 	 * level-triggered interrupt.  We mask the source for the time of the
2637 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2638 	 * The idea is from Manfred Spraul.  --macro
2639 	 *
2640 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2641 	 * any unhandled interrupt on the offlined cpu to the new cpu
2642 	 * destination that is handling the corresponding interrupt. This
2643 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2644 	 * level-triggered io-apic interrupt will be seen as an edge
2645 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2646 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2647 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2648 	 * supporting EOI register, we do an explicit EOI to clear the
2649 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2650 	 * we use the above logic (mask+edge followed by unmask+level) from
2651 	 * Manfred Spraul to clear the remote IRR.
2652 	 */
2653 	i = cfg->vector;
2654 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2655 
2656 	/*
2657 	 * We must acknowledge the irq before we move it or the acknowledge will
2658 	 * not propagate properly.
2659 	 */
2660 	ack_APIC_irq();
2661 
2662 	/*
2663 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2664 	 * message via io-apic EOI register write or simulating it using
2665 	 * mask+edge followed by unnask+level logic) manually when the
2666 	 * level triggered interrupt is seen as the edge triggered interrupt
2667 	 * at the cpu.
2668 	 */
2669 	if (!(v & (1 << (i & 0x1f)))) {
2670 		atomic_inc(&irq_mis_count);
2671 
2672 		eoi_ioapic_irq(irq, cfg);
2673 	}
2674 
2675 	ioapic_irqd_unmask(data, cfg, masked);
2676 }
2677 
2678 #ifdef CONFIG_IRQ_REMAP
2679 static void ir_ack_apic_edge(struct irq_data *data)
2680 {
2681 	ack_APIC_irq();
2682 }
2683 
2684 static void ir_ack_apic_level(struct irq_data *data)
2685 {
2686 	ack_APIC_irq();
2687 	eoi_ioapic_irq(data->irq, data->chip_data);
2688 }
2689 
2690 static void ir_print_prefix(struct irq_data *data, struct seq_file *p)
2691 {
2692 	seq_printf(p, " IR-%s", data->chip->name);
2693 }
2694 
2695 static void irq_remap_modify_chip_defaults(struct irq_chip *chip)
2696 {
2697 	chip->irq_print_chip = ir_print_prefix;
2698 	chip->irq_ack = ir_ack_apic_edge;
2699 	chip->irq_eoi = ir_ack_apic_level;
2700 
2701 #ifdef CONFIG_SMP
2702 	chip->irq_set_affinity = ir_ioapic_set_affinity;
2703 #endif
2704 }
2705 #endif /* CONFIG_IRQ_REMAP */
2706 
2707 static struct irq_chip ioapic_chip __read_mostly = {
2708 	.name			= "IO-APIC",
2709 	.irq_startup		= startup_ioapic_irq,
2710 	.irq_mask		= mask_ioapic_irq,
2711 	.irq_unmask		= unmask_ioapic_irq,
2712 	.irq_ack		= ack_apic_edge,
2713 	.irq_eoi		= ack_apic_level,
2714 #ifdef CONFIG_SMP
2715 	.irq_set_affinity	= ioapic_set_affinity,
2716 #endif
2717 	.irq_retrigger		= ioapic_retrigger_irq,
2718 };
2719 
2720 static inline void init_IO_APIC_traps(void)
2721 {
2722 	struct irq_cfg *cfg;
2723 	unsigned int irq;
2724 
2725 	/*
2726 	 * NOTE! The local APIC isn't very good at handling
2727 	 * multiple interrupts at the same interrupt level.
2728 	 * As the interrupt level is determined by taking the
2729 	 * vector number and shifting that right by 4, we
2730 	 * want to spread these out a bit so that they don't
2731 	 * all fall in the same interrupt level.
2732 	 *
2733 	 * Also, we've got to be careful not to trash gate
2734 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2735 	 */
2736 	for_each_active_irq(irq) {
2737 		cfg = irq_get_chip_data(irq);
2738 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2739 			/*
2740 			 * Hmm.. We don't have an entry for this,
2741 			 * so default to an old-fashioned 8259
2742 			 * interrupt if we can..
2743 			 */
2744 			if (irq < legacy_pic->nr_legacy_irqs)
2745 				legacy_pic->make_irq(irq);
2746 			else
2747 				/* Strange. Oh, well.. */
2748 				irq_set_chip(irq, &no_irq_chip);
2749 		}
2750 	}
2751 }
2752 
2753 /*
2754  * The local APIC irq-chip implementation:
2755  */
2756 
2757 static void mask_lapic_irq(struct irq_data *data)
2758 {
2759 	unsigned long v;
2760 
2761 	v = apic_read(APIC_LVT0);
2762 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2763 }
2764 
2765 static void unmask_lapic_irq(struct irq_data *data)
2766 {
2767 	unsigned long v;
2768 
2769 	v = apic_read(APIC_LVT0);
2770 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2771 }
2772 
2773 static void ack_lapic_irq(struct irq_data *data)
2774 {
2775 	ack_APIC_irq();
2776 }
2777 
2778 static struct irq_chip lapic_chip __read_mostly = {
2779 	.name		= "local-APIC",
2780 	.irq_mask	= mask_lapic_irq,
2781 	.irq_unmask	= unmask_lapic_irq,
2782 	.irq_ack	= ack_lapic_irq,
2783 };
2784 
2785 static void lapic_register_intr(int irq)
2786 {
2787 	irq_clear_status_flags(irq, IRQ_LEVEL);
2788 	irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2789 				      "edge");
2790 }
2791 
2792 /*
2793  * This looks a bit hackish but it's about the only one way of sending
2794  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2795  * not support the ExtINT mode, unfortunately.  We need to send these
2796  * cycles as some i82489DX-based boards have glue logic that keeps the
2797  * 8259A interrupt line asserted until INTA.  --macro
2798  */
2799 static inline void __init unlock_ExtINT_logic(void)
2800 {
2801 	int apic, pin, i;
2802 	struct IO_APIC_route_entry entry0, entry1;
2803 	unsigned char save_control, save_freq_select;
2804 
2805 	pin  = find_isa_irq_pin(8, mp_INT);
2806 	if (pin == -1) {
2807 		WARN_ON_ONCE(1);
2808 		return;
2809 	}
2810 	apic = find_isa_irq_apic(8, mp_INT);
2811 	if (apic == -1) {
2812 		WARN_ON_ONCE(1);
2813 		return;
2814 	}
2815 
2816 	entry0 = ioapic_read_entry(apic, pin);
2817 	clear_IO_APIC_pin(apic, pin);
2818 
2819 	memset(&entry1, 0, sizeof(entry1));
2820 
2821 	entry1.dest_mode = 0;			/* physical delivery */
2822 	entry1.mask = 0;			/* unmask IRQ now */
2823 	entry1.dest = hard_smp_processor_id();
2824 	entry1.delivery_mode = dest_ExtINT;
2825 	entry1.polarity = entry0.polarity;
2826 	entry1.trigger = 0;
2827 	entry1.vector = 0;
2828 
2829 	ioapic_write_entry(apic, pin, entry1);
2830 
2831 	save_control = CMOS_READ(RTC_CONTROL);
2832 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2833 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2834 		   RTC_FREQ_SELECT);
2835 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2836 
2837 	i = 100;
2838 	while (i-- > 0) {
2839 		mdelay(10);
2840 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2841 			i -= 10;
2842 	}
2843 
2844 	CMOS_WRITE(save_control, RTC_CONTROL);
2845 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2846 	clear_IO_APIC_pin(apic, pin);
2847 
2848 	ioapic_write_entry(apic, pin, entry0);
2849 }
2850 
2851 static int disable_timer_pin_1 __initdata;
2852 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2853 static int __init disable_timer_pin_setup(char *arg)
2854 {
2855 	disable_timer_pin_1 = 1;
2856 	return 0;
2857 }
2858 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2859 
2860 int timer_through_8259 __initdata;
2861 
2862 /*
2863  * This code may look a bit paranoid, but it's supposed to cooperate with
2864  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2865  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2866  * fanatically on his truly buggy board.
2867  *
2868  * FIXME: really need to revamp this for all platforms.
2869  */
2870 static inline void __init check_timer(void)
2871 {
2872 	struct irq_cfg *cfg = irq_get_chip_data(0);
2873 	int node = cpu_to_node(0);
2874 	int apic1, pin1, apic2, pin2;
2875 	unsigned long flags;
2876 	int no_pin1 = 0;
2877 
2878 	local_irq_save(flags);
2879 
2880 	/*
2881 	 * get/set the timer IRQ vector:
2882 	 */
2883 	legacy_pic->mask(0);
2884 	assign_irq_vector(0, cfg, apic->target_cpus());
2885 
2886 	/*
2887 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2888 	 * wire has to be disabled in the local APIC.  Also
2889 	 * timer interrupts need to be acknowledged manually in
2890 	 * the 8259A for the i82489DX when using the NMI
2891 	 * watchdog as that APIC treats NMIs as level-triggered.
2892 	 * The AEOI mode will finish them in the 8259A
2893 	 * automatically.
2894 	 */
2895 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2896 	legacy_pic->init(1);
2897 
2898 	pin1  = find_isa_irq_pin(0, mp_INT);
2899 	apic1 = find_isa_irq_apic(0, mp_INT);
2900 	pin2  = ioapic_i8259.pin;
2901 	apic2 = ioapic_i8259.apic;
2902 
2903 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2904 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2905 		    cfg->vector, apic1, pin1, apic2, pin2);
2906 
2907 	/*
2908 	 * Some BIOS writers are clueless and report the ExtINTA
2909 	 * I/O APIC input from the cascaded 8259A as the timer
2910 	 * interrupt input.  So just in case, if only one pin
2911 	 * was found above, try it both directly and through the
2912 	 * 8259A.
2913 	 */
2914 	if (pin1 == -1) {
2915 		if (intr_remapping_enabled)
2916 			panic("BIOS bug: timer not connected to IO-APIC");
2917 		pin1 = pin2;
2918 		apic1 = apic2;
2919 		no_pin1 = 1;
2920 	} else if (pin2 == -1) {
2921 		pin2 = pin1;
2922 		apic2 = apic1;
2923 	}
2924 
2925 	if (pin1 != -1) {
2926 		/*
2927 		 * Ok, does IRQ0 through the IOAPIC work?
2928 		 */
2929 		if (no_pin1) {
2930 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2931 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2932 		} else {
2933 			/* for edge trigger, setup_ioapic_irq already
2934 			 * leave it unmasked.
2935 			 * so only need to unmask if it is level-trigger
2936 			 * do we really have level trigger timer?
2937 			 */
2938 			int idx;
2939 			idx = find_irq_entry(apic1, pin1, mp_INT);
2940 			if (idx != -1 && irq_trigger(idx))
2941 				unmask_ioapic(cfg);
2942 		}
2943 		if (timer_irq_works()) {
2944 			if (disable_timer_pin_1 > 0)
2945 				clear_IO_APIC_pin(0, pin1);
2946 			goto out;
2947 		}
2948 		if (intr_remapping_enabled)
2949 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2950 		local_irq_disable();
2951 		clear_IO_APIC_pin(apic1, pin1);
2952 		if (!no_pin1)
2953 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2954 				    "8254 timer not connected to IO-APIC\n");
2955 
2956 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2957 			    "(IRQ0) through the 8259A ...\n");
2958 		apic_printk(APIC_QUIET, KERN_INFO
2959 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2960 		/*
2961 		 * legacy devices should be connected to IO APIC #0
2962 		 */
2963 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2964 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2965 		legacy_pic->unmask(0);
2966 		if (timer_irq_works()) {
2967 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2968 			timer_through_8259 = 1;
2969 			goto out;
2970 		}
2971 		/*
2972 		 * Cleanup, just in case ...
2973 		 */
2974 		local_irq_disable();
2975 		legacy_pic->mask(0);
2976 		clear_IO_APIC_pin(apic2, pin2);
2977 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2978 	}
2979 
2980 	apic_printk(APIC_QUIET, KERN_INFO
2981 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2982 
2983 	lapic_register_intr(0);
2984 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
2985 	legacy_pic->unmask(0);
2986 
2987 	if (timer_irq_works()) {
2988 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2989 		goto out;
2990 	}
2991 	local_irq_disable();
2992 	legacy_pic->mask(0);
2993 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2994 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2995 
2996 	apic_printk(APIC_QUIET, KERN_INFO
2997 		    "...trying to set up timer as ExtINT IRQ...\n");
2998 
2999 	legacy_pic->init(0);
3000 	legacy_pic->make_irq(0);
3001 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3002 
3003 	unlock_ExtINT_logic();
3004 
3005 	if (timer_irq_works()) {
3006 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3007 		goto out;
3008 	}
3009 	local_irq_disable();
3010 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3011 	if (x2apic_preenabled)
3012 		apic_printk(APIC_QUIET, KERN_INFO
3013 			    "Perhaps problem with the pre-enabled x2apic mode\n"
3014 			    "Try booting with x2apic and interrupt-remapping disabled in the bios.\n");
3015 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3016 		"report.  Then try booting with the 'noapic' option.\n");
3017 out:
3018 	local_irq_restore(flags);
3019 }
3020 
3021 /*
3022  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3023  * to devices.  However there may be an I/O APIC pin available for
3024  * this interrupt regardless.  The pin may be left unconnected, but
3025  * typically it will be reused as an ExtINT cascade interrupt for
3026  * the master 8259A.  In the MPS case such a pin will normally be
3027  * reported as an ExtINT interrupt in the MP table.  With ACPI
3028  * there is no provision for ExtINT interrupts, and in the absence
3029  * of an override it would be treated as an ordinary ISA I/O APIC
3030  * interrupt, that is edge-triggered and unmasked by default.  We
3031  * used to do this, but it caused problems on some systems because
3032  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3033  * the same ExtINT cascade interrupt to drive the local APIC of the
3034  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3035  * the I/O APIC in all cases now.  No actual device should request
3036  * it anyway.  --macro
3037  */
3038 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
3039 
3040 void __init setup_IO_APIC(void)
3041 {
3042 
3043 	/*
3044 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3045 	 */
3046 	io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
3047 
3048 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3049 	/*
3050          * Set up IO-APIC IRQ routing.
3051          */
3052 	x86_init.mpparse.setup_ioapic_ids();
3053 
3054 	sync_Arb_IDs();
3055 	setup_IO_APIC_irqs();
3056 	init_IO_APIC_traps();
3057 	if (legacy_pic->nr_legacy_irqs)
3058 		check_timer();
3059 }
3060 
3061 /*
3062  *      Called after all the initialization is done. If we didn't find any
3063  *      APIC bugs then we can allow the modify fast path
3064  */
3065 
3066 static int __init io_apic_bug_finalize(void)
3067 {
3068 	if (sis_apic_bug == -1)
3069 		sis_apic_bug = 0;
3070 	return 0;
3071 }
3072 
3073 late_initcall(io_apic_bug_finalize);
3074 
3075 static void resume_ioapic_id(int ioapic_idx)
3076 {
3077 	unsigned long flags;
3078 	union IO_APIC_reg_00 reg_00;
3079 
3080 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3081 	reg_00.raw = io_apic_read(ioapic_idx, 0);
3082 	if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) {
3083 		reg_00.bits.ID = mpc_ioapic_id(ioapic_idx);
3084 		io_apic_write(ioapic_idx, 0, reg_00.raw);
3085 	}
3086 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3087 }
3088 
3089 static void ioapic_resume(void)
3090 {
3091 	int ioapic_idx;
3092 
3093 	for (ioapic_idx = nr_ioapics - 1; ioapic_idx >= 0; ioapic_idx--)
3094 		resume_ioapic_id(ioapic_idx);
3095 
3096 	restore_ioapic_entries();
3097 }
3098 
3099 static struct syscore_ops ioapic_syscore_ops = {
3100 	.suspend = save_ioapic_entries,
3101 	.resume = ioapic_resume,
3102 };
3103 
3104 static int __init ioapic_init_ops(void)
3105 {
3106 	register_syscore_ops(&ioapic_syscore_ops);
3107 
3108 	return 0;
3109 }
3110 
3111 device_initcall(ioapic_init_ops);
3112 
3113 /*
3114  * Dynamic irq allocate and deallocation
3115  */
3116 unsigned int create_irq_nr(unsigned int from, int node)
3117 {
3118 	struct irq_cfg *cfg;
3119 	unsigned long flags;
3120 	unsigned int ret = 0;
3121 	int irq;
3122 
3123 	if (from < nr_irqs_gsi)
3124 		from = nr_irqs_gsi;
3125 
3126 	irq = alloc_irq_from(from, node);
3127 	if (irq < 0)
3128 		return 0;
3129 	cfg = alloc_irq_cfg(irq, node);
3130 	if (!cfg) {
3131 		free_irq_at(irq, NULL);
3132 		return 0;
3133 	}
3134 
3135 	raw_spin_lock_irqsave(&vector_lock, flags);
3136 	if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3137 		ret = irq;
3138 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3139 
3140 	if (ret) {
3141 		irq_set_chip_data(irq, cfg);
3142 		irq_clear_status_flags(irq, IRQ_NOREQUEST);
3143 	} else {
3144 		free_irq_at(irq, cfg);
3145 	}
3146 	return ret;
3147 }
3148 
3149 int create_irq(void)
3150 {
3151 	int node = cpu_to_node(0);
3152 	unsigned int irq_want;
3153 	int irq;
3154 
3155 	irq_want = nr_irqs_gsi;
3156 	irq = create_irq_nr(irq_want, node);
3157 
3158 	if (irq == 0)
3159 		irq = -1;
3160 
3161 	return irq;
3162 }
3163 
3164 void destroy_irq(unsigned int irq)
3165 {
3166 	struct irq_cfg *cfg = irq_get_chip_data(irq);
3167 	unsigned long flags;
3168 
3169 	irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3170 
3171 	if (irq_remapped(cfg))
3172 		free_irte(irq);
3173 	raw_spin_lock_irqsave(&vector_lock, flags);
3174 	__clear_irq_vector(irq, cfg);
3175 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3176 	free_irq_at(irq, cfg);
3177 }
3178 
3179 /*
3180  * MSI message composition
3181  */
3182 #ifdef CONFIG_PCI_MSI
3183 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3184 			   struct msi_msg *msg, u8 hpet_id)
3185 {
3186 	struct irq_cfg *cfg;
3187 	int err;
3188 	unsigned dest;
3189 
3190 	if (disable_apic)
3191 		return -ENXIO;
3192 
3193 	cfg = irq_cfg(irq);
3194 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3195 	if (err)
3196 		return err;
3197 
3198 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3199 
3200 	if (irq_remapped(cfg)) {
3201 		struct irte irte;
3202 		int ir_index;
3203 		u16 sub_handle;
3204 
3205 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3206 		BUG_ON(ir_index == -1);
3207 
3208 		prepare_irte(&irte, cfg->vector, dest);
3209 
3210 		/* Set source-id of interrupt request */
3211 		if (pdev)
3212 			set_msi_sid(&irte, pdev);
3213 		else
3214 			set_hpet_sid(&irte, hpet_id);
3215 
3216 		modify_irte(irq, &irte);
3217 
3218 		msg->address_hi = MSI_ADDR_BASE_HI;
3219 		msg->data = sub_handle;
3220 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3221 				  MSI_ADDR_IR_SHV |
3222 				  MSI_ADDR_IR_INDEX1(ir_index) |
3223 				  MSI_ADDR_IR_INDEX2(ir_index);
3224 	} else {
3225 		if (x2apic_enabled())
3226 			msg->address_hi = MSI_ADDR_BASE_HI |
3227 					  MSI_ADDR_EXT_DEST_ID(dest);
3228 		else
3229 			msg->address_hi = MSI_ADDR_BASE_HI;
3230 
3231 		msg->address_lo =
3232 			MSI_ADDR_BASE_LO |
3233 			((apic->irq_dest_mode == 0) ?
3234 				MSI_ADDR_DEST_MODE_PHYSICAL:
3235 				MSI_ADDR_DEST_MODE_LOGICAL) |
3236 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3237 				MSI_ADDR_REDIRECTION_CPU:
3238 				MSI_ADDR_REDIRECTION_LOWPRI) |
3239 			MSI_ADDR_DEST_ID(dest);
3240 
3241 		msg->data =
3242 			MSI_DATA_TRIGGER_EDGE |
3243 			MSI_DATA_LEVEL_ASSERT |
3244 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3245 				MSI_DATA_DELIVERY_FIXED:
3246 				MSI_DATA_DELIVERY_LOWPRI) |
3247 			MSI_DATA_VECTOR(cfg->vector);
3248 	}
3249 	return err;
3250 }
3251 
3252 #ifdef CONFIG_SMP
3253 static int
3254 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3255 {
3256 	struct irq_cfg *cfg = data->chip_data;
3257 	struct msi_msg msg;
3258 	unsigned int dest;
3259 
3260 	if (__ioapic_set_affinity(data, mask, &dest))
3261 		return -1;
3262 
3263 	__get_cached_msi_msg(data->msi_desc, &msg);
3264 
3265 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3266 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3267 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3268 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3269 
3270 	__write_msi_msg(data->msi_desc, &msg);
3271 
3272 	return 0;
3273 }
3274 #endif /* CONFIG_SMP */
3275 
3276 /*
3277  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3278  * which implement the MSI or MSI-X Capability Structure.
3279  */
3280 static struct irq_chip msi_chip = {
3281 	.name			= "PCI-MSI",
3282 	.irq_unmask		= unmask_msi_irq,
3283 	.irq_mask		= mask_msi_irq,
3284 	.irq_ack		= ack_apic_edge,
3285 #ifdef CONFIG_SMP
3286 	.irq_set_affinity	= msi_set_affinity,
3287 #endif
3288 	.irq_retrigger		= ioapic_retrigger_irq,
3289 };
3290 
3291 /*
3292  * Map the PCI dev to the corresponding remapping hardware unit
3293  * and allocate 'nvec' consecutive interrupt-remapping table entries
3294  * in it.
3295  */
3296 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3297 {
3298 	struct intel_iommu *iommu;
3299 	int index;
3300 
3301 	iommu = map_dev_to_ir(dev);
3302 	if (!iommu) {
3303 		printk(KERN_ERR
3304 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3305 		return -ENOENT;
3306 	}
3307 
3308 	index = alloc_irte(iommu, irq, nvec);
3309 	if (index < 0) {
3310 		printk(KERN_ERR
3311 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3312 		       pci_name(dev));
3313 		return -ENOSPC;
3314 	}
3315 	return index;
3316 }
3317 
3318 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3319 {
3320 	struct irq_chip *chip = &msi_chip;
3321 	struct msi_msg msg;
3322 	int ret;
3323 
3324 	ret = msi_compose_msg(dev, irq, &msg, -1);
3325 	if (ret < 0)
3326 		return ret;
3327 
3328 	irq_set_msi_desc(irq, msidesc);
3329 	write_msi_msg(irq, &msg);
3330 
3331 	if (irq_remapped(irq_get_chip_data(irq))) {
3332 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3333 		irq_remap_modify_chip_defaults(chip);
3334 	}
3335 
3336 	irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3337 
3338 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3339 
3340 	return 0;
3341 }
3342 
3343 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3344 {
3345 	int node, ret, sub_handle, index = 0;
3346 	unsigned int irq, irq_want;
3347 	struct msi_desc *msidesc;
3348 	struct intel_iommu *iommu = NULL;
3349 
3350 	/* x86 doesn't support multiple MSI yet */
3351 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3352 		return 1;
3353 
3354 	node = dev_to_node(&dev->dev);
3355 	irq_want = nr_irqs_gsi;
3356 	sub_handle = 0;
3357 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3358 		irq = create_irq_nr(irq_want, node);
3359 		if (irq == 0)
3360 			return -1;
3361 		irq_want = irq + 1;
3362 		if (!intr_remapping_enabled)
3363 			goto no_ir;
3364 
3365 		if (!sub_handle) {
3366 			/*
3367 			 * allocate the consecutive block of IRTE's
3368 			 * for 'nvec'
3369 			 */
3370 			index = msi_alloc_irte(dev, irq, nvec);
3371 			if (index < 0) {
3372 				ret = index;
3373 				goto error;
3374 			}
3375 		} else {
3376 			iommu = map_dev_to_ir(dev);
3377 			if (!iommu) {
3378 				ret = -ENOENT;
3379 				goto error;
3380 			}
3381 			/*
3382 			 * setup the mapping between the irq and the IRTE
3383 			 * base index, the sub_handle pointing to the
3384 			 * appropriate interrupt remap table entry.
3385 			 */
3386 			set_irte_irq(irq, iommu, index, sub_handle);
3387 		}
3388 no_ir:
3389 		ret = setup_msi_irq(dev, msidesc, irq);
3390 		if (ret < 0)
3391 			goto error;
3392 		sub_handle++;
3393 	}
3394 	return 0;
3395 
3396 error:
3397 	destroy_irq(irq);
3398 	return ret;
3399 }
3400 
3401 void native_teardown_msi_irq(unsigned int irq)
3402 {
3403 	destroy_irq(irq);
3404 }
3405 
3406 #ifdef CONFIG_DMAR_TABLE
3407 #ifdef CONFIG_SMP
3408 static int
3409 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3410 		      bool force)
3411 {
3412 	struct irq_cfg *cfg = data->chip_data;
3413 	unsigned int dest, irq = data->irq;
3414 	struct msi_msg msg;
3415 
3416 	if (__ioapic_set_affinity(data, mask, &dest))
3417 		return -1;
3418 
3419 	dmar_msi_read(irq, &msg);
3420 
3421 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3422 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3423 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3424 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3425 	msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3426 
3427 	dmar_msi_write(irq, &msg);
3428 
3429 	return 0;
3430 }
3431 
3432 #endif /* CONFIG_SMP */
3433 
3434 static struct irq_chip dmar_msi_type = {
3435 	.name			= "DMAR_MSI",
3436 	.irq_unmask		= dmar_msi_unmask,
3437 	.irq_mask		= dmar_msi_mask,
3438 	.irq_ack		= ack_apic_edge,
3439 #ifdef CONFIG_SMP
3440 	.irq_set_affinity	= dmar_msi_set_affinity,
3441 #endif
3442 	.irq_retrigger		= ioapic_retrigger_irq,
3443 };
3444 
3445 int arch_setup_dmar_msi(unsigned int irq)
3446 {
3447 	int ret;
3448 	struct msi_msg msg;
3449 
3450 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3451 	if (ret < 0)
3452 		return ret;
3453 	dmar_msi_write(irq, &msg);
3454 	irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3455 				      "edge");
3456 	return 0;
3457 }
3458 #endif
3459 
3460 #ifdef CONFIG_HPET_TIMER
3461 
3462 #ifdef CONFIG_SMP
3463 static int hpet_msi_set_affinity(struct irq_data *data,
3464 				 const struct cpumask *mask, bool force)
3465 {
3466 	struct irq_cfg *cfg = data->chip_data;
3467 	struct msi_msg msg;
3468 	unsigned int dest;
3469 
3470 	if (__ioapic_set_affinity(data, mask, &dest))
3471 		return -1;
3472 
3473 	hpet_msi_read(data->handler_data, &msg);
3474 
3475 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3476 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3477 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3478 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3479 
3480 	hpet_msi_write(data->handler_data, &msg);
3481 
3482 	return 0;
3483 }
3484 
3485 #endif /* CONFIG_SMP */
3486 
3487 static struct irq_chip hpet_msi_type = {
3488 	.name = "HPET_MSI",
3489 	.irq_unmask = hpet_msi_unmask,
3490 	.irq_mask = hpet_msi_mask,
3491 	.irq_ack = ack_apic_edge,
3492 #ifdef CONFIG_SMP
3493 	.irq_set_affinity = hpet_msi_set_affinity,
3494 #endif
3495 	.irq_retrigger = ioapic_retrigger_irq,
3496 };
3497 
3498 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3499 {
3500 	struct irq_chip *chip = &hpet_msi_type;
3501 	struct msi_msg msg;
3502 	int ret;
3503 
3504 	if (intr_remapping_enabled) {
3505 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3506 		int index;
3507 
3508 		if (!iommu)
3509 			return -1;
3510 
3511 		index = alloc_irte(iommu, irq, 1);
3512 		if (index < 0)
3513 			return -1;
3514 	}
3515 
3516 	ret = msi_compose_msg(NULL, irq, &msg, id);
3517 	if (ret < 0)
3518 		return ret;
3519 
3520 	hpet_msi_write(irq_get_handler_data(irq), &msg);
3521 	irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3522 	if (irq_remapped(irq_get_chip_data(irq)))
3523 		irq_remap_modify_chip_defaults(chip);
3524 
3525 	irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3526 	return 0;
3527 }
3528 #endif
3529 
3530 #endif /* CONFIG_PCI_MSI */
3531 /*
3532  * Hypertransport interrupt support
3533  */
3534 #ifdef CONFIG_HT_IRQ
3535 
3536 #ifdef CONFIG_SMP
3537 
3538 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3539 {
3540 	struct ht_irq_msg msg;
3541 	fetch_ht_irq_msg(irq, &msg);
3542 
3543 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3544 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3545 
3546 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3547 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3548 
3549 	write_ht_irq_msg(irq, &msg);
3550 }
3551 
3552 static int
3553 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3554 {
3555 	struct irq_cfg *cfg = data->chip_data;
3556 	unsigned int dest;
3557 
3558 	if (__ioapic_set_affinity(data, mask, &dest))
3559 		return -1;
3560 
3561 	target_ht_irq(data->irq, dest, cfg->vector);
3562 	return 0;
3563 }
3564 
3565 #endif
3566 
3567 static struct irq_chip ht_irq_chip = {
3568 	.name			= "PCI-HT",
3569 	.irq_mask		= mask_ht_irq,
3570 	.irq_unmask		= unmask_ht_irq,
3571 	.irq_ack		= ack_apic_edge,
3572 #ifdef CONFIG_SMP
3573 	.irq_set_affinity	= ht_set_affinity,
3574 #endif
3575 	.irq_retrigger		= ioapic_retrigger_irq,
3576 };
3577 
3578 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3579 {
3580 	struct irq_cfg *cfg;
3581 	int err;
3582 
3583 	if (disable_apic)
3584 		return -ENXIO;
3585 
3586 	cfg = irq_cfg(irq);
3587 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3588 	if (!err) {
3589 		struct ht_irq_msg msg;
3590 		unsigned dest;
3591 
3592 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3593 						    apic->target_cpus());
3594 
3595 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3596 
3597 		msg.address_lo =
3598 			HT_IRQ_LOW_BASE |
3599 			HT_IRQ_LOW_DEST_ID(dest) |
3600 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3601 			((apic->irq_dest_mode == 0) ?
3602 				HT_IRQ_LOW_DM_PHYSICAL :
3603 				HT_IRQ_LOW_DM_LOGICAL) |
3604 			HT_IRQ_LOW_RQEOI_EDGE |
3605 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3606 				HT_IRQ_LOW_MT_FIXED :
3607 				HT_IRQ_LOW_MT_ARBITRATED) |
3608 			HT_IRQ_LOW_IRQ_MASKED;
3609 
3610 		write_ht_irq_msg(irq, &msg);
3611 
3612 		irq_set_chip_and_handler_name(irq, &ht_irq_chip,
3613 					      handle_edge_irq, "edge");
3614 
3615 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3616 	}
3617 	return err;
3618 }
3619 #endif /* CONFIG_HT_IRQ */
3620 
3621 static int
3622 io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
3623 {
3624 	struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
3625 	int ret;
3626 
3627 	if (!cfg)
3628 		return -EINVAL;
3629 	ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
3630 	if (!ret)
3631 		setup_ioapic_irq(irq, cfg, attr);
3632 	return ret;
3633 }
3634 
3635 int io_apic_setup_irq_pin_once(unsigned int irq, int node,
3636 			       struct io_apic_irq_attr *attr)
3637 {
3638 	unsigned int ioapic_idx = attr->ioapic, pin = attr->ioapic_pin;
3639 	int ret;
3640 
3641 	/* Avoid redundant programming */
3642 	if (test_bit(pin, ioapics[ioapic_idx].pin_programmed)) {
3643 		pr_debug("Pin %d-%d already programmed\n",
3644 			 mpc_ioapic_id(ioapic_idx), pin);
3645 		return 0;
3646 	}
3647 	ret = io_apic_setup_irq_pin(irq, node, attr);
3648 	if (!ret)
3649 		set_bit(pin, ioapics[ioapic_idx].pin_programmed);
3650 	return ret;
3651 }
3652 
3653 static int __init io_apic_get_redir_entries(int ioapic)
3654 {
3655 	union IO_APIC_reg_01	reg_01;
3656 	unsigned long flags;
3657 
3658 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3659 	reg_01.raw = io_apic_read(ioapic, 1);
3660 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3661 
3662 	/* The register returns the maximum index redir index
3663 	 * supported, which is one less than the total number of redir
3664 	 * entries.
3665 	 */
3666 	return reg_01.bits.entries + 1;
3667 }
3668 
3669 static void __init probe_nr_irqs_gsi(void)
3670 {
3671 	int nr;
3672 
3673 	nr = gsi_top + NR_IRQS_LEGACY;
3674 	if (nr > nr_irqs_gsi)
3675 		nr_irqs_gsi = nr;
3676 
3677 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3678 }
3679 
3680 int get_nr_irqs_gsi(void)
3681 {
3682 	return nr_irqs_gsi;
3683 }
3684 
3685 int __init arch_probe_nr_irqs(void)
3686 {
3687 	int nr;
3688 
3689 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3690 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3691 
3692 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3693 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3694 	/*
3695 	 * for MSI and HT dyn irq
3696 	 */
3697 	nr += nr_irqs_gsi * 16;
3698 #endif
3699 	if (nr < nr_irqs)
3700 		nr_irqs = nr;
3701 
3702 	return NR_IRQS_LEGACY;
3703 }
3704 
3705 int io_apic_set_pci_routing(struct device *dev, int irq,
3706 			    struct io_apic_irq_attr *irq_attr)
3707 {
3708 	int node;
3709 
3710 	if (!IO_APIC_IRQ(irq)) {
3711 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3712 			    irq_attr->ioapic);
3713 		return -EINVAL;
3714 	}
3715 
3716 	node = dev ? dev_to_node(dev) : cpu_to_node(0);
3717 
3718 	return io_apic_setup_irq_pin_once(irq, node, irq_attr);
3719 }
3720 
3721 #ifdef CONFIG_X86_32
3722 static int __init io_apic_get_unique_id(int ioapic, int apic_id)
3723 {
3724 	union IO_APIC_reg_00 reg_00;
3725 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3726 	physid_mask_t tmp;
3727 	unsigned long flags;
3728 	int i = 0;
3729 
3730 	/*
3731 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3732 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3733 	 * supports up to 16 on one shared APIC bus.
3734 	 *
3735 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3736 	 *      advantage of new APIC bus architecture.
3737 	 */
3738 
3739 	if (physids_empty(apic_id_map))
3740 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3741 
3742 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3743 	reg_00.raw = io_apic_read(ioapic, 0);
3744 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3745 
3746 	if (apic_id >= get_physical_broadcast()) {
3747 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3748 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3749 		apic_id = reg_00.bits.ID;
3750 	}
3751 
3752 	/*
3753 	 * Every APIC in a system must have a unique ID or we get lots of nice
3754 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3755 	 */
3756 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3757 
3758 		for (i = 0; i < get_physical_broadcast(); i++) {
3759 			if (!apic->check_apicid_used(&apic_id_map, i))
3760 				break;
3761 		}
3762 
3763 		if (i == get_physical_broadcast())
3764 			panic("Max apic_id exceeded!\n");
3765 
3766 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3767 			"trying %d\n", ioapic, apic_id, i);
3768 
3769 		apic_id = i;
3770 	}
3771 
3772 	apic->apicid_to_cpu_present(apic_id, &tmp);
3773 	physids_or(apic_id_map, apic_id_map, tmp);
3774 
3775 	if (reg_00.bits.ID != apic_id) {
3776 		reg_00.bits.ID = apic_id;
3777 
3778 		raw_spin_lock_irqsave(&ioapic_lock, flags);
3779 		io_apic_write(ioapic, 0, reg_00.raw);
3780 		reg_00.raw = io_apic_read(ioapic, 0);
3781 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3782 
3783 		/* Sanity check */
3784 		if (reg_00.bits.ID != apic_id) {
3785 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3786 			return -1;
3787 		}
3788 	}
3789 
3790 	apic_printk(APIC_VERBOSE, KERN_INFO
3791 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3792 
3793 	return apic_id;
3794 }
3795 
3796 static u8 __init io_apic_unique_id(u8 id)
3797 {
3798 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3799 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3800 		return io_apic_get_unique_id(nr_ioapics, id);
3801 	else
3802 		return id;
3803 }
3804 #else
3805 static u8 __init io_apic_unique_id(u8 id)
3806 {
3807 	int i;
3808 	DECLARE_BITMAP(used, 256);
3809 
3810 	bitmap_zero(used, 256);
3811 	for (i = 0; i < nr_ioapics; i++) {
3812 		__set_bit(mpc_ioapic_id(i), used);
3813 	}
3814 	if (!test_bit(id, used))
3815 		return id;
3816 	return find_first_zero_bit(used, 256);
3817 }
3818 #endif
3819 
3820 static int __init io_apic_get_version(int ioapic)
3821 {
3822 	union IO_APIC_reg_01	reg_01;
3823 	unsigned long flags;
3824 
3825 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3826 	reg_01.raw = io_apic_read(ioapic, 1);
3827 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3828 
3829 	return reg_01.bits.version;
3830 }
3831 
3832 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3833 {
3834 	int ioapic, pin, idx;
3835 
3836 	if (skip_ioapic_setup)
3837 		return -1;
3838 
3839 	ioapic = mp_find_ioapic(gsi);
3840 	if (ioapic < 0)
3841 		return -1;
3842 
3843 	pin = mp_find_ioapic_pin(ioapic, gsi);
3844 	if (pin < 0)
3845 		return -1;
3846 
3847 	idx = find_irq_entry(ioapic, pin, mp_INT);
3848 	if (idx < 0)
3849 		return -1;
3850 
3851 	*trigger = irq_trigger(idx);
3852 	*polarity = irq_polarity(idx);
3853 	return 0;
3854 }
3855 
3856 /*
3857  * This function currently is only a helper for the i386 smp boot process where
3858  * we need to reprogram the ioredtbls to cater for the cpus which have come online
3859  * so mask in all cases should simply be apic->target_cpus()
3860  */
3861 #ifdef CONFIG_SMP
3862 void __init setup_ioapic_dest(void)
3863 {
3864 	int pin, ioapic, irq, irq_entry;
3865 	const struct cpumask *mask;
3866 	struct irq_data *idata;
3867 
3868 	if (skip_ioapic_setup == 1)
3869 		return;
3870 
3871 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3872 	for (pin = 0; pin < ioapics[ioapic].nr_registers; pin++) {
3873 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3874 		if (irq_entry == -1)
3875 			continue;
3876 		irq = pin_2_irq(irq_entry, ioapic, pin);
3877 
3878 		if ((ioapic > 0) && (irq > 16))
3879 			continue;
3880 
3881 		idata = irq_get_irq_data(irq);
3882 
3883 		/*
3884 		 * Honour affinities which have been set in early boot
3885 		 */
3886 		if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata))
3887 			mask = idata->affinity;
3888 		else
3889 			mask = apic->target_cpus();
3890 
3891 		if (intr_remapping_enabled)
3892 			ir_ioapic_set_affinity(idata, mask, false);
3893 		else
3894 			ioapic_set_affinity(idata, mask, false);
3895 	}
3896 
3897 }
3898 #endif
3899 
3900 #define IOAPIC_RESOURCE_NAME_SIZE 11
3901 
3902 static struct resource *ioapic_resources;
3903 
3904 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3905 {
3906 	unsigned long n;
3907 	struct resource *res;
3908 	char *mem;
3909 	int i;
3910 
3911 	if (nr_ioapics <= 0)
3912 		return NULL;
3913 
3914 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3915 	n *= nr_ioapics;
3916 
3917 	mem = alloc_bootmem(n);
3918 	res = (void *)mem;
3919 
3920 	mem += sizeof(struct resource) * nr_ioapics;
3921 
3922 	for (i = 0; i < nr_ioapics; i++) {
3923 		res[i].name = mem;
3924 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3925 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3926 		mem += IOAPIC_RESOURCE_NAME_SIZE;
3927 	}
3928 
3929 	ioapic_resources = res;
3930 
3931 	return res;
3932 }
3933 
3934 void __init ioapic_and_gsi_init(void)
3935 {
3936 	io_apic_ops.init();
3937 }
3938 
3939 static void __init __ioapic_init_mappings(void)
3940 {
3941 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3942 	struct resource *ioapic_res;
3943 	int i;
3944 
3945 	ioapic_res = ioapic_setup_resources(nr_ioapics);
3946 	for (i = 0; i < nr_ioapics; i++) {
3947 		if (smp_found_config) {
3948 			ioapic_phys = mpc_ioapic_addr(i);
3949 #ifdef CONFIG_X86_32
3950 			if (!ioapic_phys) {
3951 				printk(KERN_ERR
3952 				       "WARNING: bogus zero IO-APIC "
3953 				       "address found in MPTABLE, "
3954 				       "disabling IO/APIC support!\n");
3955 				smp_found_config = 0;
3956 				skip_ioapic_setup = 1;
3957 				goto fake_ioapic_page;
3958 			}
3959 #endif
3960 		} else {
3961 #ifdef CONFIG_X86_32
3962 fake_ioapic_page:
3963 #endif
3964 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3965 			ioapic_phys = __pa(ioapic_phys);
3966 		}
3967 		set_fixmap_nocache(idx, ioapic_phys);
3968 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3969 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3970 			ioapic_phys);
3971 		idx++;
3972 
3973 		ioapic_res->start = ioapic_phys;
3974 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3975 		ioapic_res++;
3976 	}
3977 
3978 	probe_nr_irqs_gsi();
3979 }
3980 
3981 void __init ioapic_insert_resources(void)
3982 {
3983 	int i;
3984 	struct resource *r = ioapic_resources;
3985 
3986 	if (!r) {
3987 		if (nr_ioapics > 0)
3988 			printk(KERN_ERR
3989 				"IO APIC resources couldn't be allocated.\n");
3990 		return;
3991 	}
3992 
3993 	for (i = 0; i < nr_ioapics; i++) {
3994 		insert_resource(&iomem_resource, r);
3995 		r++;
3996 	}
3997 }
3998 
3999 int mp_find_ioapic(u32 gsi)
4000 {
4001 	int i = 0;
4002 
4003 	if (nr_ioapics == 0)
4004 		return -1;
4005 
4006 	/* Find the IOAPIC that manages this GSI. */
4007 	for (i = 0; i < nr_ioapics; i++) {
4008 		struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i);
4009 		if ((gsi >= gsi_cfg->gsi_base)
4010 		    && (gsi <= gsi_cfg->gsi_end))
4011 			return i;
4012 	}
4013 
4014 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4015 	return -1;
4016 }
4017 
4018 int mp_find_ioapic_pin(int ioapic, u32 gsi)
4019 {
4020 	struct mp_ioapic_gsi *gsi_cfg;
4021 
4022 	if (WARN_ON(ioapic == -1))
4023 		return -1;
4024 
4025 	gsi_cfg = mp_ioapic_gsi_routing(ioapic);
4026 	if (WARN_ON(gsi > gsi_cfg->gsi_end))
4027 		return -1;
4028 
4029 	return gsi - gsi_cfg->gsi_base;
4030 }
4031 
4032 static __init int bad_ioapic(unsigned long address)
4033 {
4034 	if (nr_ioapics >= MAX_IO_APICS) {
4035 		pr_warn("WARNING: Max # of I/O APICs (%d) exceeded (found %d), skipping\n",
4036 			MAX_IO_APICS, nr_ioapics);
4037 		return 1;
4038 	}
4039 	if (!address) {
4040 		pr_warn("WARNING: Bogus (zero) I/O APIC address found in table, skipping!\n");
4041 		return 1;
4042 	}
4043 	return 0;
4044 }
4045 
4046 static __init int bad_ioapic_register(int idx)
4047 {
4048 	union IO_APIC_reg_00 reg_00;
4049 	union IO_APIC_reg_01 reg_01;
4050 	union IO_APIC_reg_02 reg_02;
4051 
4052 	reg_00.raw = io_apic_read(idx, 0);
4053 	reg_01.raw = io_apic_read(idx, 1);
4054 	reg_02.raw = io_apic_read(idx, 2);
4055 
4056 	if (reg_00.raw == -1 && reg_01.raw == -1 && reg_02.raw == -1) {
4057 		pr_warn("I/O APIC 0x%x registers return all ones, skipping!\n",
4058 			mpc_ioapic_addr(idx));
4059 		return 1;
4060 	}
4061 
4062 	return 0;
4063 }
4064 
4065 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4066 {
4067 	int idx = 0;
4068 	int entries;
4069 	struct mp_ioapic_gsi *gsi_cfg;
4070 
4071 	if (bad_ioapic(address))
4072 		return;
4073 
4074 	idx = nr_ioapics;
4075 
4076 	ioapics[idx].mp_config.type = MP_IOAPIC;
4077 	ioapics[idx].mp_config.flags = MPC_APIC_USABLE;
4078 	ioapics[idx].mp_config.apicaddr = address;
4079 
4080 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4081 
4082 	if (bad_ioapic_register(idx)) {
4083 		clear_fixmap(FIX_IO_APIC_BASE_0 + idx);
4084 		return;
4085 	}
4086 
4087 	ioapics[idx].mp_config.apicid = io_apic_unique_id(id);
4088 	ioapics[idx].mp_config.apicver = io_apic_get_version(idx);
4089 
4090 	/*
4091 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4092 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4093 	 */
4094 	entries = io_apic_get_redir_entries(idx);
4095 	gsi_cfg = mp_ioapic_gsi_routing(idx);
4096 	gsi_cfg->gsi_base = gsi_base;
4097 	gsi_cfg->gsi_end = gsi_base + entries - 1;
4098 
4099 	/*
4100 	 * The number of IO-APIC IRQ registers (== #pins):
4101 	 */
4102 	ioapics[idx].nr_registers = entries;
4103 
4104 	if (gsi_cfg->gsi_end >= gsi_top)
4105 		gsi_top = gsi_cfg->gsi_end + 1;
4106 
4107 	pr_info("IOAPIC[%d]: apic_id %d, version %d, address 0x%x, GSI %d-%d\n",
4108 		idx, mpc_ioapic_id(idx),
4109 		mpc_ioapic_ver(idx), mpc_ioapic_addr(idx),
4110 		gsi_cfg->gsi_base, gsi_cfg->gsi_end);
4111 
4112 	nr_ioapics++;
4113 }
4114 
4115 /* Enable IOAPIC early just for system timer */
4116 void __init pre_init_apic_IRQ0(void)
4117 {
4118 	struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
4119 
4120 	printk(KERN_INFO "Early APIC setup for system timer0\n");
4121 #ifndef CONFIG_SMP
4122 	physid_set_mask_of_physid(boot_cpu_physical_apicid,
4123 					 &phys_cpu_present_map);
4124 #endif
4125 	setup_local_APIC();
4126 
4127 	io_apic_setup_irq_pin(0, 0, &attr);
4128 	irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
4129 				      "edge");
4130 }
4131