xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision 7dd65feb)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45 
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 
64 #include <asm/apic.h>
65 
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 	for (entry = head; entry; entry = entry->next)
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_SPINLOCK(ioapic_lock);
77 static DEFINE_SPINLOCK(vector_lock);
78 
79 /*
80  * # of IRQ routing registers
81  */
82 int nr_ioapic_registers[MAX_IO_APICS];
83 
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87 
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi  mp_gsi_routing[MAX_IO_APICS];
90 
91 /* MP IRQ source entries */
92 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
93 
94 /* # of MP IRQ source entries */
95 int mp_irq_entries;
96 
97 /* Number of legacy interrupts */
98 static int nr_legacy_irqs __read_mostly = NR_IRQS_LEGACY;
99 /* GSI interrupts */
100 static int nr_irqs_gsi = NR_IRQS_LEGACY;
101 
102 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
103 int mp_bus_id_to_type[MAX_MP_BUSSES];
104 #endif
105 
106 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
107 
108 int skip_ioapic_setup;
109 
110 void arch_disable_smp_support(void)
111 {
112 #ifdef CONFIG_PCI
113 	noioapicquirk = 1;
114 	noioapicreroute = -1;
115 #endif
116 	skip_ioapic_setup = 1;
117 }
118 
119 static int __init parse_noapic(char *str)
120 {
121 	/* disable IO-APIC */
122 	arch_disable_smp_support();
123 	return 0;
124 }
125 early_param("noapic", parse_noapic);
126 
127 struct irq_pin_list {
128 	int apic, pin;
129 	struct irq_pin_list *next;
130 };
131 
132 static struct irq_pin_list *get_one_free_irq_2_pin(int node)
133 {
134 	struct irq_pin_list *pin;
135 
136 	pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
137 
138 	return pin;
139 }
140 
141 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
142 #ifdef CONFIG_SPARSE_IRQ
143 static struct irq_cfg irq_cfgx[] = {
144 #else
145 static struct irq_cfg irq_cfgx[NR_IRQS] = {
146 #endif
147 	[0]  = { .vector = IRQ0_VECTOR,  },
148 	[1]  = { .vector = IRQ1_VECTOR,  },
149 	[2]  = { .vector = IRQ2_VECTOR,  },
150 	[3]  = { .vector = IRQ3_VECTOR,  },
151 	[4]  = { .vector = IRQ4_VECTOR,  },
152 	[5]  = { .vector = IRQ5_VECTOR,  },
153 	[6]  = { .vector = IRQ6_VECTOR,  },
154 	[7]  = { .vector = IRQ7_VECTOR,  },
155 	[8]  = { .vector = IRQ8_VECTOR,  },
156 	[9]  = { .vector = IRQ9_VECTOR,  },
157 	[10] = { .vector = IRQ10_VECTOR, },
158 	[11] = { .vector = IRQ11_VECTOR, },
159 	[12] = { .vector = IRQ12_VECTOR, },
160 	[13] = { .vector = IRQ13_VECTOR, },
161 	[14] = { .vector = IRQ14_VECTOR, },
162 	[15] = { .vector = IRQ15_VECTOR, },
163 };
164 
165 void __init io_apic_disable_legacy(void)
166 {
167 	nr_legacy_irqs = 0;
168 	nr_irqs_gsi = 0;
169 }
170 
171 int __init arch_early_irq_init(void)
172 {
173 	struct irq_cfg *cfg;
174 	struct irq_desc *desc;
175 	int count;
176 	int node;
177 	int i;
178 
179 	cfg = irq_cfgx;
180 	count = ARRAY_SIZE(irq_cfgx);
181 	node= cpu_to_node(boot_cpu_id);
182 
183 	for (i = 0; i < count; i++) {
184 		desc = irq_to_desc(i);
185 		desc->chip_data = &cfg[i];
186 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node);
187 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node);
188 		if (i < nr_legacy_irqs)
189 			cpumask_setall(cfg[i].domain);
190 	}
191 
192 	return 0;
193 }
194 
195 #ifdef CONFIG_SPARSE_IRQ
196 struct irq_cfg *irq_cfg(unsigned int irq)
197 {
198 	struct irq_cfg *cfg = NULL;
199 	struct irq_desc *desc;
200 
201 	desc = irq_to_desc(irq);
202 	if (desc)
203 		cfg = desc->chip_data;
204 
205 	return cfg;
206 }
207 
208 static struct irq_cfg *get_one_free_irq_cfg(int node)
209 {
210 	struct irq_cfg *cfg;
211 
212 	cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
213 	if (cfg) {
214 		if (!zalloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
215 			kfree(cfg);
216 			cfg = NULL;
217 		} else if (!zalloc_cpumask_var_node(&cfg->old_domain,
218 							  GFP_ATOMIC, node)) {
219 			free_cpumask_var(cfg->domain);
220 			kfree(cfg);
221 			cfg = NULL;
222 		}
223 	}
224 
225 	return cfg;
226 }
227 
228 int arch_init_chip_data(struct irq_desc *desc, int node)
229 {
230 	struct irq_cfg *cfg;
231 
232 	cfg = desc->chip_data;
233 	if (!cfg) {
234 		desc->chip_data = get_one_free_irq_cfg(node);
235 		if (!desc->chip_data) {
236 			printk(KERN_ERR "can not alloc irq_cfg\n");
237 			BUG_ON(1);
238 		}
239 	}
240 
241 	return 0;
242 }
243 
244 /* for move_irq_desc */
245 static void
246 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node)
247 {
248 	struct irq_pin_list *old_entry, *head, *tail, *entry;
249 
250 	cfg->irq_2_pin = NULL;
251 	old_entry = old_cfg->irq_2_pin;
252 	if (!old_entry)
253 		return;
254 
255 	entry = get_one_free_irq_2_pin(node);
256 	if (!entry)
257 		return;
258 
259 	entry->apic	= old_entry->apic;
260 	entry->pin	= old_entry->pin;
261 	head		= entry;
262 	tail		= entry;
263 	old_entry	= old_entry->next;
264 	while (old_entry) {
265 		entry = get_one_free_irq_2_pin(node);
266 		if (!entry) {
267 			entry = head;
268 			while (entry) {
269 				head = entry->next;
270 				kfree(entry);
271 				entry = head;
272 			}
273 			/* still use the old one */
274 			return;
275 		}
276 		entry->apic	= old_entry->apic;
277 		entry->pin	= old_entry->pin;
278 		tail->next	= entry;
279 		tail		= entry;
280 		old_entry	= old_entry->next;
281 	}
282 
283 	tail->next = NULL;
284 	cfg->irq_2_pin = head;
285 }
286 
287 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
288 {
289 	struct irq_pin_list *entry, *next;
290 
291 	if (old_cfg->irq_2_pin == cfg->irq_2_pin)
292 		return;
293 
294 	entry = old_cfg->irq_2_pin;
295 
296 	while (entry) {
297 		next = entry->next;
298 		kfree(entry);
299 		entry = next;
300 	}
301 	old_cfg->irq_2_pin = NULL;
302 }
303 
304 void arch_init_copy_chip_data(struct irq_desc *old_desc,
305 				 struct irq_desc *desc, int node)
306 {
307 	struct irq_cfg *cfg;
308 	struct irq_cfg *old_cfg;
309 
310 	cfg = get_one_free_irq_cfg(node);
311 
312 	if (!cfg)
313 		return;
314 
315 	desc->chip_data = cfg;
316 
317 	old_cfg = old_desc->chip_data;
318 
319 	memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
320 
321 	init_copy_irq_2_pin(old_cfg, cfg, node);
322 }
323 
324 static void free_irq_cfg(struct irq_cfg *old_cfg)
325 {
326 	kfree(old_cfg);
327 }
328 
329 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
330 {
331 	struct irq_cfg *old_cfg, *cfg;
332 
333 	old_cfg = old_desc->chip_data;
334 	cfg = desc->chip_data;
335 
336 	if (old_cfg == cfg)
337 		return;
338 
339 	if (old_cfg) {
340 		free_irq_2_pin(old_cfg, cfg);
341 		free_irq_cfg(old_cfg);
342 		old_desc->chip_data = NULL;
343 	}
344 }
345 /* end for move_irq_desc */
346 
347 #else
348 struct irq_cfg *irq_cfg(unsigned int irq)
349 {
350 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
351 }
352 
353 #endif
354 
355 struct io_apic {
356 	unsigned int index;
357 	unsigned int unused[3];
358 	unsigned int data;
359 	unsigned int unused2[11];
360 	unsigned int eoi;
361 };
362 
363 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
364 {
365 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
366 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
367 }
368 
369 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
370 {
371 	struct io_apic __iomem *io_apic = io_apic_base(apic);
372 	writel(vector, &io_apic->eoi);
373 }
374 
375 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
376 {
377 	struct io_apic __iomem *io_apic = io_apic_base(apic);
378 	writel(reg, &io_apic->index);
379 	return readl(&io_apic->data);
380 }
381 
382 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
383 {
384 	struct io_apic __iomem *io_apic = io_apic_base(apic);
385 	writel(reg, &io_apic->index);
386 	writel(value, &io_apic->data);
387 }
388 
389 /*
390  * Re-write a value: to be used for read-modify-write
391  * cycles where the read already set up the index register.
392  *
393  * Older SiS APIC requires we rewrite the index register
394  */
395 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
396 {
397 	struct io_apic __iomem *io_apic = io_apic_base(apic);
398 
399 	if (sis_apic_bug)
400 		writel(reg, &io_apic->index);
401 	writel(value, &io_apic->data);
402 }
403 
404 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
405 {
406 	struct irq_pin_list *entry;
407 	unsigned long flags;
408 
409 	spin_lock_irqsave(&ioapic_lock, flags);
410 	for_each_irq_pin(entry, cfg->irq_2_pin) {
411 		unsigned int reg;
412 		int pin;
413 
414 		pin = entry->pin;
415 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
416 		/* Is the remote IRR bit set? */
417 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
418 			spin_unlock_irqrestore(&ioapic_lock, flags);
419 			return true;
420 		}
421 	}
422 	spin_unlock_irqrestore(&ioapic_lock, flags);
423 
424 	return false;
425 }
426 
427 union entry_union {
428 	struct { u32 w1, w2; };
429 	struct IO_APIC_route_entry entry;
430 };
431 
432 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
433 {
434 	union entry_union eu;
435 	unsigned long flags;
436 	spin_lock_irqsave(&ioapic_lock, flags);
437 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
438 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
439 	spin_unlock_irqrestore(&ioapic_lock, flags);
440 	return eu.entry;
441 }
442 
443 /*
444  * When we write a new IO APIC routing entry, we need to write the high
445  * word first! If the mask bit in the low word is clear, we will enable
446  * the interrupt, and we need to make sure the entry is fully populated
447  * before that happens.
448  */
449 static void
450 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
451 {
452 	union entry_union eu = {{0, 0}};
453 
454 	eu.entry = e;
455 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
456 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
457 }
458 
459 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
460 {
461 	unsigned long flags;
462 	spin_lock_irqsave(&ioapic_lock, flags);
463 	__ioapic_write_entry(apic, pin, e);
464 	spin_unlock_irqrestore(&ioapic_lock, flags);
465 }
466 
467 /*
468  * When we mask an IO APIC routing entry, we need to write the low
469  * word first, in order to set the mask bit before we change the
470  * high bits!
471  */
472 static void ioapic_mask_entry(int apic, int pin)
473 {
474 	unsigned long flags;
475 	union entry_union eu = { .entry.mask = 1 };
476 
477 	spin_lock_irqsave(&ioapic_lock, flags);
478 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
479 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
480 	spin_unlock_irqrestore(&ioapic_lock, flags);
481 }
482 
483 /*
484  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
485  * shared ISA-space IRQs, so we have to support them. We are super
486  * fast in the common case, and fast for shared ISA-space IRQs.
487  */
488 static int
489 add_pin_to_irq_node_nopanic(struct irq_cfg *cfg, int node, int apic, int pin)
490 {
491 	struct irq_pin_list **last, *entry;
492 
493 	/* don't allow duplicates */
494 	last = &cfg->irq_2_pin;
495 	for_each_irq_pin(entry, cfg->irq_2_pin) {
496 		if (entry->apic == apic && entry->pin == pin)
497 			return 0;
498 		last = &entry->next;
499 	}
500 
501 	entry = get_one_free_irq_2_pin(node);
502 	if (!entry) {
503 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
504 				node, apic, pin);
505 		return -ENOMEM;
506 	}
507 	entry->apic = apic;
508 	entry->pin = pin;
509 
510 	*last = entry;
511 	return 0;
512 }
513 
514 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
515 {
516 	if (add_pin_to_irq_node_nopanic(cfg, node, apic, pin))
517 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
518 }
519 
520 /*
521  * Reroute an IRQ to a different pin.
522  */
523 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
524 					   int oldapic, int oldpin,
525 					   int newapic, int newpin)
526 {
527 	struct irq_pin_list *entry;
528 
529 	for_each_irq_pin(entry, cfg->irq_2_pin) {
530 		if (entry->apic == oldapic && entry->pin == oldpin) {
531 			entry->apic = newapic;
532 			entry->pin = newpin;
533 			/* every one is different, right? */
534 			return;
535 		}
536 	}
537 
538 	/* old apic/pin didn't exist, so just add new ones */
539 	add_pin_to_irq_node(cfg, node, newapic, newpin);
540 }
541 
542 static void __io_apic_modify_irq(struct irq_pin_list *entry,
543 				 int mask_and, int mask_or,
544 				 void (*final)(struct irq_pin_list *entry))
545 {
546 	unsigned int reg, pin;
547 
548 	pin = entry->pin;
549 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
550 	reg &= mask_and;
551 	reg |= mask_or;
552 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
553 	if (final)
554 		final(entry);
555 }
556 
557 static void io_apic_modify_irq(struct irq_cfg *cfg,
558 			       int mask_and, int mask_or,
559 			       void (*final)(struct irq_pin_list *entry))
560 {
561 	struct irq_pin_list *entry;
562 
563 	for_each_irq_pin(entry, cfg->irq_2_pin)
564 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
565 }
566 
567 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
568 {
569 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
570 			     IO_APIC_REDIR_MASKED, NULL);
571 }
572 
573 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
574 {
575 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
576 			     IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
577 }
578 
579 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
580 {
581 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
582 }
583 
584 static void io_apic_sync(struct irq_pin_list *entry)
585 {
586 	/*
587 	 * Synchronize the IO-APIC and the CPU by doing
588 	 * a dummy read from the IO-APIC
589 	 */
590 	struct io_apic __iomem *io_apic;
591 	io_apic = io_apic_base(entry->apic);
592 	readl(&io_apic->data);
593 }
594 
595 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
596 {
597 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
598 }
599 
600 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
601 {
602 	struct irq_cfg *cfg = desc->chip_data;
603 	unsigned long flags;
604 
605 	BUG_ON(!cfg);
606 
607 	spin_lock_irqsave(&ioapic_lock, flags);
608 	__mask_IO_APIC_irq(cfg);
609 	spin_unlock_irqrestore(&ioapic_lock, flags);
610 }
611 
612 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
613 {
614 	struct irq_cfg *cfg = desc->chip_data;
615 	unsigned long flags;
616 
617 	spin_lock_irqsave(&ioapic_lock, flags);
618 	__unmask_IO_APIC_irq(cfg);
619 	spin_unlock_irqrestore(&ioapic_lock, flags);
620 }
621 
622 static void mask_IO_APIC_irq(unsigned int irq)
623 {
624 	struct irq_desc *desc = irq_to_desc(irq);
625 
626 	mask_IO_APIC_irq_desc(desc);
627 }
628 static void unmask_IO_APIC_irq(unsigned int irq)
629 {
630 	struct irq_desc *desc = irq_to_desc(irq);
631 
632 	unmask_IO_APIC_irq_desc(desc);
633 }
634 
635 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
636 {
637 	struct IO_APIC_route_entry entry;
638 
639 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
640 	entry = ioapic_read_entry(apic, pin);
641 	if (entry.delivery_mode == dest_SMI)
642 		return;
643 	/*
644 	 * Disable it in the IO-APIC irq-routing table:
645 	 */
646 	ioapic_mask_entry(apic, pin);
647 }
648 
649 static void clear_IO_APIC (void)
650 {
651 	int apic, pin;
652 
653 	for (apic = 0; apic < nr_ioapics; apic++)
654 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
655 			clear_IO_APIC_pin(apic, pin);
656 }
657 
658 #ifdef CONFIG_X86_32
659 /*
660  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
661  * specific CPU-side IRQs.
662  */
663 
664 #define MAX_PIRQS 8
665 static int pirq_entries[MAX_PIRQS] = {
666 	[0 ... MAX_PIRQS - 1] = -1
667 };
668 
669 static int __init ioapic_pirq_setup(char *str)
670 {
671 	int i, max;
672 	int ints[MAX_PIRQS+1];
673 
674 	get_options(str, ARRAY_SIZE(ints), ints);
675 
676 	apic_printk(APIC_VERBOSE, KERN_INFO
677 			"PIRQ redirection, working around broken MP-BIOS.\n");
678 	max = MAX_PIRQS;
679 	if (ints[0] < MAX_PIRQS)
680 		max = ints[0];
681 
682 	for (i = 0; i < max; i++) {
683 		apic_printk(APIC_VERBOSE, KERN_DEBUG
684 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
685 		/*
686 		 * PIRQs are mapped upside down, usually.
687 		 */
688 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
689 	}
690 	return 1;
691 }
692 
693 __setup("pirq=", ioapic_pirq_setup);
694 #endif /* CONFIG_X86_32 */
695 
696 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
697 {
698 	int apic;
699 	struct IO_APIC_route_entry **ioapic_entries;
700 
701 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
702 				GFP_ATOMIC);
703 	if (!ioapic_entries)
704 		return 0;
705 
706 	for (apic = 0; apic < nr_ioapics; apic++) {
707 		ioapic_entries[apic] =
708 			kzalloc(sizeof(struct IO_APIC_route_entry) *
709 				nr_ioapic_registers[apic], GFP_ATOMIC);
710 		if (!ioapic_entries[apic])
711 			goto nomem;
712 	}
713 
714 	return ioapic_entries;
715 
716 nomem:
717 	while (--apic >= 0)
718 		kfree(ioapic_entries[apic]);
719 	kfree(ioapic_entries);
720 
721 	return 0;
722 }
723 
724 /*
725  * Saves all the IO-APIC RTE's
726  */
727 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
728 {
729 	int apic, pin;
730 
731 	if (!ioapic_entries)
732 		return -ENOMEM;
733 
734 	for (apic = 0; apic < nr_ioapics; apic++) {
735 		if (!ioapic_entries[apic])
736 			return -ENOMEM;
737 
738 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
739 			ioapic_entries[apic][pin] =
740 				ioapic_read_entry(apic, pin);
741 	}
742 
743 	return 0;
744 }
745 
746 /*
747  * Mask all IO APIC entries.
748  */
749 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
750 {
751 	int apic, pin;
752 
753 	if (!ioapic_entries)
754 		return;
755 
756 	for (apic = 0; apic < nr_ioapics; apic++) {
757 		if (!ioapic_entries[apic])
758 			break;
759 
760 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
761 			struct IO_APIC_route_entry entry;
762 
763 			entry = ioapic_entries[apic][pin];
764 			if (!entry.mask) {
765 				entry.mask = 1;
766 				ioapic_write_entry(apic, pin, entry);
767 			}
768 		}
769 	}
770 }
771 
772 /*
773  * Restore IO APIC entries which was saved in ioapic_entries.
774  */
775 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
776 {
777 	int apic, pin;
778 
779 	if (!ioapic_entries)
780 		return -ENOMEM;
781 
782 	for (apic = 0; apic < nr_ioapics; apic++) {
783 		if (!ioapic_entries[apic])
784 			return -ENOMEM;
785 
786 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
787 			ioapic_write_entry(apic, pin,
788 					ioapic_entries[apic][pin]);
789 	}
790 	return 0;
791 }
792 
793 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
794 {
795 	int apic;
796 
797 	for (apic = 0; apic < nr_ioapics; apic++)
798 		kfree(ioapic_entries[apic]);
799 
800 	kfree(ioapic_entries);
801 }
802 
803 /*
804  * Find the IRQ entry number of a certain pin.
805  */
806 static int find_irq_entry(int apic, int pin, int type)
807 {
808 	int i;
809 
810 	for (i = 0; i < mp_irq_entries; i++)
811 		if (mp_irqs[i].irqtype == type &&
812 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
813 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
814 		    mp_irqs[i].dstirq == pin)
815 			return i;
816 
817 	return -1;
818 }
819 
820 /*
821  * Find the pin to which IRQ[irq] (ISA) is connected
822  */
823 static int __init find_isa_irq_pin(int irq, int type)
824 {
825 	int i;
826 
827 	for (i = 0; i < mp_irq_entries; i++) {
828 		int lbus = mp_irqs[i].srcbus;
829 
830 		if (test_bit(lbus, mp_bus_not_pci) &&
831 		    (mp_irqs[i].irqtype == type) &&
832 		    (mp_irqs[i].srcbusirq == irq))
833 
834 			return mp_irqs[i].dstirq;
835 	}
836 	return -1;
837 }
838 
839 static int __init find_isa_irq_apic(int irq, int type)
840 {
841 	int i;
842 
843 	for (i = 0; i < mp_irq_entries; i++) {
844 		int lbus = mp_irqs[i].srcbus;
845 
846 		if (test_bit(lbus, mp_bus_not_pci) &&
847 		    (mp_irqs[i].irqtype == type) &&
848 		    (mp_irqs[i].srcbusirq == irq))
849 			break;
850 	}
851 	if (i < mp_irq_entries) {
852 		int apic;
853 		for(apic = 0; apic < nr_ioapics; apic++) {
854 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
855 				return apic;
856 		}
857 	}
858 
859 	return -1;
860 }
861 
862 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
863 /*
864  * EISA Edge/Level control register, ELCR
865  */
866 static int EISA_ELCR(unsigned int irq)
867 {
868 	if (irq < nr_legacy_irqs) {
869 		unsigned int port = 0x4d0 + (irq >> 3);
870 		return (inb(port) >> (irq & 7)) & 1;
871 	}
872 	apic_printk(APIC_VERBOSE, KERN_INFO
873 			"Broken MPtable reports ISA irq %d\n", irq);
874 	return 0;
875 }
876 
877 #endif
878 
879 /* ISA interrupts are always polarity zero edge triggered,
880  * when listed as conforming in the MP table. */
881 
882 #define default_ISA_trigger(idx)	(0)
883 #define default_ISA_polarity(idx)	(0)
884 
885 /* EISA interrupts are always polarity zero and can be edge or level
886  * trigger depending on the ELCR value.  If an interrupt is listed as
887  * EISA conforming in the MP table, that means its trigger type must
888  * be read in from the ELCR */
889 
890 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
891 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
892 
893 /* PCI interrupts are always polarity one level triggered,
894  * when listed as conforming in the MP table. */
895 
896 #define default_PCI_trigger(idx)	(1)
897 #define default_PCI_polarity(idx)	(1)
898 
899 /* MCA interrupts are always polarity zero level triggered,
900  * when listed as conforming in the MP table. */
901 
902 #define default_MCA_trigger(idx)	(1)
903 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
904 
905 static int MPBIOS_polarity(int idx)
906 {
907 	int bus = mp_irqs[idx].srcbus;
908 	int polarity;
909 
910 	/*
911 	 * Determine IRQ line polarity (high active or low active):
912 	 */
913 	switch (mp_irqs[idx].irqflag & 3)
914 	{
915 		case 0: /* conforms, ie. bus-type dependent polarity */
916 			if (test_bit(bus, mp_bus_not_pci))
917 				polarity = default_ISA_polarity(idx);
918 			else
919 				polarity = default_PCI_polarity(idx);
920 			break;
921 		case 1: /* high active */
922 		{
923 			polarity = 0;
924 			break;
925 		}
926 		case 2: /* reserved */
927 		{
928 			printk(KERN_WARNING "broken BIOS!!\n");
929 			polarity = 1;
930 			break;
931 		}
932 		case 3: /* low active */
933 		{
934 			polarity = 1;
935 			break;
936 		}
937 		default: /* invalid */
938 		{
939 			printk(KERN_WARNING "broken BIOS!!\n");
940 			polarity = 1;
941 			break;
942 		}
943 	}
944 	return polarity;
945 }
946 
947 static int MPBIOS_trigger(int idx)
948 {
949 	int bus = mp_irqs[idx].srcbus;
950 	int trigger;
951 
952 	/*
953 	 * Determine IRQ trigger mode (edge or level sensitive):
954 	 */
955 	switch ((mp_irqs[idx].irqflag>>2) & 3)
956 	{
957 		case 0: /* conforms, ie. bus-type dependent */
958 			if (test_bit(bus, mp_bus_not_pci))
959 				trigger = default_ISA_trigger(idx);
960 			else
961 				trigger = default_PCI_trigger(idx);
962 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
963 			switch (mp_bus_id_to_type[bus]) {
964 				case MP_BUS_ISA: /* ISA pin */
965 				{
966 					/* set before the switch */
967 					break;
968 				}
969 				case MP_BUS_EISA: /* EISA pin */
970 				{
971 					trigger = default_EISA_trigger(idx);
972 					break;
973 				}
974 				case MP_BUS_PCI: /* PCI pin */
975 				{
976 					/* set before the switch */
977 					break;
978 				}
979 				case MP_BUS_MCA: /* MCA pin */
980 				{
981 					trigger = default_MCA_trigger(idx);
982 					break;
983 				}
984 				default:
985 				{
986 					printk(KERN_WARNING "broken BIOS!!\n");
987 					trigger = 1;
988 					break;
989 				}
990 			}
991 #endif
992 			break;
993 		case 1: /* edge */
994 		{
995 			trigger = 0;
996 			break;
997 		}
998 		case 2: /* reserved */
999 		{
1000 			printk(KERN_WARNING "broken BIOS!!\n");
1001 			trigger = 1;
1002 			break;
1003 		}
1004 		case 3: /* level */
1005 		{
1006 			trigger = 1;
1007 			break;
1008 		}
1009 		default: /* invalid */
1010 		{
1011 			printk(KERN_WARNING "broken BIOS!!\n");
1012 			trigger = 0;
1013 			break;
1014 		}
1015 	}
1016 	return trigger;
1017 }
1018 
1019 static inline int irq_polarity(int idx)
1020 {
1021 	return MPBIOS_polarity(idx);
1022 }
1023 
1024 static inline int irq_trigger(int idx)
1025 {
1026 	return MPBIOS_trigger(idx);
1027 }
1028 
1029 int (*ioapic_renumber_irq)(int ioapic, int irq);
1030 static int pin_2_irq(int idx, int apic, int pin)
1031 {
1032 	int irq, i;
1033 	int bus = mp_irqs[idx].srcbus;
1034 
1035 	/*
1036 	 * Debugging check, we are in big trouble if this message pops up!
1037 	 */
1038 	if (mp_irqs[idx].dstirq != pin)
1039 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1040 
1041 	if (test_bit(bus, mp_bus_not_pci)) {
1042 		irq = mp_irqs[idx].srcbusirq;
1043 	} else {
1044 		/*
1045 		 * PCI IRQs are mapped in order
1046 		 */
1047 		i = irq = 0;
1048 		while (i < apic)
1049 			irq += nr_ioapic_registers[i++];
1050 		irq += pin;
1051 		/*
1052                  * For MPS mode, so far only needed by ES7000 platform
1053                  */
1054 		if (ioapic_renumber_irq)
1055 			irq = ioapic_renumber_irq(apic, irq);
1056 	}
1057 
1058 #ifdef CONFIG_X86_32
1059 	/*
1060 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1061 	 */
1062 	if ((pin >= 16) && (pin <= 23)) {
1063 		if (pirq_entries[pin-16] != -1) {
1064 			if (!pirq_entries[pin-16]) {
1065 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1066 						"disabling PIRQ%d\n", pin-16);
1067 			} else {
1068 				irq = pirq_entries[pin-16];
1069 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1070 						"using PIRQ%d -> IRQ %d\n",
1071 						pin-16, irq);
1072 			}
1073 		}
1074 	}
1075 #endif
1076 
1077 	return irq;
1078 }
1079 
1080 /*
1081  * Find a specific PCI IRQ entry.
1082  * Not an __init, possibly needed by modules
1083  */
1084 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1085 				struct io_apic_irq_attr *irq_attr)
1086 {
1087 	int apic, i, best_guess = -1;
1088 
1089 	apic_printk(APIC_DEBUG,
1090 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1091 		    bus, slot, pin);
1092 	if (test_bit(bus, mp_bus_not_pci)) {
1093 		apic_printk(APIC_VERBOSE,
1094 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1095 		return -1;
1096 	}
1097 	for (i = 0; i < mp_irq_entries; i++) {
1098 		int lbus = mp_irqs[i].srcbus;
1099 
1100 		for (apic = 0; apic < nr_ioapics; apic++)
1101 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1102 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1103 				break;
1104 
1105 		if (!test_bit(lbus, mp_bus_not_pci) &&
1106 		    !mp_irqs[i].irqtype &&
1107 		    (bus == lbus) &&
1108 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1109 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1110 
1111 			if (!(apic || IO_APIC_IRQ(irq)))
1112 				continue;
1113 
1114 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1115 				set_io_apic_irq_attr(irq_attr, apic,
1116 						     mp_irqs[i].dstirq,
1117 						     irq_trigger(i),
1118 						     irq_polarity(i));
1119 				return irq;
1120 			}
1121 			/*
1122 			 * Use the first all-but-pin matching entry as a
1123 			 * best-guess fuzzy result for broken mptables.
1124 			 */
1125 			if (best_guess < 0) {
1126 				set_io_apic_irq_attr(irq_attr, apic,
1127 						     mp_irqs[i].dstirq,
1128 						     irq_trigger(i),
1129 						     irq_polarity(i));
1130 				best_guess = irq;
1131 			}
1132 		}
1133 	}
1134 	return best_guess;
1135 }
1136 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1137 
1138 void lock_vector_lock(void)
1139 {
1140 	/* Used to the online set of cpus does not change
1141 	 * during assign_irq_vector.
1142 	 */
1143 	spin_lock(&vector_lock);
1144 }
1145 
1146 void unlock_vector_lock(void)
1147 {
1148 	spin_unlock(&vector_lock);
1149 }
1150 
1151 static int
1152 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1153 {
1154 	/*
1155 	 * NOTE! The local APIC isn't very good at handling
1156 	 * multiple interrupts at the same interrupt level.
1157 	 * As the interrupt level is determined by taking the
1158 	 * vector number and shifting that right by 4, we
1159 	 * want to spread these out a bit so that they don't
1160 	 * all fall in the same interrupt level.
1161 	 *
1162 	 * Also, we've got to be careful not to trash gate
1163 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1164 	 */
1165 	static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1166 	unsigned int old_vector;
1167 	int cpu, err;
1168 	cpumask_var_t tmp_mask;
1169 
1170 	if (cfg->move_in_progress)
1171 		return -EBUSY;
1172 
1173 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1174 		return -ENOMEM;
1175 
1176 	old_vector = cfg->vector;
1177 	if (old_vector) {
1178 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1179 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1180 		if (!cpumask_empty(tmp_mask)) {
1181 			free_cpumask_var(tmp_mask);
1182 			return 0;
1183 		}
1184 	}
1185 
1186 	/* Only try and allocate irqs on cpus that are present */
1187 	err = -ENOSPC;
1188 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1189 		int new_cpu;
1190 		int vector, offset;
1191 
1192 		apic->vector_allocation_domain(cpu, tmp_mask);
1193 
1194 		vector = current_vector;
1195 		offset = current_offset;
1196 next:
1197 		vector += 8;
1198 		if (vector >= first_system_vector) {
1199 			/* If out of vectors on large boxen, must share them. */
1200 			offset = (offset + 1) % 8;
1201 			vector = FIRST_DEVICE_VECTOR + offset;
1202 		}
1203 		if (unlikely(current_vector == vector))
1204 			continue;
1205 
1206 		if (test_bit(vector, used_vectors))
1207 			goto next;
1208 
1209 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1210 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1211 				goto next;
1212 		/* Found one! */
1213 		current_vector = vector;
1214 		current_offset = offset;
1215 		if (old_vector) {
1216 			cfg->move_in_progress = 1;
1217 			cpumask_copy(cfg->old_domain, cfg->domain);
1218 		}
1219 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1220 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1221 		cfg->vector = vector;
1222 		cpumask_copy(cfg->domain, tmp_mask);
1223 		err = 0;
1224 		break;
1225 	}
1226 	free_cpumask_var(tmp_mask);
1227 	return err;
1228 }
1229 
1230 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1231 {
1232 	int err;
1233 	unsigned long flags;
1234 
1235 	spin_lock_irqsave(&vector_lock, flags);
1236 	err = __assign_irq_vector(irq, cfg, mask);
1237 	spin_unlock_irqrestore(&vector_lock, flags);
1238 	return err;
1239 }
1240 
1241 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1242 {
1243 	int cpu, vector;
1244 
1245 	BUG_ON(!cfg->vector);
1246 
1247 	vector = cfg->vector;
1248 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1249 		per_cpu(vector_irq, cpu)[vector] = -1;
1250 
1251 	cfg->vector = 0;
1252 	cpumask_clear(cfg->domain);
1253 
1254 	if (likely(!cfg->move_in_progress))
1255 		return;
1256 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1257 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1258 								vector++) {
1259 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1260 				continue;
1261 			per_cpu(vector_irq, cpu)[vector] = -1;
1262 			break;
1263 		}
1264 	}
1265 	cfg->move_in_progress = 0;
1266 }
1267 
1268 void __setup_vector_irq(int cpu)
1269 {
1270 	/* Initialize vector_irq on a new cpu */
1271 	/* This function must be called with vector_lock held */
1272 	int irq, vector;
1273 	struct irq_cfg *cfg;
1274 	struct irq_desc *desc;
1275 
1276 	/* Mark the inuse vectors */
1277 	for_each_irq_desc(irq, desc) {
1278 		cfg = desc->chip_data;
1279 		if (!cpumask_test_cpu(cpu, cfg->domain))
1280 			continue;
1281 		vector = cfg->vector;
1282 		per_cpu(vector_irq, cpu)[vector] = irq;
1283 	}
1284 	/* Mark the free vectors */
1285 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1286 		irq = per_cpu(vector_irq, cpu)[vector];
1287 		if (irq < 0)
1288 			continue;
1289 
1290 		cfg = irq_cfg(irq);
1291 		if (!cpumask_test_cpu(cpu, cfg->domain))
1292 			per_cpu(vector_irq, cpu)[vector] = -1;
1293 	}
1294 }
1295 
1296 static struct irq_chip ioapic_chip;
1297 static struct irq_chip ir_ioapic_chip;
1298 
1299 #define IOAPIC_AUTO     -1
1300 #define IOAPIC_EDGE     0
1301 #define IOAPIC_LEVEL    1
1302 
1303 #ifdef CONFIG_X86_32
1304 static inline int IO_APIC_irq_trigger(int irq)
1305 {
1306 	int apic, idx, pin;
1307 
1308 	for (apic = 0; apic < nr_ioapics; apic++) {
1309 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1310 			idx = find_irq_entry(apic, pin, mp_INT);
1311 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1312 				return irq_trigger(idx);
1313 		}
1314 	}
1315 	/*
1316          * nonexistent IRQs are edge default
1317          */
1318 	return 0;
1319 }
1320 #else
1321 static inline int IO_APIC_irq_trigger(int irq)
1322 {
1323 	return 1;
1324 }
1325 #endif
1326 
1327 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1328 {
1329 
1330 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1331 	    trigger == IOAPIC_LEVEL)
1332 		desc->status |= IRQ_LEVEL;
1333 	else
1334 		desc->status &= ~IRQ_LEVEL;
1335 
1336 	if (irq_remapped(irq)) {
1337 		desc->status |= IRQ_MOVE_PCNTXT;
1338 		if (trigger)
1339 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1340 						      handle_fasteoi_irq,
1341 						     "fasteoi");
1342 		else
1343 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1344 						      handle_edge_irq, "edge");
1345 		return;
1346 	}
1347 
1348 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1349 	    trigger == IOAPIC_LEVEL)
1350 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1351 					      handle_fasteoi_irq,
1352 					      "fasteoi");
1353 	else
1354 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1355 					      handle_edge_irq, "edge");
1356 }
1357 
1358 int setup_ioapic_entry(int apic_id, int irq,
1359 		       struct IO_APIC_route_entry *entry,
1360 		       unsigned int destination, int trigger,
1361 		       int polarity, int vector, int pin)
1362 {
1363 	/*
1364 	 * add it to the IO-APIC irq-routing table:
1365 	 */
1366 	memset(entry,0,sizeof(*entry));
1367 
1368 	if (intr_remapping_enabled) {
1369 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1370 		struct irte irte;
1371 		struct IR_IO_APIC_route_entry *ir_entry =
1372 			(struct IR_IO_APIC_route_entry *) entry;
1373 		int index;
1374 
1375 		if (!iommu)
1376 			panic("No mapping iommu for ioapic %d\n", apic_id);
1377 
1378 		index = alloc_irte(iommu, irq, 1);
1379 		if (index < 0)
1380 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1381 
1382 		memset(&irte, 0, sizeof(irte));
1383 
1384 		irte.present = 1;
1385 		irte.dst_mode = apic->irq_dest_mode;
1386 		/*
1387 		 * Trigger mode in the IRTE will always be edge, and the
1388 		 * actual level or edge trigger will be setup in the IO-APIC
1389 		 * RTE. This will help simplify level triggered irq migration.
1390 		 * For more details, see the comments above explainig IO-APIC
1391 		 * irq migration in the presence of interrupt-remapping.
1392 		 */
1393 		irte.trigger_mode = 0;
1394 		irte.dlvry_mode = apic->irq_delivery_mode;
1395 		irte.vector = vector;
1396 		irte.dest_id = IRTE_DEST(destination);
1397 
1398 		/* Set source-id of interrupt request */
1399 		set_ioapic_sid(&irte, apic_id);
1400 
1401 		modify_irte(irq, &irte);
1402 
1403 		ir_entry->index2 = (index >> 15) & 0x1;
1404 		ir_entry->zero = 0;
1405 		ir_entry->format = 1;
1406 		ir_entry->index = (index & 0x7fff);
1407 		/*
1408 		 * IO-APIC RTE will be configured with virtual vector.
1409 		 * irq handler will do the explicit EOI to the io-apic.
1410 		 */
1411 		ir_entry->vector = pin;
1412 	} else {
1413 		entry->delivery_mode = apic->irq_delivery_mode;
1414 		entry->dest_mode = apic->irq_dest_mode;
1415 		entry->dest = destination;
1416 		entry->vector = vector;
1417 	}
1418 
1419 	entry->mask = 0;				/* enable IRQ */
1420 	entry->trigger = trigger;
1421 	entry->polarity = polarity;
1422 
1423 	/* Mask level triggered irqs.
1424 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1425 	 */
1426 	if (trigger)
1427 		entry->mask = 1;
1428 	return 0;
1429 }
1430 
1431 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1432 			      int trigger, int polarity)
1433 {
1434 	struct irq_cfg *cfg;
1435 	struct IO_APIC_route_entry entry;
1436 	unsigned int dest;
1437 
1438 	if (!IO_APIC_IRQ(irq))
1439 		return;
1440 
1441 	cfg = desc->chip_data;
1442 
1443 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1444 		return;
1445 
1446 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1447 
1448 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1449 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1450 		    "IRQ %d Mode:%i Active:%i)\n",
1451 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1452 		    irq, trigger, polarity);
1453 
1454 
1455 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1456 			       dest, trigger, polarity, cfg->vector, pin)) {
1457 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1458 		       mp_ioapics[apic_id].apicid, pin);
1459 		__clear_irq_vector(irq, cfg);
1460 		return;
1461 	}
1462 
1463 	ioapic_register_intr(irq, desc, trigger);
1464 	if (irq < nr_legacy_irqs)
1465 		disable_8259A_irq(irq);
1466 
1467 	ioapic_write_entry(apic_id, pin, entry);
1468 }
1469 
1470 static struct {
1471 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1472 } mp_ioapic_routing[MAX_IO_APICS];
1473 
1474 static void __init setup_IO_APIC_irqs(void)
1475 {
1476 	int apic_id = 0, pin, idx, irq;
1477 	int notcon = 0;
1478 	struct irq_desc *desc;
1479 	struct irq_cfg *cfg;
1480 	int node = cpu_to_node(boot_cpu_id);
1481 
1482 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1483 
1484 #ifdef CONFIG_ACPI
1485 	if (!acpi_disabled && acpi_ioapic) {
1486 		apic_id = mp_find_ioapic(0);
1487 		if (apic_id < 0)
1488 			apic_id = 0;
1489 	}
1490 #endif
1491 
1492 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1493 		idx = find_irq_entry(apic_id, pin, mp_INT);
1494 		if (idx == -1) {
1495 			if (!notcon) {
1496 				notcon = 1;
1497 				apic_printk(APIC_VERBOSE,
1498 					KERN_DEBUG " %d-%d",
1499 					mp_ioapics[apic_id].apicid, pin);
1500 			} else
1501 				apic_printk(APIC_VERBOSE, " %d-%d",
1502 					mp_ioapics[apic_id].apicid, pin);
1503 			continue;
1504 		}
1505 		if (notcon) {
1506 			apic_printk(APIC_VERBOSE,
1507 				" (apicid-pin) not connected\n");
1508 			notcon = 0;
1509 		}
1510 
1511 		irq = pin_2_irq(idx, apic_id, pin);
1512 
1513 		/*
1514 		 * Skip the timer IRQ if there's a quirk handler
1515 		 * installed and if it returns 1:
1516 		 */
1517 		if (apic->multi_timer_check &&
1518 				apic->multi_timer_check(apic_id, irq))
1519 			continue;
1520 
1521 		desc = irq_to_desc_alloc_node(irq, node);
1522 		if (!desc) {
1523 			printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1524 			continue;
1525 		}
1526 		cfg = desc->chip_data;
1527 		add_pin_to_irq_node(cfg, node, apic_id, pin);
1528 		/*
1529 		 * don't mark it in pin_programmed, so later acpi could
1530 		 * set it correctly when irq < 16
1531 		 */
1532 		setup_IO_APIC_irq(apic_id, pin, irq, desc,
1533 				irq_trigger(idx), irq_polarity(idx));
1534 	}
1535 
1536 	if (notcon)
1537 		apic_printk(APIC_VERBOSE,
1538 			" (apicid-pin) not connected\n");
1539 }
1540 
1541 /*
1542  * Set up the timer pin, possibly with the 8259A-master behind.
1543  */
1544 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1545 					int vector)
1546 {
1547 	struct IO_APIC_route_entry entry;
1548 
1549 	if (intr_remapping_enabled)
1550 		return;
1551 
1552 	memset(&entry, 0, sizeof(entry));
1553 
1554 	/*
1555 	 * We use logical delivery to get the timer IRQ
1556 	 * to the first CPU.
1557 	 */
1558 	entry.dest_mode = apic->irq_dest_mode;
1559 	entry.mask = 0;			/* don't mask IRQ for edge */
1560 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1561 	entry.delivery_mode = apic->irq_delivery_mode;
1562 	entry.polarity = 0;
1563 	entry.trigger = 0;
1564 	entry.vector = vector;
1565 
1566 	/*
1567 	 * The timer IRQ doesn't have to know that behind the
1568 	 * scene we may have a 8259A-master in AEOI mode ...
1569 	 */
1570 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1571 
1572 	/*
1573 	 * Add it to the IO-APIC irq-routing table:
1574 	 */
1575 	ioapic_write_entry(apic_id, pin, entry);
1576 }
1577 
1578 
1579 __apicdebuginit(void) print_IO_APIC(void)
1580 {
1581 	int apic, i;
1582 	union IO_APIC_reg_00 reg_00;
1583 	union IO_APIC_reg_01 reg_01;
1584 	union IO_APIC_reg_02 reg_02;
1585 	union IO_APIC_reg_03 reg_03;
1586 	unsigned long flags;
1587 	struct irq_cfg *cfg;
1588 	struct irq_desc *desc;
1589 	unsigned int irq;
1590 
1591 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1592 	for (i = 0; i < nr_ioapics; i++)
1593 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1594 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1595 
1596 	/*
1597 	 * We are a bit conservative about what we expect.  We have to
1598 	 * know about every hardware change ASAP.
1599 	 */
1600 	printk(KERN_INFO "testing the IO APIC.......................\n");
1601 
1602 	for (apic = 0; apic < nr_ioapics; apic++) {
1603 
1604 	spin_lock_irqsave(&ioapic_lock, flags);
1605 	reg_00.raw = io_apic_read(apic, 0);
1606 	reg_01.raw = io_apic_read(apic, 1);
1607 	if (reg_01.bits.version >= 0x10)
1608 		reg_02.raw = io_apic_read(apic, 2);
1609 	if (reg_01.bits.version >= 0x20)
1610 		reg_03.raw = io_apic_read(apic, 3);
1611 	spin_unlock_irqrestore(&ioapic_lock, flags);
1612 
1613 	printk("\n");
1614 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1615 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1616 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1617 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1618 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1619 
1620 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1621 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1622 
1623 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1624 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1625 
1626 	/*
1627 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1628 	 * but the value of reg_02 is read as the previous read register
1629 	 * value, so ignore it if reg_02 == reg_01.
1630 	 */
1631 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1632 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1633 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1634 	}
1635 
1636 	/*
1637 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1638 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1639 	 * register value, so ignore it if reg_03 == reg_0[12].
1640 	 */
1641 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1642 	    reg_03.raw != reg_01.raw) {
1643 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1644 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1645 	}
1646 
1647 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1648 
1649 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1650 			  " Stat Dmod Deli Vect:   \n");
1651 
1652 	for (i = 0; i <= reg_01.bits.entries; i++) {
1653 		struct IO_APIC_route_entry entry;
1654 
1655 		entry = ioapic_read_entry(apic, i);
1656 
1657 		printk(KERN_DEBUG " %02x %03X ",
1658 			i,
1659 			entry.dest
1660 		);
1661 
1662 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1663 			entry.mask,
1664 			entry.trigger,
1665 			entry.irr,
1666 			entry.polarity,
1667 			entry.delivery_status,
1668 			entry.dest_mode,
1669 			entry.delivery_mode,
1670 			entry.vector
1671 		);
1672 	}
1673 	}
1674 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1675 	for_each_irq_desc(irq, desc) {
1676 		struct irq_pin_list *entry;
1677 
1678 		cfg = desc->chip_data;
1679 		entry = cfg->irq_2_pin;
1680 		if (!entry)
1681 			continue;
1682 		printk(KERN_DEBUG "IRQ%d ", irq);
1683 		for_each_irq_pin(entry, cfg->irq_2_pin)
1684 			printk("-> %d:%d", entry->apic, entry->pin);
1685 		printk("\n");
1686 	}
1687 
1688 	printk(KERN_INFO ".................................... done.\n");
1689 
1690 	return;
1691 }
1692 
1693 __apicdebuginit(void) print_APIC_field(int base)
1694 {
1695 	int i;
1696 
1697 	printk(KERN_DEBUG);
1698 
1699 	for (i = 0; i < 8; i++)
1700 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1701 
1702 	printk(KERN_CONT "\n");
1703 }
1704 
1705 __apicdebuginit(void) print_local_APIC(void *dummy)
1706 {
1707 	unsigned int i, v, ver, maxlvt;
1708 	u64 icr;
1709 
1710 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1711 		smp_processor_id(), hard_smp_processor_id());
1712 	v = apic_read(APIC_ID);
1713 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1714 	v = apic_read(APIC_LVR);
1715 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1716 	ver = GET_APIC_VERSION(v);
1717 	maxlvt = lapic_get_maxlvt();
1718 
1719 	v = apic_read(APIC_TASKPRI);
1720 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1721 
1722 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1723 		if (!APIC_XAPIC(ver)) {
1724 			v = apic_read(APIC_ARBPRI);
1725 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1726 			       v & APIC_ARBPRI_MASK);
1727 		}
1728 		v = apic_read(APIC_PROCPRI);
1729 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1730 	}
1731 
1732 	/*
1733 	 * Remote read supported only in the 82489DX and local APIC for
1734 	 * Pentium processors.
1735 	 */
1736 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1737 		v = apic_read(APIC_RRR);
1738 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1739 	}
1740 
1741 	v = apic_read(APIC_LDR);
1742 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1743 	if (!x2apic_enabled()) {
1744 		v = apic_read(APIC_DFR);
1745 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1746 	}
1747 	v = apic_read(APIC_SPIV);
1748 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1749 
1750 	printk(KERN_DEBUG "... APIC ISR field:\n");
1751 	print_APIC_field(APIC_ISR);
1752 	printk(KERN_DEBUG "... APIC TMR field:\n");
1753 	print_APIC_field(APIC_TMR);
1754 	printk(KERN_DEBUG "... APIC IRR field:\n");
1755 	print_APIC_field(APIC_IRR);
1756 
1757 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1758 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1759 			apic_write(APIC_ESR, 0);
1760 
1761 		v = apic_read(APIC_ESR);
1762 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1763 	}
1764 
1765 	icr = apic_icr_read();
1766 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1767 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1768 
1769 	v = apic_read(APIC_LVTT);
1770 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1771 
1772 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1773 		v = apic_read(APIC_LVTPC);
1774 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1775 	}
1776 	v = apic_read(APIC_LVT0);
1777 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1778 	v = apic_read(APIC_LVT1);
1779 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1780 
1781 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1782 		v = apic_read(APIC_LVTERR);
1783 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1784 	}
1785 
1786 	v = apic_read(APIC_TMICT);
1787 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1788 	v = apic_read(APIC_TMCCT);
1789 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1790 	v = apic_read(APIC_TDCR);
1791 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1792 
1793 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1794 		v = apic_read(APIC_EFEAT);
1795 		maxlvt = (v >> 16) & 0xff;
1796 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1797 		v = apic_read(APIC_ECTRL);
1798 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1799 		for (i = 0; i < maxlvt; i++) {
1800 			v = apic_read(APIC_EILVTn(i));
1801 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1802 		}
1803 	}
1804 	printk("\n");
1805 }
1806 
1807 __apicdebuginit(void) print_local_APICs(int maxcpu)
1808 {
1809 	int cpu;
1810 
1811 	if (!maxcpu)
1812 		return;
1813 
1814 	preempt_disable();
1815 	for_each_online_cpu(cpu) {
1816 		if (cpu >= maxcpu)
1817 			break;
1818 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1819 	}
1820 	preempt_enable();
1821 }
1822 
1823 __apicdebuginit(void) print_PIC(void)
1824 {
1825 	unsigned int v;
1826 	unsigned long flags;
1827 
1828 	if (!nr_legacy_irqs)
1829 		return;
1830 
1831 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1832 
1833 	spin_lock_irqsave(&i8259A_lock, flags);
1834 
1835 	v = inb(0xa1) << 8 | inb(0x21);
1836 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1837 
1838 	v = inb(0xa0) << 8 | inb(0x20);
1839 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1840 
1841 	outb(0x0b,0xa0);
1842 	outb(0x0b,0x20);
1843 	v = inb(0xa0) << 8 | inb(0x20);
1844 	outb(0x0a,0xa0);
1845 	outb(0x0a,0x20);
1846 
1847 	spin_unlock_irqrestore(&i8259A_lock, flags);
1848 
1849 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1850 
1851 	v = inb(0x4d1) << 8 | inb(0x4d0);
1852 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1853 }
1854 
1855 static int __initdata show_lapic = 1;
1856 static __init int setup_show_lapic(char *arg)
1857 {
1858 	int num = -1;
1859 
1860 	if (strcmp(arg, "all") == 0) {
1861 		show_lapic = CONFIG_NR_CPUS;
1862 	} else {
1863 		get_option(&arg, &num);
1864 		if (num >= 0)
1865 			show_lapic = num;
1866 	}
1867 
1868 	return 1;
1869 }
1870 __setup("show_lapic=", setup_show_lapic);
1871 
1872 __apicdebuginit(int) print_ICs(void)
1873 {
1874 	if (apic_verbosity == APIC_QUIET)
1875 		return 0;
1876 
1877 	print_PIC();
1878 
1879 	/* don't print out if apic is not there */
1880 	if (!cpu_has_apic && !apic_from_smp_config())
1881 		return 0;
1882 
1883 	print_local_APICs(show_lapic);
1884 	print_IO_APIC();
1885 
1886 	return 0;
1887 }
1888 
1889 fs_initcall(print_ICs);
1890 
1891 
1892 /* Where if anywhere is the i8259 connect in external int mode */
1893 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1894 
1895 void __init enable_IO_APIC(void)
1896 {
1897 	union IO_APIC_reg_01 reg_01;
1898 	int i8259_apic, i8259_pin;
1899 	int apic;
1900 	unsigned long flags;
1901 
1902 	/*
1903 	 * The number of IO-APIC IRQ registers (== #pins):
1904 	 */
1905 	for (apic = 0; apic < nr_ioapics; apic++) {
1906 		spin_lock_irqsave(&ioapic_lock, flags);
1907 		reg_01.raw = io_apic_read(apic, 1);
1908 		spin_unlock_irqrestore(&ioapic_lock, flags);
1909 		nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1910 	}
1911 
1912 	if (!nr_legacy_irqs)
1913 		return;
1914 
1915 	for(apic = 0; apic < nr_ioapics; apic++) {
1916 		int pin;
1917 		/* See if any of the pins is in ExtINT mode */
1918 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1919 			struct IO_APIC_route_entry entry;
1920 			entry = ioapic_read_entry(apic, pin);
1921 
1922 			/* If the interrupt line is enabled and in ExtInt mode
1923 			 * I have found the pin where the i8259 is connected.
1924 			 */
1925 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1926 				ioapic_i8259.apic = apic;
1927 				ioapic_i8259.pin  = pin;
1928 				goto found_i8259;
1929 			}
1930 		}
1931 	}
1932  found_i8259:
1933 	/* Look to see what if the MP table has reported the ExtINT */
1934 	/* If we could not find the appropriate pin by looking at the ioapic
1935 	 * the i8259 probably is not connected the ioapic but give the
1936 	 * mptable a chance anyway.
1937 	 */
1938 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1939 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1940 	/* Trust the MP table if nothing is setup in the hardware */
1941 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1942 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1943 		ioapic_i8259.pin  = i8259_pin;
1944 		ioapic_i8259.apic = i8259_apic;
1945 	}
1946 	/* Complain if the MP table and the hardware disagree */
1947 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1948 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1949 	{
1950 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1951 	}
1952 
1953 	/*
1954 	 * Do not trust the IO-APIC being empty at bootup
1955 	 */
1956 	clear_IO_APIC();
1957 }
1958 
1959 /*
1960  * Not an __init, needed by the reboot code
1961  */
1962 void disable_IO_APIC(void)
1963 {
1964 	/*
1965 	 * Clear the IO-APIC before rebooting:
1966 	 */
1967 	clear_IO_APIC();
1968 
1969 	if (!nr_legacy_irqs)
1970 		return;
1971 
1972 	/*
1973 	 * If the i8259 is routed through an IOAPIC
1974 	 * Put that IOAPIC in virtual wire mode
1975 	 * so legacy interrupts can be delivered.
1976 	 *
1977 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1978 	 * as virtual wire B is little complex (need to configure both
1979 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
1980 	 * As this gets called during crash dump, keep this simple for now.
1981 	 */
1982 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1983 		struct IO_APIC_route_entry entry;
1984 
1985 		memset(&entry, 0, sizeof(entry));
1986 		entry.mask            = 0; /* Enabled */
1987 		entry.trigger         = 0; /* Edge */
1988 		entry.irr             = 0;
1989 		entry.polarity        = 0; /* High */
1990 		entry.delivery_status = 0;
1991 		entry.dest_mode       = 0; /* Physical */
1992 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1993 		entry.vector          = 0;
1994 		entry.dest            = read_apic_id();
1995 
1996 		/*
1997 		 * Add it to the IO-APIC irq-routing table:
1998 		 */
1999 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2000 	}
2001 
2002 	/*
2003 	 * Use virtual wire A mode when interrupt remapping is enabled.
2004 	 */
2005 	if (cpu_has_apic || apic_from_smp_config())
2006 		disconnect_bsp_APIC(!intr_remapping_enabled &&
2007 				ioapic_i8259.pin != -1);
2008 }
2009 
2010 #ifdef CONFIG_X86_32
2011 /*
2012  * function to set the IO-APIC physical IDs based on the
2013  * values stored in the MPC table.
2014  *
2015  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2016  */
2017 
2018 void __init setup_ioapic_ids_from_mpc(void)
2019 {
2020 	union IO_APIC_reg_00 reg_00;
2021 	physid_mask_t phys_id_present_map;
2022 	int apic_id;
2023 	int i;
2024 	unsigned char old_id;
2025 	unsigned long flags;
2026 
2027 	if (acpi_ioapic)
2028 		return;
2029 	/*
2030 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2031 	 * no meaning without the serial APIC bus.
2032 	 */
2033 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2034 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2035 		return;
2036 	/*
2037 	 * This is broken; anything with a real cpu count has to
2038 	 * circumvent this idiocy regardless.
2039 	 */
2040 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
2041 
2042 	/*
2043 	 * Set the IOAPIC ID to the value stored in the MPC table.
2044 	 */
2045 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2046 
2047 		/* Read the register 0 value */
2048 		spin_lock_irqsave(&ioapic_lock, flags);
2049 		reg_00.raw = io_apic_read(apic_id, 0);
2050 		spin_unlock_irqrestore(&ioapic_lock, flags);
2051 
2052 		old_id = mp_ioapics[apic_id].apicid;
2053 
2054 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2055 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2056 				apic_id, mp_ioapics[apic_id].apicid);
2057 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2058 				reg_00.bits.ID);
2059 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2060 		}
2061 
2062 		/*
2063 		 * Sanity check, is the ID really free? Every APIC in a
2064 		 * system must have a unique ID or we get lots of nice
2065 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2066 		 */
2067 		if (apic->check_apicid_used(&phys_id_present_map,
2068 					mp_ioapics[apic_id].apicid)) {
2069 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2070 				apic_id, mp_ioapics[apic_id].apicid);
2071 			for (i = 0; i < get_physical_broadcast(); i++)
2072 				if (!physid_isset(i, phys_id_present_map))
2073 					break;
2074 			if (i >= get_physical_broadcast())
2075 				panic("Max APIC ID exceeded!\n");
2076 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2077 				i);
2078 			physid_set(i, phys_id_present_map);
2079 			mp_ioapics[apic_id].apicid = i;
2080 		} else {
2081 			physid_mask_t tmp;
2082 			apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2083 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2084 					"phys_id_present_map\n",
2085 					mp_ioapics[apic_id].apicid);
2086 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2087 		}
2088 
2089 
2090 		/*
2091 		 * We need to adjust the IRQ routing table
2092 		 * if the ID changed.
2093 		 */
2094 		if (old_id != mp_ioapics[apic_id].apicid)
2095 			for (i = 0; i < mp_irq_entries; i++)
2096 				if (mp_irqs[i].dstapic == old_id)
2097 					mp_irqs[i].dstapic
2098 						= mp_ioapics[apic_id].apicid;
2099 
2100 		/*
2101 		 * Read the right value from the MPC table and
2102 		 * write it into the ID register.
2103 		 */
2104 		apic_printk(APIC_VERBOSE, KERN_INFO
2105 			"...changing IO-APIC physical APIC ID to %d ...",
2106 			mp_ioapics[apic_id].apicid);
2107 
2108 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2109 		spin_lock_irqsave(&ioapic_lock, flags);
2110 		io_apic_write(apic_id, 0, reg_00.raw);
2111 		spin_unlock_irqrestore(&ioapic_lock, flags);
2112 
2113 		/*
2114 		 * Sanity check
2115 		 */
2116 		spin_lock_irqsave(&ioapic_lock, flags);
2117 		reg_00.raw = io_apic_read(apic_id, 0);
2118 		spin_unlock_irqrestore(&ioapic_lock, flags);
2119 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2120 			printk("could not set ID!\n");
2121 		else
2122 			apic_printk(APIC_VERBOSE, " ok.\n");
2123 	}
2124 }
2125 #endif
2126 
2127 int no_timer_check __initdata;
2128 
2129 static int __init notimercheck(char *s)
2130 {
2131 	no_timer_check = 1;
2132 	return 1;
2133 }
2134 __setup("no_timer_check", notimercheck);
2135 
2136 /*
2137  * There is a nasty bug in some older SMP boards, their mptable lies
2138  * about the timer IRQ. We do the following to work around the situation:
2139  *
2140  *	- timer IRQ defaults to IO-APIC IRQ
2141  *	- if this function detects that timer IRQs are defunct, then we fall
2142  *	  back to ISA timer IRQs
2143  */
2144 static int __init timer_irq_works(void)
2145 {
2146 	unsigned long t1 = jiffies;
2147 	unsigned long flags;
2148 
2149 	if (no_timer_check)
2150 		return 1;
2151 
2152 	local_save_flags(flags);
2153 	local_irq_enable();
2154 	/* Let ten ticks pass... */
2155 	mdelay((10 * 1000) / HZ);
2156 	local_irq_restore(flags);
2157 
2158 	/*
2159 	 * Expect a few ticks at least, to be sure some possible
2160 	 * glue logic does not lock up after one or two first
2161 	 * ticks in a non-ExtINT mode.  Also the local APIC
2162 	 * might have cached one ExtINT interrupt.  Finally, at
2163 	 * least one tick may be lost due to delays.
2164 	 */
2165 
2166 	/* jiffies wrap? */
2167 	if (time_after(jiffies, t1 + 4))
2168 		return 1;
2169 	return 0;
2170 }
2171 
2172 /*
2173  * In the SMP+IOAPIC case it might happen that there are an unspecified
2174  * number of pending IRQ events unhandled. These cases are very rare,
2175  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2176  * better to do it this way as thus we do not have to be aware of
2177  * 'pending' interrupts in the IRQ path, except at this point.
2178  */
2179 /*
2180  * Edge triggered needs to resend any interrupt
2181  * that was delayed but this is now handled in the device
2182  * independent code.
2183  */
2184 
2185 /*
2186  * Starting up a edge-triggered IO-APIC interrupt is
2187  * nasty - we need to make sure that we get the edge.
2188  * If it is already asserted for some reason, we need
2189  * return 1 to indicate that is was pending.
2190  *
2191  * This is not complete - we should be able to fake
2192  * an edge even if it isn't on the 8259A...
2193  */
2194 
2195 static unsigned int startup_ioapic_irq(unsigned int irq)
2196 {
2197 	int was_pending = 0;
2198 	unsigned long flags;
2199 	struct irq_cfg *cfg;
2200 
2201 	spin_lock_irqsave(&ioapic_lock, flags);
2202 	if (irq < nr_legacy_irqs) {
2203 		disable_8259A_irq(irq);
2204 		if (i8259A_irq_pending(irq))
2205 			was_pending = 1;
2206 	}
2207 	cfg = irq_cfg(irq);
2208 	__unmask_IO_APIC_irq(cfg);
2209 	spin_unlock_irqrestore(&ioapic_lock, flags);
2210 
2211 	return was_pending;
2212 }
2213 
2214 static int ioapic_retrigger_irq(unsigned int irq)
2215 {
2216 
2217 	struct irq_cfg *cfg = irq_cfg(irq);
2218 	unsigned long flags;
2219 
2220 	spin_lock_irqsave(&vector_lock, flags);
2221 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2222 	spin_unlock_irqrestore(&vector_lock, flags);
2223 
2224 	return 1;
2225 }
2226 
2227 /*
2228  * Level and edge triggered IO-APIC interrupts need different handling,
2229  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2230  * handled with the level-triggered descriptor, but that one has slightly
2231  * more overhead. Level-triggered interrupts cannot be handled with the
2232  * edge-triggered handler, without risking IRQ storms and other ugly
2233  * races.
2234  */
2235 
2236 #ifdef CONFIG_SMP
2237 void send_cleanup_vector(struct irq_cfg *cfg)
2238 {
2239 	cpumask_var_t cleanup_mask;
2240 
2241 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2242 		unsigned int i;
2243 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2244 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2245 	} else {
2246 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2247 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2248 		free_cpumask_var(cleanup_mask);
2249 	}
2250 	cfg->move_in_progress = 0;
2251 }
2252 
2253 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2254 {
2255 	int apic, pin;
2256 	struct irq_pin_list *entry;
2257 	u8 vector = cfg->vector;
2258 
2259 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2260 		unsigned int reg;
2261 
2262 		apic = entry->apic;
2263 		pin = entry->pin;
2264 		/*
2265 		 * With interrupt-remapping, destination information comes
2266 		 * from interrupt-remapping table entry.
2267 		 */
2268 		if (!irq_remapped(irq))
2269 			io_apic_write(apic, 0x11 + pin*2, dest);
2270 		reg = io_apic_read(apic, 0x10 + pin*2);
2271 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2272 		reg |= vector;
2273 		io_apic_modify(apic, 0x10 + pin*2, reg);
2274 	}
2275 }
2276 
2277 /*
2278  * Either sets desc->affinity to a valid value, and returns
2279  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2280  * leaves desc->affinity untouched.
2281  */
2282 unsigned int
2283 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask,
2284 		  unsigned int *dest_id)
2285 {
2286 	struct irq_cfg *cfg;
2287 	unsigned int irq;
2288 
2289 	if (!cpumask_intersects(mask, cpu_online_mask))
2290 		return -1;
2291 
2292 	irq = desc->irq;
2293 	cfg = desc->chip_data;
2294 	if (assign_irq_vector(irq, cfg, mask))
2295 		return -1;
2296 
2297 	cpumask_copy(desc->affinity, mask);
2298 
2299 	*dest_id = apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2300 	return 0;
2301 }
2302 
2303 static int
2304 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2305 {
2306 	struct irq_cfg *cfg;
2307 	unsigned long flags;
2308 	unsigned int dest;
2309 	unsigned int irq;
2310 	int ret = -1;
2311 
2312 	irq = desc->irq;
2313 	cfg = desc->chip_data;
2314 
2315 	spin_lock_irqsave(&ioapic_lock, flags);
2316 	ret = set_desc_affinity(desc, mask, &dest);
2317 	if (!ret) {
2318 		/* Only the high 8 bits are valid. */
2319 		dest = SET_APIC_LOGICAL_ID(dest);
2320 		__target_IO_APIC_irq(irq, dest, cfg);
2321 	}
2322 	spin_unlock_irqrestore(&ioapic_lock, flags);
2323 
2324 	return ret;
2325 }
2326 
2327 static int
2328 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2329 {
2330 	struct irq_desc *desc;
2331 
2332 	desc = irq_to_desc(irq);
2333 
2334 	return set_ioapic_affinity_irq_desc(desc, mask);
2335 }
2336 
2337 #ifdef CONFIG_INTR_REMAP
2338 
2339 /*
2340  * Migrate the IO-APIC irq in the presence of intr-remapping.
2341  *
2342  * For both level and edge triggered, irq migration is a simple atomic
2343  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2344  *
2345  * For level triggered, we eliminate the io-apic RTE modification (with the
2346  * updated vector information), by using a virtual vector (io-apic pin number).
2347  * Real vector that is used for interrupting cpu will be coming from
2348  * the interrupt-remapping table entry.
2349  */
2350 static int
2351 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2352 {
2353 	struct irq_cfg *cfg;
2354 	struct irte irte;
2355 	unsigned int dest;
2356 	unsigned int irq;
2357 	int ret = -1;
2358 
2359 	if (!cpumask_intersects(mask, cpu_online_mask))
2360 		return ret;
2361 
2362 	irq = desc->irq;
2363 	if (get_irte(irq, &irte))
2364 		return ret;
2365 
2366 	cfg = desc->chip_data;
2367 	if (assign_irq_vector(irq, cfg, mask))
2368 		return ret;
2369 
2370 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2371 
2372 	irte.vector = cfg->vector;
2373 	irte.dest_id = IRTE_DEST(dest);
2374 
2375 	/*
2376 	 * Modified the IRTE and flushes the Interrupt entry cache.
2377 	 */
2378 	modify_irte(irq, &irte);
2379 
2380 	if (cfg->move_in_progress)
2381 		send_cleanup_vector(cfg);
2382 
2383 	cpumask_copy(desc->affinity, mask);
2384 
2385 	return 0;
2386 }
2387 
2388 /*
2389  * Migrates the IRQ destination in the process context.
2390  */
2391 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2392 					    const struct cpumask *mask)
2393 {
2394 	return migrate_ioapic_irq_desc(desc, mask);
2395 }
2396 static int set_ir_ioapic_affinity_irq(unsigned int irq,
2397 				       const struct cpumask *mask)
2398 {
2399 	struct irq_desc *desc = irq_to_desc(irq);
2400 
2401 	return set_ir_ioapic_affinity_irq_desc(desc, mask);
2402 }
2403 #else
2404 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2405 						   const struct cpumask *mask)
2406 {
2407 	return 0;
2408 }
2409 #endif
2410 
2411 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2412 {
2413 	unsigned vector, me;
2414 
2415 	ack_APIC_irq();
2416 	exit_idle();
2417 	irq_enter();
2418 
2419 	me = smp_processor_id();
2420 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2421 		unsigned int irq;
2422 		unsigned int irr;
2423 		struct irq_desc *desc;
2424 		struct irq_cfg *cfg;
2425 		irq = __get_cpu_var(vector_irq)[vector];
2426 
2427 		if (irq == -1)
2428 			continue;
2429 
2430 		desc = irq_to_desc(irq);
2431 		if (!desc)
2432 			continue;
2433 
2434 		cfg = irq_cfg(irq);
2435 		raw_spin_lock(&desc->lock);
2436 
2437 		/*
2438 		 * Check if the irq migration is in progress. If so, we
2439 		 * haven't received the cleanup request yet for this irq.
2440 		 */
2441 		if (cfg->move_in_progress)
2442 			goto unlock;
2443 
2444 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2445 			goto unlock;
2446 
2447 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2448 		/*
2449 		 * Check if the vector that needs to be cleanedup is
2450 		 * registered at the cpu's IRR. If so, then this is not
2451 		 * the best time to clean it up. Lets clean it up in the
2452 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2453 		 * to myself.
2454 		 */
2455 		if (irr  & (1 << (vector % 32))) {
2456 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2457 			goto unlock;
2458 		}
2459 		__get_cpu_var(vector_irq)[vector] = -1;
2460 unlock:
2461 		raw_spin_unlock(&desc->lock);
2462 	}
2463 
2464 	irq_exit();
2465 }
2466 
2467 static void __irq_complete_move(struct irq_desc **descp, unsigned vector)
2468 {
2469 	struct irq_desc *desc = *descp;
2470 	struct irq_cfg *cfg = desc->chip_data;
2471 	unsigned me;
2472 
2473 	if (likely(!cfg->move_in_progress))
2474 		return;
2475 
2476 	me = smp_processor_id();
2477 
2478 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2479 		send_cleanup_vector(cfg);
2480 }
2481 
2482 static void irq_complete_move(struct irq_desc **descp)
2483 {
2484 	__irq_complete_move(descp, ~get_irq_regs()->orig_ax);
2485 }
2486 
2487 void irq_force_complete_move(int irq)
2488 {
2489 	struct irq_desc *desc = irq_to_desc(irq);
2490 	struct irq_cfg *cfg = desc->chip_data;
2491 
2492 	__irq_complete_move(&desc, cfg->vector);
2493 }
2494 #else
2495 static inline void irq_complete_move(struct irq_desc **descp) {}
2496 #endif
2497 
2498 static void ack_apic_edge(unsigned int irq)
2499 {
2500 	struct irq_desc *desc = irq_to_desc(irq);
2501 
2502 	irq_complete_move(&desc);
2503 	move_native_irq(irq);
2504 	ack_APIC_irq();
2505 }
2506 
2507 atomic_t irq_mis_count;
2508 
2509 /*
2510  * IO-APIC versions below 0x20 don't support EOI register.
2511  * For the record, here is the information about various versions:
2512  *     0Xh     82489DX
2513  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2514  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
2515  *     30h-FFh Reserved
2516  *
2517  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2518  * version as 0x2. This is an error with documentation and these ICH chips
2519  * use io-apic's of version 0x20.
2520  *
2521  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2522  * Otherwise, we simulate the EOI message manually by changing the trigger
2523  * mode to edge and then back to level, with RTE being masked during this.
2524 */
2525 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2526 {
2527 	struct irq_pin_list *entry;
2528 
2529 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2530 		if (mp_ioapics[entry->apic].apicver >= 0x20) {
2531 			/*
2532 			 * Intr-remapping uses pin number as the virtual vector
2533 			 * in the RTE. Actual vector is programmed in
2534 			 * intr-remapping table entry. Hence for the io-apic
2535 			 * EOI we use the pin number.
2536 			 */
2537 			if (irq_remapped(irq))
2538 				io_apic_eoi(entry->apic, entry->pin);
2539 			else
2540 				io_apic_eoi(entry->apic, cfg->vector);
2541 		} else {
2542 			__mask_and_edge_IO_APIC_irq(entry);
2543 			__unmask_and_level_IO_APIC_irq(entry);
2544 		}
2545 	}
2546 }
2547 
2548 static void eoi_ioapic_irq(struct irq_desc *desc)
2549 {
2550 	struct irq_cfg *cfg;
2551 	unsigned long flags;
2552 	unsigned int irq;
2553 
2554 	irq = desc->irq;
2555 	cfg = desc->chip_data;
2556 
2557 	spin_lock_irqsave(&ioapic_lock, flags);
2558 	__eoi_ioapic_irq(irq, cfg);
2559 	spin_unlock_irqrestore(&ioapic_lock, flags);
2560 }
2561 
2562 static void ack_apic_level(unsigned int irq)
2563 {
2564 	struct irq_desc *desc = irq_to_desc(irq);
2565 	unsigned long v;
2566 	int i;
2567 	struct irq_cfg *cfg;
2568 	int do_unmask_irq = 0;
2569 
2570 	irq_complete_move(&desc);
2571 #ifdef CONFIG_GENERIC_PENDING_IRQ
2572 	/* If we are moving the irq we need to mask it */
2573 	if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2574 		do_unmask_irq = 1;
2575 		mask_IO_APIC_irq_desc(desc);
2576 	}
2577 #endif
2578 
2579 	/*
2580 	 * It appears there is an erratum which affects at least version 0x11
2581 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2582 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2583 	 * erroneously delivered as edge-triggered one but the respective IRR
2584 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2585 	 * message but it will never arrive and further interrupts are blocked
2586 	 * from the source.  The exact reason is so far unknown, but the
2587 	 * phenomenon was observed when two consecutive interrupt requests
2588 	 * from a given source get delivered to the same CPU and the source is
2589 	 * temporarily disabled in between.
2590 	 *
2591 	 * A workaround is to simulate an EOI message manually.  We achieve it
2592 	 * by setting the trigger mode to edge and then to level when the edge
2593 	 * trigger mode gets detected in the TMR of a local APIC for a
2594 	 * level-triggered interrupt.  We mask the source for the time of the
2595 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2596 	 * The idea is from Manfred Spraul.  --macro
2597 	 *
2598 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2599 	 * any unhandled interrupt on the offlined cpu to the new cpu
2600 	 * destination that is handling the corresponding interrupt. This
2601 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2602 	 * level-triggered io-apic interrupt will be seen as an edge
2603 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2604 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2605 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2606 	 * supporting EOI register, we do an explicit EOI to clear the
2607 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2608 	 * we use the above logic (mask+edge followed by unmask+level) from
2609 	 * Manfred Spraul to clear the remote IRR.
2610 	 */
2611 	cfg = desc->chip_data;
2612 	i = cfg->vector;
2613 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2614 
2615 	/*
2616 	 * We must acknowledge the irq before we move it or the acknowledge will
2617 	 * not propagate properly.
2618 	 */
2619 	ack_APIC_irq();
2620 
2621 	/*
2622 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2623 	 * message via io-apic EOI register write or simulating it using
2624 	 * mask+edge followed by unnask+level logic) manually when the
2625 	 * level triggered interrupt is seen as the edge triggered interrupt
2626 	 * at the cpu.
2627 	 */
2628 	if (!(v & (1 << (i & 0x1f)))) {
2629 		atomic_inc(&irq_mis_count);
2630 
2631 		eoi_ioapic_irq(desc);
2632 	}
2633 
2634 	/* Now we can move and renable the irq */
2635 	if (unlikely(do_unmask_irq)) {
2636 		/* Only migrate the irq if the ack has been received.
2637 		 *
2638 		 * On rare occasions the broadcast level triggered ack gets
2639 		 * delayed going to ioapics, and if we reprogram the
2640 		 * vector while Remote IRR is still set the irq will never
2641 		 * fire again.
2642 		 *
2643 		 * To prevent this scenario we read the Remote IRR bit
2644 		 * of the ioapic.  This has two effects.
2645 		 * - On any sane system the read of the ioapic will
2646 		 *   flush writes (and acks) going to the ioapic from
2647 		 *   this cpu.
2648 		 * - We get to see if the ACK has actually been delivered.
2649 		 *
2650 		 * Based on failed experiments of reprogramming the
2651 		 * ioapic entry from outside of irq context starting
2652 		 * with masking the ioapic entry and then polling until
2653 		 * Remote IRR was clear before reprogramming the
2654 		 * ioapic I don't trust the Remote IRR bit to be
2655 		 * completey accurate.
2656 		 *
2657 		 * However there appears to be no other way to plug
2658 		 * this race, so if the Remote IRR bit is not
2659 		 * accurate and is causing problems then it is a hardware bug
2660 		 * and you can go talk to the chipset vendor about it.
2661 		 */
2662 		cfg = desc->chip_data;
2663 		if (!io_apic_level_ack_pending(cfg))
2664 			move_masked_irq(irq);
2665 		unmask_IO_APIC_irq_desc(desc);
2666 	}
2667 }
2668 
2669 #ifdef CONFIG_INTR_REMAP
2670 static void ir_ack_apic_edge(unsigned int irq)
2671 {
2672 	ack_APIC_irq();
2673 }
2674 
2675 static void ir_ack_apic_level(unsigned int irq)
2676 {
2677 	struct irq_desc *desc = irq_to_desc(irq);
2678 
2679 	ack_APIC_irq();
2680 	eoi_ioapic_irq(desc);
2681 }
2682 #endif /* CONFIG_INTR_REMAP */
2683 
2684 static struct irq_chip ioapic_chip __read_mostly = {
2685 	.name		= "IO-APIC",
2686 	.startup	= startup_ioapic_irq,
2687 	.mask		= mask_IO_APIC_irq,
2688 	.unmask		= unmask_IO_APIC_irq,
2689 	.ack		= ack_apic_edge,
2690 	.eoi		= ack_apic_level,
2691 #ifdef CONFIG_SMP
2692 	.set_affinity	= set_ioapic_affinity_irq,
2693 #endif
2694 	.retrigger	= ioapic_retrigger_irq,
2695 };
2696 
2697 static struct irq_chip ir_ioapic_chip __read_mostly = {
2698 	.name		= "IR-IO-APIC",
2699 	.startup	= startup_ioapic_irq,
2700 	.mask		= mask_IO_APIC_irq,
2701 	.unmask		= unmask_IO_APIC_irq,
2702 #ifdef CONFIG_INTR_REMAP
2703 	.ack		= ir_ack_apic_edge,
2704 	.eoi		= ir_ack_apic_level,
2705 #ifdef CONFIG_SMP
2706 	.set_affinity	= set_ir_ioapic_affinity_irq,
2707 #endif
2708 #endif
2709 	.retrigger	= ioapic_retrigger_irq,
2710 };
2711 
2712 static inline void init_IO_APIC_traps(void)
2713 {
2714 	int irq;
2715 	struct irq_desc *desc;
2716 	struct irq_cfg *cfg;
2717 
2718 	/*
2719 	 * NOTE! The local APIC isn't very good at handling
2720 	 * multiple interrupts at the same interrupt level.
2721 	 * As the interrupt level is determined by taking the
2722 	 * vector number and shifting that right by 4, we
2723 	 * want to spread these out a bit so that they don't
2724 	 * all fall in the same interrupt level.
2725 	 *
2726 	 * Also, we've got to be careful not to trash gate
2727 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2728 	 */
2729 	for_each_irq_desc(irq, desc) {
2730 		cfg = desc->chip_data;
2731 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2732 			/*
2733 			 * Hmm.. We don't have an entry for this,
2734 			 * so default to an old-fashioned 8259
2735 			 * interrupt if we can..
2736 			 */
2737 			if (irq < nr_legacy_irqs)
2738 				make_8259A_irq(irq);
2739 			else
2740 				/* Strange. Oh, well.. */
2741 				desc->chip = &no_irq_chip;
2742 		}
2743 	}
2744 }
2745 
2746 /*
2747  * The local APIC irq-chip implementation:
2748  */
2749 
2750 static void mask_lapic_irq(unsigned int irq)
2751 {
2752 	unsigned long v;
2753 
2754 	v = apic_read(APIC_LVT0);
2755 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2756 }
2757 
2758 static void unmask_lapic_irq(unsigned int irq)
2759 {
2760 	unsigned long v;
2761 
2762 	v = apic_read(APIC_LVT0);
2763 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2764 }
2765 
2766 static void ack_lapic_irq(unsigned int irq)
2767 {
2768 	ack_APIC_irq();
2769 }
2770 
2771 static struct irq_chip lapic_chip __read_mostly = {
2772 	.name		= "local-APIC",
2773 	.mask		= mask_lapic_irq,
2774 	.unmask		= unmask_lapic_irq,
2775 	.ack		= ack_lapic_irq,
2776 };
2777 
2778 static void lapic_register_intr(int irq, struct irq_desc *desc)
2779 {
2780 	desc->status &= ~IRQ_LEVEL;
2781 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2782 				      "edge");
2783 }
2784 
2785 static void __init setup_nmi(void)
2786 {
2787 	/*
2788 	 * Dirty trick to enable the NMI watchdog ...
2789 	 * We put the 8259A master into AEOI mode and
2790 	 * unmask on all local APICs LVT0 as NMI.
2791 	 *
2792 	 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2793 	 * is from Maciej W. Rozycki - so we do not have to EOI from
2794 	 * the NMI handler or the timer interrupt.
2795 	 */
2796 	apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2797 
2798 	enable_NMI_through_LVT0();
2799 
2800 	apic_printk(APIC_VERBOSE, " done.\n");
2801 }
2802 
2803 /*
2804  * This looks a bit hackish but it's about the only one way of sending
2805  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2806  * not support the ExtINT mode, unfortunately.  We need to send these
2807  * cycles as some i82489DX-based boards have glue logic that keeps the
2808  * 8259A interrupt line asserted until INTA.  --macro
2809  */
2810 static inline void __init unlock_ExtINT_logic(void)
2811 {
2812 	int apic, pin, i;
2813 	struct IO_APIC_route_entry entry0, entry1;
2814 	unsigned char save_control, save_freq_select;
2815 
2816 	pin  = find_isa_irq_pin(8, mp_INT);
2817 	if (pin == -1) {
2818 		WARN_ON_ONCE(1);
2819 		return;
2820 	}
2821 	apic = find_isa_irq_apic(8, mp_INT);
2822 	if (apic == -1) {
2823 		WARN_ON_ONCE(1);
2824 		return;
2825 	}
2826 
2827 	entry0 = ioapic_read_entry(apic, pin);
2828 	clear_IO_APIC_pin(apic, pin);
2829 
2830 	memset(&entry1, 0, sizeof(entry1));
2831 
2832 	entry1.dest_mode = 0;			/* physical delivery */
2833 	entry1.mask = 0;			/* unmask IRQ now */
2834 	entry1.dest = hard_smp_processor_id();
2835 	entry1.delivery_mode = dest_ExtINT;
2836 	entry1.polarity = entry0.polarity;
2837 	entry1.trigger = 0;
2838 	entry1.vector = 0;
2839 
2840 	ioapic_write_entry(apic, pin, entry1);
2841 
2842 	save_control = CMOS_READ(RTC_CONTROL);
2843 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2844 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2845 		   RTC_FREQ_SELECT);
2846 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2847 
2848 	i = 100;
2849 	while (i-- > 0) {
2850 		mdelay(10);
2851 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2852 			i -= 10;
2853 	}
2854 
2855 	CMOS_WRITE(save_control, RTC_CONTROL);
2856 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2857 	clear_IO_APIC_pin(apic, pin);
2858 
2859 	ioapic_write_entry(apic, pin, entry0);
2860 }
2861 
2862 static int disable_timer_pin_1 __initdata;
2863 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2864 static int __init disable_timer_pin_setup(char *arg)
2865 {
2866 	disable_timer_pin_1 = 1;
2867 	return 0;
2868 }
2869 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2870 
2871 int timer_through_8259 __initdata;
2872 
2873 /*
2874  * This code may look a bit paranoid, but it's supposed to cooperate with
2875  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2876  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2877  * fanatically on his truly buggy board.
2878  *
2879  * FIXME: really need to revamp this for all platforms.
2880  */
2881 static inline void __init check_timer(void)
2882 {
2883 	struct irq_desc *desc = irq_to_desc(0);
2884 	struct irq_cfg *cfg = desc->chip_data;
2885 	int node = cpu_to_node(boot_cpu_id);
2886 	int apic1, pin1, apic2, pin2;
2887 	unsigned long flags;
2888 	int no_pin1 = 0;
2889 
2890 	local_irq_save(flags);
2891 
2892 	/*
2893 	 * get/set the timer IRQ vector:
2894 	 */
2895 	disable_8259A_irq(0);
2896 	assign_irq_vector(0, cfg, apic->target_cpus());
2897 
2898 	/*
2899 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2900 	 * wire has to be disabled in the local APIC.  Also
2901 	 * timer interrupts need to be acknowledged manually in
2902 	 * the 8259A for the i82489DX when using the NMI
2903 	 * watchdog as that APIC treats NMIs as level-triggered.
2904 	 * The AEOI mode will finish them in the 8259A
2905 	 * automatically.
2906 	 */
2907 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2908 	init_8259A(1);
2909 #ifdef CONFIG_X86_32
2910 	{
2911 		unsigned int ver;
2912 
2913 		ver = apic_read(APIC_LVR);
2914 		ver = GET_APIC_VERSION(ver);
2915 		timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2916 	}
2917 #endif
2918 
2919 	pin1  = find_isa_irq_pin(0, mp_INT);
2920 	apic1 = find_isa_irq_apic(0, mp_INT);
2921 	pin2  = ioapic_i8259.pin;
2922 	apic2 = ioapic_i8259.apic;
2923 
2924 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2925 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2926 		    cfg->vector, apic1, pin1, apic2, pin2);
2927 
2928 	/*
2929 	 * Some BIOS writers are clueless and report the ExtINTA
2930 	 * I/O APIC input from the cascaded 8259A as the timer
2931 	 * interrupt input.  So just in case, if only one pin
2932 	 * was found above, try it both directly and through the
2933 	 * 8259A.
2934 	 */
2935 	if (pin1 == -1) {
2936 		if (intr_remapping_enabled)
2937 			panic("BIOS bug: timer not connected to IO-APIC");
2938 		pin1 = pin2;
2939 		apic1 = apic2;
2940 		no_pin1 = 1;
2941 	} else if (pin2 == -1) {
2942 		pin2 = pin1;
2943 		apic2 = apic1;
2944 	}
2945 
2946 	if (pin1 != -1) {
2947 		/*
2948 		 * Ok, does IRQ0 through the IOAPIC work?
2949 		 */
2950 		if (no_pin1) {
2951 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2952 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2953 		} else {
2954 			/* for edge trigger, setup_IO_APIC_irq already
2955 			 * leave it unmasked.
2956 			 * so only need to unmask if it is level-trigger
2957 			 * do we really have level trigger timer?
2958 			 */
2959 			int idx;
2960 			idx = find_irq_entry(apic1, pin1, mp_INT);
2961 			if (idx != -1 && irq_trigger(idx))
2962 				unmask_IO_APIC_irq_desc(desc);
2963 		}
2964 		if (timer_irq_works()) {
2965 			if (nmi_watchdog == NMI_IO_APIC) {
2966 				setup_nmi();
2967 				enable_8259A_irq(0);
2968 			}
2969 			if (disable_timer_pin_1 > 0)
2970 				clear_IO_APIC_pin(0, pin1);
2971 			goto out;
2972 		}
2973 		if (intr_remapping_enabled)
2974 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2975 		local_irq_disable();
2976 		clear_IO_APIC_pin(apic1, pin1);
2977 		if (!no_pin1)
2978 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2979 				    "8254 timer not connected to IO-APIC\n");
2980 
2981 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2982 			    "(IRQ0) through the 8259A ...\n");
2983 		apic_printk(APIC_QUIET, KERN_INFO
2984 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2985 		/*
2986 		 * legacy devices should be connected to IO APIC #0
2987 		 */
2988 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2989 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2990 		enable_8259A_irq(0);
2991 		if (timer_irq_works()) {
2992 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2993 			timer_through_8259 = 1;
2994 			if (nmi_watchdog == NMI_IO_APIC) {
2995 				disable_8259A_irq(0);
2996 				setup_nmi();
2997 				enable_8259A_irq(0);
2998 			}
2999 			goto out;
3000 		}
3001 		/*
3002 		 * Cleanup, just in case ...
3003 		 */
3004 		local_irq_disable();
3005 		disable_8259A_irq(0);
3006 		clear_IO_APIC_pin(apic2, pin2);
3007 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
3008 	}
3009 
3010 	if (nmi_watchdog == NMI_IO_APIC) {
3011 		apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3012 			    "through the IO-APIC - disabling NMI Watchdog!\n");
3013 		nmi_watchdog = NMI_NONE;
3014 	}
3015 #ifdef CONFIG_X86_32
3016 	timer_ack = 0;
3017 #endif
3018 
3019 	apic_printk(APIC_QUIET, KERN_INFO
3020 		    "...trying to set up timer as Virtual Wire IRQ...\n");
3021 
3022 	lapic_register_intr(0, desc);
3023 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
3024 	enable_8259A_irq(0);
3025 
3026 	if (timer_irq_works()) {
3027 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3028 		goto out;
3029 	}
3030 	local_irq_disable();
3031 	disable_8259A_irq(0);
3032 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3033 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3034 
3035 	apic_printk(APIC_QUIET, KERN_INFO
3036 		    "...trying to set up timer as ExtINT IRQ...\n");
3037 
3038 	init_8259A(0);
3039 	make_8259A_irq(0);
3040 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3041 
3042 	unlock_ExtINT_logic();
3043 
3044 	if (timer_irq_works()) {
3045 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3046 		goto out;
3047 	}
3048 	local_irq_disable();
3049 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3050 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3051 		"report.  Then try booting with the 'noapic' option.\n");
3052 out:
3053 	local_irq_restore(flags);
3054 }
3055 
3056 /*
3057  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3058  * to devices.  However there may be an I/O APIC pin available for
3059  * this interrupt regardless.  The pin may be left unconnected, but
3060  * typically it will be reused as an ExtINT cascade interrupt for
3061  * the master 8259A.  In the MPS case such a pin will normally be
3062  * reported as an ExtINT interrupt in the MP table.  With ACPI
3063  * there is no provision for ExtINT interrupts, and in the absence
3064  * of an override it would be treated as an ordinary ISA I/O APIC
3065  * interrupt, that is edge-triggered and unmasked by default.  We
3066  * used to do this, but it caused problems on some systems because
3067  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3068  * the same ExtINT cascade interrupt to drive the local APIC of the
3069  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3070  * the I/O APIC in all cases now.  No actual device should request
3071  * it anyway.  --macro
3072  */
3073 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
3074 
3075 void __init setup_IO_APIC(void)
3076 {
3077 
3078 	/*
3079 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3080 	 */
3081 	io_apic_irqs = nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
3082 
3083 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3084 	/*
3085          * Set up IO-APIC IRQ routing.
3086          */
3087 	x86_init.mpparse.setup_ioapic_ids();
3088 
3089 	sync_Arb_IDs();
3090 	setup_IO_APIC_irqs();
3091 	init_IO_APIC_traps();
3092 	if (nr_legacy_irqs)
3093 		check_timer();
3094 }
3095 
3096 /*
3097  *      Called after all the initialization is done. If we didnt find any
3098  *      APIC bugs then we can allow the modify fast path
3099  */
3100 
3101 static int __init io_apic_bug_finalize(void)
3102 {
3103 	if (sis_apic_bug == -1)
3104 		sis_apic_bug = 0;
3105 	return 0;
3106 }
3107 
3108 late_initcall(io_apic_bug_finalize);
3109 
3110 struct sysfs_ioapic_data {
3111 	struct sys_device dev;
3112 	struct IO_APIC_route_entry entry[0];
3113 };
3114 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3115 
3116 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3117 {
3118 	struct IO_APIC_route_entry *entry;
3119 	struct sysfs_ioapic_data *data;
3120 	int i;
3121 
3122 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3123 	entry = data->entry;
3124 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3125 		*entry = ioapic_read_entry(dev->id, i);
3126 
3127 	return 0;
3128 }
3129 
3130 static int ioapic_resume(struct sys_device *dev)
3131 {
3132 	struct IO_APIC_route_entry *entry;
3133 	struct sysfs_ioapic_data *data;
3134 	unsigned long flags;
3135 	union IO_APIC_reg_00 reg_00;
3136 	int i;
3137 
3138 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3139 	entry = data->entry;
3140 
3141 	spin_lock_irqsave(&ioapic_lock, flags);
3142 	reg_00.raw = io_apic_read(dev->id, 0);
3143 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3144 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3145 		io_apic_write(dev->id, 0, reg_00.raw);
3146 	}
3147 	spin_unlock_irqrestore(&ioapic_lock, flags);
3148 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3149 		ioapic_write_entry(dev->id, i, entry[i]);
3150 
3151 	return 0;
3152 }
3153 
3154 static struct sysdev_class ioapic_sysdev_class = {
3155 	.name = "ioapic",
3156 	.suspend = ioapic_suspend,
3157 	.resume = ioapic_resume,
3158 };
3159 
3160 static int __init ioapic_init_sysfs(void)
3161 {
3162 	struct sys_device * dev;
3163 	int i, size, error;
3164 
3165 	error = sysdev_class_register(&ioapic_sysdev_class);
3166 	if (error)
3167 		return error;
3168 
3169 	for (i = 0; i < nr_ioapics; i++ ) {
3170 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3171 			* sizeof(struct IO_APIC_route_entry);
3172 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3173 		if (!mp_ioapic_data[i]) {
3174 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3175 			continue;
3176 		}
3177 		dev = &mp_ioapic_data[i]->dev;
3178 		dev->id = i;
3179 		dev->cls = &ioapic_sysdev_class;
3180 		error = sysdev_register(dev);
3181 		if (error) {
3182 			kfree(mp_ioapic_data[i]);
3183 			mp_ioapic_data[i] = NULL;
3184 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3185 			continue;
3186 		}
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 device_initcall(ioapic_init_sysfs);
3193 
3194 /*
3195  * Dynamic irq allocate and deallocation
3196  */
3197 unsigned int create_irq_nr(unsigned int irq_want, int node)
3198 {
3199 	/* Allocate an unused irq */
3200 	unsigned int irq;
3201 	unsigned int new;
3202 	unsigned long flags;
3203 	struct irq_cfg *cfg_new = NULL;
3204 	struct irq_desc *desc_new = NULL;
3205 
3206 	irq = 0;
3207 	if (irq_want < nr_irqs_gsi)
3208 		irq_want = nr_irqs_gsi;
3209 
3210 	spin_lock_irqsave(&vector_lock, flags);
3211 	for (new = irq_want; new < nr_irqs; new++) {
3212 		desc_new = irq_to_desc_alloc_node(new, node);
3213 		if (!desc_new) {
3214 			printk(KERN_INFO "can not get irq_desc for %d\n", new);
3215 			continue;
3216 		}
3217 		cfg_new = desc_new->chip_data;
3218 
3219 		if (cfg_new->vector != 0)
3220 			continue;
3221 
3222 		desc_new = move_irq_desc(desc_new, node);
3223 		cfg_new = desc_new->chip_data;
3224 
3225 		if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3226 			irq = new;
3227 		break;
3228 	}
3229 	spin_unlock_irqrestore(&vector_lock, flags);
3230 
3231 	if (irq > 0) {
3232 		dynamic_irq_init(irq);
3233 		/* restore it, in case dynamic_irq_init clear it */
3234 		if (desc_new)
3235 			desc_new->chip_data = cfg_new;
3236 	}
3237 	return irq;
3238 }
3239 
3240 int create_irq(void)
3241 {
3242 	int node = cpu_to_node(boot_cpu_id);
3243 	unsigned int irq_want;
3244 	int irq;
3245 
3246 	irq_want = nr_irqs_gsi;
3247 	irq = create_irq_nr(irq_want, node);
3248 
3249 	if (irq == 0)
3250 		irq = -1;
3251 
3252 	return irq;
3253 }
3254 
3255 void destroy_irq(unsigned int irq)
3256 {
3257 	unsigned long flags;
3258 	struct irq_cfg *cfg;
3259 	struct irq_desc *desc;
3260 
3261 	/* store it, in case dynamic_irq_cleanup clear it */
3262 	desc = irq_to_desc(irq);
3263 	cfg = desc->chip_data;
3264 	dynamic_irq_cleanup(irq);
3265 	/* connect back irq_cfg */
3266 	desc->chip_data = cfg;
3267 
3268 	free_irte(irq);
3269 	spin_lock_irqsave(&vector_lock, flags);
3270 	__clear_irq_vector(irq, cfg);
3271 	spin_unlock_irqrestore(&vector_lock, flags);
3272 }
3273 
3274 /*
3275  * MSI message composition
3276  */
3277 #ifdef CONFIG_PCI_MSI
3278 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3279 			   struct msi_msg *msg, u8 hpet_id)
3280 {
3281 	struct irq_cfg *cfg;
3282 	int err;
3283 	unsigned dest;
3284 
3285 	if (disable_apic)
3286 		return -ENXIO;
3287 
3288 	cfg = irq_cfg(irq);
3289 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3290 	if (err)
3291 		return err;
3292 
3293 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3294 
3295 	if (irq_remapped(irq)) {
3296 		struct irte irte;
3297 		int ir_index;
3298 		u16 sub_handle;
3299 
3300 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3301 		BUG_ON(ir_index == -1);
3302 
3303 		memset (&irte, 0, sizeof(irte));
3304 
3305 		irte.present = 1;
3306 		irte.dst_mode = apic->irq_dest_mode;
3307 		irte.trigger_mode = 0; /* edge */
3308 		irte.dlvry_mode = apic->irq_delivery_mode;
3309 		irte.vector = cfg->vector;
3310 		irte.dest_id = IRTE_DEST(dest);
3311 
3312 		/* Set source-id of interrupt request */
3313 		if (pdev)
3314 			set_msi_sid(&irte, pdev);
3315 		else
3316 			set_hpet_sid(&irte, hpet_id);
3317 
3318 		modify_irte(irq, &irte);
3319 
3320 		msg->address_hi = MSI_ADDR_BASE_HI;
3321 		msg->data = sub_handle;
3322 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3323 				  MSI_ADDR_IR_SHV |
3324 				  MSI_ADDR_IR_INDEX1(ir_index) |
3325 				  MSI_ADDR_IR_INDEX2(ir_index);
3326 	} else {
3327 		if (x2apic_enabled())
3328 			msg->address_hi = MSI_ADDR_BASE_HI |
3329 					  MSI_ADDR_EXT_DEST_ID(dest);
3330 		else
3331 			msg->address_hi = MSI_ADDR_BASE_HI;
3332 
3333 		msg->address_lo =
3334 			MSI_ADDR_BASE_LO |
3335 			((apic->irq_dest_mode == 0) ?
3336 				MSI_ADDR_DEST_MODE_PHYSICAL:
3337 				MSI_ADDR_DEST_MODE_LOGICAL) |
3338 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3339 				MSI_ADDR_REDIRECTION_CPU:
3340 				MSI_ADDR_REDIRECTION_LOWPRI) |
3341 			MSI_ADDR_DEST_ID(dest);
3342 
3343 		msg->data =
3344 			MSI_DATA_TRIGGER_EDGE |
3345 			MSI_DATA_LEVEL_ASSERT |
3346 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3347 				MSI_DATA_DELIVERY_FIXED:
3348 				MSI_DATA_DELIVERY_LOWPRI) |
3349 			MSI_DATA_VECTOR(cfg->vector);
3350 	}
3351 	return err;
3352 }
3353 
3354 #ifdef CONFIG_SMP
3355 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3356 {
3357 	struct irq_desc *desc = irq_to_desc(irq);
3358 	struct irq_cfg *cfg;
3359 	struct msi_msg msg;
3360 	unsigned int dest;
3361 
3362 	if (set_desc_affinity(desc, mask, &dest))
3363 		return -1;
3364 
3365 	cfg = desc->chip_data;
3366 
3367 	read_msi_msg_desc(desc, &msg);
3368 
3369 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3370 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3371 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3372 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3373 
3374 	write_msi_msg_desc(desc, &msg);
3375 
3376 	return 0;
3377 }
3378 #ifdef CONFIG_INTR_REMAP
3379 /*
3380  * Migrate the MSI irq to another cpumask. This migration is
3381  * done in the process context using interrupt-remapping hardware.
3382  */
3383 static int
3384 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3385 {
3386 	struct irq_desc *desc = irq_to_desc(irq);
3387 	struct irq_cfg *cfg = desc->chip_data;
3388 	unsigned int dest;
3389 	struct irte irte;
3390 
3391 	if (get_irte(irq, &irte))
3392 		return -1;
3393 
3394 	if (set_desc_affinity(desc, mask, &dest))
3395 		return -1;
3396 
3397 	irte.vector = cfg->vector;
3398 	irte.dest_id = IRTE_DEST(dest);
3399 
3400 	/*
3401 	 * atomically update the IRTE with the new destination and vector.
3402 	 */
3403 	modify_irte(irq, &irte);
3404 
3405 	/*
3406 	 * After this point, all the interrupts will start arriving
3407 	 * at the new destination. So, time to cleanup the previous
3408 	 * vector allocation.
3409 	 */
3410 	if (cfg->move_in_progress)
3411 		send_cleanup_vector(cfg);
3412 
3413 	return 0;
3414 }
3415 
3416 #endif
3417 #endif /* CONFIG_SMP */
3418 
3419 /*
3420  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3421  * which implement the MSI or MSI-X Capability Structure.
3422  */
3423 static struct irq_chip msi_chip = {
3424 	.name		= "PCI-MSI",
3425 	.unmask		= unmask_msi_irq,
3426 	.mask		= mask_msi_irq,
3427 	.ack		= ack_apic_edge,
3428 #ifdef CONFIG_SMP
3429 	.set_affinity	= set_msi_irq_affinity,
3430 #endif
3431 	.retrigger	= ioapic_retrigger_irq,
3432 };
3433 
3434 static struct irq_chip msi_ir_chip = {
3435 	.name		= "IR-PCI-MSI",
3436 	.unmask		= unmask_msi_irq,
3437 	.mask		= mask_msi_irq,
3438 #ifdef CONFIG_INTR_REMAP
3439 	.ack		= ir_ack_apic_edge,
3440 #ifdef CONFIG_SMP
3441 	.set_affinity	= ir_set_msi_irq_affinity,
3442 #endif
3443 #endif
3444 	.retrigger	= ioapic_retrigger_irq,
3445 };
3446 
3447 /*
3448  * Map the PCI dev to the corresponding remapping hardware unit
3449  * and allocate 'nvec' consecutive interrupt-remapping table entries
3450  * in it.
3451  */
3452 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3453 {
3454 	struct intel_iommu *iommu;
3455 	int index;
3456 
3457 	iommu = map_dev_to_ir(dev);
3458 	if (!iommu) {
3459 		printk(KERN_ERR
3460 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3461 		return -ENOENT;
3462 	}
3463 
3464 	index = alloc_irte(iommu, irq, nvec);
3465 	if (index < 0) {
3466 		printk(KERN_ERR
3467 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3468 		       pci_name(dev));
3469 		return -ENOSPC;
3470 	}
3471 	return index;
3472 }
3473 
3474 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3475 {
3476 	int ret;
3477 	struct msi_msg msg;
3478 
3479 	ret = msi_compose_msg(dev, irq, &msg, -1);
3480 	if (ret < 0)
3481 		return ret;
3482 
3483 	set_irq_msi(irq, msidesc);
3484 	write_msi_msg(irq, &msg);
3485 
3486 	if (irq_remapped(irq)) {
3487 		struct irq_desc *desc = irq_to_desc(irq);
3488 		/*
3489 		 * irq migration in process context
3490 		 */
3491 		desc->status |= IRQ_MOVE_PCNTXT;
3492 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3493 	} else
3494 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3495 
3496 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3497 
3498 	return 0;
3499 }
3500 
3501 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3502 {
3503 	unsigned int irq;
3504 	int ret, sub_handle;
3505 	struct msi_desc *msidesc;
3506 	unsigned int irq_want;
3507 	struct intel_iommu *iommu = NULL;
3508 	int index = 0;
3509 	int node;
3510 
3511 	/* x86 doesn't support multiple MSI yet */
3512 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3513 		return 1;
3514 
3515 	node = dev_to_node(&dev->dev);
3516 	irq_want = nr_irqs_gsi;
3517 	sub_handle = 0;
3518 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3519 		irq = create_irq_nr(irq_want, node);
3520 		if (irq == 0)
3521 			return -1;
3522 		irq_want = irq + 1;
3523 		if (!intr_remapping_enabled)
3524 			goto no_ir;
3525 
3526 		if (!sub_handle) {
3527 			/*
3528 			 * allocate the consecutive block of IRTE's
3529 			 * for 'nvec'
3530 			 */
3531 			index = msi_alloc_irte(dev, irq, nvec);
3532 			if (index < 0) {
3533 				ret = index;
3534 				goto error;
3535 			}
3536 		} else {
3537 			iommu = map_dev_to_ir(dev);
3538 			if (!iommu) {
3539 				ret = -ENOENT;
3540 				goto error;
3541 			}
3542 			/*
3543 			 * setup the mapping between the irq and the IRTE
3544 			 * base index, the sub_handle pointing to the
3545 			 * appropriate interrupt remap table entry.
3546 			 */
3547 			set_irte_irq(irq, iommu, index, sub_handle);
3548 		}
3549 no_ir:
3550 		ret = setup_msi_irq(dev, msidesc, irq);
3551 		if (ret < 0)
3552 			goto error;
3553 		sub_handle++;
3554 	}
3555 	return 0;
3556 
3557 error:
3558 	destroy_irq(irq);
3559 	return ret;
3560 }
3561 
3562 void arch_teardown_msi_irq(unsigned int irq)
3563 {
3564 	destroy_irq(irq);
3565 }
3566 
3567 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3568 #ifdef CONFIG_SMP
3569 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3570 {
3571 	struct irq_desc *desc = irq_to_desc(irq);
3572 	struct irq_cfg *cfg;
3573 	struct msi_msg msg;
3574 	unsigned int dest;
3575 
3576 	if (set_desc_affinity(desc, mask, &dest))
3577 		return -1;
3578 
3579 	cfg = desc->chip_data;
3580 
3581 	dmar_msi_read(irq, &msg);
3582 
3583 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3584 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3585 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3586 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3587 
3588 	dmar_msi_write(irq, &msg);
3589 
3590 	return 0;
3591 }
3592 
3593 #endif /* CONFIG_SMP */
3594 
3595 static struct irq_chip dmar_msi_type = {
3596 	.name = "DMAR_MSI",
3597 	.unmask = dmar_msi_unmask,
3598 	.mask = dmar_msi_mask,
3599 	.ack = ack_apic_edge,
3600 #ifdef CONFIG_SMP
3601 	.set_affinity = dmar_msi_set_affinity,
3602 #endif
3603 	.retrigger = ioapic_retrigger_irq,
3604 };
3605 
3606 int arch_setup_dmar_msi(unsigned int irq)
3607 {
3608 	int ret;
3609 	struct msi_msg msg;
3610 
3611 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3612 	if (ret < 0)
3613 		return ret;
3614 	dmar_msi_write(irq, &msg);
3615 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3616 		"edge");
3617 	return 0;
3618 }
3619 #endif
3620 
3621 #ifdef CONFIG_HPET_TIMER
3622 
3623 #ifdef CONFIG_SMP
3624 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3625 {
3626 	struct irq_desc *desc = irq_to_desc(irq);
3627 	struct irq_cfg *cfg;
3628 	struct msi_msg msg;
3629 	unsigned int dest;
3630 
3631 	if (set_desc_affinity(desc, mask, &dest))
3632 		return -1;
3633 
3634 	cfg = desc->chip_data;
3635 
3636 	hpet_msi_read(irq, &msg);
3637 
3638 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3639 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3640 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3641 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3642 
3643 	hpet_msi_write(irq, &msg);
3644 
3645 	return 0;
3646 }
3647 
3648 #endif /* CONFIG_SMP */
3649 
3650 static struct irq_chip ir_hpet_msi_type = {
3651 	.name = "IR-HPET_MSI",
3652 	.unmask = hpet_msi_unmask,
3653 	.mask = hpet_msi_mask,
3654 #ifdef CONFIG_INTR_REMAP
3655 	.ack = ir_ack_apic_edge,
3656 #ifdef CONFIG_SMP
3657 	.set_affinity = ir_set_msi_irq_affinity,
3658 #endif
3659 #endif
3660 	.retrigger = ioapic_retrigger_irq,
3661 };
3662 
3663 static struct irq_chip hpet_msi_type = {
3664 	.name = "HPET_MSI",
3665 	.unmask = hpet_msi_unmask,
3666 	.mask = hpet_msi_mask,
3667 	.ack = ack_apic_edge,
3668 #ifdef CONFIG_SMP
3669 	.set_affinity = hpet_msi_set_affinity,
3670 #endif
3671 	.retrigger = ioapic_retrigger_irq,
3672 };
3673 
3674 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3675 {
3676 	int ret;
3677 	struct msi_msg msg;
3678 	struct irq_desc *desc = irq_to_desc(irq);
3679 
3680 	if (intr_remapping_enabled) {
3681 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3682 		int index;
3683 
3684 		if (!iommu)
3685 			return -1;
3686 
3687 		index = alloc_irte(iommu, irq, 1);
3688 		if (index < 0)
3689 			return -1;
3690 	}
3691 
3692 	ret = msi_compose_msg(NULL, irq, &msg, id);
3693 	if (ret < 0)
3694 		return ret;
3695 
3696 	hpet_msi_write(irq, &msg);
3697 	desc->status |= IRQ_MOVE_PCNTXT;
3698 	if (irq_remapped(irq))
3699 		set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3700 					      handle_edge_irq, "edge");
3701 	else
3702 		set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3703 					      handle_edge_irq, "edge");
3704 
3705 	return 0;
3706 }
3707 #endif
3708 
3709 #endif /* CONFIG_PCI_MSI */
3710 /*
3711  * Hypertransport interrupt support
3712  */
3713 #ifdef CONFIG_HT_IRQ
3714 
3715 #ifdef CONFIG_SMP
3716 
3717 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3718 {
3719 	struct ht_irq_msg msg;
3720 	fetch_ht_irq_msg(irq, &msg);
3721 
3722 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3723 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3724 
3725 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3726 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3727 
3728 	write_ht_irq_msg(irq, &msg);
3729 }
3730 
3731 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3732 {
3733 	struct irq_desc *desc = irq_to_desc(irq);
3734 	struct irq_cfg *cfg;
3735 	unsigned int dest;
3736 
3737 	if (set_desc_affinity(desc, mask, &dest))
3738 		return -1;
3739 
3740 	cfg = desc->chip_data;
3741 
3742 	target_ht_irq(irq, dest, cfg->vector);
3743 
3744 	return 0;
3745 }
3746 
3747 #endif
3748 
3749 static struct irq_chip ht_irq_chip = {
3750 	.name		= "PCI-HT",
3751 	.mask		= mask_ht_irq,
3752 	.unmask		= unmask_ht_irq,
3753 	.ack		= ack_apic_edge,
3754 #ifdef CONFIG_SMP
3755 	.set_affinity	= set_ht_irq_affinity,
3756 #endif
3757 	.retrigger	= ioapic_retrigger_irq,
3758 };
3759 
3760 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3761 {
3762 	struct irq_cfg *cfg;
3763 	int err;
3764 
3765 	if (disable_apic)
3766 		return -ENXIO;
3767 
3768 	cfg = irq_cfg(irq);
3769 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3770 	if (!err) {
3771 		struct ht_irq_msg msg;
3772 		unsigned dest;
3773 
3774 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3775 						    apic->target_cpus());
3776 
3777 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3778 
3779 		msg.address_lo =
3780 			HT_IRQ_LOW_BASE |
3781 			HT_IRQ_LOW_DEST_ID(dest) |
3782 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3783 			((apic->irq_dest_mode == 0) ?
3784 				HT_IRQ_LOW_DM_PHYSICAL :
3785 				HT_IRQ_LOW_DM_LOGICAL) |
3786 			HT_IRQ_LOW_RQEOI_EDGE |
3787 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3788 				HT_IRQ_LOW_MT_FIXED :
3789 				HT_IRQ_LOW_MT_ARBITRATED) |
3790 			HT_IRQ_LOW_IRQ_MASKED;
3791 
3792 		write_ht_irq_msg(irq, &msg);
3793 
3794 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3795 					      handle_edge_irq, "edge");
3796 
3797 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3798 	}
3799 	return err;
3800 }
3801 #endif /* CONFIG_HT_IRQ */
3802 
3803 int __init io_apic_get_redir_entries (int ioapic)
3804 {
3805 	union IO_APIC_reg_01	reg_01;
3806 	unsigned long flags;
3807 
3808 	spin_lock_irqsave(&ioapic_lock, flags);
3809 	reg_01.raw = io_apic_read(ioapic, 1);
3810 	spin_unlock_irqrestore(&ioapic_lock, flags);
3811 
3812 	return reg_01.bits.entries;
3813 }
3814 
3815 void __init probe_nr_irqs_gsi(void)
3816 {
3817 	int nr = 0;
3818 
3819 	nr = acpi_probe_gsi();
3820 	if (nr > nr_irqs_gsi) {
3821 		nr_irqs_gsi = nr;
3822 	} else {
3823 		/* for acpi=off or acpi is not compiled in */
3824 		int idx;
3825 
3826 		nr = 0;
3827 		for (idx = 0; idx < nr_ioapics; idx++)
3828 			nr += io_apic_get_redir_entries(idx) + 1;
3829 
3830 		if (nr > nr_irqs_gsi)
3831 			nr_irqs_gsi = nr;
3832 	}
3833 
3834 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3835 }
3836 
3837 #ifdef CONFIG_SPARSE_IRQ
3838 int __init arch_probe_nr_irqs(void)
3839 {
3840 	int nr;
3841 
3842 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3843 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3844 
3845 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3846 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3847 	/*
3848 	 * for MSI and HT dyn irq
3849 	 */
3850 	nr += nr_irqs_gsi * 16;
3851 #endif
3852 	if (nr < nr_irqs)
3853 		nr_irqs = nr;
3854 
3855 	return 0;
3856 }
3857 #endif
3858 
3859 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3860 				struct io_apic_irq_attr *irq_attr)
3861 {
3862 	struct irq_desc *desc;
3863 	struct irq_cfg *cfg;
3864 	int node;
3865 	int ioapic, pin;
3866 	int trigger, polarity;
3867 
3868 	ioapic = irq_attr->ioapic;
3869 	if (!IO_APIC_IRQ(irq)) {
3870 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3871 			ioapic);
3872 		return -EINVAL;
3873 	}
3874 
3875 	if (dev)
3876 		node = dev_to_node(dev);
3877 	else
3878 		node = cpu_to_node(boot_cpu_id);
3879 
3880 	desc = irq_to_desc_alloc_node(irq, node);
3881 	if (!desc) {
3882 		printk(KERN_INFO "can not get irq_desc %d\n", irq);
3883 		return 0;
3884 	}
3885 
3886 	pin = irq_attr->ioapic_pin;
3887 	trigger = irq_attr->trigger;
3888 	polarity = irq_attr->polarity;
3889 
3890 	/*
3891 	 * IRQs < 16 are already in the irq_2_pin[] map
3892 	 */
3893 	if (irq >= nr_legacy_irqs) {
3894 		cfg = desc->chip_data;
3895 		if (add_pin_to_irq_node_nopanic(cfg, node, ioapic, pin)) {
3896 			printk(KERN_INFO "can not add pin %d for irq %d\n",
3897 				pin, irq);
3898 			return 0;
3899 		}
3900 	}
3901 
3902 	setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity);
3903 
3904 	return 0;
3905 }
3906 
3907 int io_apic_set_pci_routing(struct device *dev, int irq,
3908 				struct io_apic_irq_attr *irq_attr)
3909 {
3910 	int ioapic, pin;
3911 	/*
3912 	 * Avoid pin reprogramming.  PRTs typically include entries
3913 	 * with redundant pin->gsi mappings (but unique PCI devices);
3914 	 * we only program the IOAPIC on the first.
3915 	 */
3916 	ioapic = irq_attr->ioapic;
3917 	pin = irq_attr->ioapic_pin;
3918 	if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3919 		pr_debug("Pin %d-%d already programmed\n",
3920 			 mp_ioapics[ioapic].apicid, pin);
3921 		return 0;
3922 	}
3923 	set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3924 
3925 	return __io_apic_set_pci_routing(dev, irq, irq_attr);
3926 }
3927 
3928 u8 __init io_apic_unique_id(u8 id)
3929 {
3930 #ifdef CONFIG_X86_32
3931 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3932 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3933 		return io_apic_get_unique_id(nr_ioapics, id);
3934 	else
3935 		return id;
3936 #else
3937 	int i;
3938 	DECLARE_BITMAP(used, 256);
3939 
3940 	bitmap_zero(used, 256);
3941 	for (i = 0; i < nr_ioapics; i++) {
3942 		struct mpc_ioapic *ia = &mp_ioapics[i];
3943 		__set_bit(ia->apicid, used);
3944 	}
3945 	if (!test_bit(id, used))
3946 		return id;
3947 	return find_first_zero_bit(used, 256);
3948 #endif
3949 }
3950 
3951 #ifdef CONFIG_X86_32
3952 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3953 {
3954 	union IO_APIC_reg_00 reg_00;
3955 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3956 	physid_mask_t tmp;
3957 	unsigned long flags;
3958 	int i = 0;
3959 
3960 	/*
3961 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3962 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3963 	 * supports up to 16 on one shared APIC bus.
3964 	 *
3965 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3966 	 *      advantage of new APIC bus architecture.
3967 	 */
3968 
3969 	if (physids_empty(apic_id_map))
3970 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3971 
3972 	spin_lock_irqsave(&ioapic_lock, flags);
3973 	reg_00.raw = io_apic_read(ioapic, 0);
3974 	spin_unlock_irqrestore(&ioapic_lock, flags);
3975 
3976 	if (apic_id >= get_physical_broadcast()) {
3977 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3978 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3979 		apic_id = reg_00.bits.ID;
3980 	}
3981 
3982 	/*
3983 	 * Every APIC in a system must have a unique ID or we get lots of nice
3984 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3985 	 */
3986 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3987 
3988 		for (i = 0; i < get_physical_broadcast(); i++) {
3989 			if (!apic->check_apicid_used(&apic_id_map, i))
3990 				break;
3991 		}
3992 
3993 		if (i == get_physical_broadcast())
3994 			panic("Max apic_id exceeded!\n");
3995 
3996 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3997 			"trying %d\n", ioapic, apic_id, i);
3998 
3999 		apic_id = i;
4000 	}
4001 
4002 	apic->apicid_to_cpu_present(apic_id, &tmp);
4003 	physids_or(apic_id_map, apic_id_map, tmp);
4004 
4005 	if (reg_00.bits.ID != apic_id) {
4006 		reg_00.bits.ID = apic_id;
4007 
4008 		spin_lock_irqsave(&ioapic_lock, flags);
4009 		io_apic_write(ioapic, 0, reg_00.raw);
4010 		reg_00.raw = io_apic_read(ioapic, 0);
4011 		spin_unlock_irqrestore(&ioapic_lock, flags);
4012 
4013 		/* Sanity check */
4014 		if (reg_00.bits.ID != apic_id) {
4015 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
4016 			return -1;
4017 		}
4018 	}
4019 
4020 	apic_printk(APIC_VERBOSE, KERN_INFO
4021 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
4022 
4023 	return apic_id;
4024 }
4025 #endif
4026 
4027 int __init io_apic_get_version(int ioapic)
4028 {
4029 	union IO_APIC_reg_01	reg_01;
4030 	unsigned long flags;
4031 
4032 	spin_lock_irqsave(&ioapic_lock, flags);
4033 	reg_01.raw = io_apic_read(ioapic, 1);
4034 	spin_unlock_irqrestore(&ioapic_lock, flags);
4035 
4036 	return reg_01.bits.version;
4037 }
4038 
4039 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4040 {
4041 	int i;
4042 
4043 	if (skip_ioapic_setup)
4044 		return -1;
4045 
4046 	for (i = 0; i < mp_irq_entries; i++)
4047 		if (mp_irqs[i].irqtype == mp_INT &&
4048 		    mp_irqs[i].srcbusirq == bus_irq)
4049 			break;
4050 	if (i >= mp_irq_entries)
4051 		return -1;
4052 
4053 	*trigger = irq_trigger(i);
4054 	*polarity = irq_polarity(i);
4055 	return 0;
4056 }
4057 
4058 /*
4059  * This function currently is only a helper for the i386 smp boot process where
4060  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4061  * so mask in all cases should simply be apic->target_cpus()
4062  */
4063 #ifdef CONFIG_SMP
4064 void __init setup_ioapic_dest(void)
4065 {
4066 	int pin, ioapic = 0, irq, irq_entry;
4067 	struct irq_desc *desc;
4068 	const struct cpumask *mask;
4069 
4070 	if (skip_ioapic_setup == 1)
4071 		return;
4072 
4073 #ifdef CONFIG_ACPI
4074 	if (!acpi_disabled && acpi_ioapic) {
4075 		ioapic = mp_find_ioapic(0);
4076 		if (ioapic < 0)
4077 			ioapic = 0;
4078 	}
4079 #endif
4080 
4081 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4082 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4083 		if (irq_entry == -1)
4084 			continue;
4085 		irq = pin_2_irq(irq_entry, ioapic, pin);
4086 
4087 		desc = irq_to_desc(irq);
4088 
4089 		/*
4090 		 * Honour affinities which have been set in early boot
4091 		 */
4092 		if (desc->status &
4093 		    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4094 			mask = desc->affinity;
4095 		else
4096 			mask = apic->target_cpus();
4097 
4098 		if (intr_remapping_enabled)
4099 			set_ir_ioapic_affinity_irq_desc(desc, mask);
4100 		else
4101 			set_ioapic_affinity_irq_desc(desc, mask);
4102 	}
4103 
4104 }
4105 #endif
4106 
4107 #define IOAPIC_RESOURCE_NAME_SIZE 11
4108 
4109 static struct resource *ioapic_resources;
4110 
4111 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
4112 {
4113 	unsigned long n;
4114 	struct resource *res;
4115 	char *mem;
4116 	int i;
4117 
4118 	if (nr_ioapics <= 0)
4119 		return NULL;
4120 
4121 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4122 	n *= nr_ioapics;
4123 
4124 	mem = alloc_bootmem(n);
4125 	res = (void *)mem;
4126 
4127 	mem += sizeof(struct resource) * nr_ioapics;
4128 
4129 	for (i = 0; i < nr_ioapics; i++) {
4130 		res[i].name = mem;
4131 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4132 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
4133 		mem += IOAPIC_RESOURCE_NAME_SIZE;
4134 	}
4135 
4136 	ioapic_resources = res;
4137 
4138 	return res;
4139 }
4140 
4141 void __init ioapic_init_mappings(void)
4142 {
4143 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4144 	struct resource *ioapic_res;
4145 	int i;
4146 
4147 	ioapic_res = ioapic_setup_resources(nr_ioapics);
4148 	for (i = 0; i < nr_ioapics; i++) {
4149 		if (smp_found_config) {
4150 			ioapic_phys = mp_ioapics[i].apicaddr;
4151 #ifdef CONFIG_X86_32
4152 			if (!ioapic_phys) {
4153 				printk(KERN_ERR
4154 				       "WARNING: bogus zero IO-APIC "
4155 				       "address found in MPTABLE, "
4156 				       "disabling IO/APIC support!\n");
4157 				smp_found_config = 0;
4158 				skip_ioapic_setup = 1;
4159 				goto fake_ioapic_page;
4160 			}
4161 #endif
4162 		} else {
4163 #ifdef CONFIG_X86_32
4164 fake_ioapic_page:
4165 #endif
4166 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
4167 			ioapic_phys = __pa(ioapic_phys);
4168 		}
4169 		set_fixmap_nocache(idx, ioapic_phys);
4170 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
4171 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
4172 			ioapic_phys);
4173 		idx++;
4174 
4175 		ioapic_res->start = ioapic_phys;
4176 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
4177 		ioapic_res++;
4178 	}
4179 }
4180 
4181 void __init ioapic_insert_resources(void)
4182 {
4183 	int i;
4184 	struct resource *r = ioapic_resources;
4185 
4186 	if (!r) {
4187 		if (nr_ioapics > 0)
4188 			printk(KERN_ERR
4189 				"IO APIC resources couldn't be allocated.\n");
4190 		return;
4191 	}
4192 
4193 	for (i = 0; i < nr_ioapics; i++) {
4194 		insert_resource(&iomem_resource, r);
4195 		r++;
4196 	}
4197 }
4198 
4199 int mp_find_ioapic(int gsi)
4200 {
4201 	int i = 0;
4202 
4203 	/* Find the IOAPIC that manages this GSI. */
4204 	for (i = 0; i < nr_ioapics; i++) {
4205 		if ((gsi >= mp_gsi_routing[i].gsi_base)
4206 		    && (gsi <= mp_gsi_routing[i].gsi_end))
4207 			return i;
4208 	}
4209 
4210 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4211 	return -1;
4212 }
4213 
4214 int mp_find_ioapic_pin(int ioapic, int gsi)
4215 {
4216 	if (WARN_ON(ioapic == -1))
4217 		return -1;
4218 	if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
4219 		return -1;
4220 
4221 	return gsi - mp_gsi_routing[ioapic].gsi_base;
4222 }
4223 
4224 static int bad_ioapic(unsigned long address)
4225 {
4226 	if (nr_ioapics >= MAX_IO_APICS) {
4227 		printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4228 		       "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4229 		return 1;
4230 	}
4231 	if (!address) {
4232 		printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4233 		       " found in table, skipping!\n");
4234 		return 1;
4235 	}
4236 	return 0;
4237 }
4238 
4239 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4240 {
4241 	int idx = 0;
4242 
4243 	if (bad_ioapic(address))
4244 		return;
4245 
4246 	idx = nr_ioapics;
4247 
4248 	mp_ioapics[idx].type = MP_IOAPIC;
4249 	mp_ioapics[idx].flags = MPC_APIC_USABLE;
4250 	mp_ioapics[idx].apicaddr = address;
4251 
4252 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4253 	mp_ioapics[idx].apicid = io_apic_unique_id(id);
4254 	mp_ioapics[idx].apicver = io_apic_get_version(idx);
4255 
4256 	/*
4257 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4258 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4259 	 */
4260 	mp_gsi_routing[idx].gsi_base = gsi_base;
4261 	mp_gsi_routing[idx].gsi_end = gsi_base +
4262 	    io_apic_get_redir_entries(idx);
4263 
4264 	printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4265 	       "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4266 	       mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4267 	       mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4268 
4269 	nr_ioapics++;
4270 }
4271