1 /* 2 * Intel IO-APIC support for multi-Pentium hosts. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * 6 * Many thanks to Stig Venaas for trying out countless experimental 7 * patches and reporting/debugging problems patiently! 8 * 9 * (c) 1999, Multiple IO-APIC support, developed by 10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 12 * further tested and cleaned up by Zach Brown <zab@redhat.com> 13 * and Ingo Molnar <mingo@redhat.com> 14 * 15 * Fixes 16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 17 * thanks to Eric Gilmore 18 * and Rolf G. Tews 19 * for testing these extensively 20 * Paul Diefenbaugh : Added full ACPI support 21 */ 22 23 #include <linux/mm.h> 24 #include <linux/interrupt.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/sched.h> 28 #include <linux/pci.h> 29 #include <linux/mc146818rtc.h> 30 #include <linux/compiler.h> 31 #include <linux/acpi.h> 32 #include <linux/module.h> 33 #include <linux/sysdev.h> 34 #include <linux/msi.h> 35 #include <linux/htirq.h> 36 #include <linux/freezer.h> 37 #include <linux/kthread.h> 38 #include <linux/jiffies.h> /* time_after() */ 39 #ifdef CONFIG_ACPI 40 #include <acpi/acpi_bus.h> 41 #endif 42 #include <linux/bootmem.h> 43 #include <linux/dmar.h> 44 #include <linux/hpet.h> 45 46 #include <asm/idle.h> 47 #include <asm/io.h> 48 #include <asm/smp.h> 49 #include <asm/cpu.h> 50 #include <asm/desc.h> 51 #include <asm/proto.h> 52 #include <asm/acpi.h> 53 #include <asm/dma.h> 54 #include <asm/timer.h> 55 #include <asm/i8259.h> 56 #include <asm/nmi.h> 57 #include <asm/msidef.h> 58 #include <asm/hypertransport.h> 59 #include <asm/setup.h> 60 #include <asm/irq_remapping.h> 61 #include <asm/hpet.h> 62 #include <asm/hw_irq.h> 63 64 #include <asm/apic.h> 65 66 #define __apicdebuginit(type) static type __init 67 #define for_each_irq_pin(entry, head) \ 68 for (entry = head; entry; entry = entry->next) 69 70 /* 71 * Is the SiS APIC rmw bug present ? 72 * -1 = don't know, 0 = no, 1 = yes 73 */ 74 int sis_apic_bug = -1; 75 76 static DEFINE_SPINLOCK(ioapic_lock); 77 static DEFINE_SPINLOCK(vector_lock); 78 79 /* 80 * # of IRQ routing registers 81 */ 82 int nr_ioapic_registers[MAX_IO_APICS]; 83 84 /* I/O APIC entries */ 85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS]; 86 int nr_ioapics; 87 88 /* IO APIC gsi routing info */ 89 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS]; 90 91 /* MP IRQ source entries */ 92 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 93 94 /* # of MP IRQ source entries */ 95 int mp_irq_entries; 96 97 /* Number of legacy interrupts */ 98 static int nr_legacy_irqs __read_mostly = NR_IRQS_LEGACY; 99 /* GSI interrupts */ 100 static int nr_irqs_gsi = NR_IRQS_LEGACY; 101 102 #if defined (CONFIG_MCA) || defined (CONFIG_EISA) 103 int mp_bus_id_to_type[MAX_MP_BUSSES]; 104 #endif 105 106 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 107 108 int skip_ioapic_setup; 109 110 void arch_disable_smp_support(void) 111 { 112 #ifdef CONFIG_PCI 113 noioapicquirk = 1; 114 noioapicreroute = -1; 115 #endif 116 skip_ioapic_setup = 1; 117 } 118 119 static int __init parse_noapic(char *str) 120 { 121 /* disable IO-APIC */ 122 arch_disable_smp_support(); 123 return 0; 124 } 125 early_param("noapic", parse_noapic); 126 127 struct irq_pin_list { 128 int apic, pin; 129 struct irq_pin_list *next; 130 }; 131 132 static struct irq_pin_list *get_one_free_irq_2_pin(int node) 133 { 134 struct irq_pin_list *pin; 135 136 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node); 137 138 return pin; 139 } 140 141 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ 142 #ifdef CONFIG_SPARSE_IRQ 143 static struct irq_cfg irq_cfgx[] = { 144 #else 145 static struct irq_cfg irq_cfgx[NR_IRQS] = { 146 #endif 147 [0] = { .vector = IRQ0_VECTOR, }, 148 [1] = { .vector = IRQ1_VECTOR, }, 149 [2] = { .vector = IRQ2_VECTOR, }, 150 [3] = { .vector = IRQ3_VECTOR, }, 151 [4] = { .vector = IRQ4_VECTOR, }, 152 [5] = { .vector = IRQ5_VECTOR, }, 153 [6] = { .vector = IRQ6_VECTOR, }, 154 [7] = { .vector = IRQ7_VECTOR, }, 155 [8] = { .vector = IRQ8_VECTOR, }, 156 [9] = { .vector = IRQ9_VECTOR, }, 157 [10] = { .vector = IRQ10_VECTOR, }, 158 [11] = { .vector = IRQ11_VECTOR, }, 159 [12] = { .vector = IRQ12_VECTOR, }, 160 [13] = { .vector = IRQ13_VECTOR, }, 161 [14] = { .vector = IRQ14_VECTOR, }, 162 [15] = { .vector = IRQ15_VECTOR, }, 163 }; 164 165 void __init io_apic_disable_legacy(void) 166 { 167 nr_legacy_irqs = 0; 168 nr_irqs_gsi = 0; 169 } 170 171 int __init arch_early_irq_init(void) 172 { 173 struct irq_cfg *cfg; 174 struct irq_desc *desc; 175 int count; 176 int node; 177 int i; 178 179 cfg = irq_cfgx; 180 count = ARRAY_SIZE(irq_cfgx); 181 node= cpu_to_node(boot_cpu_id); 182 183 for (i = 0; i < count; i++) { 184 desc = irq_to_desc(i); 185 desc->chip_data = &cfg[i]; 186 zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node); 187 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node); 188 if (i < nr_legacy_irqs) 189 cpumask_setall(cfg[i].domain); 190 } 191 192 return 0; 193 } 194 195 #ifdef CONFIG_SPARSE_IRQ 196 struct irq_cfg *irq_cfg(unsigned int irq) 197 { 198 struct irq_cfg *cfg = NULL; 199 struct irq_desc *desc; 200 201 desc = irq_to_desc(irq); 202 if (desc) 203 cfg = desc->chip_data; 204 205 return cfg; 206 } 207 208 static struct irq_cfg *get_one_free_irq_cfg(int node) 209 { 210 struct irq_cfg *cfg; 211 212 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node); 213 if (cfg) { 214 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) { 215 kfree(cfg); 216 cfg = NULL; 217 } else if (!zalloc_cpumask_var_node(&cfg->old_domain, 218 GFP_ATOMIC, node)) { 219 free_cpumask_var(cfg->domain); 220 kfree(cfg); 221 cfg = NULL; 222 } 223 } 224 225 return cfg; 226 } 227 228 int arch_init_chip_data(struct irq_desc *desc, int node) 229 { 230 struct irq_cfg *cfg; 231 232 cfg = desc->chip_data; 233 if (!cfg) { 234 desc->chip_data = get_one_free_irq_cfg(node); 235 if (!desc->chip_data) { 236 printk(KERN_ERR "can not alloc irq_cfg\n"); 237 BUG_ON(1); 238 } 239 } 240 241 return 0; 242 } 243 244 /* for move_irq_desc */ 245 static void 246 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node) 247 { 248 struct irq_pin_list *old_entry, *head, *tail, *entry; 249 250 cfg->irq_2_pin = NULL; 251 old_entry = old_cfg->irq_2_pin; 252 if (!old_entry) 253 return; 254 255 entry = get_one_free_irq_2_pin(node); 256 if (!entry) 257 return; 258 259 entry->apic = old_entry->apic; 260 entry->pin = old_entry->pin; 261 head = entry; 262 tail = entry; 263 old_entry = old_entry->next; 264 while (old_entry) { 265 entry = get_one_free_irq_2_pin(node); 266 if (!entry) { 267 entry = head; 268 while (entry) { 269 head = entry->next; 270 kfree(entry); 271 entry = head; 272 } 273 /* still use the old one */ 274 return; 275 } 276 entry->apic = old_entry->apic; 277 entry->pin = old_entry->pin; 278 tail->next = entry; 279 tail = entry; 280 old_entry = old_entry->next; 281 } 282 283 tail->next = NULL; 284 cfg->irq_2_pin = head; 285 } 286 287 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg) 288 { 289 struct irq_pin_list *entry, *next; 290 291 if (old_cfg->irq_2_pin == cfg->irq_2_pin) 292 return; 293 294 entry = old_cfg->irq_2_pin; 295 296 while (entry) { 297 next = entry->next; 298 kfree(entry); 299 entry = next; 300 } 301 old_cfg->irq_2_pin = NULL; 302 } 303 304 void arch_init_copy_chip_data(struct irq_desc *old_desc, 305 struct irq_desc *desc, int node) 306 { 307 struct irq_cfg *cfg; 308 struct irq_cfg *old_cfg; 309 310 cfg = get_one_free_irq_cfg(node); 311 312 if (!cfg) 313 return; 314 315 desc->chip_data = cfg; 316 317 old_cfg = old_desc->chip_data; 318 319 memcpy(cfg, old_cfg, sizeof(struct irq_cfg)); 320 321 init_copy_irq_2_pin(old_cfg, cfg, node); 322 } 323 324 static void free_irq_cfg(struct irq_cfg *old_cfg) 325 { 326 kfree(old_cfg); 327 } 328 329 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc) 330 { 331 struct irq_cfg *old_cfg, *cfg; 332 333 old_cfg = old_desc->chip_data; 334 cfg = desc->chip_data; 335 336 if (old_cfg == cfg) 337 return; 338 339 if (old_cfg) { 340 free_irq_2_pin(old_cfg, cfg); 341 free_irq_cfg(old_cfg); 342 old_desc->chip_data = NULL; 343 } 344 } 345 /* end for move_irq_desc */ 346 347 #else 348 struct irq_cfg *irq_cfg(unsigned int irq) 349 { 350 return irq < nr_irqs ? irq_cfgx + irq : NULL; 351 } 352 353 #endif 354 355 struct io_apic { 356 unsigned int index; 357 unsigned int unused[3]; 358 unsigned int data; 359 unsigned int unused2[11]; 360 unsigned int eoi; 361 }; 362 363 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 364 { 365 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 366 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK); 367 } 368 369 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 370 { 371 struct io_apic __iomem *io_apic = io_apic_base(apic); 372 writel(vector, &io_apic->eoi); 373 } 374 375 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) 376 { 377 struct io_apic __iomem *io_apic = io_apic_base(apic); 378 writel(reg, &io_apic->index); 379 return readl(&io_apic->data); 380 } 381 382 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) 383 { 384 struct io_apic __iomem *io_apic = io_apic_base(apic); 385 writel(reg, &io_apic->index); 386 writel(value, &io_apic->data); 387 } 388 389 /* 390 * Re-write a value: to be used for read-modify-write 391 * cycles where the read already set up the index register. 392 * 393 * Older SiS APIC requires we rewrite the index register 394 */ 395 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value) 396 { 397 struct io_apic __iomem *io_apic = io_apic_base(apic); 398 399 if (sis_apic_bug) 400 writel(reg, &io_apic->index); 401 writel(value, &io_apic->data); 402 } 403 404 static bool io_apic_level_ack_pending(struct irq_cfg *cfg) 405 { 406 struct irq_pin_list *entry; 407 unsigned long flags; 408 409 spin_lock_irqsave(&ioapic_lock, flags); 410 for_each_irq_pin(entry, cfg->irq_2_pin) { 411 unsigned int reg; 412 int pin; 413 414 pin = entry->pin; 415 reg = io_apic_read(entry->apic, 0x10 + pin*2); 416 /* Is the remote IRR bit set? */ 417 if (reg & IO_APIC_REDIR_REMOTE_IRR) { 418 spin_unlock_irqrestore(&ioapic_lock, flags); 419 return true; 420 } 421 } 422 spin_unlock_irqrestore(&ioapic_lock, flags); 423 424 return false; 425 } 426 427 union entry_union { 428 struct { u32 w1, w2; }; 429 struct IO_APIC_route_entry entry; 430 }; 431 432 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 433 { 434 union entry_union eu; 435 unsigned long flags; 436 spin_lock_irqsave(&ioapic_lock, flags); 437 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); 438 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); 439 spin_unlock_irqrestore(&ioapic_lock, flags); 440 return eu.entry; 441 } 442 443 /* 444 * When we write a new IO APIC routing entry, we need to write the high 445 * word first! If the mask bit in the low word is clear, we will enable 446 * the interrupt, and we need to make sure the entry is fully populated 447 * before that happens. 448 */ 449 static void 450 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 451 { 452 union entry_union eu = {{0, 0}}; 453 454 eu.entry = e; 455 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 456 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 457 } 458 459 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 460 { 461 unsigned long flags; 462 spin_lock_irqsave(&ioapic_lock, flags); 463 __ioapic_write_entry(apic, pin, e); 464 spin_unlock_irqrestore(&ioapic_lock, flags); 465 } 466 467 /* 468 * When we mask an IO APIC routing entry, we need to write the low 469 * word first, in order to set the mask bit before we change the 470 * high bits! 471 */ 472 static void ioapic_mask_entry(int apic, int pin) 473 { 474 unsigned long flags; 475 union entry_union eu = { .entry.mask = 1 }; 476 477 spin_lock_irqsave(&ioapic_lock, flags); 478 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 479 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 480 spin_unlock_irqrestore(&ioapic_lock, flags); 481 } 482 483 /* 484 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 485 * shared ISA-space IRQs, so we have to support them. We are super 486 * fast in the common case, and fast for shared ISA-space IRQs. 487 */ 488 static int 489 add_pin_to_irq_node_nopanic(struct irq_cfg *cfg, int node, int apic, int pin) 490 { 491 struct irq_pin_list **last, *entry; 492 493 /* don't allow duplicates */ 494 last = &cfg->irq_2_pin; 495 for_each_irq_pin(entry, cfg->irq_2_pin) { 496 if (entry->apic == apic && entry->pin == pin) 497 return 0; 498 last = &entry->next; 499 } 500 501 entry = get_one_free_irq_2_pin(node); 502 if (!entry) { 503 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n", 504 node, apic, pin); 505 return -ENOMEM; 506 } 507 entry->apic = apic; 508 entry->pin = pin; 509 510 *last = entry; 511 return 0; 512 } 513 514 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin) 515 { 516 if (add_pin_to_irq_node_nopanic(cfg, node, apic, pin)) 517 panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); 518 } 519 520 /* 521 * Reroute an IRQ to a different pin. 522 */ 523 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node, 524 int oldapic, int oldpin, 525 int newapic, int newpin) 526 { 527 struct irq_pin_list *entry; 528 529 for_each_irq_pin(entry, cfg->irq_2_pin) { 530 if (entry->apic == oldapic && entry->pin == oldpin) { 531 entry->apic = newapic; 532 entry->pin = newpin; 533 /* every one is different, right? */ 534 return; 535 } 536 } 537 538 /* old apic/pin didn't exist, so just add new ones */ 539 add_pin_to_irq_node(cfg, node, newapic, newpin); 540 } 541 542 static void __io_apic_modify_irq(struct irq_pin_list *entry, 543 int mask_and, int mask_or, 544 void (*final)(struct irq_pin_list *entry)) 545 { 546 unsigned int reg, pin; 547 548 pin = entry->pin; 549 reg = io_apic_read(entry->apic, 0x10 + pin * 2); 550 reg &= mask_and; 551 reg |= mask_or; 552 io_apic_modify(entry->apic, 0x10 + pin * 2, reg); 553 if (final) 554 final(entry); 555 } 556 557 static void io_apic_modify_irq(struct irq_cfg *cfg, 558 int mask_and, int mask_or, 559 void (*final)(struct irq_pin_list *entry)) 560 { 561 struct irq_pin_list *entry; 562 563 for_each_irq_pin(entry, cfg->irq_2_pin) 564 __io_apic_modify_irq(entry, mask_and, mask_or, final); 565 } 566 567 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry) 568 { 569 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER, 570 IO_APIC_REDIR_MASKED, NULL); 571 } 572 573 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry) 574 { 575 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED, 576 IO_APIC_REDIR_LEVEL_TRIGGER, NULL); 577 } 578 579 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg) 580 { 581 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL); 582 } 583 584 static void io_apic_sync(struct irq_pin_list *entry) 585 { 586 /* 587 * Synchronize the IO-APIC and the CPU by doing 588 * a dummy read from the IO-APIC 589 */ 590 struct io_apic __iomem *io_apic; 591 io_apic = io_apic_base(entry->apic); 592 readl(&io_apic->data); 593 } 594 595 static void __mask_IO_APIC_irq(struct irq_cfg *cfg) 596 { 597 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync); 598 } 599 600 static void mask_IO_APIC_irq_desc(struct irq_desc *desc) 601 { 602 struct irq_cfg *cfg = desc->chip_data; 603 unsigned long flags; 604 605 BUG_ON(!cfg); 606 607 spin_lock_irqsave(&ioapic_lock, flags); 608 __mask_IO_APIC_irq(cfg); 609 spin_unlock_irqrestore(&ioapic_lock, flags); 610 } 611 612 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc) 613 { 614 struct irq_cfg *cfg = desc->chip_data; 615 unsigned long flags; 616 617 spin_lock_irqsave(&ioapic_lock, flags); 618 __unmask_IO_APIC_irq(cfg); 619 spin_unlock_irqrestore(&ioapic_lock, flags); 620 } 621 622 static void mask_IO_APIC_irq(unsigned int irq) 623 { 624 struct irq_desc *desc = irq_to_desc(irq); 625 626 mask_IO_APIC_irq_desc(desc); 627 } 628 static void unmask_IO_APIC_irq(unsigned int irq) 629 { 630 struct irq_desc *desc = irq_to_desc(irq); 631 632 unmask_IO_APIC_irq_desc(desc); 633 } 634 635 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 636 { 637 struct IO_APIC_route_entry entry; 638 639 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 640 entry = ioapic_read_entry(apic, pin); 641 if (entry.delivery_mode == dest_SMI) 642 return; 643 /* 644 * Disable it in the IO-APIC irq-routing table: 645 */ 646 ioapic_mask_entry(apic, pin); 647 } 648 649 static void clear_IO_APIC (void) 650 { 651 int apic, pin; 652 653 for (apic = 0; apic < nr_ioapics; apic++) 654 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 655 clear_IO_APIC_pin(apic, pin); 656 } 657 658 #ifdef CONFIG_X86_32 659 /* 660 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 661 * specific CPU-side IRQs. 662 */ 663 664 #define MAX_PIRQS 8 665 static int pirq_entries[MAX_PIRQS] = { 666 [0 ... MAX_PIRQS - 1] = -1 667 }; 668 669 static int __init ioapic_pirq_setup(char *str) 670 { 671 int i, max; 672 int ints[MAX_PIRQS+1]; 673 674 get_options(str, ARRAY_SIZE(ints), ints); 675 676 apic_printk(APIC_VERBOSE, KERN_INFO 677 "PIRQ redirection, working around broken MP-BIOS.\n"); 678 max = MAX_PIRQS; 679 if (ints[0] < MAX_PIRQS) 680 max = ints[0]; 681 682 for (i = 0; i < max; i++) { 683 apic_printk(APIC_VERBOSE, KERN_DEBUG 684 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 685 /* 686 * PIRQs are mapped upside down, usually. 687 */ 688 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 689 } 690 return 1; 691 } 692 693 __setup("pirq=", ioapic_pirq_setup); 694 #endif /* CONFIG_X86_32 */ 695 696 struct IO_APIC_route_entry **alloc_ioapic_entries(void) 697 { 698 int apic; 699 struct IO_APIC_route_entry **ioapic_entries; 700 701 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics, 702 GFP_ATOMIC); 703 if (!ioapic_entries) 704 return 0; 705 706 for (apic = 0; apic < nr_ioapics; apic++) { 707 ioapic_entries[apic] = 708 kzalloc(sizeof(struct IO_APIC_route_entry) * 709 nr_ioapic_registers[apic], GFP_ATOMIC); 710 if (!ioapic_entries[apic]) 711 goto nomem; 712 } 713 714 return ioapic_entries; 715 716 nomem: 717 while (--apic >= 0) 718 kfree(ioapic_entries[apic]); 719 kfree(ioapic_entries); 720 721 return 0; 722 } 723 724 /* 725 * Saves all the IO-APIC RTE's 726 */ 727 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 728 { 729 int apic, pin; 730 731 if (!ioapic_entries) 732 return -ENOMEM; 733 734 for (apic = 0; apic < nr_ioapics; apic++) { 735 if (!ioapic_entries[apic]) 736 return -ENOMEM; 737 738 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 739 ioapic_entries[apic][pin] = 740 ioapic_read_entry(apic, pin); 741 } 742 743 return 0; 744 } 745 746 /* 747 * Mask all IO APIC entries. 748 */ 749 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 750 { 751 int apic, pin; 752 753 if (!ioapic_entries) 754 return; 755 756 for (apic = 0; apic < nr_ioapics; apic++) { 757 if (!ioapic_entries[apic]) 758 break; 759 760 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 761 struct IO_APIC_route_entry entry; 762 763 entry = ioapic_entries[apic][pin]; 764 if (!entry.mask) { 765 entry.mask = 1; 766 ioapic_write_entry(apic, pin, entry); 767 } 768 } 769 } 770 } 771 772 /* 773 * Restore IO APIC entries which was saved in ioapic_entries. 774 */ 775 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 776 { 777 int apic, pin; 778 779 if (!ioapic_entries) 780 return -ENOMEM; 781 782 for (apic = 0; apic < nr_ioapics; apic++) { 783 if (!ioapic_entries[apic]) 784 return -ENOMEM; 785 786 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 787 ioapic_write_entry(apic, pin, 788 ioapic_entries[apic][pin]); 789 } 790 return 0; 791 } 792 793 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries) 794 { 795 int apic; 796 797 for (apic = 0; apic < nr_ioapics; apic++) 798 kfree(ioapic_entries[apic]); 799 800 kfree(ioapic_entries); 801 } 802 803 /* 804 * Find the IRQ entry number of a certain pin. 805 */ 806 static int find_irq_entry(int apic, int pin, int type) 807 { 808 int i; 809 810 for (i = 0; i < mp_irq_entries; i++) 811 if (mp_irqs[i].irqtype == type && 812 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid || 813 mp_irqs[i].dstapic == MP_APIC_ALL) && 814 mp_irqs[i].dstirq == pin) 815 return i; 816 817 return -1; 818 } 819 820 /* 821 * Find the pin to which IRQ[irq] (ISA) is connected 822 */ 823 static int __init find_isa_irq_pin(int irq, int type) 824 { 825 int i; 826 827 for (i = 0; i < mp_irq_entries; i++) { 828 int lbus = mp_irqs[i].srcbus; 829 830 if (test_bit(lbus, mp_bus_not_pci) && 831 (mp_irqs[i].irqtype == type) && 832 (mp_irqs[i].srcbusirq == irq)) 833 834 return mp_irqs[i].dstirq; 835 } 836 return -1; 837 } 838 839 static int __init find_isa_irq_apic(int irq, int type) 840 { 841 int i; 842 843 for (i = 0; i < mp_irq_entries; i++) { 844 int lbus = mp_irqs[i].srcbus; 845 846 if (test_bit(lbus, mp_bus_not_pci) && 847 (mp_irqs[i].irqtype == type) && 848 (mp_irqs[i].srcbusirq == irq)) 849 break; 850 } 851 if (i < mp_irq_entries) { 852 int apic; 853 for(apic = 0; apic < nr_ioapics; apic++) { 854 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic) 855 return apic; 856 } 857 } 858 859 return -1; 860 } 861 862 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 863 /* 864 * EISA Edge/Level control register, ELCR 865 */ 866 static int EISA_ELCR(unsigned int irq) 867 { 868 if (irq < nr_legacy_irqs) { 869 unsigned int port = 0x4d0 + (irq >> 3); 870 return (inb(port) >> (irq & 7)) & 1; 871 } 872 apic_printk(APIC_VERBOSE, KERN_INFO 873 "Broken MPtable reports ISA irq %d\n", irq); 874 return 0; 875 } 876 877 #endif 878 879 /* ISA interrupts are always polarity zero edge triggered, 880 * when listed as conforming in the MP table. */ 881 882 #define default_ISA_trigger(idx) (0) 883 #define default_ISA_polarity(idx) (0) 884 885 /* EISA interrupts are always polarity zero and can be edge or level 886 * trigger depending on the ELCR value. If an interrupt is listed as 887 * EISA conforming in the MP table, that means its trigger type must 888 * be read in from the ELCR */ 889 890 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq)) 891 #define default_EISA_polarity(idx) default_ISA_polarity(idx) 892 893 /* PCI interrupts are always polarity one level triggered, 894 * when listed as conforming in the MP table. */ 895 896 #define default_PCI_trigger(idx) (1) 897 #define default_PCI_polarity(idx) (1) 898 899 /* MCA interrupts are always polarity zero level triggered, 900 * when listed as conforming in the MP table. */ 901 902 #define default_MCA_trigger(idx) (1) 903 #define default_MCA_polarity(idx) default_ISA_polarity(idx) 904 905 static int MPBIOS_polarity(int idx) 906 { 907 int bus = mp_irqs[idx].srcbus; 908 int polarity; 909 910 /* 911 * Determine IRQ line polarity (high active or low active): 912 */ 913 switch (mp_irqs[idx].irqflag & 3) 914 { 915 case 0: /* conforms, ie. bus-type dependent polarity */ 916 if (test_bit(bus, mp_bus_not_pci)) 917 polarity = default_ISA_polarity(idx); 918 else 919 polarity = default_PCI_polarity(idx); 920 break; 921 case 1: /* high active */ 922 { 923 polarity = 0; 924 break; 925 } 926 case 2: /* reserved */ 927 { 928 printk(KERN_WARNING "broken BIOS!!\n"); 929 polarity = 1; 930 break; 931 } 932 case 3: /* low active */ 933 { 934 polarity = 1; 935 break; 936 } 937 default: /* invalid */ 938 { 939 printk(KERN_WARNING "broken BIOS!!\n"); 940 polarity = 1; 941 break; 942 } 943 } 944 return polarity; 945 } 946 947 static int MPBIOS_trigger(int idx) 948 { 949 int bus = mp_irqs[idx].srcbus; 950 int trigger; 951 952 /* 953 * Determine IRQ trigger mode (edge or level sensitive): 954 */ 955 switch ((mp_irqs[idx].irqflag>>2) & 3) 956 { 957 case 0: /* conforms, ie. bus-type dependent */ 958 if (test_bit(bus, mp_bus_not_pci)) 959 trigger = default_ISA_trigger(idx); 960 else 961 trigger = default_PCI_trigger(idx); 962 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 963 switch (mp_bus_id_to_type[bus]) { 964 case MP_BUS_ISA: /* ISA pin */ 965 { 966 /* set before the switch */ 967 break; 968 } 969 case MP_BUS_EISA: /* EISA pin */ 970 { 971 trigger = default_EISA_trigger(idx); 972 break; 973 } 974 case MP_BUS_PCI: /* PCI pin */ 975 { 976 /* set before the switch */ 977 break; 978 } 979 case MP_BUS_MCA: /* MCA pin */ 980 { 981 trigger = default_MCA_trigger(idx); 982 break; 983 } 984 default: 985 { 986 printk(KERN_WARNING "broken BIOS!!\n"); 987 trigger = 1; 988 break; 989 } 990 } 991 #endif 992 break; 993 case 1: /* edge */ 994 { 995 trigger = 0; 996 break; 997 } 998 case 2: /* reserved */ 999 { 1000 printk(KERN_WARNING "broken BIOS!!\n"); 1001 trigger = 1; 1002 break; 1003 } 1004 case 3: /* level */ 1005 { 1006 trigger = 1; 1007 break; 1008 } 1009 default: /* invalid */ 1010 { 1011 printk(KERN_WARNING "broken BIOS!!\n"); 1012 trigger = 0; 1013 break; 1014 } 1015 } 1016 return trigger; 1017 } 1018 1019 static inline int irq_polarity(int idx) 1020 { 1021 return MPBIOS_polarity(idx); 1022 } 1023 1024 static inline int irq_trigger(int idx) 1025 { 1026 return MPBIOS_trigger(idx); 1027 } 1028 1029 int (*ioapic_renumber_irq)(int ioapic, int irq); 1030 static int pin_2_irq(int idx, int apic, int pin) 1031 { 1032 int irq, i; 1033 int bus = mp_irqs[idx].srcbus; 1034 1035 /* 1036 * Debugging check, we are in big trouble if this message pops up! 1037 */ 1038 if (mp_irqs[idx].dstirq != pin) 1039 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); 1040 1041 if (test_bit(bus, mp_bus_not_pci)) { 1042 irq = mp_irqs[idx].srcbusirq; 1043 } else { 1044 /* 1045 * PCI IRQs are mapped in order 1046 */ 1047 i = irq = 0; 1048 while (i < apic) 1049 irq += nr_ioapic_registers[i++]; 1050 irq += pin; 1051 /* 1052 * For MPS mode, so far only needed by ES7000 platform 1053 */ 1054 if (ioapic_renumber_irq) 1055 irq = ioapic_renumber_irq(apic, irq); 1056 } 1057 1058 #ifdef CONFIG_X86_32 1059 /* 1060 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1061 */ 1062 if ((pin >= 16) && (pin <= 23)) { 1063 if (pirq_entries[pin-16] != -1) { 1064 if (!pirq_entries[pin-16]) { 1065 apic_printk(APIC_VERBOSE, KERN_DEBUG 1066 "disabling PIRQ%d\n", pin-16); 1067 } else { 1068 irq = pirq_entries[pin-16]; 1069 apic_printk(APIC_VERBOSE, KERN_DEBUG 1070 "using PIRQ%d -> IRQ %d\n", 1071 pin-16, irq); 1072 } 1073 } 1074 } 1075 #endif 1076 1077 return irq; 1078 } 1079 1080 /* 1081 * Find a specific PCI IRQ entry. 1082 * Not an __init, possibly needed by modules 1083 */ 1084 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin, 1085 struct io_apic_irq_attr *irq_attr) 1086 { 1087 int apic, i, best_guess = -1; 1088 1089 apic_printk(APIC_DEBUG, 1090 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1091 bus, slot, pin); 1092 if (test_bit(bus, mp_bus_not_pci)) { 1093 apic_printk(APIC_VERBOSE, 1094 "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1095 return -1; 1096 } 1097 for (i = 0; i < mp_irq_entries; i++) { 1098 int lbus = mp_irqs[i].srcbus; 1099 1100 for (apic = 0; apic < nr_ioapics; apic++) 1101 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic || 1102 mp_irqs[i].dstapic == MP_APIC_ALL) 1103 break; 1104 1105 if (!test_bit(lbus, mp_bus_not_pci) && 1106 !mp_irqs[i].irqtype && 1107 (bus == lbus) && 1108 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) { 1109 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq); 1110 1111 if (!(apic || IO_APIC_IRQ(irq))) 1112 continue; 1113 1114 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1115 set_io_apic_irq_attr(irq_attr, apic, 1116 mp_irqs[i].dstirq, 1117 irq_trigger(i), 1118 irq_polarity(i)); 1119 return irq; 1120 } 1121 /* 1122 * Use the first all-but-pin matching entry as a 1123 * best-guess fuzzy result for broken mptables. 1124 */ 1125 if (best_guess < 0) { 1126 set_io_apic_irq_attr(irq_attr, apic, 1127 mp_irqs[i].dstirq, 1128 irq_trigger(i), 1129 irq_polarity(i)); 1130 best_guess = irq; 1131 } 1132 } 1133 } 1134 return best_guess; 1135 } 1136 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1137 1138 void lock_vector_lock(void) 1139 { 1140 /* Used to the online set of cpus does not change 1141 * during assign_irq_vector. 1142 */ 1143 spin_lock(&vector_lock); 1144 } 1145 1146 void unlock_vector_lock(void) 1147 { 1148 spin_unlock(&vector_lock); 1149 } 1150 1151 static int 1152 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1153 { 1154 /* 1155 * NOTE! The local APIC isn't very good at handling 1156 * multiple interrupts at the same interrupt level. 1157 * As the interrupt level is determined by taking the 1158 * vector number and shifting that right by 4, we 1159 * want to spread these out a bit so that they don't 1160 * all fall in the same interrupt level. 1161 * 1162 * Also, we've got to be careful not to trash gate 1163 * 0x80, because int 0x80 is hm, kind of importantish. ;) 1164 */ 1165 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0; 1166 unsigned int old_vector; 1167 int cpu, err; 1168 cpumask_var_t tmp_mask; 1169 1170 if (cfg->move_in_progress) 1171 return -EBUSY; 1172 1173 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC)) 1174 return -ENOMEM; 1175 1176 old_vector = cfg->vector; 1177 if (old_vector) { 1178 cpumask_and(tmp_mask, mask, cpu_online_mask); 1179 cpumask_and(tmp_mask, cfg->domain, tmp_mask); 1180 if (!cpumask_empty(tmp_mask)) { 1181 free_cpumask_var(tmp_mask); 1182 return 0; 1183 } 1184 } 1185 1186 /* Only try and allocate irqs on cpus that are present */ 1187 err = -ENOSPC; 1188 for_each_cpu_and(cpu, mask, cpu_online_mask) { 1189 int new_cpu; 1190 int vector, offset; 1191 1192 apic->vector_allocation_domain(cpu, tmp_mask); 1193 1194 vector = current_vector; 1195 offset = current_offset; 1196 next: 1197 vector += 8; 1198 if (vector >= first_system_vector) { 1199 /* If out of vectors on large boxen, must share them. */ 1200 offset = (offset + 1) % 8; 1201 vector = FIRST_DEVICE_VECTOR + offset; 1202 } 1203 if (unlikely(current_vector == vector)) 1204 continue; 1205 1206 if (test_bit(vector, used_vectors)) 1207 goto next; 1208 1209 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1210 if (per_cpu(vector_irq, new_cpu)[vector] != -1) 1211 goto next; 1212 /* Found one! */ 1213 current_vector = vector; 1214 current_offset = offset; 1215 if (old_vector) { 1216 cfg->move_in_progress = 1; 1217 cpumask_copy(cfg->old_domain, cfg->domain); 1218 } 1219 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1220 per_cpu(vector_irq, new_cpu)[vector] = irq; 1221 cfg->vector = vector; 1222 cpumask_copy(cfg->domain, tmp_mask); 1223 err = 0; 1224 break; 1225 } 1226 free_cpumask_var(tmp_mask); 1227 return err; 1228 } 1229 1230 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1231 { 1232 int err; 1233 unsigned long flags; 1234 1235 spin_lock_irqsave(&vector_lock, flags); 1236 err = __assign_irq_vector(irq, cfg, mask); 1237 spin_unlock_irqrestore(&vector_lock, flags); 1238 return err; 1239 } 1240 1241 static void __clear_irq_vector(int irq, struct irq_cfg *cfg) 1242 { 1243 int cpu, vector; 1244 1245 BUG_ON(!cfg->vector); 1246 1247 vector = cfg->vector; 1248 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask) 1249 per_cpu(vector_irq, cpu)[vector] = -1; 1250 1251 cfg->vector = 0; 1252 cpumask_clear(cfg->domain); 1253 1254 if (likely(!cfg->move_in_progress)) 1255 return; 1256 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) { 1257 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 1258 vector++) { 1259 if (per_cpu(vector_irq, cpu)[vector] != irq) 1260 continue; 1261 per_cpu(vector_irq, cpu)[vector] = -1; 1262 break; 1263 } 1264 } 1265 cfg->move_in_progress = 0; 1266 } 1267 1268 void __setup_vector_irq(int cpu) 1269 { 1270 /* Initialize vector_irq on a new cpu */ 1271 /* This function must be called with vector_lock held */ 1272 int irq, vector; 1273 struct irq_cfg *cfg; 1274 struct irq_desc *desc; 1275 1276 /* Mark the inuse vectors */ 1277 for_each_irq_desc(irq, desc) { 1278 cfg = desc->chip_data; 1279 if (!cpumask_test_cpu(cpu, cfg->domain)) 1280 continue; 1281 vector = cfg->vector; 1282 per_cpu(vector_irq, cpu)[vector] = irq; 1283 } 1284 /* Mark the free vectors */ 1285 for (vector = 0; vector < NR_VECTORS; ++vector) { 1286 irq = per_cpu(vector_irq, cpu)[vector]; 1287 if (irq < 0) 1288 continue; 1289 1290 cfg = irq_cfg(irq); 1291 if (!cpumask_test_cpu(cpu, cfg->domain)) 1292 per_cpu(vector_irq, cpu)[vector] = -1; 1293 } 1294 } 1295 1296 static struct irq_chip ioapic_chip; 1297 static struct irq_chip ir_ioapic_chip; 1298 1299 #define IOAPIC_AUTO -1 1300 #define IOAPIC_EDGE 0 1301 #define IOAPIC_LEVEL 1 1302 1303 #ifdef CONFIG_X86_32 1304 static inline int IO_APIC_irq_trigger(int irq) 1305 { 1306 int apic, idx, pin; 1307 1308 for (apic = 0; apic < nr_ioapics; apic++) { 1309 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1310 idx = find_irq_entry(apic, pin, mp_INT); 1311 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin))) 1312 return irq_trigger(idx); 1313 } 1314 } 1315 /* 1316 * nonexistent IRQs are edge default 1317 */ 1318 return 0; 1319 } 1320 #else 1321 static inline int IO_APIC_irq_trigger(int irq) 1322 { 1323 return 1; 1324 } 1325 #endif 1326 1327 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger) 1328 { 1329 1330 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1331 trigger == IOAPIC_LEVEL) 1332 desc->status |= IRQ_LEVEL; 1333 else 1334 desc->status &= ~IRQ_LEVEL; 1335 1336 if (irq_remapped(irq)) { 1337 desc->status |= IRQ_MOVE_PCNTXT; 1338 if (trigger) 1339 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1340 handle_fasteoi_irq, 1341 "fasteoi"); 1342 else 1343 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1344 handle_edge_irq, "edge"); 1345 return; 1346 } 1347 1348 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1349 trigger == IOAPIC_LEVEL) 1350 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1351 handle_fasteoi_irq, 1352 "fasteoi"); 1353 else 1354 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1355 handle_edge_irq, "edge"); 1356 } 1357 1358 int setup_ioapic_entry(int apic_id, int irq, 1359 struct IO_APIC_route_entry *entry, 1360 unsigned int destination, int trigger, 1361 int polarity, int vector, int pin) 1362 { 1363 /* 1364 * add it to the IO-APIC irq-routing table: 1365 */ 1366 memset(entry,0,sizeof(*entry)); 1367 1368 if (intr_remapping_enabled) { 1369 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id); 1370 struct irte irte; 1371 struct IR_IO_APIC_route_entry *ir_entry = 1372 (struct IR_IO_APIC_route_entry *) entry; 1373 int index; 1374 1375 if (!iommu) 1376 panic("No mapping iommu for ioapic %d\n", apic_id); 1377 1378 index = alloc_irte(iommu, irq, 1); 1379 if (index < 0) 1380 panic("Failed to allocate IRTE for ioapic %d\n", apic_id); 1381 1382 memset(&irte, 0, sizeof(irte)); 1383 1384 irte.present = 1; 1385 irte.dst_mode = apic->irq_dest_mode; 1386 /* 1387 * Trigger mode in the IRTE will always be edge, and the 1388 * actual level or edge trigger will be setup in the IO-APIC 1389 * RTE. This will help simplify level triggered irq migration. 1390 * For more details, see the comments above explainig IO-APIC 1391 * irq migration in the presence of interrupt-remapping. 1392 */ 1393 irte.trigger_mode = 0; 1394 irte.dlvry_mode = apic->irq_delivery_mode; 1395 irte.vector = vector; 1396 irte.dest_id = IRTE_DEST(destination); 1397 1398 /* Set source-id of interrupt request */ 1399 set_ioapic_sid(&irte, apic_id); 1400 1401 modify_irte(irq, &irte); 1402 1403 ir_entry->index2 = (index >> 15) & 0x1; 1404 ir_entry->zero = 0; 1405 ir_entry->format = 1; 1406 ir_entry->index = (index & 0x7fff); 1407 /* 1408 * IO-APIC RTE will be configured with virtual vector. 1409 * irq handler will do the explicit EOI to the io-apic. 1410 */ 1411 ir_entry->vector = pin; 1412 } else { 1413 entry->delivery_mode = apic->irq_delivery_mode; 1414 entry->dest_mode = apic->irq_dest_mode; 1415 entry->dest = destination; 1416 entry->vector = vector; 1417 } 1418 1419 entry->mask = 0; /* enable IRQ */ 1420 entry->trigger = trigger; 1421 entry->polarity = polarity; 1422 1423 /* Mask level triggered irqs. 1424 * Use IRQ_DELAYED_DISABLE for edge triggered irqs. 1425 */ 1426 if (trigger) 1427 entry->mask = 1; 1428 return 0; 1429 } 1430 1431 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc, 1432 int trigger, int polarity) 1433 { 1434 struct irq_cfg *cfg; 1435 struct IO_APIC_route_entry entry; 1436 unsigned int dest; 1437 1438 if (!IO_APIC_IRQ(irq)) 1439 return; 1440 1441 cfg = desc->chip_data; 1442 1443 if (assign_irq_vector(irq, cfg, apic->target_cpus())) 1444 return; 1445 1446 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 1447 1448 apic_printk(APIC_VERBOSE,KERN_DEBUG 1449 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " 1450 "IRQ %d Mode:%i Active:%i)\n", 1451 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector, 1452 irq, trigger, polarity); 1453 1454 1455 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry, 1456 dest, trigger, polarity, cfg->vector, pin)) { 1457 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n", 1458 mp_ioapics[apic_id].apicid, pin); 1459 __clear_irq_vector(irq, cfg); 1460 return; 1461 } 1462 1463 ioapic_register_intr(irq, desc, trigger); 1464 if (irq < nr_legacy_irqs) 1465 disable_8259A_irq(irq); 1466 1467 ioapic_write_entry(apic_id, pin, entry); 1468 } 1469 1470 static struct { 1471 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1); 1472 } mp_ioapic_routing[MAX_IO_APICS]; 1473 1474 static void __init setup_IO_APIC_irqs(void) 1475 { 1476 int apic_id = 0, pin, idx, irq; 1477 int notcon = 0; 1478 struct irq_desc *desc; 1479 struct irq_cfg *cfg; 1480 int node = cpu_to_node(boot_cpu_id); 1481 1482 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1483 1484 #ifdef CONFIG_ACPI 1485 if (!acpi_disabled && acpi_ioapic) { 1486 apic_id = mp_find_ioapic(0); 1487 if (apic_id < 0) 1488 apic_id = 0; 1489 } 1490 #endif 1491 1492 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) { 1493 idx = find_irq_entry(apic_id, pin, mp_INT); 1494 if (idx == -1) { 1495 if (!notcon) { 1496 notcon = 1; 1497 apic_printk(APIC_VERBOSE, 1498 KERN_DEBUG " %d-%d", 1499 mp_ioapics[apic_id].apicid, pin); 1500 } else 1501 apic_printk(APIC_VERBOSE, " %d-%d", 1502 mp_ioapics[apic_id].apicid, pin); 1503 continue; 1504 } 1505 if (notcon) { 1506 apic_printk(APIC_VERBOSE, 1507 " (apicid-pin) not connected\n"); 1508 notcon = 0; 1509 } 1510 1511 irq = pin_2_irq(idx, apic_id, pin); 1512 1513 /* 1514 * Skip the timer IRQ if there's a quirk handler 1515 * installed and if it returns 1: 1516 */ 1517 if (apic->multi_timer_check && 1518 apic->multi_timer_check(apic_id, irq)) 1519 continue; 1520 1521 desc = irq_to_desc_alloc_node(irq, node); 1522 if (!desc) { 1523 printk(KERN_INFO "can not get irq_desc for %d\n", irq); 1524 continue; 1525 } 1526 cfg = desc->chip_data; 1527 add_pin_to_irq_node(cfg, node, apic_id, pin); 1528 /* 1529 * don't mark it in pin_programmed, so later acpi could 1530 * set it correctly when irq < 16 1531 */ 1532 setup_IO_APIC_irq(apic_id, pin, irq, desc, 1533 irq_trigger(idx), irq_polarity(idx)); 1534 } 1535 1536 if (notcon) 1537 apic_printk(APIC_VERBOSE, 1538 " (apicid-pin) not connected\n"); 1539 } 1540 1541 /* 1542 * Set up the timer pin, possibly with the 8259A-master behind. 1543 */ 1544 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin, 1545 int vector) 1546 { 1547 struct IO_APIC_route_entry entry; 1548 1549 if (intr_remapping_enabled) 1550 return; 1551 1552 memset(&entry, 0, sizeof(entry)); 1553 1554 /* 1555 * We use logical delivery to get the timer IRQ 1556 * to the first CPU. 1557 */ 1558 entry.dest_mode = apic->irq_dest_mode; 1559 entry.mask = 0; /* don't mask IRQ for edge */ 1560 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus()); 1561 entry.delivery_mode = apic->irq_delivery_mode; 1562 entry.polarity = 0; 1563 entry.trigger = 0; 1564 entry.vector = vector; 1565 1566 /* 1567 * The timer IRQ doesn't have to know that behind the 1568 * scene we may have a 8259A-master in AEOI mode ... 1569 */ 1570 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); 1571 1572 /* 1573 * Add it to the IO-APIC irq-routing table: 1574 */ 1575 ioapic_write_entry(apic_id, pin, entry); 1576 } 1577 1578 1579 __apicdebuginit(void) print_IO_APIC(void) 1580 { 1581 int apic, i; 1582 union IO_APIC_reg_00 reg_00; 1583 union IO_APIC_reg_01 reg_01; 1584 union IO_APIC_reg_02 reg_02; 1585 union IO_APIC_reg_03 reg_03; 1586 unsigned long flags; 1587 struct irq_cfg *cfg; 1588 struct irq_desc *desc; 1589 unsigned int irq; 1590 1591 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1592 for (i = 0; i < nr_ioapics; i++) 1593 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1594 mp_ioapics[i].apicid, nr_ioapic_registers[i]); 1595 1596 /* 1597 * We are a bit conservative about what we expect. We have to 1598 * know about every hardware change ASAP. 1599 */ 1600 printk(KERN_INFO "testing the IO APIC.......................\n"); 1601 1602 for (apic = 0; apic < nr_ioapics; apic++) { 1603 1604 spin_lock_irqsave(&ioapic_lock, flags); 1605 reg_00.raw = io_apic_read(apic, 0); 1606 reg_01.raw = io_apic_read(apic, 1); 1607 if (reg_01.bits.version >= 0x10) 1608 reg_02.raw = io_apic_read(apic, 2); 1609 if (reg_01.bits.version >= 0x20) 1610 reg_03.raw = io_apic_read(apic, 3); 1611 spin_unlock_irqrestore(&ioapic_lock, flags); 1612 1613 printk("\n"); 1614 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid); 1615 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1616 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1617 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1618 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1619 1620 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1621 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries); 1622 1623 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1624 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version); 1625 1626 /* 1627 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1628 * but the value of reg_02 is read as the previous read register 1629 * value, so ignore it if reg_02 == reg_01. 1630 */ 1631 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1632 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1633 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1634 } 1635 1636 /* 1637 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1638 * or reg_03, but the value of reg_0[23] is read as the previous read 1639 * register value, so ignore it if reg_03 == reg_0[12]. 1640 */ 1641 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1642 reg_03.raw != reg_01.raw) { 1643 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1644 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1645 } 1646 1647 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1648 1649 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" 1650 " Stat Dmod Deli Vect: \n"); 1651 1652 for (i = 0; i <= reg_01.bits.entries; i++) { 1653 struct IO_APIC_route_entry entry; 1654 1655 entry = ioapic_read_entry(apic, i); 1656 1657 printk(KERN_DEBUG " %02x %03X ", 1658 i, 1659 entry.dest 1660 ); 1661 1662 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", 1663 entry.mask, 1664 entry.trigger, 1665 entry.irr, 1666 entry.polarity, 1667 entry.delivery_status, 1668 entry.dest_mode, 1669 entry.delivery_mode, 1670 entry.vector 1671 ); 1672 } 1673 } 1674 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1675 for_each_irq_desc(irq, desc) { 1676 struct irq_pin_list *entry; 1677 1678 cfg = desc->chip_data; 1679 entry = cfg->irq_2_pin; 1680 if (!entry) 1681 continue; 1682 printk(KERN_DEBUG "IRQ%d ", irq); 1683 for_each_irq_pin(entry, cfg->irq_2_pin) 1684 printk("-> %d:%d", entry->apic, entry->pin); 1685 printk("\n"); 1686 } 1687 1688 printk(KERN_INFO ".................................... done.\n"); 1689 1690 return; 1691 } 1692 1693 __apicdebuginit(void) print_APIC_field(int base) 1694 { 1695 int i; 1696 1697 printk(KERN_DEBUG); 1698 1699 for (i = 0; i < 8; i++) 1700 printk(KERN_CONT "%08x", apic_read(base + i*0x10)); 1701 1702 printk(KERN_CONT "\n"); 1703 } 1704 1705 __apicdebuginit(void) print_local_APIC(void *dummy) 1706 { 1707 unsigned int i, v, ver, maxlvt; 1708 u64 icr; 1709 1710 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", 1711 smp_processor_id(), hard_smp_processor_id()); 1712 v = apic_read(APIC_ID); 1713 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1714 v = apic_read(APIC_LVR); 1715 printk(KERN_INFO "... APIC VERSION: %08x\n", v); 1716 ver = GET_APIC_VERSION(v); 1717 maxlvt = lapic_get_maxlvt(); 1718 1719 v = apic_read(APIC_TASKPRI); 1720 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1721 1722 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1723 if (!APIC_XAPIC(ver)) { 1724 v = apic_read(APIC_ARBPRI); 1725 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, 1726 v & APIC_ARBPRI_MASK); 1727 } 1728 v = apic_read(APIC_PROCPRI); 1729 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); 1730 } 1731 1732 /* 1733 * Remote read supported only in the 82489DX and local APIC for 1734 * Pentium processors. 1735 */ 1736 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1737 v = apic_read(APIC_RRR); 1738 printk(KERN_DEBUG "... APIC RRR: %08x\n", v); 1739 } 1740 1741 v = apic_read(APIC_LDR); 1742 printk(KERN_DEBUG "... APIC LDR: %08x\n", v); 1743 if (!x2apic_enabled()) { 1744 v = apic_read(APIC_DFR); 1745 printk(KERN_DEBUG "... APIC DFR: %08x\n", v); 1746 } 1747 v = apic_read(APIC_SPIV); 1748 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); 1749 1750 printk(KERN_DEBUG "... APIC ISR field:\n"); 1751 print_APIC_field(APIC_ISR); 1752 printk(KERN_DEBUG "... APIC TMR field:\n"); 1753 print_APIC_field(APIC_TMR); 1754 printk(KERN_DEBUG "... APIC IRR field:\n"); 1755 print_APIC_field(APIC_IRR); 1756 1757 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1758 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1759 apic_write(APIC_ESR, 0); 1760 1761 v = apic_read(APIC_ESR); 1762 printk(KERN_DEBUG "... APIC ESR: %08x\n", v); 1763 } 1764 1765 icr = apic_icr_read(); 1766 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr); 1767 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1768 1769 v = apic_read(APIC_LVTT); 1770 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); 1771 1772 if (maxlvt > 3) { /* PC is LVT#4. */ 1773 v = apic_read(APIC_LVTPC); 1774 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); 1775 } 1776 v = apic_read(APIC_LVT0); 1777 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); 1778 v = apic_read(APIC_LVT1); 1779 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); 1780 1781 if (maxlvt > 2) { /* ERR is LVT#3. */ 1782 v = apic_read(APIC_LVTERR); 1783 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); 1784 } 1785 1786 v = apic_read(APIC_TMICT); 1787 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); 1788 v = apic_read(APIC_TMCCT); 1789 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); 1790 v = apic_read(APIC_TDCR); 1791 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); 1792 1793 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1794 v = apic_read(APIC_EFEAT); 1795 maxlvt = (v >> 16) & 0xff; 1796 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v); 1797 v = apic_read(APIC_ECTRL); 1798 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v); 1799 for (i = 0; i < maxlvt; i++) { 1800 v = apic_read(APIC_EILVTn(i)); 1801 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v); 1802 } 1803 } 1804 printk("\n"); 1805 } 1806 1807 __apicdebuginit(void) print_local_APICs(int maxcpu) 1808 { 1809 int cpu; 1810 1811 if (!maxcpu) 1812 return; 1813 1814 preempt_disable(); 1815 for_each_online_cpu(cpu) { 1816 if (cpu >= maxcpu) 1817 break; 1818 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1819 } 1820 preempt_enable(); 1821 } 1822 1823 __apicdebuginit(void) print_PIC(void) 1824 { 1825 unsigned int v; 1826 unsigned long flags; 1827 1828 if (!nr_legacy_irqs) 1829 return; 1830 1831 printk(KERN_DEBUG "\nprinting PIC contents\n"); 1832 1833 spin_lock_irqsave(&i8259A_lock, flags); 1834 1835 v = inb(0xa1) << 8 | inb(0x21); 1836 printk(KERN_DEBUG "... PIC IMR: %04x\n", v); 1837 1838 v = inb(0xa0) << 8 | inb(0x20); 1839 printk(KERN_DEBUG "... PIC IRR: %04x\n", v); 1840 1841 outb(0x0b,0xa0); 1842 outb(0x0b,0x20); 1843 v = inb(0xa0) << 8 | inb(0x20); 1844 outb(0x0a,0xa0); 1845 outb(0x0a,0x20); 1846 1847 spin_unlock_irqrestore(&i8259A_lock, flags); 1848 1849 printk(KERN_DEBUG "... PIC ISR: %04x\n", v); 1850 1851 v = inb(0x4d1) << 8 | inb(0x4d0); 1852 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); 1853 } 1854 1855 static int __initdata show_lapic = 1; 1856 static __init int setup_show_lapic(char *arg) 1857 { 1858 int num = -1; 1859 1860 if (strcmp(arg, "all") == 0) { 1861 show_lapic = CONFIG_NR_CPUS; 1862 } else { 1863 get_option(&arg, &num); 1864 if (num >= 0) 1865 show_lapic = num; 1866 } 1867 1868 return 1; 1869 } 1870 __setup("show_lapic=", setup_show_lapic); 1871 1872 __apicdebuginit(int) print_ICs(void) 1873 { 1874 if (apic_verbosity == APIC_QUIET) 1875 return 0; 1876 1877 print_PIC(); 1878 1879 /* don't print out if apic is not there */ 1880 if (!cpu_has_apic && !apic_from_smp_config()) 1881 return 0; 1882 1883 print_local_APICs(show_lapic); 1884 print_IO_APIC(); 1885 1886 return 0; 1887 } 1888 1889 fs_initcall(print_ICs); 1890 1891 1892 /* Where if anywhere is the i8259 connect in external int mode */ 1893 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1894 1895 void __init enable_IO_APIC(void) 1896 { 1897 union IO_APIC_reg_01 reg_01; 1898 int i8259_apic, i8259_pin; 1899 int apic; 1900 unsigned long flags; 1901 1902 /* 1903 * The number of IO-APIC IRQ registers (== #pins): 1904 */ 1905 for (apic = 0; apic < nr_ioapics; apic++) { 1906 spin_lock_irqsave(&ioapic_lock, flags); 1907 reg_01.raw = io_apic_read(apic, 1); 1908 spin_unlock_irqrestore(&ioapic_lock, flags); 1909 nr_ioapic_registers[apic] = reg_01.bits.entries+1; 1910 } 1911 1912 if (!nr_legacy_irqs) 1913 return; 1914 1915 for(apic = 0; apic < nr_ioapics; apic++) { 1916 int pin; 1917 /* See if any of the pins is in ExtINT mode */ 1918 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1919 struct IO_APIC_route_entry entry; 1920 entry = ioapic_read_entry(apic, pin); 1921 1922 /* If the interrupt line is enabled and in ExtInt mode 1923 * I have found the pin where the i8259 is connected. 1924 */ 1925 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { 1926 ioapic_i8259.apic = apic; 1927 ioapic_i8259.pin = pin; 1928 goto found_i8259; 1929 } 1930 } 1931 } 1932 found_i8259: 1933 /* Look to see what if the MP table has reported the ExtINT */ 1934 /* If we could not find the appropriate pin by looking at the ioapic 1935 * the i8259 probably is not connected the ioapic but give the 1936 * mptable a chance anyway. 1937 */ 1938 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1939 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1940 /* Trust the MP table if nothing is setup in the hardware */ 1941 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1942 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 1943 ioapic_i8259.pin = i8259_pin; 1944 ioapic_i8259.apic = i8259_apic; 1945 } 1946 /* Complain if the MP table and the hardware disagree */ 1947 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1948 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1949 { 1950 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 1951 } 1952 1953 /* 1954 * Do not trust the IO-APIC being empty at bootup 1955 */ 1956 clear_IO_APIC(); 1957 } 1958 1959 /* 1960 * Not an __init, needed by the reboot code 1961 */ 1962 void disable_IO_APIC(void) 1963 { 1964 /* 1965 * Clear the IO-APIC before rebooting: 1966 */ 1967 clear_IO_APIC(); 1968 1969 if (!nr_legacy_irqs) 1970 return; 1971 1972 /* 1973 * If the i8259 is routed through an IOAPIC 1974 * Put that IOAPIC in virtual wire mode 1975 * so legacy interrupts can be delivered. 1976 * 1977 * With interrupt-remapping, for now we will use virtual wire A mode, 1978 * as virtual wire B is little complex (need to configure both 1979 * IOAPIC RTE aswell as interrupt-remapping table entry). 1980 * As this gets called during crash dump, keep this simple for now. 1981 */ 1982 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) { 1983 struct IO_APIC_route_entry entry; 1984 1985 memset(&entry, 0, sizeof(entry)); 1986 entry.mask = 0; /* Enabled */ 1987 entry.trigger = 0; /* Edge */ 1988 entry.irr = 0; 1989 entry.polarity = 0; /* High */ 1990 entry.delivery_status = 0; 1991 entry.dest_mode = 0; /* Physical */ 1992 entry.delivery_mode = dest_ExtINT; /* ExtInt */ 1993 entry.vector = 0; 1994 entry.dest = read_apic_id(); 1995 1996 /* 1997 * Add it to the IO-APIC irq-routing table: 1998 */ 1999 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 2000 } 2001 2002 /* 2003 * Use virtual wire A mode when interrupt remapping is enabled. 2004 */ 2005 if (cpu_has_apic || apic_from_smp_config()) 2006 disconnect_bsp_APIC(!intr_remapping_enabled && 2007 ioapic_i8259.pin != -1); 2008 } 2009 2010 #ifdef CONFIG_X86_32 2011 /* 2012 * function to set the IO-APIC physical IDs based on the 2013 * values stored in the MPC table. 2014 * 2015 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 2016 */ 2017 2018 void __init setup_ioapic_ids_from_mpc(void) 2019 { 2020 union IO_APIC_reg_00 reg_00; 2021 physid_mask_t phys_id_present_map; 2022 int apic_id; 2023 int i; 2024 unsigned char old_id; 2025 unsigned long flags; 2026 2027 if (acpi_ioapic) 2028 return; 2029 /* 2030 * Don't check I/O APIC IDs for xAPIC systems. They have 2031 * no meaning without the serial APIC bus. 2032 */ 2033 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2034 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 2035 return; 2036 /* 2037 * This is broken; anything with a real cpu count has to 2038 * circumvent this idiocy regardless. 2039 */ 2040 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map); 2041 2042 /* 2043 * Set the IOAPIC ID to the value stored in the MPC table. 2044 */ 2045 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { 2046 2047 /* Read the register 0 value */ 2048 spin_lock_irqsave(&ioapic_lock, flags); 2049 reg_00.raw = io_apic_read(apic_id, 0); 2050 spin_unlock_irqrestore(&ioapic_lock, flags); 2051 2052 old_id = mp_ioapics[apic_id].apicid; 2053 2054 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) { 2055 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 2056 apic_id, mp_ioapics[apic_id].apicid); 2057 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2058 reg_00.bits.ID); 2059 mp_ioapics[apic_id].apicid = reg_00.bits.ID; 2060 } 2061 2062 /* 2063 * Sanity check, is the ID really free? Every APIC in a 2064 * system must have a unique ID or we get lots of nice 2065 * 'stuck on smp_invalidate_needed IPI wait' messages. 2066 */ 2067 if (apic->check_apicid_used(&phys_id_present_map, 2068 mp_ioapics[apic_id].apicid)) { 2069 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 2070 apic_id, mp_ioapics[apic_id].apicid); 2071 for (i = 0; i < get_physical_broadcast(); i++) 2072 if (!physid_isset(i, phys_id_present_map)) 2073 break; 2074 if (i >= get_physical_broadcast()) 2075 panic("Max APIC ID exceeded!\n"); 2076 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2077 i); 2078 physid_set(i, phys_id_present_map); 2079 mp_ioapics[apic_id].apicid = i; 2080 } else { 2081 physid_mask_t tmp; 2082 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp); 2083 apic_printk(APIC_VERBOSE, "Setting %d in the " 2084 "phys_id_present_map\n", 2085 mp_ioapics[apic_id].apicid); 2086 physids_or(phys_id_present_map, phys_id_present_map, tmp); 2087 } 2088 2089 2090 /* 2091 * We need to adjust the IRQ routing table 2092 * if the ID changed. 2093 */ 2094 if (old_id != mp_ioapics[apic_id].apicid) 2095 for (i = 0; i < mp_irq_entries; i++) 2096 if (mp_irqs[i].dstapic == old_id) 2097 mp_irqs[i].dstapic 2098 = mp_ioapics[apic_id].apicid; 2099 2100 /* 2101 * Read the right value from the MPC table and 2102 * write it into the ID register. 2103 */ 2104 apic_printk(APIC_VERBOSE, KERN_INFO 2105 "...changing IO-APIC physical APIC ID to %d ...", 2106 mp_ioapics[apic_id].apicid); 2107 2108 reg_00.bits.ID = mp_ioapics[apic_id].apicid; 2109 spin_lock_irqsave(&ioapic_lock, flags); 2110 io_apic_write(apic_id, 0, reg_00.raw); 2111 spin_unlock_irqrestore(&ioapic_lock, flags); 2112 2113 /* 2114 * Sanity check 2115 */ 2116 spin_lock_irqsave(&ioapic_lock, flags); 2117 reg_00.raw = io_apic_read(apic_id, 0); 2118 spin_unlock_irqrestore(&ioapic_lock, flags); 2119 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid) 2120 printk("could not set ID!\n"); 2121 else 2122 apic_printk(APIC_VERBOSE, " ok.\n"); 2123 } 2124 } 2125 #endif 2126 2127 int no_timer_check __initdata; 2128 2129 static int __init notimercheck(char *s) 2130 { 2131 no_timer_check = 1; 2132 return 1; 2133 } 2134 __setup("no_timer_check", notimercheck); 2135 2136 /* 2137 * There is a nasty bug in some older SMP boards, their mptable lies 2138 * about the timer IRQ. We do the following to work around the situation: 2139 * 2140 * - timer IRQ defaults to IO-APIC IRQ 2141 * - if this function detects that timer IRQs are defunct, then we fall 2142 * back to ISA timer IRQs 2143 */ 2144 static int __init timer_irq_works(void) 2145 { 2146 unsigned long t1 = jiffies; 2147 unsigned long flags; 2148 2149 if (no_timer_check) 2150 return 1; 2151 2152 local_save_flags(flags); 2153 local_irq_enable(); 2154 /* Let ten ticks pass... */ 2155 mdelay((10 * 1000) / HZ); 2156 local_irq_restore(flags); 2157 2158 /* 2159 * Expect a few ticks at least, to be sure some possible 2160 * glue logic does not lock up after one or two first 2161 * ticks in a non-ExtINT mode. Also the local APIC 2162 * might have cached one ExtINT interrupt. Finally, at 2163 * least one tick may be lost due to delays. 2164 */ 2165 2166 /* jiffies wrap? */ 2167 if (time_after(jiffies, t1 + 4)) 2168 return 1; 2169 return 0; 2170 } 2171 2172 /* 2173 * In the SMP+IOAPIC case it might happen that there are an unspecified 2174 * number of pending IRQ events unhandled. These cases are very rare, 2175 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 2176 * better to do it this way as thus we do not have to be aware of 2177 * 'pending' interrupts in the IRQ path, except at this point. 2178 */ 2179 /* 2180 * Edge triggered needs to resend any interrupt 2181 * that was delayed but this is now handled in the device 2182 * independent code. 2183 */ 2184 2185 /* 2186 * Starting up a edge-triggered IO-APIC interrupt is 2187 * nasty - we need to make sure that we get the edge. 2188 * If it is already asserted for some reason, we need 2189 * return 1 to indicate that is was pending. 2190 * 2191 * This is not complete - we should be able to fake 2192 * an edge even if it isn't on the 8259A... 2193 */ 2194 2195 static unsigned int startup_ioapic_irq(unsigned int irq) 2196 { 2197 int was_pending = 0; 2198 unsigned long flags; 2199 struct irq_cfg *cfg; 2200 2201 spin_lock_irqsave(&ioapic_lock, flags); 2202 if (irq < nr_legacy_irqs) { 2203 disable_8259A_irq(irq); 2204 if (i8259A_irq_pending(irq)) 2205 was_pending = 1; 2206 } 2207 cfg = irq_cfg(irq); 2208 __unmask_IO_APIC_irq(cfg); 2209 spin_unlock_irqrestore(&ioapic_lock, flags); 2210 2211 return was_pending; 2212 } 2213 2214 static int ioapic_retrigger_irq(unsigned int irq) 2215 { 2216 2217 struct irq_cfg *cfg = irq_cfg(irq); 2218 unsigned long flags; 2219 2220 spin_lock_irqsave(&vector_lock, flags); 2221 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector); 2222 spin_unlock_irqrestore(&vector_lock, flags); 2223 2224 return 1; 2225 } 2226 2227 /* 2228 * Level and edge triggered IO-APIC interrupts need different handling, 2229 * so we use two separate IRQ descriptors. Edge triggered IRQs can be 2230 * handled with the level-triggered descriptor, but that one has slightly 2231 * more overhead. Level-triggered interrupts cannot be handled with the 2232 * edge-triggered handler, without risking IRQ storms and other ugly 2233 * races. 2234 */ 2235 2236 #ifdef CONFIG_SMP 2237 void send_cleanup_vector(struct irq_cfg *cfg) 2238 { 2239 cpumask_var_t cleanup_mask; 2240 2241 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { 2242 unsigned int i; 2243 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) 2244 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); 2245 } else { 2246 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask); 2247 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); 2248 free_cpumask_var(cleanup_mask); 2249 } 2250 cfg->move_in_progress = 0; 2251 } 2252 2253 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg) 2254 { 2255 int apic, pin; 2256 struct irq_pin_list *entry; 2257 u8 vector = cfg->vector; 2258 2259 for_each_irq_pin(entry, cfg->irq_2_pin) { 2260 unsigned int reg; 2261 2262 apic = entry->apic; 2263 pin = entry->pin; 2264 /* 2265 * With interrupt-remapping, destination information comes 2266 * from interrupt-remapping table entry. 2267 */ 2268 if (!irq_remapped(irq)) 2269 io_apic_write(apic, 0x11 + pin*2, dest); 2270 reg = io_apic_read(apic, 0x10 + pin*2); 2271 reg &= ~IO_APIC_REDIR_VECTOR_MASK; 2272 reg |= vector; 2273 io_apic_modify(apic, 0x10 + pin*2, reg); 2274 } 2275 } 2276 2277 /* 2278 * Either sets desc->affinity to a valid value, and returns 2279 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and 2280 * leaves desc->affinity untouched. 2281 */ 2282 unsigned int 2283 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask, 2284 unsigned int *dest_id) 2285 { 2286 struct irq_cfg *cfg; 2287 unsigned int irq; 2288 2289 if (!cpumask_intersects(mask, cpu_online_mask)) 2290 return -1; 2291 2292 irq = desc->irq; 2293 cfg = desc->chip_data; 2294 if (assign_irq_vector(irq, cfg, mask)) 2295 return -1; 2296 2297 cpumask_copy(desc->affinity, mask); 2298 2299 *dest_id = apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain); 2300 return 0; 2301 } 2302 2303 static int 2304 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2305 { 2306 struct irq_cfg *cfg; 2307 unsigned long flags; 2308 unsigned int dest; 2309 unsigned int irq; 2310 int ret = -1; 2311 2312 irq = desc->irq; 2313 cfg = desc->chip_data; 2314 2315 spin_lock_irqsave(&ioapic_lock, flags); 2316 ret = set_desc_affinity(desc, mask, &dest); 2317 if (!ret) { 2318 /* Only the high 8 bits are valid. */ 2319 dest = SET_APIC_LOGICAL_ID(dest); 2320 __target_IO_APIC_irq(irq, dest, cfg); 2321 } 2322 spin_unlock_irqrestore(&ioapic_lock, flags); 2323 2324 return ret; 2325 } 2326 2327 static int 2328 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask) 2329 { 2330 struct irq_desc *desc; 2331 2332 desc = irq_to_desc(irq); 2333 2334 return set_ioapic_affinity_irq_desc(desc, mask); 2335 } 2336 2337 #ifdef CONFIG_INTR_REMAP 2338 2339 /* 2340 * Migrate the IO-APIC irq in the presence of intr-remapping. 2341 * 2342 * For both level and edge triggered, irq migration is a simple atomic 2343 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 2344 * 2345 * For level triggered, we eliminate the io-apic RTE modification (with the 2346 * updated vector information), by using a virtual vector (io-apic pin number). 2347 * Real vector that is used for interrupting cpu will be coming from 2348 * the interrupt-remapping table entry. 2349 */ 2350 static int 2351 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2352 { 2353 struct irq_cfg *cfg; 2354 struct irte irte; 2355 unsigned int dest; 2356 unsigned int irq; 2357 int ret = -1; 2358 2359 if (!cpumask_intersects(mask, cpu_online_mask)) 2360 return ret; 2361 2362 irq = desc->irq; 2363 if (get_irte(irq, &irte)) 2364 return ret; 2365 2366 cfg = desc->chip_data; 2367 if (assign_irq_vector(irq, cfg, mask)) 2368 return ret; 2369 2370 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask); 2371 2372 irte.vector = cfg->vector; 2373 irte.dest_id = IRTE_DEST(dest); 2374 2375 /* 2376 * Modified the IRTE and flushes the Interrupt entry cache. 2377 */ 2378 modify_irte(irq, &irte); 2379 2380 if (cfg->move_in_progress) 2381 send_cleanup_vector(cfg); 2382 2383 cpumask_copy(desc->affinity, mask); 2384 2385 return 0; 2386 } 2387 2388 /* 2389 * Migrates the IRQ destination in the process context. 2390 */ 2391 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2392 const struct cpumask *mask) 2393 { 2394 return migrate_ioapic_irq_desc(desc, mask); 2395 } 2396 static int set_ir_ioapic_affinity_irq(unsigned int irq, 2397 const struct cpumask *mask) 2398 { 2399 struct irq_desc *desc = irq_to_desc(irq); 2400 2401 return set_ir_ioapic_affinity_irq_desc(desc, mask); 2402 } 2403 #else 2404 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2405 const struct cpumask *mask) 2406 { 2407 return 0; 2408 } 2409 #endif 2410 2411 asmlinkage void smp_irq_move_cleanup_interrupt(void) 2412 { 2413 unsigned vector, me; 2414 2415 ack_APIC_irq(); 2416 exit_idle(); 2417 irq_enter(); 2418 2419 me = smp_processor_id(); 2420 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 2421 unsigned int irq; 2422 unsigned int irr; 2423 struct irq_desc *desc; 2424 struct irq_cfg *cfg; 2425 irq = __get_cpu_var(vector_irq)[vector]; 2426 2427 if (irq == -1) 2428 continue; 2429 2430 desc = irq_to_desc(irq); 2431 if (!desc) 2432 continue; 2433 2434 cfg = irq_cfg(irq); 2435 raw_spin_lock(&desc->lock); 2436 2437 /* 2438 * Check if the irq migration is in progress. If so, we 2439 * haven't received the cleanup request yet for this irq. 2440 */ 2441 if (cfg->move_in_progress) 2442 goto unlock; 2443 2444 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2445 goto unlock; 2446 2447 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 2448 /* 2449 * Check if the vector that needs to be cleanedup is 2450 * registered at the cpu's IRR. If so, then this is not 2451 * the best time to clean it up. Lets clean it up in the 2452 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 2453 * to myself. 2454 */ 2455 if (irr & (1 << (vector % 32))) { 2456 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 2457 goto unlock; 2458 } 2459 __get_cpu_var(vector_irq)[vector] = -1; 2460 unlock: 2461 raw_spin_unlock(&desc->lock); 2462 } 2463 2464 irq_exit(); 2465 } 2466 2467 static void __irq_complete_move(struct irq_desc **descp, unsigned vector) 2468 { 2469 struct irq_desc *desc = *descp; 2470 struct irq_cfg *cfg = desc->chip_data; 2471 unsigned me; 2472 2473 if (likely(!cfg->move_in_progress)) 2474 return; 2475 2476 me = smp_processor_id(); 2477 2478 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2479 send_cleanup_vector(cfg); 2480 } 2481 2482 static void irq_complete_move(struct irq_desc **descp) 2483 { 2484 __irq_complete_move(descp, ~get_irq_regs()->orig_ax); 2485 } 2486 2487 void irq_force_complete_move(int irq) 2488 { 2489 struct irq_desc *desc = irq_to_desc(irq); 2490 struct irq_cfg *cfg = desc->chip_data; 2491 2492 __irq_complete_move(&desc, cfg->vector); 2493 } 2494 #else 2495 static inline void irq_complete_move(struct irq_desc **descp) {} 2496 #endif 2497 2498 static void ack_apic_edge(unsigned int irq) 2499 { 2500 struct irq_desc *desc = irq_to_desc(irq); 2501 2502 irq_complete_move(&desc); 2503 move_native_irq(irq); 2504 ack_APIC_irq(); 2505 } 2506 2507 atomic_t irq_mis_count; 2508 2509 /* 2510 * IO-APIC versions below 0x20 don't support EOI register. 2511 * For the record, here is the information about various versions: 2512 * 0Xh 82489DX 2513 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant 2514 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant 2515 * 30h-FFh Reserved 2516 * 2517 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic 2518 * version as 0x2. This is an error with documentation and these ICH chips 2519 * use io-apic's of version 0x20. 2520 * 2521 * For IO-APIC's with EOI register, we use that to do an explicit EOI. 2522 * Otherwise, we simulate the EOI message manually by changing the trigger 2523 * mode to edge and then back to level, with RTE being masked during this. 2524 */ 2525 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg) 2526 { 2527 struct irq_pin_list *entry; 2528 2529 for_each_irq_pin(entry, cfg->irq_2_pin) { 2530 if (mp_ioapics[entry->apic].apicver >= 0x20) { 2531 /* 2532 * Intr-remapping uses pin number as the virtual vector 2533 * in the RTE. Actual vector is programmed in 2534 * intr-remapping table entry. Hence for the io-apic 2535 * EOI we use the pin number. 2536 */ 2537 if (irq_remapped(irq)) 2538 io_apic_eoi(entry->apic, entry->pin); 2539 else 2540 io_apic_eoi(entry->apic, cfg->vector); 2541 } else { 2542 __mask_and_edge_IO_APIC_irq(entry); 2543 __unmask_and_level_IO_APIC_irq(entry); 2544 } 2545 } 2546 } 2547 2548 static void eoi_ioapic_irq(struct irq_desc *desc) 2549 { 2550 struct irq_cfg *cfg; 2551 unsigned long flags; 2552 unsigned int irq; 2553 2554 irq = desc->irq; 2555 cfg = desc->chip_data; 2556 2557 spin_lock_irqsave(&ioapic_lock, flags); 2558 __eoi_ioapic_irq(irq, cfg); 2559 spin_unlock_irqrestore(&ioapic_lock, flags); 2560 } 2561 2562 static void ack_apic_level(unsigned int irq) 2563 { 2564 struct irq_desc *desc = irq_to_desc(irq); 2565 unsigned long v; 2566 int i; 2567 struct irq_cfg *cfg; 2568 int do_unmask_irq = 0; 2569 2570 irq_complete_move(&desc); 2571 #ifdef CONFIG_GENERIC_PENDING_IRQ 2572 /* If we are moving the irq we need to mask it */ 2573 if (unlikely(desc->status & IRQ_MOVE_PENDING)) { 2574 do_unmask_irq = 1; 2575 mask_IO_APIC_irq_desc(desc); 2576 } 2577 #endif 2578 2579 /* 2580 * It appears there is an erratum which affects at least version 0x11 2581 * of I/O APIC (that's the 82093AA and cores integrated into various 2582 * chipsets). Under certain conditions a level-triggered interrupt is 2583 * erroneously delivered as edge-triggered one but the respective IRR 2584 * bit gets set nevertheless. As a result the I/O unit expects an EOI 2585 * message but it will never arrive and further interrupts are blocked 2586 * from the source. The exact reason is so far unknown, but the 2587 * phenomenon was observed when two consecutive interrupt requests 2588 * from a given source get delivered to the same CPU and the source is 2589 * temporarily disabled in between. 2590 * 2591 * A workaround is to simulate an EOI message manually. We achieve it 2592 * by setting the trigger mode to edge and then to level when the edge 2593 * trigger mode gets detected in the TMR of a local APIC for a 2594 * level-triggered interrupt. We mask the source for the time of the 2595 * operation to prevent an edge-triggered interrupt escaping meanwhile. 2596 * The idea is from Manfred Spraul. --macro 2597 * 2598 * Also in the case when cpu goes offline, fixup_irqs() will forward 2599 * any unhandled interrupt on the offlined cpu to the new cpu 2600 * destination that is handling the corresponding interrupt. This 2601 * interrupt forwarding is done via IPI's. Hence, in this case also 2602 * level-triggered io-apic interrupt will be seen as an edge 2603 * interrupt in the IRR. And we can't rely on the cpu's EOI 2604 * to be broadcasted to the IO-APIC's which will clear the remoteIRR 2605 * corresponding to the level-triggered interrupt. Hence on IO-APIC's 2606 * supporting EOI register, we do an explicit EOI to clear the 2607 * remote IRR and on IO-APIC's which don't have an EOI register, 2608 * we use the above logic (mask+edge followed by unmask+level) from 2609 * Manfred Spraul to clear the remote IRR. 2610 */ 2611 cfg = desc->chip_data; 2612 i = cfg->vector; 2613 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 2614 2615 /* 2616 * We must acknowledge the irq before we move it or the acknowledge will 2617 * not propagate properly. 2618 */ 2619 ack_APIC_irq(); 2620 2621 /* 2622 * Tail end of clearing remote IRR bit (either by delivering the EOI 2623 * message via io-apic EOI register write or simulating it using 2624 * mask+edge followed by unnask+level logic) manually when the 2625 * level triggered interrupt is seen as the edge triggered interrupt 2626 * at the cpu. 2627 */ 2628 if (!(v & (1 << (i & 0x1f)))) { 2629 atomic_inc(&irq_mis_count); 2630 2631 eoi_ioapic_irq(desc); 2632 } 2633 2634 /* Now we can move and renable the irq */ 2635 if (unlikely(do_unmask_irq)) { 2636 /* Only migrate the irq if the ack has been received. 2637 * 2638 * On rare occasions the broadcast level triggered ack gets 2639 * delayed going to ioapics, and if we reprogram the 2640 * vector while Remote IRR is still set the irq will never 2641 * fire again. 2642 * 2643 * To prevent this scenario we read the Remote IRR bit 2644 * of the ioapic. This has two effects. 2645 * - On any sane system the read of the ioapic will 2646 * flush writes (and acks) going to the ioapic from 2647 * this cpu. 2648 * - We get to see if the ACK has actually been delivered. 2649 * 2650 * Based on failed experiments of reprogramming the 2651 * ioapic entry from outside of irq context starting 2652 * with masking the ioapic entry and then polling until 2653 * Remote IRR was clear before reprogramming the 2654 * ioapic I don't trust the Remote IRR bit to be 2655 * completey accurate. 2656 * 2657 * However there appears to be no other way to plug 2658 * this race, so if the Remote IRR bit is not 2659 * accurate and is causing problems then it is a hardware bug 2660 * and you can go talk to the chipset vendor about it. 2661 */ 2662 cfg = desc->chip_data; 2663 if (!io_apic_level_ack_pending(cfg)) 2664 move_masked_irq(irq); 2665 unmask_IO_APIC_irq_desc(desc); 2666 } 2667 } 2668 2669 #ifdef CONFIG_INTR_REMAP 2670 static void ir_ack_apic_edge(unsigned int irq) 2671 { 2672 ack_APIC_irq(); 2673 } 2674 2675 static void ir_ack_apic_level(unsigned int irq) 2676 { 2677 struct irq_desc *desc = irq_to_desc(irq); 2678 2679 ack_APIC_irq(); 2680 eoi_ioapic_irq(desc); 2681 } 2682 #endif /* CONFIG_INTR_REMAP */ 2683 2684 static struct irq_chip ioapic_chip __read_mostly = { 2685 .name = "IO-APIC", 2686 .startup = startup_ioapic_irq, 2687 .mask = mask_IO_APIC_irq, 2688 .unmask = unmask_IO_APIC_irq, 2689 .ack = ack_apic_edge, 2690 .eoi = ack_apic_level, 2691 #ifdef CONFIG_SMP 2692 .set_affinity = set_ioapic_affinity_irq, 2693 #endif 2694 .retrigger = ioapic_retrigger_irq, 2695 }; 2696 2697 static struct irq_chip ir_ioapic_chip __read_mostly = { 2698 .name = "IR-IO-APIC", 2699 .startup = startup_ioapic_irq, 2700 .mask = mask_IO_APIC_irq, 2701 .unmask = unmask_IO_APIC_irq, 2702 #ifdef CONFIG_INTR_REMAP 2703 .ack = ir_ack_apic_edge, 2704 .eoi = ir_ack_apic_level, 2705 #ifdef CONFIG_SMP 2706 .set_affinity = set_ir_ioapic_affinity_irq, 2707 #endif 2708 #endif 2709 .retrigger = ioapic_retrigger_irq, 2710 }; 2711 2712 static inline void init_IO_APIC_traps(void) 2713 { 2714 int irq; 2715 struct irq_desc *desc; 2716 struct irq_cfg *cfg; 2717 2718 /* 2719 * NOTE! The local APIC isn't very good at handling 2720 * multiple interrupts at the same interrupt level. 2721 * As the interrupt level is determined by taking the 2722 * vector number and shifting that right by 4, we 2723 * want to spread these out a bit so that they don't 2724 * all fall in the same interrupt level. 2725 * 2726 * Also, we've got to be careful not to trash gate 2727 * 0x80, because int 0x80 is hm, kind of importantish. ;) 2728 */ 2729 for_each_irq_desc(irq, desc) { 2730 cfg = desc->chip_data; 2731 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2732 /* 2733 * Hmm.. We don't have an entry for this, 2734 * so default to an old-fashioned 8259 2735 * interrupt if we can.. 2736 */ 2737 if (irq < nr_legacy_irqs) 2738 make_8259A_irq(irq); 2739 else 2740 /* Strange. Oh, well.. */ 2741 desc->chip = &no_irq_chip; 2742 } 2743 } 2744 } 2745 2746 /* 2747 * The local APIC irq-chip implementation: 2748 */ 2749 2750 static void mask_lapic_irq(unsigned int irq) 2751 { 2752 unsigned long v; 2753 2754 v = apic_read(APIC_LVT0); 2755 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2756 } 2757 2758 static void unmask_lapic_irq(unsigned int irq) 2759 { 2760 unsigned long v; 2761 2762 v = apic_read(APIC_LVT0); 2763 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2764 } 2765 2766 static void ack_lapic_irq(unsigned int irq) 2767 { 2768 ack_APIC_irq(); 2769 } 2770 2771 static struct irq_chip lapic_chip __read_mostly = { 2772 .name = "local-APIC", 2773 .mask = mask_lapic_irq, 2774 .unmask = unmask_lapic_irq, 2775 .ack = ack_lapic_irq, 2776 }; 2777 2778 static void lapic_register_intr(int irq, struct irq_desc *desc) 2779 { 2780 desc->status &= ~IRQ_LEVEL; 2781 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2782 "edge"); 2783 } 2784 2785 static void __init setup_nmi(void) 2786 { 2787 /* 2788 * Dirty trick to enable the NMI watchdog ... 2789 * We put the 8259A master into AEOI mode and 2790 * unmask on all local APICs LVT0 as NMI. 2791 * 2792 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') 2793 * is from Maciej W. Rozycki - so we do not have to EOI from 2794 * the NMI handler or the timer interrupt. 2795 */ 2796 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ..."); 2797 2798 enable_NMI_through_LVT0(); 2799 2800 apic_printk(APIC_VERBOSE, " done.\n"); 2801 } 2802 2803 /* 2804 * This looks a bit hackish but it's about the only one way of sending 2805 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2806 * not support the ExtINT mode, unfortunately. We need to send these 2807 * cycles as some i82489DX-based boards have glue logic that keeps the 2808 * 8259A interrupt line asserted until INTA. --macro 2809 */ 2810 static inline void __init unlock_ExtINT_logic(void) 2811 { 2812 int apic, pin, i; 2813 struct IO_APIC_route_entry entry0, entry1; 2814 unsigned char save_control, save_freq_select; 2815 2816 pin = find_isa_irq_pin(8, mp_INT); 2817 if (pin == -1) { 2818 WARN_ON_ONCE(1); 2819 return; 2820 } 2821 apic = find_isa_irq_apic(8, mp_INT); 2822 if (apic == -1) { 2823 WARN_ON_ONCE(1); 2824 return; 2825 } 2826 2827 entry0 = ioapic_read_entry(apic, pin); 2828 clear_IO_APIC_pin(apic, pin); 2829 2830 memset(&entry1, 0, sizeof(entry1)); 2831 2832 entry1.dest_mode = 0; /* physical delivery */ 2833 entry1.mask = 0; /* unmask IRQ now */ 2834 entry1.dest = hard_smp_processor_id(); 2835 entry1.delivery_mode = dest_ExtINT; 2836 entry1.polarity = entry0.polarity; 2837 entry1.trigger = 0; 2838 entry1.vector = 0; 2839 2840 ioapic_write_entry(apic, pin, entry1); 2841 2842 save_control = CMOS_READ(RTC_CONTROL); 2843 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2844 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2845 RTC_FREQ_SELECT); 2846 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2847 2848 i = 100; 2849 while (i-- > 0) { 2850 mdelay(10); 2851 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2852 i -= 10; 2853 } 2854 2855 CMOS_WRITE(save_control, RTC_CONTROL); 2856 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2857 clear_IO_APIC_pin(apic, pin); 2858 2859 ioapic_write_entry(apic, pin, entry0); 2860 } 2861 2862 static int disable_timer_pin_1 __initdata; 2863 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2864 static int __init disable_timer_pin_setup(char *arg) 2865 { 2866 disable_timer_pin_1 = 1; 2867 return 0; 2868 } 2869 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2870 2871 int timer_through_8259 __initdata; 2872 2873 /* 2874 * This code may look a bit paranoid, but it's supposed to cooperate with 2875 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2876 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2877 * fanatically on his truly buggy board. 2878 * 2879 * FIXME: really need to revamp this for all platforms. 2880 */ 2881 static inline void __init check_timer(void) 2882 { 2883 struct irq_desc *desc = irq_to_desc(0); 2884 struct irq_cfg *cfg = desc->chip_data; 2885 int node = cpu_to_node(boot_cpu_id); 2886 int apic1, pin1, apic2, pin2; 2887 unsigned long flags; 2888 int no_pin1 = 0; 2889 2890 local_irq_save(flags); 2891 2892 /* 2893 * get/set the timer IRQ vector: 2894 */ 2895 disable_8259A_irq(0); 2896 assign_irq_vector(0, cfg, apic->target_cpus()); 2897 2898 /* 2899 * As IRQ0 is to be enabled in the 8259A, the virtual 2900 * wire has to be disabled in the local APIC. Also 2901 * timer interrupts need to be acknowledged manually in 2902 * the 8259A for the i82489DX when using the NMI 2903 * watchdog as that APIC treats NMIs as level-triggered. 2904 * The AEOI mode will finish them in the 8259A 2905 * automatically. 2906 */ 2907 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2908 init_8259A(1); 2909 #ifdef CONFIG_X86_32 2910 { 2911 unsigned int ver; 2912 2913 ver = apic_read(APIC_LVR); 2914 ver = GET_APIC_VERSION(ver); 2915 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver)); 2916 } 2917 #endif 2918 2919 pin1 = find_isa_irq_pin(0, mp_INT); 2920 apic1 = find_isa_irq_apic(0, mp_INT); 2921 pin2 = ioapic_i8259.pin; 2922 apic2 = ioapic_i8259.apic; 2923 2924 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2925 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2926 cfg->vector, apic1, pin1, apic2, pin2); 2927 2928 /* 2929 * Some BIOS writers are clueless and report the ExtINTA 2930 * I/O APIC input from the cascaded 8259A as the timer 2931 * interrupt input. So just in case, if only one pin 2932 * was found above, try it both directly and through the 2933 * 8259A. 2934 */ 2935 if (pin1 == -1) { 2936 if (intr_remapping_enabled) 2937 panic("BIOS bug: timer not connected to IO-APIC"); 2938 pin1 = pin2; 2939 apic1 = apic2; 2940 no_pin1 = 1; 2941 } else if (pin2 == -1) { 2942 pin2 = pin1; 2943 apic2 = apic1; 2944 } 2945 2946 if (pin1 != -1) { 2947 /* 2948 * Ok, does IRQ0 through the IOAPIC work? 2949 */ 2950 if (no_pin1) { 2951 add_pin_to_irq_node(cfg, node, apic1, pin1); 2952 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); 2953 } else { 2954 /* for edge trigger, setup_IO_APIC_irq already 2955 * leave it unmasked. 2956 * so only need to unmask if it is level-trigger 2957 * do we really have level trigger timer? 2958 */ 2959 int idx; 2960 idx = find_irq_entry(apic1, pin1, mp_INT); 2961 if (idx != -1 && irq_trigger(idx)) 2962 unmask_IO_APIC_irq_desc(desc); 2963 } 2964 if (timer_irq_works()) { 2965 if (nmi_watchdog == NMI_IO_APIC) { 2966 setup_nmi(); 2967 enable_8259A_irq(0); 2968 } 2969 if (disable_timer_pin_1 > 0) 2970 clear_IO_APIC_pin(0, pin1); 2971 goto out; 2972 } 2973 if (intr_remapping_enabled) 2974 panic("timer doesn't work through Interrupt-remapped IO-APIC"); 2975 local_irq_disable(); 2976 clear_IO_APIC_pin(apic1, pin1); 2977 if (!no_pin1) 2978 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 2979 "8254 timer not connected to IO-APIC\n"); 2980 2981 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 2982 "(IRQ0) through the 8259A ...\n"); 2983 apic_printk(APIC_QUIET, KERN_INFO 2984 "..... (found apic %d pin %d) ...\n", apic2, pin2); 2985 /* 2986 * legacy devices should be connected to IO APIC #0 2987 */ 2988 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2); 2989 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); 2990 enable_8259A_irq(0); 2991 if (timer_irq_works()) { 2992 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 2993 timer_through_8259 = 1; 2994 if (nmi_watchdog == NMI_IO_APIC) { 2995 disable_8259A_irq(0); 2996 setup_nmi(); 2997 enable_8259A_irq(0); 2998 } 2999 goto out; 3000 } 3001 /* 3002 * Cleanup, just in case ... 3003 */ 3004 local_irq_disable(); 3005 disable_8259A_irq(0); 3006 clear_IO_APIC_pin(apic2, pin2); 3007 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 3008 } 3009 3010 if (nmi_watchdog == NMI_IO_APIC) { 3011 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work " 3012 "through the IO-APIC - disabling NMI Watchdog!\n"); 3013 nmi_watchdog = NMI_NONE; 3014 } 3015 #ifdef CONFIG_X86_32 3016 timer_ack = 0; 3017 #endif 3018 3019 apic_printk(APIC_QUIET, KERN_INFO 3020 "...trying to set up timer as Virtual Wire IRQ...\n"); 3021 3022 lapic_register_intr(0, desc); 3023 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 3024 enable_8259A_irq(0); 3025 3026 if (timer_irq_works()) { 3027 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 3028 goto out; 3029 } 3030 local_irq_disable(); 3031 disable_8259A_irq(0); 3032 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 3033 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 3034 3035 apic_printk(APIC_QUIET, KERN_INFO 3036 "...trying to set up timer as ExtINT IRQ...\n"); 3037 3038 init_8259A(0); 3039 make_8259A_irq(0); 3040 apic_write(APIC_LVT0, APIC_DM_EXTINT); 3041 3042 unlock_ExtINT_logic(); 3043 3044 if (timer_irq_works()) { 3045 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 3046 goto out; 3047 } 3048 local_irq_disable(); 3049 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 3050 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 3051 "report. Then try booting with the 'noapic' option.\n"); 3052 out: 3053 local_irq_restore(flags); 3054 } 3055 3056 /* 3057 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 3058 * to devices. However there may be an I/O APIC pin available for 3059 * this interrupt regardless. The pin may be left unconnected, but 3060 * typically it will be reused as an ExtINT cascade interrupt for 3061 * the master 8259A. In the MPS case such a pin will normally be 3062 * reported as an ExtINT interrupt in the MP table. With ACPI 3063 * there is no provision for ExtINT interrupts, and in the absence 3064 * of an override it would be treated as an ordinary ISA I/O APIC 3065 * interrupt, that is edge-triggered and unmasked by default. We 3066 * used to do this, but it caused problems on some systems because 3067 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 3068 * the same ExtINT cascade interrupt to drive the local APIC of the 3069 * bootstrap processor. Therefore we refrain from routing IRQ2 to 3070 * the I/O APIC in all cases now. No actual device should request 3071 * it anyway. --macro 3072 */ 3073 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 3074 3075 void __init setup_IO_APIC(void) 3076 { 3077 3078 /* 3079 * calling enable_IO_APIC() is moved to setup_local_APIC for BP 3080 */ 3081 io_apic_irqs = nr_legacy_irqs ? ~PIC_IRQS : ~0UL; 3082 3083 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 3084 /* 3085 * Set up IO-APIC IRQ routing. 3086 */ 3087 x86_init.mpparse.setup_ioapic_ids(); 3088 3089 sync_Arb_IDs(); 3090 setup_IO_APIC_irqs(); 3091 init_IO_APIC_traps(); 3092 if (nr_legacy_irqs) 3093 check_timer(); 3094 } 3095 3096 /* 3097 * Called after all the initialization is done. If we didnt find any 3098 * APIC bugs then we can allow the modify fast path 3099 */ 3100 3101 static int __init io_apic_bug_finalize(void) 3102 { 3103 if (sis_apic_bug == -1) 3104 sis_apic_bug = 0; 3105 return 0; 3106 } 3107 3108 late_initcall(io_apic_bug_finalize); 3109 3110 struct sysfs_ioapic_data { 3111 struct sys_device dev; 3112 struct IO_APIC_route_entry entry[0]; 3113 }; 3114 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS]; 3115 3116 static int ioapic_suspend(struct sys_device *dev, pm_message_t state) 3117 { 3118 struct IO_APIC_route_entry *entry; 3119 struct sysfs_ioapic_data *data; 3120 int i; 3121 3122 data = container_of(dev, struct sysfs_ioapic_data, dev); 3123 entry = data->entry; 3124 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ ) 3125 *entry = ioapic_read_entry(dev->id, i); 3126 3127 return 0; 3128 } 3129 3130 static int ioapic_resume(struct sys_device *dev) 3131 { 3132 struct IO_APIC_route_entry *entry; 3133 struct sysfs_ioapic_data *data; 3134 unsigned long flags; 3135 union IO_APIC_reg_00 reg_00; 3136 int i; 3137 3138 data = container_of(dev, struct sysfs_ioapic_data, dev); 3139 entry = data->entry; 3140 3141 spin_lock_irqsave(&ioapic_lock, flags); 3142 reg_00.raw = io_apic_read(dev->id, 0); 3143 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) { 3144 reg_00.bits.ID = mp_ioapics[dev->id].apicid; 3145 io_apic_write(dev->id, 0, reg_00.raw); 3146 } 3147 spin_unlock_irqrestore(&ioapic_lock, flags); 3148 for (i = 0; i < nr_ioapic_registers[dev->id]; i++) 3149 ioapic_write_entry(dev->id, i, entry[i]); 3150 3151 return 0; 3152 } 3153 3154 static struct sysdev_class ioapic_sysdev_class = { 3155 .name = "ioapic", 3156 .suspend = ioapic_suspend, 3157 .resume = ioapic_resume, 3158 }; 3159 3160 static int __init ioapic_init_sysfs(void) 3161 { 3162 struct sys_device * dev; 3163 int i, size, error; 3164 3165 error = sysdev_class_register(&ioapic_sysdev_class); 3166 if (error) 3167 return error; 3168 3169 for (i = 0; i < nr_ioapics; i++ ) { 3170 size = sizeof(struct sys_device) + nr_ioapic_registers[i] 3171 * sizeof(struct IO_APIC_route_entry); 3172 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL); 3173 if (!mp_ioapic_data[i]) { 3174 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3175 continue; 3176 } 3177 dev = &mp_ioapic_data[i]->dev; 3178 dev->id = i; 3179 dev->cls = &ioapic_sysdev_class; 3180 error = sysdev_register(dev); 3181 if (error) { 3182 kfree(mp_ioapic_data[i]); 3183 mp_ioapic_data[i] = NULL; 3184 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3185 continue; 3186 } 3187 } 3188 3189 return 0; 3190 } 3191 3192 device_initcall(ioapic_init_sysfs); 3193 3194 /* 3195 * Dynamic irq allocate and deallocation 3196 */ 3197 unsigned int create_irq_nr(unsigned int irq_want, int node) 3198 { 3199 /* Allocate an unused irq */ 3200 unsigned int irq; 3201 unsigned int new; 3202 unsigned long flags; 3203 struct irq_cfg *cfg_new = NULL; 3204 struct irq_desc *desc_new = NULL; 3205 3206 irq = 0; 3207 if (irq_want < nr_irqs_gsi) 3208 irq_want = nr_irqs_gsi; 3209 3210 spin_lock_irqsave(&vector_lock, flags); 3211 for (new = irq_want; new < nr_irqs; new++) { 3212 desc_new = irq_to_desc_alloc_node(new, node); 3213 if (!desc_new) { 3214 printk(KERN_INFO "can not get irq_desc for %d\n", new); 3215 continue; 3216 } 3217 cfg_new = desc_new->chip_data; 3218 3219 if (cfg_new->vector != 0) 3220 continue; 3221 3222 desc_new = move_irq_desc(desc_new, node); 3223 cfg_new = desc_new->chip_data; 3224 3225 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0) 3226 irq = new; 3227 break; 3228 } 3229 spin_unlock_irqrestore(&vector_lock, flags); 3230 3231 if (irq > 0) { 3232 dynamic_irq_init(irq); 3233 /* restore it, in case dynamic_irq_init clear it */ 3234 if (desc_new) 3235 desc_new->chip_data = cfg_new; 3236 } 3237 return irq; 3238 } 3239 3240 int create_irq(void) 3241 { 3242 int node = cpu_to_node(boot_cpu_id); 3243 unsigned int irq_want; 3244 int irq; 3245 3246 irq_want = nr_irqs_gsi; 3247 irq = create_irq_nr(irq_want, node); 3248 3249 if (irq == 0) 3250 irq = -1; 3251 3252 return irq; 3253 } 3254 3255 void destroy_irq(unsigned int irq) 3256 { 3257 unsigned long flags; 3258 struct irq_cfg *cfg; 3259 struct irq_desc *desc; 3260 3261 /* store it, in case dynamic_irq_cleanup clear it */ 3262 desc = irq_to_desc(irq); 3263 cfg = desc->chip_data; 3264 dynamic_irq_cleanup(irq); 3265 /* connect back irq_cfg */ 3266 desc->chip_data = cfg; 3267 3268 free_irte(irq); 3269 spin_lock_irqsave(&vector_lock, flags); 3270 __clear_irq_vector(irq, cfg); 3271 spin_unlock_irqrestore(&vector_lock, flags); 3272 } 3273 3274 /* 3275 * MSI message composition 3276 */ 3277 #ifdef CONFIG_PCI_MSI 3278 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, 3279 struct msi_msg *msg, u8 hpet_id) 3280 { 3281 struct irq_cfg *cfg; 3282 int err; 3283 unsigned dest; 3284 3285 if (disable_apic) 3286 return -ENXIO; 3287 3288 cfg = irq_cfg(irq); 3289 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3290 if (err) 3291 return err; 3292 3293 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 3294 3295 if (irq_remapped(irq)) { 3296 struct irte irte; 3297 int ir_index; 3298 u16 sub_handle; 3299 3300 ir_index = map_irq_to_irte_handle(irq, &sub_handle); 3301 BUG_ON(ir_index == -1); 3302 3303 memset (&irte, 0, sizeof(irte)); 3304 3305 irte.present = 1; 3306 irte.dst_mode = apic->irq_dest_mode; 3307 irte.trigger_mode = 0; /* edge */ 3308 irte.dlvry_mode = apic->irq_delivery_mode; 3309 irte.vector = cfg->vector; 3310 irte.dest_id = IRTE_DEST(dest); 3311 3312 /* Set source-id of interrupt request */ 3313 if (pdev) 3314 set_msi_sid(&irte, pdev); 3315 else 3316 set_hpet_sid(&irte, hpet_id); 3317 3318 modify_irte(irq, &irte); 3319 3320 msg->address_hi = MSI_ADDR_BASE_HI; 3321 msg->data = sub_handle; 3322 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | 3323 MSI_ADDR_IR_SHV | 3324 MSI_ADDR_IR_INDEX1(ir_index) | 3325 MSI_ADDR_IR_INDEX2(ir_index); 3326 } else { 3327 if (x2apic_enabled()) 3328 msg->address_hi = MSI_ADDR_BASE_HI | 3329 MSI_ADDR_EXT_DEST_ID(dest); 3330 else 3331 msg->address_hi = MSI_ADDR_BASE_HI; 3332 3333 msg->address_lo = 3334 MSI_ADDR_BASE_LO | 3335 ((apic->irq_dest_mode == 0) ? 3336 MSI_ADDR_DEST_MODE_PHYSICAL: 3337 MSI_ADDR_DEST_MODE_LOGICAL) | 3338 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3339 MSI_ADDR_REDIRECTION_CPU: 3340 MSI_ADDR_REDIRECTION_LOWPRI) | 3341 MSI_ADDR_DEST_ID(dest); 3342 3343 msg->data = 3344 MSI_DATA_TRIGGER_EDGE | 3345 MSI_DATA_LEVEL_ASSERT | 3346 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3347 MSI_DATA_DELIVERY_FIXED: 3348 MSI_DATA_DELIVERY_LOWPRI) | 3349 MSI_DATA_VECTOR(cfg->vector); 3350 } 3351 return err; 3352 } 3353 3354 #ifdef CONFIG_SMP 3355 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3356 { 3357 struct irq_desc *desc = irq_to_desc(irq); 3358 struct irq_cfg *cfg; 3359 struct msi_msg msg; 3360 unsigned int dest; 3361 3362 if (set_desc_affinity(desc, mask, &dest)) 3363 return -1; 3364 3365 cfg = desc->chip_data; 3366 3367 read_msi_msg_desc(desc, &msg); 3368 3369 msg.data &= ~MSI_DATA_VECTOR_MASK; 3370 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3371 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3372 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3373 3374 write_msi_msg_desc(desc, &msg); 3375 3376 return 0; 3377 } 3378 #ifdef CONFIG_INTR_REMAP 3379 /* 3380 * Migrate the MSI irq to another cpumask. This migration is 3381 * done in the process context using interrupt-remapping hardware. 3382 */ 3383 static int 3384 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3385 { 3386 struct irq_desc *desc = irq_to_desc(irq); 3387 struct irq_cfg *cfg = desc->chip_data; 3388 unsigned int dest; 3389 struct irte irte; 3390 3391 if (get_irte(irq, &irte)) 3392 return -1; 3393 3394 if (set_desc_affinity(desc, mask, &dest)) 3395 return -1; 3396 3397 irte.vector = cfg->vector; 3398 irte.dest_id = IRTE_DEST(dest); 3399 3400 /* 3401 * atomically update the IRTE with the new destination and vector. 3402 */ 3403 modify_irte(irq, &irte); 3404 3405 /* 3406 * After this point, all the interrupts will start arriving 3407 * at the new destination. So, time to cleanup the previous 3408 * vector allocation. 3409 */ 3410 if (cfg->move_in_progress) 3411 send_cleanup_vector(cfg); 3412 3413 return 0; 3414 } 3415 3416 #endif 3417 #endif /* CONFIG_SMP */ 3418 3419 /* 3420 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, 3421 * which implement the MSI or MSI-X Capability Structure. 3422 */ 3423 static struct irq_chip msi_chip = { 3424 .name = "PCI-MSI", 3425 .unmask = unmask_msi_irq, 3426 .mask = mask_msi_irq, 3427 .ack = ack_apic_edge, 3428 #ifdef CONFIG_SMP 3429 .set_affinity = set_msi_irq_affinity, 3430 #endif 3431 .retrigger = ioapic_retrigger_irq, 3432 }; 3433 3434 static struct irq_chip msi_ir_chip = { 3435 .name = "IR-PCI-MSI", 3436 .unmask = unmask_msi_irq, 3437 .mask = mask_msi_irq, 3438 #ifdef CONFIG_INTR_REMAP 3439 .ack = ir_ack_apic_edge, 3440 #ifdef CONFIG_SMP 3441 .set_affinity = ir_set_msi_irq_affinity, 3442 #endif 3443 #endif 3444 .retrigger = ioapic_retrigger_irq, 3445 }; 3446 3447 /* 3448 * Map the PCI dev to the corresponding remapping hardware unit 3449 * and allocate 'nvec' consecutive interrupt-remapping table entries 3450 * in it. 3451 */ 3452 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) 3453 { 3454 struct intel_iommu *iommu; 3455 int index; 3456 3457 iommu = map_dev_to_ir(dev); 3458 if (!iommu) { 3459 printk(KERN_ERR 3460 "Unable to map PCI %s to iommu\n", pci_name(dev)); 3461 return -ENOENT; 3462 } 3463 3464 index = alloc_irte(iommu, irq, nvec); 3465 if (index < 0) { 3466 printk(KERN_ERR 3467 "Unable to allocate %d IRTE for PCI %s\n", nvec, 3468 pci_name(dev)); 3469 return -ENOSPC; 3470 } 3471 return index; 3472 } 3473 3474 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq) 3475 { 3476 int ret; 3477 struct msi_msg msg; 3478 3479 ret = msi_compose_msg(dev, irq, &msg, -1); 3480 if (ret < 0) 3481 return ret; 3482 3483 set_irq_msi(irq, msidesc); 3484 write_msi_msg(irq, &msg); 3485 3486 if (irq_remapped(irq)) { 3487 struct irq_desc *desc = irq_to_desc(irq); 3488 /* 3489 * irq migration in process context 3490 */ 3491 desc->status |= IRQ_MOVE_PCNTXT; 3492 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge"); 3493 } else 3494 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge"); 3495 3496 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq); 3497 3498 return 0; 3499 } 3500 3501 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) 3502 { 3503 unsigned int irq; 3504 int ret, sub_handle; 3505 struct msi_desc *msidesc; 3506 unsigned int irq_want; 3507 struct intel_iommu *iommu = NULL; 3508 int index = 0; 3509 int node; 3510 3511 /* x86 doesn't support multiple MSI yet */ 3512 if (type == PCI_CAP_ID_MSI && nvec > 1) 3513 return 1; 3514 3515 node = dev_to_node(&dev->dev); 3516 irq_want = nr_irqs_gsi; 3517 sub_handle = 0; 3518 list_for_each_entry(msidesc, &dev->msi_list, list) { 3519 irq = create_irq_nr(irq_want, node); 3520 if (irq == 0) 3521 return -1; 3522 irq_want = irq + 1; 3523 if (!intr_remapping_enabled) 3524 goto no_ir; 3525 3526 if (!sub_handle) { 3527 /* 3528 * allocate the consecutive block of IRTE's 3529 * for 'nvec' 3530 */ 3531 index = msi_alloc_irte(dev, irq, nvec); 3532 if (index < 0) { 3533 ret = index; 3534 goto error; 3535 } 3536 } else { 3537 iommu = map_dev_to_ir(dev); 3538 if (!iommu) { 3539 ret = -ENOENT; 3540 goto error; 3541 } 3542 /* 3543 * setup the mapping between the irq and the IRTE 3544 * base index, the sub_handle pointing to the 3545 * appropriate interrupt remap table entry. 3546 */ 3547 set_irte_irq(irq, iommu, index, sub_handle); 3548 } 3549 no_ir: 3550 ret = setup_msi_irq(dev, msidesc, irq); 3551 if (ret < 0) 3552 goto error; 3553 sub_handle++; 3554 } 3555 return 0; 3556 3557 error: 3558 destroy_irq(irq); 3559 return ret; 3560 } 3561 3562 void arch_teardown_msi_irq(unsigned int irq) 3563 { 3564 destroy_irq(irq); 3565 } 3566 3567 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP) 3568 #ifdef CONFIG_SMP 3569 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3570 { 3571 struct irq_desc *desc = irq_to_desc(irq); 3572 struct irq_cfg *cfg; 3573 struct msi_msg msg; 3574 unsigned int dest; 3575 3576 if (set_desc_affinity(desc, mask, &dest)) 3577 return -1; 3578 3579 cfg = desc->chip_data; 3580 3581 dmar_msi_read(irq, &msg); 3582 3583 msg.data &= ~MSI_DATA_VECTOR_MASK; 3584 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3585 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3586 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3587 3588 dmar_msi_write(irq, &msg); 3589 3590 return 0; 3591 } 3592 3593 #endif /* CONFIG_SMP */ 3594 3595 static struct irq_chip dmar_msi_type = { 3596 .name = "DMAR_MSI", 3597 .unmask = dmar_msi_unmask, 3598 .mask = dmar_msi_mask, 3599 .ack = ack_apic_edge, 3600 #ifdef CONFIG_SMP 3601 .set_affinity = dmar_msi_set_affinity, 3602 #endif 3603 .retrigger = ioapic_retrigger_irq, 3604 }; 3605 3606 int arch_setup_dmar_msi(unsigned int irq) 3607 { 3608 int ret; 3609 struct msi_msg msg; 3610 3611 ret = msi_compose_msg(NULL, irq, &msg, -1); 3612 if (ret < 0) 3613 return ret; 3614 dmar_msi_write(irq, &msg); 3615 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, 3616 "edge"); 3617 return 0; 3618 } 3619 #endif 3620 3621 #ifdef CONFIG_HPET_TIMER 3622 3623 #ifdef CONFIG_SMP 3624 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3625 { 3626 struct irq_desc *desc = irq_to_desc(irq); 3627 struct irq_cfg *cfg; 3628 struct msi_msg msg; 3629 unsigned int dest; 3630 3631 if (set_desc_affinity(desc, mask, &dest)) 3632 return -1; 3633 3634 cfg = desc->chip_data; 3635 3636 hpet_msi_read(irq, &msg); 3637 3638 msg.data &= ~MSI_DATA_VECTOR_MASK; 3639 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3640 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3641 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3642 3643 hpet_msi_write(irq, &msg); 3644 3645 return 0; 3646 } 3647 3648 #endif /* CONFIG_SMP */ 3649 3650 static struct irq_chip ir_hpet_msi_type = { 3651 .name = "IR-HPET_MSI", 3652 .unmask = hpet_msi_unmask, 3653 .mask = hpet_msi_mask, 3654 #ifdef CONFIG_INTR_REMAP 3655 .ack = ir_ack_apic_edge, 3656 #ifdef CONFIG_SMP 3657 .set_affinity = ir_set_msi_irq_affinity, 3658 #endif 3659 #endif 3660 .retrigger = ioapic_retrigger_irq, 3661 }; 3662 3663 static struct irq_chip hpet_msi_type = { 3664 .name = "HPET_MSI", 3665 .unmask = hpet_msi_unmask, 3666 .mask = hpet_msi_mask, 3667 .ack = ack_apic_edge, 3668 #ifdef CONFIG_SMP 3669 .set_affinity = hpet_msi_set_affinity, 3670 #endif 3671 .retrigger = ioapic_retrigger_irq, 3672 }; 3673 3674 int arch_setup_hpet_msi(unsigned int irq, unsigned int id) 3675 { 3676 int ret; 3677 struct msi_msg msg; 3678 struct irq_desc *desc = irq_to_desc(irq); 3679 3680 if (intr_remapping_enabled) { 3681 struct intel_iommu *iommu = map_hpet_to_ir(id); 3682 int index; 3683 3684 if (!iommu) 3685 return -1; 3686 3687 index = alloc_irte(iommu, irq, 1); 3688 if (index < 0) 3689 return -1; 3690 } 3691 3692 ret = msi_compose_msg(NULL, irq, &msg, id); 3693 if (ret < 0) 3694 return ret; 3695 3696 hpet_msi_write(irq, &msg); 3697 desc->status |= IRQ_MOVE_PCNTXT; 3698 if (irq_remapped(irq)) 3699 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type, 3700 handle_edge_irq, "edge"); 3701 else 3702 set_irq_chip_and_handler_name(irq, &hpet_msi_type, 3703 handle_edge_irq, "edge"); 3704 3705 return 0; 3706 } 3707 #endif 3708 3709 #endif /* CONFIG_PCI_MSI */ 3710 /* 3711 * Hypertransport interrupt support 3712 */ 3713 #ifdef CONFIG_HT_IRQ 3714 3715 #ifdef CONFIG_SMP 3716 3717 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) 3718 { 3719 struct ht_irq_msg msg; 3720 fetch_ht_irq_msg(irq, &msg); 3721 3722 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); 3723 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); 3724 3725 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); 3726 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); 3727 3728 write_ht_irq_msg(irq, &msg); 3729 } 3730 3731 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask) 3732 { 3733 struct irq_desc *desc = irq_to_desc(irq); 3734 struct irq_cfg *cfg; 3735 unsigned int dest; 3736 3737 if (set_desc_affinity(desc, mask, &dest)) 3738 return -1; 3739 3740 cfg = desc->chip_data; 3741 3742 target_ht_irq(irq, dest, cfg->vector); 3743 3744 return 0; 3745 } 3746 3747 #endif 3748 3749 static struct irq_chip ht_irq_chip = { 3750 .name = "PCI-HT", 3751 .mask = mask_ht_irq, 3752 .unmask = unmask_ht_irq, 3753 .ack = ack_apic_edge, 3754 #ifdef CONFIG_SMP 3755 .set_affinity = set_ht_irq_affinity, 3756 #endif 3757 .retrigger = ioapic_retrigger_irq, 3758 }; 3759 3760 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) 3761 { 3762 struct irq_cfg *cfg; 3763 int err; 3764 3765 if (disable_apic) 3766 return -ENXIO; 3767 3768 cfg = irq_cfg(irq); 3769 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3770 if (!err) { 3771 struct ht_irq_msg msg; 3772 unsigned dest; 3773 3774 dest = apic->cpu_mask_to_apicid_and(cfg->domain, 3775 apic->target_cpus()); 3776 3777 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); 3778 3779 msg.address_lo = 3780 HT_IRQ_LOW_BASE | 3781 HT_IRQ_LOW_DEST_ID(dest) | 3782 HT_IRQ_LOW_VECTOR(cfg->vector) | 3783 ((apic->irq_dest_mode == 0) ? 3784 HT_IRQ_LOW_DM_PHYSICAL : 3785 HT_IRQ_LOW_DM_LOGICAL) | 3786 HT_IRQ_LOW_RQEOI_EDGE | 3787 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3788 HT_IRQ_LOW_MT_FIXED : 3789 HT_IRQ_LOW_MT_ARBITRATED) | 3790 HT_IRQ_LOW_IRQ_MASKED; 3791 3792 write_ht_irq_msg(irq, &msg); 3793 3794 set_irq_chip_and_handler_name(irq, &ht_irq_chip, 3795 handle_edge_irq, "edge"); 3796 3797 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq); 3798 } 3799 return err; 3800 } 3801 #endif /* CONFIG_HT_IRQ */ 3802 3803 int __init io_apic_get_redir_entries (int ioapic) 3804 { 3805 union IO_APIC_reg_01 reg_01; 3806 unsigned long flags; 3807 3808 spin_lock_irqsave(&ioapic_lock, flags); 3809 reg_01.raw = io_apic_read(ioapic, 1); 3810 spin_unlock_irqrestore(&ioapic_lock, flags); 3811 3812 return reg_01.bits.entries; 3813 } 3814 3815 void __init probe_nr_irqs_gsi(void) 3816 { 3817 int nr = 0; 3818 3819 nr = acpi_probe_gsi(); 3820 if (nr > nr_irqs_gsi) { 3821 nr_irqs_gsi = nr; 3822 } else { 3823 /* for acpi=off or acpi is not compiled in */ 3824 int idx; 3825 3826 nr = 0; 3827 for (idx = 0; idx < nr_ioapics; idx++) 3828 nr += io_apic_get_redir_entries(idx) + 1; 3829 3830 if (nr > nr_irqs_gsi) 3831 nr_irqs_gsi = nr; 3832 } 3833 3834 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi); 3835 } 3836 3837 #ifdef CONFIG_SPARSE_IRQ 3838 int __init arch_probe_nr_irqs(void) 3839 { 3840 int nr; 3841 3842 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 3843 nr_irqs = NR_VECTORS * nr_cpu_ids; 3844 3845 nr = nr_irqs_gsi + 8 * nr_cpu_ids; 3846 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 3847 /* 3848 * for MSI and HT dyn irq 3849 */ 3850 nr += nr_irqs_gsi * 16; 3851 #endif 3852 if (nr < nr_irqs) 3853 nr_irqs = nr; 3854 3855 return 0; 3856 } 3857 #endif 3858 3859 static int __io_apic_set_pci_routing(struct device *dev, int irq, 3860 struct io_apic_irq_attr *irq_attr) 3861 { 3862 struct irq_desc *desc; 3863 struct irq_cfg *cfg; 3864 int node; 3865 int ioapic, pin; 3866 int trigger, polarity; 3867 3868 ioapic = irq_attr->ioapic; 3869 if (!IO_APIC_IRQ(irq)) { 3870 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", 3871 ioapic); 3872 return -EINVAL; 3873 } 3874 3875 if (dev) 3876 node = dev_to_node(dev); 3877 else 3878 node = cpu_to_node(boot_cpu_id); 3879 3880 desc = irq_to_desc_alloc_node(irq, node); 3881 if (!desc) { 3882 printk(KERN_INFO "can not get irq_desc %d\n", irq); 3883 return 0; 3884 } 3885 3886 pin = irq_attr->ioapic_pin; 3887 trigger = irq_attr->trigger; 3888 polarity = irq_attr->polarity; 3889 3890 /* 3891 * IRQs < 16 are already in the irq_2_pin[] map 3892 */ 3893 if (irq >= nr_legacy_irqs) { 3894 cfg = desc->chip_data; 3895 if (add_pin_to_irq_node_nopanic(cfg, node, ioapic, pin)) { 3896 printk(KERN_INFO "can not add pin %d for irq %d\n", 3897 pin, irq); 3898 return 0; 3899 } 3900 } 3901 3902 setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity); 3903 3904 return 0; 3905 } 3906 3907 int io_apic_set_pci_routing(struct device *dev, int irq, 3908 struct io_apic_irq_attr *irq_attr) 3909 { 3910 int ioapic, pin; 3911 /* 3912 * Avoid pin reprogramming. PRTs typically include entries 3913 * with redundant pin->gsi mappings (but unique PCI devices); 3914 * we only program the IOAPIC on the first. 3915 */ 3916 ioapic = irq_attr->ioapic; 3917 pin = irq_attr->ioapic_pin; 3918 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) { 3919 pr_debug("Pin %d-%d already programmed\n", 3920 mp_ioapics[ioapic].apicid, pin); 3921 return 0; 3922 } 3923 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed); 3924 3925 return __io_apic_set_pci_routing(dev, irq, irq_attr); 3926 } 3927 3928 u8 __init io_apic_unique_id(u8 id) 3929 { 3930 #ifdef CONFIG_X86_32 3931 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 3932 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 3933 return io_apic_get_unique_id(nr_ioapics, id); 3934 else 3935 return id; 3936 #else 3937 int i; 3938 DECLARE_BITMAP(used, 256); 3939 3940 bitmap_zero(used, 256); 3941 for (i = 0; i < nr_ioapics; i++) { 3942 struct mpc_ioapic *ia = &mp_ioapics[i]; 3943 __set_bit(ia->apicid, used); 3944 } 3945 if (!test_bit(id, used)) 3946 return id; 3947 return find_first_zero_bit(used, 256); 3948 #endif 3949 } 3950 3951 #ifdef CONFIG_X86_32 3952 int __init io_apic_get_unique_id(int ioapic, int apic_id) 3953 { 3954 union IO_APIC_reg_00 reg_00; 3955 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 3956 physid_mask_t tmp; 3957 unsigned long flags; 3958 int i = 0; 3959 3960 /* 3961 * The P4 platform supports up to 256 APIC IDs on two separate APIC 3962 * buses (one for LAPICs, one for IOAPICs), where predecessors only 3963 * supports up to 16 on one shared APIC bus. 3964 * 3965 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 3966 * advantage of new APIC bus architecture. 3967 */ 3968 3969 if (physids_empty(apic_id_map)) 3970 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map); 3971 3972 spin_lock_irqsave(&ioapic_lock, flags); 3973 reg_00.raw = io_apic_read(ioapic, 0); 3974 spin_unlock_irqrestore(&ioapic_lock, flags); 3975 3976 if (apic_id >= get_physical_broadcast()) { 3977 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 3978 "%d\n", ioapic, apic_id, reg_00.bits.ID); 3979 apic_id = reg_00.bits.ID; 3980 } 3981 3982 /* 3983 * Every APIC in a system must have a unique ID or we get lots of nice 3984 * 'stuck on smp_invalidate_needed IPI wait' messages. 3985 */ 3986 if (apic->check_apicid_used(&apic_id_map, apic_id)) { 3987 3988 for (i = 0; i < get_physical_broadcast(); i++) { 3989 if (!apic->check_apicid_used(&apic_id_map, i)) 3990 break; 3991 } 3992 3993 if (i == get_physical_broadcast()) 3994 panic("Max apic_id exceeded!\n"); 3995 3996 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 3997 "trying %d\n", ioapic, apic_id, i); 3998 3999 apic_id = i; 4000 } 4001 4002 apic->apicid_to_cpu_present(apic_id, &tmp); 4003 physids_or(apic_id_map, apic_id_map, tmp); 4004 4005 if (reg_00.bits.ID != apic_id) { 4006 reg_00.bits.ID = apic_id; 4007 4008 spin_lock_irqsave(&ioapic_lock, flags); 4009 io_apic_write(ioapic, 0, reg_00.raw); 4010 reg_00.raw = io_apic_read(ioapic, 0); 4011 spin_unlock_irqrestore(&ioapic_lock, flags); 4012 4013 /* Sanity check */ 4014 if (reg_00.bits.ID != apic_id) { 4015 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); 4016 return -1; 4017 } 4018 } 4019 4020 apic_printk(APIC_VERBOSE, KERN_INFO 4021 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 4022 4023 return apic_id; 4024 } 4025 #endif 4026 4027 int __init io_apic_get_version(int ioapic) 4028 { 4029 union IO_APIC_reg_01 reg_01; 4030 unsigned long flags; 4031 4032 spin_lock_irqsave(&ioapic_lock, flags); 4033 reg_01.raw = io_apic_read(ioapic, 1); 4034 spin_unlock_irqrestore(&ioapic_lock, flags); 4035 4036 return reg_01.bits.version; 4037 } 4038 4039 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity) 4040 { 4041 int i; 4042 4043 if (skip_ioapic_setup) 4044 return -1; 4045 4046 for (i = 0; i < mp_irq_entries; i++) 4047 if (mp_irqs[i].irqtype == mp_INT && 4048 mp_irqs[i].srcbusirq == bus_irq) 4049 break; 4050 if (i >= mp_irq_entries) 4051 return -1; 4052 4053 *trigger = irq_trigger(i); 4054 *polarity = irq_polarity(i); 4055 return 0; 4056 } 4057 4058 /* 4059 * This function currently is only a helper for the i386 smp boot process where 4060 * we need to reprogram the ioredtbls to cater for the cpus which have come online 4061 * so mask in all cases should simply be apic->target_cpus() 4062 */ 4063 #ifdef CONFIG_SMP 4064 void __init setup_ioapic_dest(void) 4065 { 4066 int pin, ioapic = 0, irq, irq_entry; 4067 struct irq_desc *desc; 4068 const struct cpumask *mask; 4069 4070 if (skip_ioapic_setup == 1) 4071 return; 4072 4073 #ifdef CONFIG_ACPI 4074 if (!acpi_disabled && acpi_ioapic) { 4075 ioapic = mp_find_ioapic(0); 4076 if (ioapic < 0) 4077 ioapic = 0; 4078 } 4079 #endif 4080 4081 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { 4082 irq_entry = find_irq_entry(ioapic, pin, mp_INT); 4083 if (irq_entry == -1) 4084 continue; 4085 irq = pin_2_irq(irq_entry, ioapic, pin); 4086 4087 desc = irq_to_desc(irq); 4088 4089 /* 4090 * Honour affinities which have been set in early boot 4091 */ 4092 if (desc->status & 4093 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET)) 4094 mask = desc->affinity; 4095 else 4096 mask = apic->target_cpus(); 4097 4098 if (intr_remapping_enabled) 4099 set_ir_ioapic_affinity_irq_desc(desc, mask); 4100 else 4101 set_ioapic_affinity_irq_desc(desc, mask); 4102 } 4103 4104 } 4105 #endif 4106 4107 #define IOAPIC_RESOURCE_NAME_SIZE 11 4108 4109 static struct resource *ioapic_resources; 4110 4111 static struct resource * __init ioapic_setup_resources(int nr_ioapics) 4112 { 4113 unsigned long n; 4114 struct resource *res; 4115 char *mem; 4116 int i; 4117 4118 if (nr_ioapics <= 0) 4119 return NULL; 4120 4121 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 4122 n *= nr_ioapics; 4123 4124 mem = alloc_bootmem(n); 4125 res = (void *)mem; 4126 4127 mem += sizeof(struct resource) * nr_ioapics; 4128 4129 for (i = 0; i < nr_ioapics; i++) { 4130 res[i].name = mem; 4131 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 4132 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); 4133 mem += IOAPIC_RESOURCE_NAME_SIZE; 4134 } 4135 4136 ioapic_resources = res; 4137 4138 return res; 4139 } 4140 4141 void __init ioapic_init_mappings(void) 4142 { 4143 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 4144 struct resource *ioapic_res; 4145 int i; 4146 4147 ioapic_res = ioapic_setup_resources(nr_ioapics); 4148 for (i = 0; i < nr_ioapics; i++) { 4149 if (smp_found_config) { 4150 ioapic_phys = mp_ioapics[i].apicaddr; 4151 #ifdef CONFIG_X86_32 4152 if (!ioapic_phys) { 4153 printk(KERN_ERR 4154 "WARNING: bogus zero IO-APIC " 4155 "address found in MPTABLE, " 4156 "disabling IO/APIC support!\n"); 4157 smp_found_config = 0; 4158 skip_ioapic_setup = 1; 4159 goto fake_ioapic_page; 4160 } 4161 #endif 4162 } else { 4163 #ifdef CONFIG_X86_32 4164 fake_ioapic_page: 4165 #endif 4166 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); 4167 ioapic_phys = __pa(ioapic_phys); 4168 } 4169 set_fixmap_nocache(idx, ioapic_phys); 4170 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", 4171 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), 4172 ioapic_phys); 4173 idx++; 4174 4175 ioapic_res->start = ioapic_phys; 4176 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; 4177 ioapic_res++; 4178 } 4179 } 4180 4181 void __init ioapic_insert_resources(void) 4182 { 4183 int i; 4184 struct resource *r = ioapic_resources; 4185 4186 if (!r) { 4187 if (nr_ioapics > 0) 4188 printk(KERN_ERR 4189 "IO APIC resources couldn't be allocated.\n"); 4190 return; 4191 } 4192 4193 for (i = 0; i < nr_ioapics; i++) { 4194 insert_resource(&iomem_resource, r); 4195 r++; 4196 } 4197 } 4198 4199 int mp_find_ioapic(int gsi) 4200 { 4201 int i = 0; 4202 4203 /* Find the IOAPIC that manages this GSI. */ 4204 for (i = 0; i < nr_ioapics; i++) { 4205 if ((gsi >= mp_gsi_routing[i].gsi_base) 4206 && (gsi <= mp_gsi_routing[i].gsi_end)) 4207 return i; 4208 } 4209 4210 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 4211 return -1; 4212 } 4213 4214 int mp_find_ioapic_pin(int ioapic, int gsi) 4215 { 4216 if (WARN_ON(ioapic == -1)) 4217 return -1; 4218 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end)) 4219 return -1; 4220 4221 return gsi - mp_gsi_routing[ioapic].gsi_base; 4222 } 4223 4224 static int bad_ioapic(unsigned long address) 4225 { 4226 if (nr_ioapics >= MAX_IO_APICS) { 4227 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded " 4228 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics); 4229 return 1; 4230 } 4231 if (!address) { 4232 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address" 4233 " found in table, skipping!\n"); 4234 return 1; 4235 } 4236 return 0; 4237 } 4238 4239 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base) 4240 { 4241 int idx = 0; 4242 4243 if (bad_ioapic(address)) 4244 return; 4245 4246 idx = nr_ioapics; 4247 4248 mp_ioapics[idx].type = MP_IOAPIC; 4249 mp_ioapics[idx].flags = MPC_APIC_USABLE; 4250 mp_ioapics[idx].apicaddr = address; 4251 4252 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address); 4253 mp_ioapics[idx].apicid = io_apic_unique_id(id); 4254 mp_ioapics[idx].apicver = io_apic_get_version(idx); 4255 4256 /* 4257 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 4258 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 4259 */ 4260 mp_gsi_routing[idx].gsi_base = gsi_base; 4261 mp_gsi_routing[idx].gsi_end = gsi_base + 4262 io_apic_get_redir_entries(idx); 4263 4264 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, " 4265 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid, 4266 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr, 4267 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end); 4268 4269 nr_ioapics++; 4270 } 4271