xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision 78c99ba1)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45 
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 #include <asm/uv/uv_hub.h>
64 #include <asm/uv/uv_irq.h>
65 
66 #include <asm/apic.h>
67 
68 #define __apicdebuginit(type) static type __init
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_SPINLOCK(ioapic_lock);
77 static DEFINE_SPINLOCK(vector_lock);
78 
79 /*
80  * # of IRQ routing registers
81  */
82 int nr_ioapic_registers[MAX_IO_APICS];
83 
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87 
88 /* MP IRQ source entries */
89 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
90 
91 /* # of MP IRQ source entries */
92 int mp_irq_entries;
93 
94 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
95 int mp_bus_id_to_type[MAX_MP_BUSSES];
96 #endif
97 
98 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
99 
100 int skip_ioapic_setup;
101 
102 void arch_disable_smp_support(void)
103 {
104 #ifdef CONFIG_PCI
105 	noioapicquirk = 1;
106 	noioapicreroute = -1;
107 #endif
108 	skip_ioapic_setup = 1;
109 }
110 
111 static int __init parse_noapic(char *str)
112 {
113 	/* disable IO-APIC */
114 	arch_disable_smp_support();
115 	return 0;
116 }
117 early_param("noapic", parse_noapic);
118 
119 struct irq_pin_list;
120 
121 /*
122  * This is performance-critical, we want to do it O(1)
123  *
124  * the indexing order of this array favors 1:1 mappings
125  * between pins and IRQs.
126  */
127 
128 struct irq_pin_list {
129 	int apic, pin;
130 	struct irq_pin_list *next;
131 };
132 
133 static struct irq_pin_list *get_one_free_irq_2_pin(int node)
134 {
135 	struct irq_pin_list *pin;
136 
137 	pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
138 
139 	return pin;
140 }
141 
142 struct irq_cfg {
143 	struct irq_pin_list *irq_2_pin;
144 	cpumask_var_t domain;
145 	cpumask_var_t old_domain;
146 	unsigned move_cleanup_count;
147 	u8 vector;
148 	u8 move_in_progress : 1;
149 };
150 
151 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
152 #ifdef CONFIG_SPARSE_IRQ
153 static struct irq_cfg irq_cfgx[] = {
154 #else
155 static struct irq_cfg irq_cfgx[NR_IRQS] = {
156 #endif
157 	[0]  = { .vector = IRQ0_VECTOR,  },
158 	[1]  = { .vector = IRQ1_VECTOR,  },
159 	[2]  = { .vector = IRQ2_VECTOR,  },
160 	[3]  = { .vector = IRQ3_VECTOR,  },
161 	[4]  = { .vector = IRQ4_VECTOR,  },
162 	[5]  = { .vector = IRQ5_VECTOR,  },
163 	[6]  = { .vector = IRQ6_VECTOR,  },
164 	[7]  = { .vector = IRQ7_VECTOR,  },
165 	[8]  = { .vector = IRQ8_VECTOR,  },
166 	[9]  = { .vector = IRQ9_VECTOR,  },
167 	[10] = { .vector = IRQ10_VECTOR, },
168 	[11] = { .vector = IRQ11_VECTOR, },
169 	[12] = { .vector = IRQ12_VECTOR, },
170 	[13] = { .vector = IRQ13_VECTOR, },
171 	[14] = { .vector = IRQ14_VECTOR, },
172 	[15] = { .vector = IRQ15_VECTOR, },
173 };
174 
175 int __init arch_early_irq_init(void)
176 {
177 	struct irq_cfg *cfg;
178 	struct irq_desc *desc;
179 	int count;
180 	int node;
181 	int i;
182 
183 	cfg = irq_cfgx;
184 	count = ARRAY_SIZE(irq_cfgx);
185 	node= cpu_to_node(boot_cpu_id);
186 
187 	for (i = 0; i < count; i++) {
188 		desc = irq_to_desc(i);
189 		desc->chip_data = &cfg[i];
190 		alloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node);
191 		alloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node);
192 		if (i < NR_IRQS_LEGACY)
193 			cpumask_setall(cfg[i].domain);
194 	}
195 
196 	return 0;
197 }
198 
199 #ifdef CONFIG_SPARSE_IRQ
200 static struct irq_cfg *irq_cfg(unsigned int irq)
201 {
202 	struct irq_cfg *cfg = NULL;
203 	struct irq_desc *desc;
204 
205 	desc = irq_to_desc(irq);
206 	if (desc)
207 		cfg = desc->chip_data;
208 
209 	return cfg;
210 }
211 
212 static struct irq_cfg *get_one_free_irq_cfg(int node)
213 {
214 	struct irq_cfg *cfg;
215 
216 	cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
217 	if (cfg) {
218 		if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
219 			kfree(cfg);
220 			cfg = NULL;
221 		} else if (!alloc_cpumask_var_node(&cfg->old_domain,
222 							  GFP_ATOMIC, node)) {
223 			free_cpumask_var(cfg->domain);
224 			kfree(cfg);
225 			cfg = NULL;
226 		} else {
227 			cpumask_clear(cfg->domain);
228 			cpumask_clear(cfg->old_domain);
229 		}
230 	}
231 
232 	return cfg;
233 }
234 
235 int arch_init_chip_data(struct irq_desc *desc, int node)
236 {
237 	struct irq_cfg *cfg;
238 
239 	cfg = desc->chip_data;
240 	if (!cfg) {
241 		desc->chip_data = get_one_free_irq_cfg(node);
242 		if (!desc->chip_data) {
243 			printk(KERN_ERR "can not alloc irq_cfg\n");
244 			BUG_ON(1);
245 		}
246 	}
247 
248 	return 0;
249 }
250 
251 /* for move_irq_desc */
252 static void
253 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node)
254 {
255 	struct irq_pin_list *old_entry, *head, *tail, *entry;
256 
257 	cfg->irq_2_pin = NULL;
258 	old_entry = old_cfg->irq_2_pin;
259 	if (!old_entry)
260 		return;
261 
262 	entry = get_one_free_irq_2_pin(node);
263 	if (!entry)
264 		return;
265 
266 	entry->apic	= old_entry->apic;
267 	entry->pin	= old_entry->pin;
268 	head		= entry;
269 	tail		= entry;
270 	old_entry	= old_entry->next;
271 	while (old_entry) {
272 		entry = get_one_free_irq_2_pin(node);
273 		if (!entry) {
274 			entry = head;
275 			while (entry) {
276 				head = entry->next;
277 				kfree(entry);
278 				entry = head;
279 			}
280 			/* still use the old one */
281 			return;
282 		}
283 		entry->apic	= old_entry->apic;
284 		entry->pin	= old_entry->pin;
285 		tail->next	= entry;
286 		tail		= entry;
287 		old_entry	= old_entry->next;
288 	}
289 
290 	tail->next = NULL;
291 	cfg->irq_2_pin = head;
292 }
293 
294 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
295 {
296 	struct irq_pin_list *entry, *next;
297 
298 	if (old_cfg->irq_2_pin == cfg->irq_2_pin)
299 		return;
300 
301 	entry = old_cfg->irq_2_pin;
302 
303 	while (entry) {
304 		next = entry->next;
305 		kfree(entry);
306 		entry = next;
307 	}
308 	old_cfg->irq_2_pin = NULL;
309 }
310 
311 void arch_init_copy_chip_data(struct irq_desc *old_desc,
312 				 struct irq_desc *desc, int node)
313 {
314 	struct irq_cfg *cfg;
315 	struct irq_cfg *old_cfg;
316 
317 	cfg = get_one_free_irq_cfg(node);
318 
319 	if (!cfg)
320 		return;
321 
322 	desc->chip_data = cfg;
323 
324 	old_cfg = old_desc->chip_data;
325 
326 	memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
327 
328 	init_copy_irq_2_pin(old_cfg, cfg, node);
329 }
330 
331 static void free_irq_cfg(struct irq_cfg *old_cfg)
332 {
333 	kfree(old_cfg);
334 }
335 
336 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
337 {
338 	struct irq_cfg *old_cfg, *cfg;
339 
340 	old_cfg = old_desc->chip_data;
341 	cfg = desc->chip_data;
342 
343 	if (old_cfg == cfg)
344 		return;
345 
346 	if (old_cfg) {
347 		free_irq_2_pin(old_cfg, cfg);
348 		free_irq_cfg(old_cfg);
349 		old_desc->chip_data = NULL;
350 	}
351 }
352 /* end for move_irq_desc */
353 
354 #else
355 static struct irq_cfg *irq_cfg(unsigned int irq)
356 {
357 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
358 }
359 
360 #endif
361 
362 struct io_apic {
363 	unsigned int index;
364 	unsigned int unused[3];
365 	unsigned int data;
366 	unsigned int unused2[11];
367 	unsigned int eoi;
368 };
369 
370 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
371 {
372 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
373 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
374 }
375 
376 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
377 {
378 	struct io_apic __iomem *io_apic = io_apic_base(apic);
379 	writel(vector, &io_apic->eoi);
380 }
381 
382 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
383 {
384 	struct io_apic __iomem *io_apic = io_apic_base(apic);
385 	writel(reg, &io_apic->index);
386 	return readl(&io_apic->data);
387 }
388 
389 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
390 {
391 	struct io_apic __iomem *io_apic = io_apic_base(apic);
392 	writel(reg, &io_apic->index);
393 	writel(value, &io_apic->data);
394 }
395 
396 /*
397  * Re-write a value: to be used for read-modify-write
398  * cycles where the read already set up the index register.
399  *
400  * Older SiS APIC requires we rewrite the index register
401  */
402 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
403 {
404 	struct io_apic __iomem *io_apic = io_apic_base(apic);
405 
406 	if (sis_apic_bug)
407 		writel(reg, &io_apic->index);
408 	writel(value, &io_apic->data);
409 }
410 
411 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
412 {
413 	struct irq_pin_list *entry;
414 	unsigned long flags;
415 
416 	spin_lock_irqsave(&ioapic_lock, flags);
417 	entry = cfg->irq_2_pin;
418 	for (;;) {
419 		unsigned int reg;
420 		int pin;
421 
422 		if (!entry)
423 			break;
424 		pin = entry->pin;
425 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
426 		/* Is the remote IRR bit set? */
427 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
428 			spin_unlock_irqrestore(&ioapic_lock, flags);
429 			return true;
430 		}
431 		if (!entry->next)
432 			break;
433 		entry = entry->next;
434 	}
435 	spin_unlock_irqrestore(&ioapic_lock, flags);
436 
437 	return false;
438 }
439 
440 union entry_union {
441 	struct { u32 w1, w2; };
442 	struct IO_APIC_route_entry entry;
443 };
444 
445 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
446 {
447 	union entry_union eu;
448 	unsigned long flags;
449 	spin_lock_irqsave(&ioapic_lock, flags);
450 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
451 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
452 	spin_unlock_irqrestore(&ioapic_lock, flags);
453 	return eu.entry;
454 }
455 
456 /*
457  * When we write a new IO APIC routing entry, we need to write the high
458  * word first! If the mask bit in the low word is clear, we will enable
459  * the interrupt, and we need to make sure the entry is fully populated
460  * before that happens.
461  */
462 static void
463 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
464 {
465 	union entry_union eu;
466 	eu.entry = e;
467 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
468 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
469 }
470 
471 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
472 {
473 	unsigned long flags;
474 	spin_lock_irqsave(&ioapic_lock, flags);
475 	__ioapic_write_entry(apic, pin, e);
476 	spin_unlock_irqrestore(&ioapic_lock, flags);
477 }
478 
479 /*
480  * When we mask an IO APIC routing entry, we need to write the low
481  * word first, in order to set the mask bit before we change the
482  * high bits!
483  */
484 static void ioapic_mask_entry(int apic, int pin)
485 {
486 	unsigned long flags;
487 	union entry_union eu = { .entry.mask = 1 };
488 
489 	spin_lock_irqsave(&ioapic_lock, flags);
490 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
491 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
492 	spin_unlock_irqrestore(&ioapic_lock, flags);
493 }
494 
495 /*
496  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
497  * shared ISA-space IRQs, so we have to support them. We are super
498  * fast in the common case, and fast for shared ISA-space IRQs.
499  */
500 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
501 {
502 	struct irq_pin_list *entry;
503 
504 	entry = cfg->irq_2_pin;
505 	if (!entry) {
506 		entry = get_one_free_irq_2_pin(node);
507 		if (!entry) {
508 			printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
509 					apic, pin);
510 			return;
511 		}
512 		cfg->irq_2_pin = entry;
513 		entry->apic = apic;
514 		entry->pin = pin;
515 		return;
516 	}
517 
518 	while (entry->next) {
519 		/* not again, please */
520 		if (entry->apic == apic && entry->pin == pin)
521 			return;
522 
523 		entry = entry->next;
524 	}
525 
526 	entry->next = get_one_free_irq_2_pin(node);
527 	entry = entry->next;
528 	entry->apic = apic;
529 	entry->pin = pin;
530 }
531 
532 /*
533  * Reroute an IRQ to a different pin.
534  */
535 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
536 				      int oldapic, int oldpin,
537 				      int newapic, int newpin)
538 {
539 	struct irq_pin_list *entry = cfg->irq_2_pin;
540 	int replaced = 0;
541 
542 	while (entry) {
543 		if (entry->apic == oldapic && entry->pin == oldpin) {
544 			entry->apic = newapic;
545 			entry->pin = newpin;
546 			replaced = 1;
547 			/* every one is different, right? */
548 			break;
549 		}
550 		entry = entry->next;
551 	}
552 
553 	/* why? call replace before add? */
554 	if (!replaced)
555 		add_pin_to_irq_node(cfg, node, newapic, newpin);
556 }
557 
558 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
559 				int mask_and, int mask_or,
560 				void (*final)(struct irq_pin_list *entry))
561 {
562 	int pin;
563 	struct irq_pin_list *entry;
564 
565 	for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
566 		unsigned int reg;
567 		pin = entry->pin;
568 		reg = io_apic_read(entry->apic, 0x10 + pin * 2);
569 		reg &= mask_and;
570 		reg |= mask_or;
571 		io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
572 		if (final)
573 			final(entry);
574 	}
575 }
576 
577 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
578 {
579 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
580 }
581 
582 #ifdef CONFIG_X86_64
583 static void io_apic_sync(struct irq_pin_list *entry)
584 {
585 	/*
586 	 * Synchronize the IO-APIC and the CPU by doing
587 	 * a dummy read from the IO-APIC
588 	 */
589 	struct io_apic __iomem *io_apic;
590 	io_apic = io_apic_base(entry->apic);
591 	readl(&io_apic->data);
592 }
593 
594 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
595 {
596 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
597 }
598 #else /* CONFIG_X86_32 */
599 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
600 {
601 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
602 }
603 
604 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
605 {
606 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
607 			IO_APIC_REDIR_MASKED, NULL);
608 }
609 
610 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
611 {
612 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
613 			IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
614 }
615 #endif /* CONFIG_X86_32 */
616 
617 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
618 {
619 	struct irq_cfg *cfg = desc->chip_data;
620 	unsigned long flags;
621 
622 	BUG_ON(!cfg);
623 
624 	spin_lock_irqsave(&ioapic_lock, flags);
625 	__mask_IO_APIC_irq(cfg);
626 	spin_unlock_irqrestore(&ioapic_lock, flags);
627 }
628 
629 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
630 {
631 	struct irq_cfg *cfg = desc->chip_data;
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&ioapic_lock, flags);
635 	__unmask_IO_APIC_irq(cfg);
636 	spin_unlock_irqrestore(&ioapic_lock, flags);
637 }
638 
639 static void mask_IO_APIC_irq(unsigned int irq)
640 {
641 	struct irq_desc *desc = irq_to_desc(irq);
642 
643 	mask_IO_APIC_irq_desc(desc);
644 }
645 static void unmask_IO_APIC_irq(unsigned int irq)
646 {
647 	struct irq_desc *desc = irq_to_desc(irq);
648 
649 	unmask_IO_APIC_irq_desc(desc);
650 }
651 
652 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
653 {
654 	struct IO_APIC_route_entry entry;
655 
656 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
657 	entry = ioapic_read_entry(apic, pin);
658 	if (entry.delivery_mode == dest_SMI)
659 		return;
660 	/*
661 	 * Disable it in the IO-APIC irq-routing table:
662 	 */
663 	ioapic_mask_entry(apic, pin);
664 }
665 
666 static void clear_IO_APIC (void)
667 {
668 	int apic, pin;
669 
670 	for (apic = 0; apic < nr_ioapics; apic++)
671 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
672 			clear_IO_APIC_pin(apic, pin);
673 }
674 
675 #ifdef CONFIG_X86_32
676 /*
677  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
678  * specific CPU-side IRQs.
679  */
680 
681 #define MAX_PIRQS 8
682 static int pirq_entries[MAX_PIRQS] = {
683 	[0 ... MAX_PIRQS - 1] = -1
684 };
685 
686 static int __init ioapic_pirq_setup(char *str)
687 {
688 	int i, max;
689 	int ints[MAX_PIRQS+1];
690 
691 	get_options(str, ARRAY_SIZE(ints), ints);
692 
693 	apic_printk(APIC_VERBOSE, KERN_INFO
694 			"PIRQ redirection, working around broken MP-BIOS.\n");
695 	max = MAX_PIRQS;
696 	if (ints[0] < MAX_PIRQS)
697 		max = ints[0];
698 
699 	for (i = 0; i < max; i++) {
700 		apic_printk(APIC_VERBOSE, KERN_DEBUG
701 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
702 		/*
703 		 * PIRQs are mapped upside down, usually.
704 		 */
705 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
706 	}
707 	return 1;
708 }
709 
710 __setup("pirq=", ioapic_pirq_setup);
711 #endif /* CONFIG_X86_32 */
712 
713 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
714 {
715 	int apic;
716 	struct IO_APIC_route_entry **ioapic_entries;
717 
718 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
719 				GFP_ATOMIC);
720 	if (!ioapic_entries)
721 		return 0;
722 
723 	for (apic = 0; apic < nr_ioapics; apic++) {
724 		ioapic_entries[apic] =
725 			kzalloc(sizeof(struct IO_APIC_route_entry) *
726 				nr_ioapic_registers[apic], GFP_ATOMIC);
727 		if (!ioapic_entries[apic])
728 			goto nomem;
729 	}
730 
731 	return ioapic_entries;
732 
733 nomem:
734 	while (--apic >= 0)
735 		kfree(ioapic_entries[apic]);
736 	kfree(ioapic_entries);
737 
738 	return 0;
739 }
740 
741 /*
742  * Saves all the IO-APIC RTE's
743  */
744 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
745 {
746 	int apic, pin;
747 
748 	if (!ioapic_entries)
749 		return -ENOMEM;
750 
751 	for (apic = 0; apic < nr_ioapics; apic++) {
752 		if (!ioapic_entries[apic])
753 			return -ENOMEM;
754 
755 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
756 			ioapic_entries[apic][pin] =
757 				ioapic_read_entry(apic, pin);
758 	}
759 
760 	return 0;
761 }
762 
763 /*
764  * Mask all IO APIC entries.
765  */
766 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
767 {
768 	int apic, pin;
769 
770 	if (!ioapic_entries)
771 		return;
772 
773 	for (apic = 0; apic < nr_ioapics; apic++) {
774 		if (!ioapic_entries[apic])
775 			break;
776 
777 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
778 			struct IO_APIC_route_entry entry;
779 
780 			entry = ioapic_entries[apic][pin];
781 			if (!entry.mask) {
782 				entry.mask = 1;
783 				ioapic_write_entry(apic, pin, entry);
784 			}
785 		}
786 	}
787 }
788 
789 /*
790  * Restore IO APIC entries which was saved in ioapic_entries.
791  */
792 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
793 {
794 	int apic, pin;
795 
796 	if (!ioapic_entries)
797 		return -ENOMEM;
798 
799 	for (apic = 0; apic < nr_ioapics; apic++) {
800 		if (!ioapic_entries[apic])
801 			return -ENOMEM;
802 
803 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
804 			ioapic_write_entry(apic, pin,
805 					ioapic_entries[apic][pin]);
806 	}
807 	return 0;
808 }
809 
810 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
811 {
812 	int apic;
813 
814 	for (apic = 0; apic < nr_ioapics; apic++)
815 		kfree(ioapic_entries[apic]);
816 
817 	kfree(ioapic_entries);
818 }
819 
820 /*
821  * Find the IRQ entry number of a certain pin.
822  */
823 static int find_irq_entry(int apic, int pin, int type)
824 {
825 	int i;
826 
827 	for (i = 0; i < mp_irq_entries; i++)
828 		if (mp_irqs[i].irqtype == type &&
829 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
830 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
831 		    mp_irqs[i].dstirq == pin)
832 			return i;
833 
834 	return -1;
835 }
836 
837 /*
838  * Find the pin to which IRQ[irq] (ISA) is connected
839  */
840 static int __init find_isa_irq_pin(int irq, int type)
841 {
842 	int i;
843 
844 	for (i = 0; i < mp_irq_entries; i++) {
845 		int lbus = mp_irqs[i].srcbus;
846 
847 		if (test_bit(lbus, mp_bus_not_pci) &&
848 		    (mp_irqs[i].irqtype == type) &&
849 		    (mp_irqs[i].srcbusirq == irq))
850 
851 			return mp_irqs[i].dstirq;
852 	}
853 	return -1;
854 }
855 
856 static int __init find_isa_irq_apic(int irq, int type)
857 {
858 	int i;
859 
860 	for (i = 0; i < mp_irq_entries; i++) {
861 		int lbus = mp_irqs[i].srcbus;
862 
863 		if (test_bit(lbus, mp_bus_not_pci) &&
864 		    (mp_irqs[i].irqtype == type) &&
865 		    (mp_irqs[i].srcbusirq == irq))
866 			break;
867 	}
868 	if (i < mp_irq_entries) {
869 		int apic;
870 		for(apic = 0; apic < nr_ioapics; apic++) {
871 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
872 				return apic;
873 		}
874 	}
875 
876 	return -1;
877 }
878 
879 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
880 /*
881  * EISA Edge/Level control register, ELCR
882  */
883 static int EISA_ELCR(unsigned int irq)
884 {
885 	if (irq < NR_IRQS_LEGACY) {
886 		unsigned int port = 0x4d0 + (irq >> 3);
887 		return (inb(port) >> (irq & 7)) & 1;
888 	}
889 	apic_printk(APIC_VERBOSE, KERN_INFO
890 			"Broken MPtable reports ISA irq %d\n", irq);
891 	return 0;
892 }
893 
894 #endif
895 
896 /* ISA interrupts are always polarity zero edge triggered,
897  * when listed as conforming in the MP table. */
898 
899 #define default_ISA_trigger(idx)	(0)
900 #define default_ISA_polarity(idx)	(0)
901 
902 /* EISA interrupts are always polarity zero and can be edge or level
903  * trigger depending on the ELCR value.  If an interrupt is listed as
904  * EISA conforming in the MP table, that means its trigger type must
905  * be read in from the ELCR */
906 
907 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
908 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
909 
910 /* PCI interrupts are always polarity one level triggered,
911  * when listed as conforming in the MP table. */
912 
913 #define default_PCI_trigger(idx)	(1)
914 #define default_PCI_polarity(idx)	(1)
915 
916 /* MCA interrupts are always polarity zero level triggered,
917  * when listed as conforming in the MP table. */
918 
919 #define default_MCA_trigger(idx)	(1)
920 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
921 
922 static int MPBIOS_polarity(int idx)
923 {
924 	int bus = mp_irqs[idx].srcbus;
925 	int polarity;
926 
927 	/*
928 	 * Determine IRQ line polarity (high active or low active):
929 	 */
930 	switch (mp_irqs[idx].irqflag & 3)
931 	{
932 		case 0: /* conforms, ie. bus-type dependent polarity */
933 			if (test_bit(bus, mp_bus_not_pci))
934 				polarity = default_ISA_polarity(idx);
935 			else
936 				polarity = default_PCI_polarity(idx);
937 			break;
938 		case 1: /* high active */
939 		{
940 			polarity = 0;
941 			break;
942 		}
943 		case 2: /* reserved */
944 		{
945 			printk(KERN_WARNING "broken BIOS!!\n");
946 			polarity = 1;
947 			break;
948 		}
949 		case 3: /* low active */
950 		{
951 			polarity = 1;
952 			break;
953 		}
954 		default: /* invalid */
955 		{
956 			printk(KERN_WARNING "broken BIOS!!\n");
957 			polarity = 1;
958 			break;
959 		}
960 	}
961 	return polarity;
962 }
963 
964 static int MPBIOS_trigger(int idx)
965 {
966 	int bus = mp_irqs[idx].srcbus;
967 	int trigger;
968 
969 	/*
970 	 * Determine IRQ trigger mode (edge or level sensitive):
971 	 */
972 	switch ((mp_irqs[idx].irqflag>>2) & 3)
973 	{
974 		case 0: /* conforms, ie. bus-type dependent */
975 			if (test_bit(bus, mp_bus_not_pci))
976 				trigger = default_ISA_trigger(idx);
977 			else
978 				trigger = default_PCI_trigger(idx);
979 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
980 			switch (mp_bus_id_to_type[bus]) {
981 				case MP_BUS_ISA: /* ISA pin */
982 				{
983 					/* set before the switch */
984 					break;
985 				}
986 				case MP_BUS_EISA: /* EISA pin */
987 				{
988 					trigger = default_EISA_trigger(idx);
989 					break;
990 				}
991 				case MP_BUS_PCI: /* PCI pin */
992 				{
993 					/* set before the switch */
994 					break;
995 				}
996 				case MP_BUS_MCA: /* MCA pin */
997 				{
998 					trigger = default_MCA_trigger(idx);
999 					break;
1000 				}
1001 				default:
1002 				{
1003 					printk(KERN_WARNING "broken BIOS!!\n");
1004 					trigger = 1;
1005 					break;
1006 				}
1007 			}
1008 #endif
1009 			break;
1010 		case 1: /* edge */
1011 		{
1012 			trigger = 0;
1013 			break;
1014 		}
1015 		case 2: /* reserved */
1016 		{
1017 			printk(KERN_WARNING "broken BIOS!!\n");
1018 			trigger = 1;
1019 			break;
1020 		}
1021 		case 3: /* level */
1022 		{
1023 			trigger = 1;
1024 			break;
1025 		}
1026 		default: /* invalid */
1027 		{
1028 			printk(KERN_WARNING "broken BIOS!!\n");
1029 			trigger = 0;
1030 			break;
1031 		}
1032 	}
1033 	return trigger;
1034 }
1035 
1036 static inline int irq_polarity(int idx)
1037 {
1038 	return MPBIOS_polarity(idx);
1039 }
1040 
1041 static inline int irq_trigger(int idx)
1042 {
1043 	return MPBIOS_trigger(idx);
1044 }
1045 
1046 int (*ioapic_renumber_irq)(int ioapic, int irq);
1047 static int pin_2_irq(int idx, int apic, int pin)
1048 {
1049 	int irq, i;
1050 	int bus = mp_irqs[idx].srcbus;
1051 
1052 	/*
1053 	 * Debugging check, we are in big trouble if this message pops up!
1054 	 */
1055 	if (mp_irqs[idx].dstirq != pin)
1056 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1057 
1058 	if (test_bit(bus, mp_bus_not_pci)) {
1059 		irq = mp_irqs[idx].srcbusirq;
1060 	} else {
1061 		/*
1062 		 * PCI IRQs are mapped in order
1063 		 */
1064 		i = irq = 0;
1065 		while (i < apic)
1066 			irq += nr_ioapic_registers[i++];
1067 		irq += pin;
1068 		/*
1069                  * For MPS mode, so far only needed by ES7000 platform
1070                  */
1071 		if (ioapic_renumber_irq)
1072 			irq = ioapic_renumber_irq(apic, irq);
1073 	}
1074 
1075 #ifdef CONFIG_X86_32
1076 	/*
1077 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1078 	 */
1079 	if ((pin >= 16) && (pin <= 23)) {
1080 		if (pirq_entries[pin-16] != -1) {
1081 			if (!pirq_entries[pin-16]) {
1082 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1083 						"disabling PIRQ%d\n", pin-16);
1084 			} else {
1085 				irq = pirq_entries[pin-16];
1086 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1087 						"using PIRQ%d -> IRQ %d\n",
1088 						pin-16, irq);
1089 			}
1090 		}
1091 	}
1092 #endif
1093 
1094 	return irq;
1095 }
1096 
1097 /*
1098  * Find a specific PCI IRQ entry.
1099  * Not an __init, possibly needed by modules
1100  */
1101 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1102 				struct io_apic_irq_attr *irq_attr)
1103 {
1104 	int apic, i, best_guess = -1;
1105 
1106 	apic_printk(APIC_DEBUG,
1107 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1108 		    bus, slot, pin);
1109 	if (test_bit(bus, mp_bus_not_pci)) {
1110 		apic_printk(APIC_VERBOSE,
1111 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1112 		return -1;
1113 	}
1114 	for (i = 0; i < mp_irq_entries; i++) {
1115 		int lbus = mp_irqs[i].srcbus;
1116 
1117 		for (apic = 0; apic < nr_ioapics; apic++)
1118 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1119 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1120 				break;
1121 
1122 		if (!test_bit(lbus, mp_bus_not_pci) &&
1123 		    !mp_irqs[i].irqtype &&
1124 		    (bus == lbus) &&
1125 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1126 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1127 
1128 			if (!(apic || IO_APIC_IRQ(irq)))
1129 				continue;
1130 
1131 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1132 				set_io_apic_irq_attr(irq_attr, apic,
1133 						     mp_irqs[i].dstirq,
1134 						     irq_trigger(i),
1135 						     irq_polarity(i));
1136 				return irq;
1137 			}
1138 			/*
1139 			 * Use the first all-but-pin matching entry as a
1140 			 * best-guess fuzzy result for broken mptables.
1141 			 */
1142 			if (best_guess < 0) {
1143 				set_io_apic_irq_attr(irq_attr, apic,
1144 						     mp_irqs[i].dstirq,
1145 						     irq_trigger(i),
1146 						     irq_polarity(i));
1147 				best_guess = irq;
1148 			}
1149 		}
1150 	}
1151 	return best_guess;
1152 }
1153 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1154 
1155 void lock_vector_lock(void)
1156 {
1157 	/* Used to the online set of cpus does not change
1158 	 * during assign_irq_vector.
1159 	 */
1160 	spin_lock(&vector_lock);
1161 }
1162 
1163 void unlock_vector_lock(void)
1164 {
1165 	spin_unlock(&vector_lock);
1166 }
1167 
1168 static int
1169 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1170 {
1171 	/*
1172 	 * NOTE! The local APIC isn't very good at handling
1173 	 * multiple interrupts at the same interrupt level.
1174 	 * As the interrupt level is determined by taking the
1175 	 * vector number and shifting that right by 4, we
1176 	 * want to spread these out a bit so that they don't
1177 	 * all fall in the same interrupt level.
1178 	 *
1179 	 * Also, we've got to be careful not to trash gate
1180 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1181 	 */
1182 	static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1183 	unsigned int old_vector;
1184 	int cpu, err;
1185 	cpumask_var_t tmp_mask;
1186 
1187 	if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1188 		return -EBUSY;
1189 
1190 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1191 		return -ENOMEM;
1192 
1193 	old_vector = cfg->vector;
1194 	if (old_vector) {
1195 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1196 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1197 		if (!cpumask_empty(tmp_mask)) {
1198 			free_cpumask_var(tmp_mask);
1199 			return 0;
1200 		}
1201 	}
1202 
1203 	/* Only try and allocate irqs on cpus that are present */
1204 	err = -ENOSPC;
1205 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1206 		int new_cpu;
1207 		int vector, offset;
1208 
1209 		apic->vector_allocation_domain(cpu, tmp_mask);
1210 
1211 		vector = current_vector;
1212 		offset = current_offset;
1213 next:
1214 		vector += 8;
1215 		if (vector >= first_system_vector) {
1216 			/* If out of vectors on large boxen, must share them. */
1217 			offset = (offset + 1) % 8;
1218 			vector = FIRST_DEVICE_VECTOR + offset;
1219 		}
1220 		if (unlikely(current_vector == vector))
1221 			continue;
1222 
1223 		if (test_bit(vector, used_vectors))
1224 			goto next;
1225 
1226 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1227 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1228 				goto next;
1229 		/* Found one! */
1230 		current_vector = vector;
1231 		current_offset = offset;
1232 		if (old_vector) {
1233 			cfg->move_in_progress = 1;
1234 			cpumask_copy(cfg->old_domain, cfg->domain);
1235 		}
1236 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1237 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1238 		cfg->vector = vector;
1239 		cpumask_copy(cfg->domain, tmp_mask);
1240 		err = 0;
1241 		break;
1242 	}
1243 	free_cpumask_var(tmp_mask);
1244 	return err;
1245 }
1246 
1247 static int
1248 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1249 {
1250 	int err;
1251 	unsigned long flags;
1252 
1253 	spin_lock_irqsave(&vector_lock, flags);
1254 	err = __assign_irq_vector(irq, cfg, mask);
1255 	spin_unlock_irqrestore(&vector_lock, flags);
1256 	return err;
1257 }
1258 
1259 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1260 {
1261 	int cpu, vector;
1262 
1263 	BUG_ON(!cfg->vector);
1264 
1265 	vector = cfg->vector;
1266 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1267 		per_cpu(vector_irq, cpu)[vector] = -1;
1268 
1269 	cfg->vector = 0;
1270 	cpumask_clear(cfg->domain);
1271 
1272 	if (likely(!cfg->move_in_progress))
1273 		return;
1274 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1275 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1276 								vector++) {
1277 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1278 				continue;
1279 			per_cpu(vector_irq, cpu)[vector] = -1;
1280 			break;
1281 		}
1282 	}
1283 	cfg->move_in_progress = 0;
1284 }
1285 
1286 void __setup_vector_irq(int cpu)
1287 {
1288 	/* Initialize vector_irq on a new cpu */
1289 	/* This function must be called with vector_lock held */
1290 	int irq, vector;
1291 	struct irq_cfg *cfg;
1292 	struct irq_desc *desc;
1293 
1294 	/* Mark the inuse vectors */
1295 	for_each_irq_desc(irq, desc) {
1296 		cfg = desc->chip_data;
1297 		if (!cpumask_test_cpu(cpu, cfg->domain))
1298 			continue;
1299 		vector = cfg->vector;
1300 		per_cpu(vector_irq, cpu)[vector] = irq;
1301 	}
1302 	/* Mark the free vectors */
1303 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1304 		irq = per_cpu(vector_irq, cpu)[vector];
1305 		if (irq < 0)
1306 			continue;
1307 
1308 		cfg = irq_cfg(irq);
1309 		if (!cpumask_test_cpu(cpu, cfg->domain))
1310 			per_cpu(vector_irq, cpu)[vector] = -1;
1311 	}
1312 }
1313 
1314 static struct irq_chip ioapic_chip;
1315 static struct irq_chip ir_ioapic_chip;
1316 
1317 #define IOAPIC_AUTO     -1
1318 #define IOAPIC_EDGE     0
1319 #define IOAPIC_LEVEL    1
1320 
1321 #ifdef CONFIG_X86_32
1322 static inline int IO_APIC_irq_trigger(int irq)
1323 {
1324 	int apic, idx, pin;
1325 
1326 	for (apic = 0; apic < nr_ioapics; apic++) {
1327 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1328 			idx = find_irq_entry(apic, pin, mp_INT);
1329 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1330 				return irq_trigger(idx);
1331 		}
1332 	}
1333 	/*
1334          * nonexistent IRQs are edge default
1335          */
1336 	return 0;
1337 }
1338 #else
1339 static inline int IO_APIC_irq_trigger(int irq)
1340 {
1341 	return 1;
1342 }
1343 #endif
1344 
1345 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1346 {
1347 
1348 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1349 	    trigger == IOAPIC_LEVEL)
1350 		desc->status |= IRQ_LEVEL;
1351 	else
1352 		desc->status &= ~IRQ_LEVEL;
1353 
1354 	if (irq_remapped(irq)) {
1355 		desc->status |= IRQ_MOVE_PCNTXT;
1356 		if (trigger)
1357 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1358 						      handle_fasteoi_irq,
1359 						     "fasteoi");
1360 		else
1361 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1362 						      handle_edge_irq, "edge");
1363 		return;
1364 	}
1365 
1366 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1367 	    trigger == IOAPIC_LEVEL)
1368 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1369 					      handle_fasteoi_irq,
1370 					      "fasteoi");
1371 	else
1372 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1373 					      handle_edge_irq, "edge");
1374 }
1375 
1376 int setup_ioapic_entry(int apic_id, int irq,
1377 		       struct IO_APIC_route_entry *entry,
1378 		       unsigned int destination, int trigger,
1379 		       int polarity, int vector, int pin)
1380 {
1381 	/*
1382 	 * add it to the IO-APIC irq-routing table:
1383 	 */
1384 	memset(entry,0,sizeof(*entry));
1385 
1386 	if (intr_remapping_enabled) {
1387 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1388 		struct irte irte;
1389 		struct IR_IO_APIC_route_entry *ir_entry =
1390 			(struct IR_IO_APIC_route_entry *) entry;
1391 		int index;
1392 
1393 		if (!iommu)
1394 			panic("No mapping iommu for ioapic %d\n", apic_id);
1395 
1396 		index = alloc_irte(iommu, irq, 1);
1397 		if (index < 0)
1398 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1399 
1400 		memset(&irte, 0, sizeof(irte));
1401 
1402 		irte.present = 1;
1403 		irte.dst_mode = apic->irq_dest_mode;
1404 		/*
1405 		 * Trigger mode in the IRTE will always be edge, and the
1406 		 * actual level or edge trigger will be setup in the IO-APIC
1407 		 * RTE. This will help simplify level triggered irq migration.
1408 		 * For more details, see the comments above explainig IO-APIC
1409 		 * irq migration in the presence of interrupt-remapping.
1410 		 */
1411 		irte.trigger_mode = 0;
1412 		irte.dlvry_mode = apic->irq_delivery_mode;
1413 		irte.vector = vector;
1414 		irte.dest_id = IRTE_DEST(destination);
1415 
1416 		modify_irte(irq, &irte);
1417 
1418 		ir_entry->index2 = (index >> 15) & 0x1;
1419 		ir_entry->zero = 0;
1420 		ir_entry->format = 1;
1421 		ir_entry->index = (index & 0x7fff);
1422 		/*
1423 		 * IO-APIC RTE will be configured with virtual vector.
1424 		 * irq handler will do the explicit EOI to the io-apic.
1425 		 */
1426 		ir_entry->vector = pin;
1427 	} else {
1428 		entry->delivery_mode = apic->irq_delivery_mode;
1429 		entry->dest_mode = apic->irq_dest_mode;
1430 		entry->dest = destination;
1431 		entry->vector = vector;
1432 	}
1433 
1434 	entry->mask = 0;				/* enable IRQ */
1435 	entry->trigger = trigger;
1436 	entry->polarity = polarity;
1437 
1438 	/* Mask level triggered irqs.
1439 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1440 	 */
1441 	if (trigger)
1442 		entry->mask = 1;
1443 	return 0;
1444 }
1445 
1446 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1447 			      int trigger, int polarity)
1448 {
1449 	struct irq_cfg *cfg;
1450 	struct IO_APIC_route_entry entry;
1451 	unsigned int dest;
1452 
1453 	if (!IO_APIC_IRQ(irq))
1454 		return;
1455 
1456 	cfg = desc->chip_data;
1457 
1458 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1459 		return;
1460 
1461 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1462 
1463 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1464 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1465 		    "IRQ %d Mode:%i Active:%i)\n",
1466 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1467 		    irq, trigger, polarity);
1468 
1469 
1470 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1471 			       dest, trigger, polarity, cfg->vector, pin)) {
1472 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1473 		       mp_ioapics[apic_id].apicid, pin);
1474 		__clear_irq_vector(irq, cfg);
1475 		return;
1476 	}
1477 
1478 	ioapic_register_intr(irq, desc, trigger);
1479 	if (irq < NR_IRQS_LEGACY)
1480 		disable_8259A_irq(irq);
1481 
1482 	ioapic_write_entry(apic_id, pin, entry);
1483 }
1484 
1485 static struct {
1486 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1487 } mp_ioapic_routing[MAX_IO_APICS];
1488 
1489 static void __init setup_IO_APIC_irqs(void)
1490 {
1491 	int apic_id = 0, pin, idx, irq;
1492 	int notcon = 0;
1493 	struct irq_desc *desc;
1494 	struct irq_cfg *cfg;
1495 	int node = cpu_to_node(boot_cpu_id);
1496 
1497 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1498 
1499 #ifdef CONFIG_ACPI
1500 	if (!acpi_disabled && acpi_ioapic) {
1501 		apic_id = mp_find_ioapic(0);
1502 		if (apic_id < 0)
1503 			apic_id = 0;
1504 	}
1505 #endif
1506 
1507 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1508 		idx = find_irq_entry(apic_id, pin, mp_INT);
1509 		if (idx == -1) {
1510 			if (!notcon) {
1511 				notcon = 1;
1512 				apic_printk(APIC_VERBOSE,
1513 					KERN_DEBUG " %d-%d",
1514 					mp_ioapics[apic_id].apicid, pin);
1515 			} else
1516 				apic_printk(APIC_VERBOSE, " %d-%d",
1517 					mp_ioapics[apic_id].apicid, pin);
1518 			continue;
1519 		}
1520 		if (notcon) {
1521 			apic_printk(APIC_VERBOSE,
1522 				" (apicid-pin) not connected\n");
1523 			notcon = 0;
1524 		}
1525 
1526 		irq = pin_2_irq(idx, apic_id, pin);
1527 
1528 		/*
1529 		 * Skip the timer IRQ if there's a quirk handler
1530 		 * installed and if it returns 1:
1531 		 */
1532 		if (apic->multi_timer_check &&
1533 				apic->multi_timer_check(apic_id, irq))
1534 			continue;
1535 
1536 		desc = irq_to_desc_alloc_node(irq, node);
1537 		if (!desc) {
1538 			printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1539 			continue;
1540 		}
1541 		cfg = desc->chip_data;
1542 		add_pin_to_irq_node(cfg, node, apic_id, pin);
1543 		/*
1544 		 * don't mark it in pin_programmed, so later acpi could
1545 		 * set it correctly when irq < 16
1546 		 */
1547 		setup_IO_APIC_irq(apic_id, pin, irq, desc,
1548 				irq_trigger(idx), irq_polarity(idx));
1549 	}
1550 
1551 	if (notcon)
1552 		apic_printk(APIC_VERBOSE,
1553 			" (apicid-pin) not connected\n");
1554 }
1555 
1556 /*
1557  * Set up the timer pin, possibly with the 8259A-master behind.
1558  */
1559 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1560 					int vector)
1561 {
1562 	struct IO_APIC_route_entry entry;
1563 
1564 	if (intr_remapping_enabled)
1565 		return;
1566 
1567 	memset(&entry, 0, sizeof(entry));
1568 
1569 	/*
1570 	 * We use logical delivery to get the timer IRQ
1571 	 * to the first CPU.
1572 	 */
1573 	entry.dest_mode = apic->irq_dest_mode;
1574 	entry.mask = 0;			/* don't mask IRQ for edge */
1575 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1576 	entry.delivery_mode = apic->irq_delivery_mode;
1577 	entry.polarity = 0;
1578 	entry.trigger = 0;
1579 	entry.vector = vector;
1580 
1581 	/*
1582 	 * The timer IRQ doesn't have to know that behind the
1583 	 * scene we may have a 8259A-master in AEOI mode ...
1584 	 */
1585 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1586 
1587 	/*
1588 	 * Add it to the IO-APIC irq-routing table:
1589 	 */
1590 	ioapic_write_entry(apic_id, pin, entry);
1591 }
1592 
1593 
1594 __apicdebuginit(void) print_IO_APIC(void)
1595 {
1596 	int apic, i;
1597 	union IO_APIC_reg_00 reg_00;
1598 	union IO_APIC_reg_01 reg_01;
1599 	union IO_APIC_reg_02 reg_02;
1600 	union IO_APIC_reg_03 reg_03;
1601 	unsigned long flags;
1602 	struct irq_cfg *cfg;
1603 	struct irq_desc *desc;
1604 	unsigned int irq;
1605 
1606 	if (apic_verbosity == APIC_QUIET)
1607 		return;
1608 
1609 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1610 	for (i = 0; i < nr_ioapics; i++)
1611 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1612 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1613 
1614 	/*
1615 	 * We are a bit conservative about what we expect.  We have to
1616 	 * know about every hardware change ASAP.
1617 	 */
1618 	printk(KERN_INFO "testing the IO APIC.......................\n");
1619 
1620 	for (apic = 0; apic < nr_ioapics; apic++) {
1621 
1622 	spin_lock_irqsave(&ioapic_lock, flags);
1623 	reg_00.raw = io_apic_read(apic, 0);
1624 	reg_01.raw = io_apic_read(apic, 1);
1625 	if (reg_01.bits.version >= 0x10)
1626 		reg_02.raw = io_apic_read(apic, 2);
1627 	if (reg_01.bits.version >= 0x20)
1628 		reg_03.raw = io_apic_read(apic, 3);
1629 	spin_unlock_irqrestore(&ioapic_lock, flags);
1630 
1631 	printk("\n");
1632 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1633 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1634 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1635 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1636 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1637 
1638 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1639 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1640 
1641 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1642 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1643 
1644 	/*
1645 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1646 	 * but the value of reg_02 is read as the previous read register
1647 	 * value, so ignore it if reg_02 == reg_01.
1648 	 */
1649 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1650 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1651 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1652 	}
1653 
1654 	/*
1655 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1656 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1657 	 * register value, so ignore it if reg_03 == reg_0[12].
1658 	 */
1659 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1660 	    reg_03.raw != reg_01.raw) {
1661 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1662 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1663 	}
1664 
1665 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1666 
1667 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1668 			  " Stat Dmod Deli Vect:   \n");
1669 
1670 	for (i = 0; i <= reg_01.bits.entries; i++) {
1671 		struct IO_APIC_route_entry entry;
1672 
1673 		entry = ioapic_read_entry(apic, i);
1674 
1675 		printk(KERN_DEBUG " %02x %03X ",
1676 			i,
1677 			entry.dest
1678 		);
1679 
1680 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1681 			entry.mask,
1682 			entry.trigger,
1683 			entry.irr,
1684 			entry.polarity,
1685 			entry.delivery_status,
1686 			entry.dest_mode,
1687 			entry.delivery_mode,
1688 			entry.vector
1689 		);
1690 	}
1691 	}
1692 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1693 	for_each_irq_desc(irq, desc) {
1694 		struct irq_pin_list *entry;
1695 
1696 		cfg = desc->chip_data;
1697 		entry = cfg->irq_2_pin;
1698 		if (!entry)
1699 			continue;
1700 		printk(KERN_DEBUG "IRQ%d ", irq);
1701 		for (;;) {
1702 			printk("-> %d:%d", entry->apic, entry->pin);
1703 			if (!entry->next)
1704 				break;
1705 			entry = entry->next;
1706 		}
1707 		printk("\n");
1708 	}
1709 
1710 	printk(KERN_INFO ".................................... done.\n");
1711 
1712 	return;
1713 }
1714 
1715 __apicdebuginit(void) print_APIC_bitfield(int base)
1716 {
1717 	unsigned int v;
1718 	int i, j;
1719 
1720 	if (apic_verbosity == APIC_QUIET)
1721 		return;
1722 
1723 	printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1724 	for (i = 0; i < 8; i++) {
1725 		v = apic_read(base + i*0x10);
1726 		for (j = 0; j < 32; j++) {
1727 			if (v & (1<<j))
1728 				printk("1");
1729 			else
1730 				printk("0");
1731 		}
1732 		printk("\n");
1733 	}
1734 }
1735 
1736 __apicdebuginit(void) print_local_APIC(void *dummy)
1737 {
1738 	unsigned int i, v, ver, maxlvt;
1739 	u64 icr;
1740 
1741 	if (apic_verbosity == APIC_QUIET)
1742 		return;
1743 
1744 	printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1745 		smp_processor_id(), hard_smp_processor_id());
1746 	v = apic_read(APIC_ID);
1747 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1748 	v = apic_read(APIC_LVR);
1749 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1750 	ver = GET_APIC_VERSION(v);
1751 	maxlvt = lapic_get_maxlvt();
1752 
1753 	v = apic_read(APIC_TASKPRI);
1754 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1755 
1756 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1757 		if (!APIC_XAPIC(ver)) {
1758 			v = apic_read(APIC_ARBPRI);
1759 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1760 			       v & APIC_ARBPRI_MASK);
1761 		}
1762 		v = apic_read(APIC_PROCPRI);
1763 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1764 	}
1765 
1766 	/*
1767 	 * Remote read supported only in the 82489DX and local APIC for
1768 	 * Pentium processors.
1769 	 */
1770 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1771 		v = apic_read(APIC_RRR);
1772 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1773 	}
1774 
1775 	v = apic_read(APIC_LDR);
1776 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1777 	if (!x2apic_enabled()) {
1778 		v = apic_read(APIC_DFR);
1779 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1780 	}
1781 	v = apic_read(APIC_SPIV);
1782 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1783 
1784 	printk(KERN_DEBUG "... APIC ISR field:\n");
1785 	print_APIC_bitfield(APIC_ISR);
1786 	printk(KERN_DEBUG "... APIC TMR field:\n");
1787 	print_APIC_bitfield(APIC_TMR);
1788 	printk(KERN_DEBUG "... APIC IRR field:\n");
1789 	print_APIC_bitfield(APIC_IRR);
1790 
1791 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1792 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1793 			apic_write(APIC_ESR, 0);
1794 
1795 		v = apic_read(APIC_ESR);
1796 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1797 	}
1798 
1799 	icr = apic_icr_read();
1800 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1801 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1802 
1803 	v = apic_read(APIC_LVTT);
1804 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1805 
1806 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1807 		v = apic_read(APIC_LVTPC);
1808 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1809 	}
1810 	v = apic_read(APIC_LVT0);
1811 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1812 	v = apic_read(APIC_LVT1);
1813 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1814 
1815 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1816 		v = apic_read(APIC_LVTERR);
1817 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1818 	}
1819 
1820 	v = apic_read(APIC_TMICT);
1821 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1822 	v = apic_read(APIC_TMCCT);
1823 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1824 	v = apic_read(APIC_TDCR);
1825 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1826 
1827 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1828 		v = apic_read(APIC_EFEAT);
1829 		maxlvt = (v >> 16) & 0xff;
1830 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1831 		v = apic_read(APIC_ECTRL);
1832 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1833 		for (i = 0; i < maxlvt; i++) {
1834 			v = apic_read(APIC_EILVTn(i));
1835 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1836 		}
1837 	}
1838 	printk("\n");
1839 }
1840 
1841 __apicdebuginit(void) print_all_local_APICs(void)
1842 {
1843 	int cpu;
1844 
1845 	preempt_disable();
1846 	for_each_online_cpu(cpu)
1847 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1848 	preempt_enable();
1849 }
1850 
1851 __apicdebuginit(void) print_PIC(void)
1852 {
1853 	unsigned int v;
1854 	unsigned long flags;
1855 
1856 	if (apic_verbosity == APIC_QUIET)
1857 		return;
1858 
1859 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1860 
1861 	spin_lock_irqsave(&i8259A_lock, flags);
1862 
1863 	v = inb(0xa1) << 8 | inb(0x21);
1864 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1865 
1866 	v = inb(0xa0) << 8 | inb(0x20);
1867 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1868 
1869 	outb(0x0b,0xa0);
1870 	outb(0x0b,0x20);
1871 	v = inb(0xa0) << 8 | inb(0x20);
1872 	outb(0x0a,0xa0);
1873 	outb(0x0a,0x20);
1874 
1875 	spin_unlock_irqrestore(&i8259A_lock, flags);
1876 
1877 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1878 
1879 	v = inb(0x4d1) << 8 | inb(0x4d0);
1880 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1881 }
1882 
1883 __apicdebuginit(int) print_all_ICs(void)
1884 {
1885 	print_PIC();
1886 
1887 	/* don't print out if apic is not there */
1888 	if (!cpu_has_apic || disable_apic)
1889 		return 0;
1890 
1891 	print_all_local_APICs();
1892 	print_IO_APIC();
1893 
1894 	return 0;
1895 }
1896 
1897 fs_initcall(print_all_ICs);
1898 
1899 
1900 /* Where if anywhere is the i8259 connect in external int mode */
1901 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1902 
1903 void __init enable_IO_APIC(void)
1904 {
1905 	union IO_APIC_reg_01 reg_01;
1906 	int i8259_apic, i8259_pin;
1907 	int apic;
1908 	unsigned long flags;
1909 
1910 	/*
1911 	 * The number of IO-APIC IRQ registers (== #pins):
1912 	 */
1913 	for (apic = 0; apic < nr_ioapics; apic++) {
1914 		spin_lock_irqsave(&ioapic_lock, flags);
1915 		reg_01.raw = io_apic_read(apic, 1);
1916 		spin_unlock_irqrestore(&ioapic_lock, flags);
1917 		nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1918 	}
1919 	for(apic = 0; apic < nr_ioapics; apic++) {
1920 		int pin;
1921 		/* See if any of the pins is in ExtINT mode */
1922 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1923 			struct IO_APIC_route_entry entry;
1924 			entry = ioapic_read_entry(apic, pin);
1925 
1926 			/* If the interrupt line is enabled and in ExtInt mode
1927 			 * I have found the pin where the i8259 is connected.
1928 			 */
1929 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1930 				ioapic_i8259.apic = apic;
1931 				ioapic_i8259.pin  = pin;
1932 				goto found_i8259;
1933 			}
1934 		}
1935 	}
1936  found_i8259:
1937 	/* Look to see what if the MP table has reported the ExtINT */
1938 	/* If we could not find the appropriate pin by looking at the ioapic
1939 	 * the i8259 probably is not connected the ioapic but give the
1940 	 * mptable a chance anyway.
1941 	 */
1942 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1943 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1944 	/* Trust the MP table if nothing is setup in the hardware */
1945 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1946 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1947 		ioapic_i8259.pin  = i8259_pin;
1948 		ioapic_i8259.apic = i8259_apic;
1949 	}
1950 	/* Complain if the MP table and the hardware disagree */
1951 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1952 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1953 	{
1954 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1955 	}
1956 
1957 	/*
1958 	 * Do not trust the IO-APIC being empty at bootup
1959 	 */
1960 	clear_IO_APIC();
1961 }
1962 
1963 /*
1964  * Not an __init, needed by the reboot code
1965  */
1966 void disable_IO_APIC(void)
1967 {
1968 	/*
1969 	 * Clear the IO-APIC before rebooting:
1970 	 */
1971 	clear_IO_APIC();
1972 
1973 	/*
1974 	 * If the i8259 is routed through an IOAPIC
1975 	 * Put that IOAPIC in virtual wire mode
1976 	 * so legacy interrupts can be delivered.
1977 	 *
1978 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1979 	 * as virtual wire B is little complex (need to configure both
1980 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
1981 	 * As this gets called during crash dump, keep this simple for now.
1982 	 */
1983 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1984 		struct IO_APIC_route_entry entry;
1985 
1986 		memset(&entry, 0, sizeof(entry));
1987 		entry.mask            = 0; /* Enabled */
1988 		entry.trigger         = 0; /* Edge */
1989 		entry.irr             = 0;
1990 		entry.polarity        = 0; /* High */
1991 		entry.delivery_status = 0;
1992 		entry.dest_mode       = 0; /* Physical */
1993 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1994 		entry.vector          = 0;
1995 		entry.dest            = read_apic_id();
1996 
1997 		/*
1998 		 * Add it to the IO-APIC irq-routing table:
1999 		 */
2000 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2001 	}
2002 
2003 	/*
2004 	 * Use virtual wire A mode when interrupt remapping is enabled.
2005 	 */
2006 	disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2007 }
2008 
2009 #ifdef CONFIG_X86_32
2010 /*
2011  * function to set the IO-APIC physical IDs based on the
2012  * values stored in the MPC table.
2013  *
2014  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2015  */
2016 
2017 static void __init setup_ioapic_ids_from_mpc(void)
2018 {
2019 	union IO_APIC_reg_00 reg_00;
2020 	physid_mask_t phys_id_present_map;
2021 	int apic_id;
2022 	int i;
2023 	unsigned char old_id;
2024 	unsigned long flags;
2025 
2026 	if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2027 		return;
2028 
2029 	/*
2030 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2031 	 * no meaning without the serial APIC bus.
2032 	 */
2033 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2034 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2035 		return;
2036 	/*
2037 	 * This is broken; anything with a real cpu count has to
2038 	 * circumvent this idiocy regardless.
2039 	 */
2040 	phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2041 
2042 	/*
2043 	 * Set the IOAPIC ID to the value stored in the MPC table.
2044 	 */
2045 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2046 
2047 		/* Read the register 0 value */
2048 		spin_lock_irqsave(&ioapic_lock, flags);
2049 		reg_00.raw = io_apic_read(apic_id, 0);
2050 		spin_unlock_irqrestore(&ioapic_lock, flags);
2051 
2052 		old_id = mp_ioapics[apic_id].apicid;
2053 
2054 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2055 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2056 				apic_id, mp_ioapics[apic_id].apicid);
2057 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2058 				reg_00.bits.ID);
2059 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2060 		}
2061 
2062 		/*
2063 		 * Sanity check, is the ID really free? Every APIC in a
2064 		 * system must have a unique ID or we get lots of nice
2065 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2066 		 */
2067 		if (apic->check_apicid_used(phys_id_present_map,
2068 					mp_ioapics[apic_id].apicid)) {
2069 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2070 				apic_id, mp_ioapics[apic_id].apicid);
2071 			for (i = 0; i < get_physical_broadcast(); i++)
2072 				if (!physid_isset(i, phys_id_present_map))
2073 					break;
2074 			if (i >= get_physical_broadcast())
2075 				panic("Max APIC ID exceeded!\n");
2076 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2077 				i);
2078 			physid_set(i, phys_id_present_map);
2079 			mp_ioapics[apic_id].apicid = i;
2080 		} else {
2081 			physid_mask_t tmp;
2082 			tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2083 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2084 					"phys_id_present_map\n",
2085 					mp_ioapics[apic_id].apicid);
2086 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2087 		}
2088 
2089 
2090 		/*
2091 		 * We need to adjust the IRQ routing table
2092 		 * if the ID changed.
2093 		 */
2094 		if (old_id != mp_ioapics[apic_id].apicid)
2095 			for (i = 0; i < mp_irq_entries; i++)
2096 				if (mp_irqs[i].dstapic == old_id)
2097 					mp_irqs[i].dstapic
2098 						= mp_ioapics[apic_id].apicid;
2099 
2100 		/*
2101 		 * Read the right value from the MPC table and
2102 		 * write it into the ID register.
2103 		 */
2104 		apic_printk(APIC_VERBOSE, KERN_INFO
2105 			"...changing IO-APIC physical APIC ID to %d ...",
2106 			mp_ioapics[apic_id].apicid);
2107 
2108 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2109 		spin_lock_irqsave(&ioapic_lock, flags);
2110 		io_apic_write(apic_id, 0, reg_00.raw);
2111 		spin_unlock_irqrestore(&ioapic_lock, flags);
2112 
2113 		/*
2114 		 * Sanity check
2115 		 */
2116 		spin_lock_irqsave(&ioapic_lock, flags);
2117 		reg_00.raw = io_apic_read(apic_id, 0);
2118 		spin_unlock_irqrestore(&ioapic_lock, flags);
2119 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2120 			printk("could not set ID!\n");
2121 		else
2122 			apic_printk(APIC_VERBOSE, " ok.\n");
2123 	}
2124 }
2125 #endif
2126 
2127 int no_timer_check __initdata;
2128 
2129 static int __init notimercheck(char *s)
2130 {
2131 	no_timer_check = 1;
2132 	return 1;
2133 }
2134 __setup("no_timer_check", notimercheck);
2135 
2136 /*
2137  * There is a nasty bug in some older SMP boards, their mptable lies
2138  * about the timer IRQ. We do the following to work around the situation:
2139  *
2140  *	- timer IRQ defaults to IO-APIC IRQ
2141  *	- if this function detects that timer IRQs are defunct, then we fall
2142  *	  back to ISA timer IRQs
2143  */
2144 static int __init timer_irq_works(void)
2145 {
2146 	unsigned long t1 = jiffies;
2147 	unsigned long flags;
2148 
2149 	if (no_timer_check)
2150 		return 1;
2151 
2152 	local_save_flags(flags);
2153 	local_irq_enable();
2154 	/* Let ten ticks pass... */
2155 	mdelay((10 * 1000) / HZ);
2156 	local_irq_restore(flags);
2157 
2158 	/*
2159 	 * Expect a few ticks at least, to be sure some possible
2160 	 * glue logic does not lock up after one or two first
2161 	 * ticks in a non-ExtINT mode.  Also the local APIC
2162 	 * might have cached one ExtINT interrupt.  Finally, at
2163 	 * least one tick may be lost due to delays.
2164 	 */
2165 
2166 	/* jiffies wrap? */
2167 	if (time_after(jiffies, t1 + 4))
2168 		return 1;
2169 	return 0;
2170 }
2171 
2172 /*
2173  * In the SMP+IOAPIC case it might happen that there are an unspecified
2174  * number of pending IRQ events unhandled. These cases are very rare,
2175  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2176  * better to do it this way as thus we do not have to be aware of
2177  * 'pending' interrupts in the IRQ path, except at this point.
2178  */
2179 /*
2180  * Edge triggered needs to resend any interrupt
2181  * that was delayed but this is now handled in the device
2182  * independent code.
2183  */
2184 
2185 /*
2186  * Starting up a edge-triggered IO-APIC interrupt is
2187  * nasty - we need to make sure that we get the edge.
2188  * If it is already asserted for some reason, we need
2189  * return 1 to indicate that is was pending.
2190  *
2191  * This is not complete - we should be able to fake
2192  * an edge even if it isn't on the 8259A...
2193  */
2194 
2195 static unsigned int startup_ioapic_irq(unsigned int irq)
2196 {
2197 	int was_pending = 0;
2198 	unsigned long flags;
2199 	struct irq_cfg *cfg;
2200 
2201 	spin_lock_irqsave(&ioapic_lock, flags);
2202 	if (irq < NR_IRQS_LEGACY) {
2203 		disable_8259A_irq(irq);
2204 		if (i8259A_irq_pending(irq))
2205 			was_pending = 1;
2206 	}
2207 	cfg = irq_cfg(irq);
2208 	__unmask_IO_APIC_irq(cfg);
2209 	spin_unlock_irqrestore(&ioapic_lock, flags);
2210 
2211 	return was_pending;
2212 }
2213 
2214 #ifdef CONFIG_X86_64
2215 static int ioapic_retrigger_irq(unsigned int irq)
2216 {
2217 
2218 	struct irq_cfg *cfg = irq_cfg(irq);
2219 	unsigned long flags;
2220 
2221 	spin_lock_irqsave(&vector_lock, flags);
2222 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2223 	spin_unlock_irqrestore(&vector_lock, flags);
2224 
2225 	return 1;
2226 }
2227 #else
2228 static int ioapic_retrigger_irq(unsigned int irq)
2229 {
2230 	apic->send_IPI_self(irq_cfg(irq)->vector);
2231 
2232 	return 1;
2233 }
2234 #endif
2235 
2236 /*
2237  * Level and edge triggered IO-APIC interrupts need different handling,
2238  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2239  * handled with the level-triggered descriptor, but that one has slightly
2240  * more overhead. Level-triggered interrupts cannot be handled with the
2241  * edge-triggered handler, without risking IRQ storms and other ugly
2242  * races.
2243  */
2244 
2245 #ifdef CONFIG_SMP
2246 static void send_cleanup_vector(struct irq_cfg *cfg)
2247 {
2248 	cpumask_var_t cleanup_mask;
2249 
2250 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2251 		unsigned int i;
2252 		cfg->move_cleanup_count = 0;
2253 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2254 			cfg->move_cleanup_count++;
2255 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2256 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2257 	} else {
2258 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2259 		cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
2260 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2261 		free_cpumask_var(cleanup_mask);
2262 	}
2263 	cfg->move_in_progress = 0;
2264 }
2265 
2266 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2267 {
2268 	int apic, pin;
2269 	struct irq_pin_list *entry;
2270 	u8 vector = cfg->vector;
2271 
2272 	entry = cfg->irq_2_pin;
2273 	for (;;) {
2274 		unsigned int reg;
2275 
2276 		if (!entry)
2277 			break;
2278 
2279 		apic = entry->apic;
2280 		pin = entry->pin;
2281 		/*
2282 		 * With interrupt-remapping, destination information comes
2283 		 * from interrupt-remapping table entry.
2284 		 */
2285 		if (!irq_remapped(irq))
2286 			io_apic_write(apic, 0x11 + pin*2, dest);
2287 		reg = io_apic_read(apic, 0x10 + pin*2);
2288 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2289 		reg |= vector;
2290 		io_apic_modify(apic, 0x10 + pin*2, reg);
2291 		if (!entry->next)
2292 			break;
2293 		entry = entry->next;
2294 	}
2295 }
2296 
2297 static int
2298 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
2299 
2300 /*
2301  * Either sets desc->affinity to a valid value, and returns
2302  * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
2303  * leaves desc->affinity untouched.
2304  */
2305 static unsigned int
2306 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
2307 {
2308 	struct irq_cfg *cfg;
2309 	unsigned int irq;
2310 
2311 	if (!cpumask_intersects(mask, cpu_online_mask))
2312 		return BAD_APICID;
2313 
2314 	irq = desc->irq;
2315 	cfg = desc->chip_data;
2316 	if (assign_irq_vector(irq, cfg, mask))
2317 		return BAD_APICID;
2318 
2319 	cpumask_copy(desc->affinity, mask);
2320 
2321 	return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2322 }
2323 
2324 static int
2325 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2326 {
2327 	struct irq_cfg *cfg;
2328 	unsigned long flags;
2329 	unsigned int dest;
2330 	unsigned int irq;
2331 	int ret = -1;
2332 
2333 	irq = desc->irq;
2334 	cfg = desc->chip_data;
2335 
2336 	spin_lock_irqsave(&ioapic_lock, flags);
2337 	dest = set_desc_affinity(desc, mask);
2338 	if (dest != BAD_APICID) {
2339 		/* Only the high 8 bits are valid. */
2340 		dest = SET_APIC_LOGICAL_ID(dest);
2341 		__target_IO_APIC_irq(irq, dest, cfg);
2342 		ret = 0;
2343 	}
2344 	spin_unlock_irqrestore(&ioapic_lock, flags);
2345 
2346 	return ret;
2347 }
2348 
2349 static int
2350 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2351 {
2352 	struct irq_desc *desc;
2353 
2354 	desc = irq_to_desc(irq);
2355 
2356 	return set_ioapic_affinity_irq_desc(desc, mask);
2357 }
2358 
2359 #ifdef CONFIG_INTR_REMAP
2360 
2361 /*
2362  * Migrate the IO-APIC irq in the presence of intr-remapping.
2363  *
2364  * For both level and edge triggered, irq migration is a simple atomic
2365  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2366  *
2367  * For level triggered, we eliminate the io-apic RTE modification (with the
2368  * updated vector information), by using a virtual vector (io-apic pin number).
2369  * Real vector that is used for interrupting cpu will be coming from
2370  * the interrupt-remapping table entry.
2371  */
2372 static int
2373 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2374 {
2375 	struct irq_cfg *cfg;
2376 	struct irte irte;
2377 	unsigned int dest;
2378 	unsigned int irq;
2379 	int ret = -1;
2380 
2381 	if (!cpumask_intersects(mask, cpu_online_mask))
2382 		return ret;
2383 
2384 	irq = desc->irq;
2385 	if (get_irte(irq, &irte))
2386 		return ret;
2387 
2388 	cfg = desc->chip_data;
2389 	if (assign_irq_vector(irq, cfg, mask))
2390 		return ret;
2391 
2392 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2393 
2394 	irte.vector = cfg->vector;
2395 	irte.dest_id = IRTE_DEST(dest);
2396 
2397 	/*
2398 	 * Modified the IRTE and flushes the Interrupt entry cache.
2399 	 */
2400 	modify_irte(irq, &irte);
2401 
2402 	if (cfg->move_in_progress)
2403 		send_cleanup_vector(cfg);
2404 
2405 	cpumask_copy(desc->affinity, mask);
2406 
2407 	return 0;
2408 }
2409 
2410 /*
2411  * Migrates the IRQ destination in the process context.
2412  */
2413 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2414 					    const struct cpumask *mask)
2415 {
2416 	return migrate_ioapic_irq_desc(desc, mask);
2417 }
2418 static int set_ir_ioapic_affinity_irq(unsigned int irq,
2419 				       const struct cpumask *mask)
2420 {
2421 	struct irq_desc *desc = irq_to_desc(irq);
2422 
2423 	return set_ir_ioapic_affinity_irq_desc(desc, mask);
2424 }
2425 #else
2426 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2427 						   const struct cpumask *mask)
2428 {
2429 	return 0;
2430 }
2431 #endif
2432 
2433 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2434 {
2435 	unsigned vector, me;
2436 
2437 	ack_APIC_irq();
2438 	exit_idle();
2439 	irq_enter();
2440 
2441 	me = smp_processor_id();
2442 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2443 		unsigned int irq;
2444 		unsigned int irr;
2445 		struct irq_desc *desc;
2446 		struct irq_cfg *cfg;
2447 		irq = __get_cpu_var(vector_irq)[vector];
2448 
2449 		if (irq == -1)
2450 			continue;
2451 
2452 		desc = irq_to_desc(irq);
2453 		if (!desc)
2454 			continue;
2455 
2456 		cfg = irq_cfg(irq);
2457 		spin_lock(&desc->lock);
2458 		if (!cfg->move_cleanup_count)
2459 			goto unlock;
2460 
2461 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2462 			goto unlock;
2463 
2464 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2465 		/*
2466 		 * Check if the vector that needs to be cleanedup is
2467 		 * registered at the cpu's IRR. If so, then this is not
2468 		 * the best time to clean it up. Lets clean it up in the
2469 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2470 		 * to myself.
2471 		 */
2472 		if (irr  & (1 << (vector % 32))) {
2473 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2474 			goto unlock;
2475 		}
2476 		__get_cpu_var(vector_irq)[vector] = -1;
2477 		cfg->move_cleanup_count--;
2478 unlock:
2479 		spin_unlock(&desc->lock);
2480 	}
2481 
2482 	irq_exit();
2483 }
2484 
2485 static void irq_complete_move(struct irq_desc **descp)
2486 {
2487 	struct irq_desc *desc = *descp;
2488 	struct irq_cfg *cfg = desc->chip_data;
2489 	unsigned vector, me;
2490 
2491 	if (likely(!cfg->move_in_progress))
2492 		return;
2493 
2494 	vector = ~get_irq_regs()->orig_ax;
2495 	me = smp_processor_id();
2496 
2497 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2498 		send_cleanup_vector(cfg);
2499 }
2500 #else
2501 static inline void irq_complete_move(struct irq_desc **descp) {}
2502 #endif
2503 
2504 static void ack_apic_edge(unsigned int irq)
2505 {
2506 	struct irq_desc *desc = irq_to_desc(irq);
2507 
2508 	irq_complete_move(&desc);
2509 	move_native_irq(irq);
2510 	ack_APIC_irq();
2511 }
2512 
2513 atomic_t irq_mis_count;
2514 
2515 static void ack_apic_level(unsigned int irq)
2516 {
2517 	struct irq_desc *desc = irq_to_desc(irq);
2518 
2519 #ifdef CONFIG_X86_32
2520 	unsigned long v;
2521 	int i;
2522 #endif
2523 	struct irq_cfg *cfg;
2524 	int do_unmask_irq = 0;
2525 
2526 	irq_complete_move(&desc);
2527 #ifdef CONFIG_GENERIC_PENDING_IRQ
2528 	/* If we are moving the irq we need to mask it */
2529 	if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2530 		do_unmask_irq = 1;
2531 		mask_IO_APIC_irq_desc(desc);
2532 	}
2533 #endif
2534 
2535 #ifdef CONFIG_X86_32
2536 	/*
2537 	* It appears there is an erratum which affects at least version 0x11
2538 	* of I/O APIC (that's the 82093AA and cores integrated into various
2539 	* chipsets).  Under certain conditions a level-triggered interrupt is
2540 	* erroneously delivered as edge-triggered one but the respective IRR
2541 	* bit gets set nevertheless.  As a result the I/O unit expects an EOI
2542 	* message but it will never arrive and further interrupts are blocked
2543 	* from the source.  The exact reason is so far unknown, but the
2544 	* phenomenon was observed when two consecutive interrupt requests
2545 	* from a given source get delivered to the same CPU and the source is
2546 	* temporarily disabled in between.
2547 	*
2548 	* A workaround is to simulate an EOI message manually.  We achieve it
2549 	* by setting the trigger mode to edge and then to level when the edge
2550 	* trigger mode gets detected in the TMR of a local APIC for a
2551 	* level-triggered interrupt.  We mask the source for the time of the
2552 	* operation to prevent an edge-triggered interrupt escaping meanwhile.
2553 	* The idea is from Manfred Spraul.  --macro
2554 	*/
2555 	cfg = desc->chip_data;
2556 	i = cfg->vector;
2557 
2558 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2559 #endif
2560 
2561 	/*
2562 	 * We must acknowledge the irq before we move it or the acknowledge will
2563 	 * not propagate properly.
2564 	 */
2565 	ack_APIC_irq();
2566 
2567 	/* Now we can move and renable the irq */
2568 	if (unlikely(do_unmask_irq)) {
2569 		/* Only migrate the irq if the ack has been received.
2570 		 *
2571 		 * On rare occasions the broadcast level triggered ack gets
2572 		 * delayed going to ioapics, and if we reprogram the
2573 		 * vector while Remote IRR is still set the irq will never
2574 		 * fire again.
2575 		 *
2576 		 * To prevent this scenario we read the Remote IRR bit
2577 		 * of the ioapic.  This has two effects.
2578 		 * - On any sane system the read of the ioapic will
2579 		 *   flush writes (and acks) going to the ioapic from
2580 		 *   this cpu.
2581 		 * - We get to see if the ACK has actually been delivered.
2582 		 *
2583 		 * Based on failed experiments of reprogramming the
2584 		 * ioapic entry from outside of irq context starting
2585 		 * with masking the ioapic entry and then polling until
2586 		 * Remote IRR was clear before reprogramming the
2587 		 * ioapic I don't trust the Remote IRR bit to be
2588 		 * completey accurate.
2589 		 *
2590 		 * However there appears to be no other way to plug
2591 		 * this race, so if the Remote IRR bit is not
2592 		 * accurate and is causing problems then it is a hardware bug
2593 		 * and you can go talk to the chipset vendor about it.
2594 		 */
2595 		cfg = desc->chip_data;
2596 		if (!io_apic_level_ack_pending(cfg))
2597 			move_masked_irq(irq);
2598 		unmask_IO_APIC_irq_desc(desc);
2599 	}
2600 
2601 #ifdef CONFIG_X86_32
2602 	if (!(v & (1 << (i & 0x1f)))) {
2603 		atomic_inc(&irq_mis_count);
2604 		spin_lock(&ioapic_lock);
2605 		__mask_and_edge_IO_APIC_irq(cfg);
2606 		__unmask_and_level_IO_APIC_irq(cfg);
2607 		spin_unlock(&ioapic_lock);
2608 	}
2609 #endif
2610 }
2611 
2612 #ifdef CONFIG_INTR_REMAP
2613 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2614 {
2615 	int apic, pin;
2616 	struct irq_pin_list *entry;
2617 
2618 	entry = cfg->irq_2_pin;
2619 	for (;;) {
2620 
2621 		if (!entry)
2622 			break;
2623 
2624 		apic = entry->apic;
2625 		pin = entry->pin;
2626 		io_apic_eoi(apic, pin);
2627 		entry = entry->next;
2628 	}
2629 }
2630 
2631 static void
2632 eoi_ioapic_irq(struct irq_desc *desc)
2633 {
2634 	struct irq_cfg *cfg;
2635 	unsigned long flags;
2636 	unsigned int irq;
2637 
2638 	irq = desc->irq;
2639 	cfg = desc->chip_data;
2640 
2641 	spin_lock_irqsave(&ioapic_lock, flags);
2642 	__eoi_ioapic_irq(irq, cfg);
2643 	spin_unlock_irqrestore(&ioapic_lock, flags);
2644 }
2645 
2646 static void ir_ack_apic_edge(unsigned int irq)
2647 {
2648 	ack_APIC_irq();
2649 }
2650 
2651 static void ir_ack_apic_level(unsigned int irq)
2652 {
2653 	struct irq_desc *desc = irq_to_desc(irq);
2654 
2655 	ack_APIC_irq();
2656 	eoi_ioapic_irq(desc);
2657 }
2658 #endif /* CONFIG_INTR_REMAP */
2659 
2660 static struct irq_chip ioapic_chip __read_mostly = {
2661 	.name		= "IO-APIC",
2662 	.startup	= startup_ioapic_irq,
2663 	.mask		= mask_IO_APIC_irq,
2664 	.unmask		= unmask_IO_APIC_irq,
2665 	.ack		= ack_apic_edge,
2666 	.eoi		= ack_apic_level,
2667 #ifdef CONFIG_SMP
2668 	.set_affinity	= set_ioapic_affinity_irq,
2669 #endif
2670 	.retrigger	= ioapic_retrigger_irq,
2671 };
2672 
2673 static struct irq_chip ir_ioapic_chip __read_mostly = {
2674 	.name		= "IR-IO-APIC",
2675 	.startup	= startup_ioapic_irq,
2676 	.mask		= mask_IO_APIC_irq,
2677 	.unmask		= unmask_IO_APIC_irq,
2678 #ifdef CONFIG_INTR_REMAP
2679 	.ack		= ir_ack_apic_edge,
2680 	.eoi		= ir_ack_apic_level,
2681 #ifdef CONFIG_SMP
2682 	.set_affinity	= set_ir_ioapic_affinity_irq,
2683 #endif
2684 #endif
2685 	.retrigger	= ioapic_retrigger_irq,
2686 };
2687 
2688 static inline void init_IO_APIC_traps(void)
2689 {
2690 	int irq;
2691 	struct irq_desc *desc;
2692 	struct irq_cfg *cfg;
2693 
2694 	/*
2695 	 * NOTE! The local APIC isn't very good at handling
2696 	 * multiple interrupts at the same interrupt level.
2697 	 * As the interrupt level is determined by taking the
2698 	 * vector number and shifting that right by 4, we
2699 	 * want to spread these out a bit so that they don't
2700 	 * all fall in the same interrupt level.
2701 	 *
2702 	 * Also, we've got to be careful not to trash gate
2703 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2704 	 */
2705 	for_each_irq_desc(irq, desc) {
2706 		cfg = desc->chip_data;
2707 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2708 			/*
2709 			 * Hmm.. We don't have an entry for this,
2710 			 * so default to an old-fashioned 8259
2711 			 * interrupt if we can..
2712 			 */
2713 			if (irq < NR_IRQS_LEGACY)
2714 				make_8259A_irq(irq);
2715 			else
2716 				/* Strange. Oh, well.. */
2717 				desc->chip = &no_irq_chip;
2718 		}
2719 	}
2720 }
2721 
2722 /*
2723  * The local APIC irq-chip implementation:
2724  */
2725 
2726 static void mask_lapic_irq(unsigned int irq)
2727 {
2728 	unsigned long v;
2729 
2730 	v = apic_read(APIC_LVT0);
2731 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2732 }
2733 
2734 static void unmask_lapic_irq(unsigned int irq)
2735 {
2736 	unsigned long v;
2737 
2738 	v = apic_read(APIC_LVT0);
2739 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2740 }
2741 
2742 static void ack_lapic_irq(unsigned int irq)
2743 {
2744 	ack_APIC_irq();
2745 }
2746 
2747 static struct irq_chip lapic_chip __read_mostly = {
2748 	.name		= "local-APIC",
2749 	.mask		= mask_lapic_irq,
2750 	.unmask		= unmask_lapic_irq,
2751 	.ack		= ack_lapic_irq,
2752 };
2753 
2754 static void lapic_register_intr(int irq, struct irq_desc *desc)
2755 {
2756 	desc->status &= ~IRQ_LEVEL;
2757 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2758 				      "edge");
2759 }
2760 
2761 static void __init setup_nmi(void)
2762 {
2763 	/*
2764 	 * Dirty trick to enable the NMI watchdog ...
2765 	 * We put the 8259A master into AEOI mode and
2766 	 * unmask on all local APICs LVT0 as NMI.
2767 	 *
2768 	 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2769 	 * is from Maciej W. Rozycki - so we do not have to EOI from
2770 	 * the NMI handler or the timer interrupt.
2771 	 */
2772 	apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2773 
2774 	enable_NMI_through_LVT0();
2775 
2776 	apic_printk(APIC_VERBOSE, " done.\n");
2777 }
2778 
2779 /*
2780  * This looks a bit hackish but it's about the only one way of sending
2781  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2782  * not support the ExtINT mode, unfortunately.  We need to send these
2783  * cycles as some i82489DX-based boards have glue logic that keeps the
2784  * 8259A interrupt line asserted until INTA.  --macro
2785  */
2786 static inline void __init unlock_ExtINT_logic(void)
2787 {
2788 	int apic, pin, i;
2789 	struct IO_APIC_route_entry entry0, entry1;
2790 	unsigned char save_control, save_freq_select;
2791 
2792 	pin  = find_isa_irq_pin(8, mp_INT);
2793 	if (pin == -1) {
2794 		WARN_ON_ONCE(1);
2795 		return;
2796 	}
2797 	apic = find_isa_irq_apic(8, mp_INT);
2798 	if (apic == -1) {
2799 		WARN_ON_ONCE(1);
2800 		return;
2801 	}
2802 
2803 	entry0 = ioapic_read_entry(apic, pin);
2804 	clear_IO_APIC_pin(apic, pin);
2805 
2806 	memset(&entry1, 0, sizeof(entry1));
2807 
2808 	entry1.dest_mode = 0;			/* physical delivery */
2809 	entry1.mask = 0;			/* unmask IRQ now */
2810 	entry1.dest = hard_smp_processor_id();
2811 	entry1.delivery_mode = dest_ExtINT;
2812 	entry1.polarity = entry0.polarity;
2813 	entry1.trigger = 0;
2814 	entry1.vector = 0;
2815 
2816 	ioapic_write_entry(apic, pin, entry1);
2817 
2818 	save_control = CMOS_READ(RTC_CONTROL);
2819 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2820 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2821 		   RTC_FREQ_SELECT);
2822 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2823 
2824 	i = 100;
2825 	while (i-- > 0) {
2826 		mdelay(10);
2827 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2828 			i -= 10;
2829 	}
2830 
2831 	CMOS_WRITE(save_control, RTC_CONTROL);
2832 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2833 	clear_IO_APIC_pin(apic, pin);
2834 
2835 	ioapic_write_entry(apic, pin, entry0);
2836 }
2837 
2838 static int disable_timer_pin_1 __initdata;
2839 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2840 static int __init disable_timer_pin_setup(char *arg)
2841 {
2842 	disable_timer_pin_1 = 1;
2843 	return 0;
2844 }
2845 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2846 
2847 int timer_through_8259 __initdata;
2848 
2849 /*
2850  * This code may look a bit paranoid, but it's supposed to cooperate with
2851  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2852  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2853  * fanatically on his truly buggy board.
2854  *
2855  * FIXME: really need to revamp this for all platforms.
2856  */
2857 static inline void __init check_timer(void)
2858 {
2859 	struct irq_desc *desc = irq_to_desc(0);
2860 	struct irq_cfg *cfg = desc->chip_data;
2861 	int node = cpu_to_node(boot_cpu_id);
2862 	int apic1, pin1, apic2, pin2;
2863 	unsigned long flags;
2864 	int no_pin1 = 0;
2865 
2866 	local_irq_save(flags);
2867 
2868 	/*
2869 	 * get/set the timer IRQ vector:
2870 	 */
2871 	disable_8259A_irq(0);
2872 	assign_irq_vector(0, cfg, apic->target_cpus());
2873 
2874 	/*
2875 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2876 	 * wire has to be disabled in the local APIC.  Also
2877 	 * timer interrupts need to be acknowledged manually in
2878 	 * the 8259A for the i82489DX when using the NMI
2879 	 * watchdog as that APIC treats NMIs as level-triggered.
2880 	 * The AEOI mode will finish them in the 8259A
2881 	 * automatically.
2882 	 */
2883 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2884 	init_8259A(1);
2885 #ifdef CONFIG_X86_32
2886 	{
2887 		unsigned int ver;
2888 
2889 		ver = apic_read(APIC_LVR);
2890 		ver = GET_APIC_VERSION(ver);
2891 		timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2892 	}
2893 #endif
2894 
2895 	pin1  = find_isa_irq_pin(0, mp_INT);
2896 	apic1 = find_isa_irq_apic(0, mp_INT);
2897 	pin2  = ioapic_i8259.pin;
2898 	apic2 = ioapic_i8259.apic;
2899 
2900 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2901 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2902 		    cfg->vector, apic1, pin1, apic2, pin2);
2903 
2904 	/*
2905 	 * Some BIOS writers are clueless and report the ExtINTA
2906 	 * I/O APIC input from the cascaded 8259A as the timer
2907 	 * interrupt input.  So just in case, if only one pin
2908 	 * was found above, try it both directly and through the
2909 	 * 8259A.
2910 	 */
2911 	if (pin1 == -1) {
2912 		if (intr_remapping_enabled)
2913 			panic("BIOS bug: timer not connected to IO-APIC");
2914 		pin1 = pin2;
2915 		apic1 = apic2;
2916 		no_pin1 = 1;
2917 	} else if (pin2 == -1) {
2918 		pin2 = pin1;
2919 		apic2 = apic1;
2920 	}
2921 
2922 	if (pin1 != -1) {
2923 		/*
2924 		 * Ok, does IRQ0 through the IOAPIC work?
2925 		 */
2926 		if (no_pin1) {
2927 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2928 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2929 		} else {
2930 			/* for edge trigger, setup_IO_APIC_irq already
2931 			 * leave it unmasked.
2932 			 * so only need to unmask if it is level-trigger
2933 			 * do we really have level trigger timer?
2934 			 */
2935 			int idx;
2936 			idx = find_irq_entry(apic1, pin1, mp_INT);
2937 			if (idx != -1 && irq_trigger(idx))
2938 				unmask_IO_APIC_irq_desc(desc);
2939 		}
2940 		if (timer_irq_works()) {
2941 			if (nmi_watchdog == NMI_IO_APIC) {
2942 				setup_nmi();
2943 				enable_8259A_irq(0);
2944 			}
2945 			if (disable_timer_pin_1 > 0)
2946 				clear_IO_APIC_pin(0, pin1);
2947 			goto out;
2948 		}
2949 		if (intr_remapping_enabled)
2950 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2951 		local_irq_disable();
2952 		clear_IO_APIC_pin(apic1, pin1);
2953 		if (!no_pin1)
2954 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2955 				    "8254 timer not connected to IO-APIC\n");
2956 
2957 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2958 			    "(IRQ0) through the 8259A ...\n");
2959 		apic_printk(APIC_QUIET, KERN_INFO
2960 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2961 		/*
2962 		 * legacy devices should be connected to IO APIC #0
2963 		 */
2964 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2965 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2966 		enable_8259A_irq(0);
2967 		if (timer_irq_works()) {
2968 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2969 			timer_through_8259 = 1;
2970 			if (nmi_watchdog == NMI_IO_APIC) {
2971 				disable_8259A_irq(0);
2972 				setup_nmi();
2973 				enable_8259A_irq(0);
2974 			}
2975 			goto out;
2976 		}
2977 		/*
2978 		 * Cleanup, just in case ...
2979 		 */
2980 		local_irq_disable();
2981 		disable_8259A_irq(0);
2982 		clear_IO_APIC_pin(apic2, pin2);
2983 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2984 	}
2985 
2986 	if (nmi_watchdog == NMI_IO_APIC) {
2987 		apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2988 			    "through the IO-APIC - disabling NMI Watchdog!\n");
2989 		nmi_watchdog = NMI_NONE;
2990 	}
2991 #ifdef CONFIG_X86_32
2992 	timer_ack = 0;
2993 #endif
2994 
2995 	apic_printk(APIC_QUIET, KERN_INFO
2996 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2997 
2998 	lapic_register_intr(0, desc);
2999 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
3000 	enable_8259A_irq(0);
3001 
3002 	if (timer_irq_works()) {
3003 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3004 		goto out;
3005 	}
3006 	local_irq_disable();
3007 	disable_8259A_irq(0);
3008 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3009 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3010 
3011 	apic_printk(APIC_QUIET, KERN_INFO
3012 		    "...trying to set up timer as ExtINT IRQ...\n");
3013 
3014 	init_8259A(0);
3015 	make_8259A_irq(0);
3016 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3017 
3018 	unlock_ExtINT_logic();
3019 
3020 	if (timer_irq_works()) {
3021 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3022 		goto out;
3023 	}
3024 	local_irq_disable();
3025 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3026 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3027 		"report.  Then try booting with the 'noapic' option.\n");
3028 out:
3029 	local_irq_restore(flags);
3030 }
3031 
3032 /*
3033  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3034  * to devices.  However there may be an I/O APIC pin available for
3035  * this interrupt regardless.  The pin may be left unconnected, but
3036  * typically it will be reused as an ExtINT cascade interrupt for
3037  * the master 8259A.  In the MPS case such a pin will normally be
3038  * reported as an ExtINT interrupt in the MP table.  With ACPI
3039  * there is no provision for ExtINT interrupts, and in the absence
3040  * of an override it would be treated as an ordinary ISA I/O APIC
3041  * interrupt, that is edge-triggered and unmasked by default.  We
3042  * used to do this, but it caused problems on some systems because
3043  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3044  * the same ExtINT cascade interrupt to drive the local APIC of the
3045  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3046  * the I/O APIC in all cases now.  No actual device should request
3047  * it anyway.  --macro
3048  */
3049 #define PIC_IRQS	(1 << PIC_CASCADE_IR)
3050 
3051 void __init setup_IO_APIC(void)
3052 {
3053 
3054 	/*
3055 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3056 	 */
3057 
3058 	io_apic_irqs = ~PIC_IRQS;
3059 
3060 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3061 	/*
3062          * Set up IO-APIC IRQ routing.
3063          */
3064 #ifdef CONFIG_X86_32
3065 	if (!acpi_ioapic)
3066 		setup_ioapic_ids_from_mpc();
3067 #endif
3068 	sync_Arb_IDs();
3069 	setup_IO_APIC_irqs();
3070 	init_IO_APIC_traps();
3071 	check_timer();
3072 }
3073 
3074 /*
3075  *      Called after all the initialization is done. If we didnt find any
3076  *      APIC bugs then we can allow the modify fast path
3077  */
3078 
3079 static int __init io_apic_bug_finalize(void)
3080 {
3081 	if (sis_apic_bug == -1)
3082 		sis_apic_bug = 0;
3083 	return 0;
3084 }
3085 
3086 late_initcall(io_apic_bug_finalize);
3087 
3088 struct sysfs_ioapic_data {
3089 	struct sys_device dev;
3090 	struct IO_APIC_route_entry entry[0];
3091 };
3092 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3093 
3094 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3095 {
3096 	struct IO_APIC_route_entry *entry;
3097 	struct sysfs_ioapic_data *data;
3098 	int i;
3099 
3100 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3101 	entry = data->entry;
3102 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3103 		*entry = ioapic_read_entry(dev->id, i);
3104 
3105 	return 0;
3106 }
3107 
3108 static int ioapic_resume(struct sys_device *dev)
3109 {
3110 	struct IO_APIC_route_entry *entry;
3111 	struct sysfs_ioapic_data *data;
3112 	unsigned long flags;
3113 	union IO_APIC_reg_00 reg_00;
3114 	int i;
3115 
3116 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3117 	entry = data->entry;
3118 
3119 	spin_lock_irqsave(&ioapic_lock, flags);
3120 	reg_00.raw = io_apic_read(dev->id, 0);
3121 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3122 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3123 		io_apic_write(dev->id, 0, reg_00.raw);
3124 	}
3125 	spin_unlock_irqrestore(&ioapic_lock, flags);
3126 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3127 		ioapic_write_entry(dev->id, i, entry[i]);
3128 
3129 	return 0;
3130 }
3131 
3132 static struct sysdev_class ioapic_sysdev_class = {
3133 	.name = "ioapic",
3134 	.suspend = ioapic_suspend,
3135 	.resume = ioapic_resume,
3136 };
3137 
3138 static int __init ioapic_init_sysfs(void)
3139 {
3140 	struct sys_device * dev;
3141 	int i, size, error;
3142 
3143 	error = sysdev_class_register(&ioapic_sysdev_class);
3144 	if (error)
3145 		return error;
3146 
3147 	for (i = 0; i < nr_ioapics; i++ ) {
3148 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3149 			* sizeof(struct IO_APIC_route_entry);
3150 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3151 		if (!mp_ioapic_data[i]) {
3152 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3153 			continue;
3154 		}
3155 		dev = &mp_ioapic_data[i]->dev;
3156 		dev->id = i;
3157 		dev->cls = &ioapic_sysdev_class;
3158 		error = sysdev_register(dev);
3159 		if (error) {
3160 			kfree(mp_ioapic_data[i]);
3161 			mp_ioapic_data[i] = NULL;
3162 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3163 			continue;
3164 		}
3165 	}
3166 
3167 	return 0;
3168 }
3169 
3170 device_initcall(ioapic_init_sysfs);
3171 
3172 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3173 /*
3174  * Dynamic irq allocate and deallocation
3175  */
3176 unsigned int create_irq_nr(unsigned int irq_want, int node)
3177 {
3178 	/* Allocate an unused irq */
3179 	unsigned int irq;
3180 	unsigned int new;
3181 	unsigned long flags;
3182 	struct irq_cfg *cfg_new = NULL;
3183 	struct irq_desc *desc_new = NULL;
3184 
3185 	irq = 0;
3186 	if (irq_want < nr_irqs_gsi)
3187 		irq_want = nr_irqs_gsi;
3188 
3189 	spin_lock_irqsave(&vector_lock, flags);
3190 	for (new = irq_want; new < nr_irqs; new++) {
3191 		desc_new = irq_to_desc_alloc_node(new, node);
3192 		if (!desc_new) {
3193 			printk(KERN_INFO "can not get irq_desc for %d\n", new);
3194 			continue;
3195 		}
3196 		cfg_new = desc_new->chip_data;
3197 
3198 		if (cfg_new->vector != 0)
3199 			continue;
3200 
3201 		desc_new = move_irq_desc(desc_new, node);
3202 
3203 		if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3204 			irq = new;
3205 		break;
3206 	}
3207 	spin_unlock_irqrestore(&vector_lock, flags);
3208 
3209 	if (irq > 0) {
3210 		dynamic_irq_init(irq);
3211 		/* restore it, in case dynamic_irq_init clear it */
3212 		if (desc_new)
3213 			desc_new->chip_data = cfg_new;
3214 	}
3215 	return irq;
3216 }
3217 
3218 int create_irq(void)
3219 {
3220 	int node = cpu_to_node(boot_cpu_id);
3221 	unsigned int irq_want;
3222 	int irq;
3223 
3224 	irq_want = nr_irqs_gsi;
3225 	irq = create_irq_nr(irq_want, node);
3226 
3227 	if (irq == 0)
3228 		irq = -1;
3229 
3230 	return irq;
3231 }
3232 
3233 void destroy_irq(unsigned int irq)
3234 {
3235 	unsigned long flags;
3236 	struct irq_cfg *cfg;
3237 	struct irq_desc *desc;
3238 
3239 	/* store it, in case dynamic_irq_cleanup clear it */
3240 	desc = irq_to_desc(irq);
3241 	cfg = desc->chip_data;
3242 	dynamic_irq_cleanup(irq);
3243 	/* connect back irq_cfg */
3244 	if (desc)
3245 		desc->chip_data = cfg;
3246 
3247 	free_irte(irq);
3248 	spin_lock_irqsave(&vector_lock, flags);
3249 	__clear_irq_vector(irq, cfg);
3250 	spin_unlock_irqrestore(&vector_lock, flags);
3251 }
3252 
3253 /*
3254  * MSI message composition
3255  */
3256 #ifdef CONFIG_PCI_MSI
3257 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3258 {
3259 	struct irq_cfg *cfg;
3260 	int err;
3261 	unsigned dest;
3262 
3263 	if (disable_apic)
3264 		return -ENXIO;
3265 
3266 	cfg = irq_cfg(irq);
3267 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3268 	if (err)
3269 		return err;
3270 
3271 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3272 
3273 	if (irq_remapped(irq)) {
3274 		struct irte irte;
3275 		int ir_index;
3276 		u16 sub_handle;
3277 
3278 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3279 		BUG_ON(ir_index == -1);
3280 
3281 		memset (&irte, 0, sizeof(irte));
3282 
3283 		irte.present = 1;
3284 		irte.dst_mode = apic->irq_dest_mode;
3285 		irte.trigger_mode = 0; /* edge */
3286 		irte.dlvry_mode = apic->irq_delivery_mode;
3287 		irte.vector = cfg->vector;
3288 		irte.dest_id = IRTE_DEST(dest);
3289 
3290 		modify_irte(irq, &irte);
3291 
3292 		msg->address_hi = MSI_ADDR_BASE_HI;
3293 		msg->data = sub_handle;
3294 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3295 				  MSI_ADDR_IR_SHV |
3296 				  MSI_ADDR_IR_INDEX1(ir_index) |
3297 				  MSI_ADDR_IR_INDEX2(ir_index);
3298 	} else {
3299 		if (x2apic_enabled())
3300 			msg->address_hi = MSI_ADDR_BASE_HI |
3301 					  MSI_ADDR_EXT_DEST_ID(dest);
3302 		else
3303 			msg->address_hi = MSI_ADDR_BASE_HI;
3304 
3305 		msg->address_lo =
3306 			MSI_ADDR_BASE_LO |
3307 			((apic->irq_dest_mode == 0) ?
3308 				MSI_ADDR_DEST_MODE_PHYSICAL:
3309 				MSI_ADDR_DEST_MODE_LOGICAL) |
3310 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3311 				MSI_ADDR_REDIRECTION_CPU:
3312 				MSI_ADDR_REDIRECTION_LOWPRI) |
3313 			MSI_ADDR_DEST_ID(dest);
3314 
3315 		msg->data =
3316 			MSI_DATA_TRIGGER_EDGE |
3317 			MSI_DATA_LEVEL_ASSERT |
3318 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3319 				MSI_DATA_DELIVERY_FIXED:
3320 				MSI_DATA_DELIVERY_LOWPRI) |
3321 			MSI_DATA_VECTOR(cfg->vector);
3322 	}
3323 	return err;
3324 }
3325 
3326 #ifdef CONFIG_SMP
3327 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3328 {
3329 	struct irq_desc *desc = irq_to_desc(irq);
3330 	struct irq_cfg *cfg;
3331 	struct msi_msg msg;
3332 	unsigned int dest;
3333 
3334 	dest = set_desc_affinity(desc, mask);
3335 	if (dest == BAD_APICID)
3336 		return -1;
3337 
3338 	cfg = desc->chip_data;
3339 
3340 	read_msi_msg_desc(desc, &msg);
3341 
3342 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3343 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3344 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3345 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3346 
3347 	write_msi_msg_desc(desc, &msg);
3348 
3349 	return 0;
3350 }
3351 #ifdef CONFIG_INTR_REMAP
3352 /*
3353  * Migrate the MSI irq to another cpumask. This migration is
3354  * done in the process context using interrupt-remapping hardware.
3355  */
3356 static int
3357 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3358 {
3359 	struct irq_desc *desc = irq_to_desc(irq);
3360 	struct irq_cfg *cfg = desc->chip_data;
3361 	unsigned int dest;
3362 	struct irte irte;
3363 
3364 	if (get_irte(irq, &irte))
3365 		return -1;
3366 
3367 	dest = set_desc_affinity(desc, mask);
3368 	if (dest == BAD_APICID)
3369 		return -1;
3370 
3371 	irte.vector = cfg->vector;
3372 	irte.dest_id = IRTE_DEST(dest);
3373 
3374 	/*
3375 	 * atomically update the IRTE with the new destination and vector.
3376 	 */
3377 	modify_irte(irq, &irte);
3378 
3379 	/*
3380 	 * After this point, all the interrupts will start arriving
3381 	 * at the new destination. So, time to cleanup the previous
3382 	 * vector allocation.
3383 	 */
3384 	if (cfg->move_in_progress)
3385 		send_cleanup_vector(cfg);
3386 
3387 	return 0;
3388 }
3389 
3390 #endif
3391 #endif /* CONFIG_SMP */
3392 
3393 /*
3394  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3395  * which implement the MSI or MSI-X Capability Structure.
3396  */
3397 static struct irq_chip msi_chip = {
3398 	.name		= "PCI-MSI",
3399 	.unmask		= unmask_msi_irq,
3400 	.mask		= mask_msi_irq,
3401 	.ack		= ack_apic_edge,
3402 #ifdef CONFIG_SMP
3403 	.set_affinity	= set_msi_irq_affinity,
3404 #endif
3405 	.retrigger	= ioapic_retrigger_irq,
3406 };
3407 
3408 static struct irq_chip msi_ir_chip = {
3409 	.name		= "IR-PCI-MSI",
3410 	.unmask		= unmask_msi_irq,
3411 	.mask		= mask_msi_irq,
3412 #ifdef CONFIG_INTR_REMAP
3413 	.ack		= ir_ack_apic_edge,
3414 #ifdef CONFIG_SMP
3415 	.set_affinity	= ir_set_msi_irq_affinity,
3416 #endif
3417 #endif
3418 	.retrigger	= ioapic_retrigger_irq,
3419 };
3420 
3421 /*
3422  * Map the PCI dev to the corresponding remapping hardware unit
3423  * and allocate 'nvec' consecutive interrupt-remapping table entries
3424  * in it.
3425  */
3426 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3427 {
3428 	struct intel_iommu *iommu;
3429 	int index;
3430 
3431 	iommu = map_dev_to_ir(dev);
3432 	if (!iommu) {
3433 		printk(KERN_ERR
3434 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3435 		return -ENOENT;
3436 	}
3437 
3438 	index = alloc_irte(iommu, irq, nvec);
3439 	if (index < 0) {
3440 		printk(KERN_ERR
3441 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3442 		       pci_name(dev));
3443 		return -ENOSPC;
3444 	}
3445 	return index;
3446 }
3447 
3448 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3449 {
3450 	int ret;
3451 	struct msi_msg msg;
3452 
3453 	ret = msi_compose_msg(dev, irq, &msg);
3454 	if (ret < 0)
3455 		return ret;
3456 
3457 	set_irq_msi(irq, msidesc);
3458 	write_msi_msg(irq, &msg);
3459 
3460 	if (irq_remapped(irq)) {
3461 		struct irq_desc *desc = irq_to_desc(irq);
3462 		/*
3463 		 * irq migration in process context
3464 		 */
3465 		desc->status |= IRQ_MOVE_PCNTXT;
3466 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3467 	} else
3468 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3469 
3470 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3471 
3472 	return 0;
3473 }
3474 
3475 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3476 {
3477 	unsigned int irq;
3478 	int ret, sub_handle;
3479 	struct msi_desc *msidesc;
3480 	unsigned int irq_want;
3481 	struct intel_iommu *iommu = NULL;
3482 	int index = 0;
3483 	int node;
3484 
3485 	/* x86 doesn't support multiple MSI yet */
3486 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3487 		return 1;
3488 
3489 	node = dev_to_node(&dev->dev);
3490 	irq_want = nr_irqs_gsi;
3491 	sub_handle = 0;
3492 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3493 		irq = create_irq_nr(irq_want, node);
3494 		if (irq == 0)
3495 			return -1;
3496 		irq_want = irq + 1;
3497 		if (!intr_remapping_enabled)
3498 			goto no_ir;
3499 
3500 		if (!sub_handle) {
3501 			/*
3502 			 * allocate the consecutive block of IRTE's
3503 			 * for 'nvec'
3504 			 */
3505 			index = msi_alloc_irte(dev, irq, nvec);
3506 			if (index < 0) {
3507 				ret = index;
3508 				goto error;
3509 			}
3510 		} else {
3511 			iommu = map_dev_to_ir(dev);
3512 			if (!iommu) {
3513 				ret = -ENOENT;
3514 				goto error;
3515 			}
3516 			/*
3517 			 * setup the mapping between the irq and the IRTE
3518 			 * base index, the sub_handle pointing to the
3519 			 * appropriate interrupt remap table entry.
3520 			 */
3521 			set_irte_irq(irq, iommu, index, sub_handle);
3522 		}
3523 no_ir:
3524 		ret = setup_msi_irq(dev, msidesc, irq);
3525 		if (ret < 0)
3526 			goto error;
3527 		sub_handle++;
3528 	}
3529 	return 0;
3530 
3531 error:
3532 	destroy_irq(irq);
3533 	return ret;
3534 }
3535 
3536 void arch_teardown_msi_irq(unsigned int irq)
3537 {
3538 	destroy_irq(irq);
3539 }
3540 
3541 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3542 #ifdef CONFIG_SMP
3543 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3544 {
3545 	struct irq_desc *desc = irq_to_desc(irq);
3546 	struct irq_cfg *cfg;
3547 	struct msi_msg msg;
3548 	unsigned int dest;
3549 
3550 	dest = set_desc_affinity(desc, mask);
3551 	if (dest == BAD_APICID)
3552 		return -1;
3553 
3554 	cfg = desc->chip_data;
3555 
3556 	dmar_msi_read(irq, &msg);
3557 
3558 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3559 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3560 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3561 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3562 
3563 	dmar_msi_write(irq, &msg);
3564 
3565 	return 0;
3566 }
3567 
3568 #endif /* CONFIG_SMP */
3569 
3570 struct irq_chip dmar_msi_type = {
3571 	.name = "DMAR_MSI",
3572 	.unmask = dmar_msi_unmask,
3573 	.mask = dmar_msi_mask,
3574 	.ack = ack_apic_edge,
3575 #ifdef CONFIG_SMP
3576 	.set_affinity = dmar_msi_set_affinity,
3577 #endif
3578 	.retrigger = ioapic_retrigger_irq,
3579 };
3580 
3581 int arch_setup_dmar_msi(unsigned int irq)
3582 {
3583 	int ret;
3584 	struct msi_msg msg;
3585 
3586 	ret = msi_compose_msg(NULL, irq, &msg);
3587 	if (ret < 0)
3588 		return ret;
3589 	dmar_msi_write(irq, &msg);
3590 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3591 		"edge");
3592 	return 0;
3593 }
3594 #endif
3595 
3596 #ifdef CONFIG_HPET_TIMER
3597 
3598 #ifdef CONFIG_SMP
3599 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3600 {
3601 	struct irq_desc *desc = irq_to_desc(irq);
3602 	struct irq_cfg *cfg;
3603 	struct msi_msg msg;
3604 	unsigned int dest;
3605 
3606 	dest = set_desc_affinity(desc, mask);
3607 	if (dest == BAD_APICID)
3608 		return -1;
3609 
3610 	cfg = desc->chip_data;
3611 
3612 	hpet_msi_read(irq, &msg);
3613 
3614 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3615 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3616 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3617 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3618 
3619 	hpet_msi_write(irq, &msg);
3620 
3621 	return 0;
3622 }
3623 
3624 #endif /* CONFIG_SMP */
3625 
3626 static struct irq_chip hpet_msi_type = {
3627 	.name = "HPET_MSI",
3628 	.unmask = hpet_msi_unmask,
3629 	.mask = hpet_msi_mask,
3630 	.ack = ack_apic_edge,
3631 #ifdef CONFIG_SMP
3632 	.set_affinity = hpet_msi_set_affinity,
3633 #endif
3634 	.retrigger = ioapic_retrigger_irq,
3635 };
3636 
3637 int arch_setup_hpet_msi(unsigned int irq)
3638 {
3639 	int ret;
3640 	struct msi_msg msg;
3641 	struct irq_desc *desc = irq_to_desc(irq);
3642 
3643 	ret = msi_compose_msg(NULL, irq, &msg);
3644 	if (ret < 0)
3645 		return ret;
3646 
3647 	hpet_msi_write(irq, &msg);
3648 	desc->status |= IRQ_MOVE_PCNTXT;
3649 	set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3650 		"edge");
3651 
3652 	return 0;
3653 }
3654 #endif
3655 
3656 #endif /* CONFIG_PCI_MSI */
3657 /*
3658  * Hypertransport interrupt support
3659  */
3660 #ifdef CONFIG_HT_IRQ
3661 
3662 #ifdef CONFIG_SMP
3663 
3664 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3665 {
3666 	struct ht_irq_msg msg;
3667 	fetch_ht_irq_msg(irq, &msg);
3668 
3669 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3670 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3671 
3672 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3673 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3674 
3675 	write_ht_irq_msg(irq, &msg);
3676 }
3677 
3678 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3679 {
3680 	struct irq_desc *desc = irq_to_desc(irq);
3681 	struct irq_cfg *cfg;
3682 	unsigned int dest;
3683 
3684 	dest = set_desc_affinity(desc, mask);
3685 	if (dest == BAD_APICID)
3686 		return -1;
3687 
3688 	cfg = desc->chip_data;
3689 
3690 	target_ht_irq(irq, dest, cfg->vector);
3691 
3692 	return 0;
3693 }
3694 
3695 #endif
3696 
3697 static struct irq_chip ht_irq_chip = {
3698 	.name		= "PCI-HT",
3699 	.mask		= mask_ht_irq,
3700 	.unmask		= unmask_ht_irq,
3701 	.ack		= ack_apic_edge,
3702 #ifdef CONFIG_SMP
3703 	.set_affinity	= set_ht_irq_affinity,
3704 #endif
3705 	.retrigger	= ioapic_retrigger_irq,
3706 };
3707 
3708 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3709 {
3710 	struct irq_cfg *cfg;
3711 	int err;
3712 
3713 	if (disable_apic)
3714 		return -ENXIO;
3715 
3716 	cfg = irq_cfg(irq);
3717 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3718 	if (!err) {
3719 		struct ht_irq_msg msg;
3720 		unsigned dest;
3721 
3722 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3723 						    apic->target_cpus());
3724 
3725 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3726 
3727 		msg.address_lo =
3728 			HT_IRQ_LOW_BASE |
3729 			HT_IRQ_LOW_DEST_ID(dest) |
3730 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3731 			((apic->irq_dest_mode == 0) ?
3732 				HT_IRQ_LOW_DM_PHYSICAL :
3733 				HT_IRQ_LOW_DM_LOGICAL) |
3734 			HT_IRQ_LOW_RQEOI_EDGE |
3735 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3736 				HT_IRQ_LOW_MT_FIXED :
3737 				HT_IRQ_LOW_MT_ARBITRATED) |
3738 			HT_IRQ_LOW_IRQ_MASKED;
3739 
3740 		write_ht_irq_msg(irq, &msg);
3741 
3742 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3743 					      handle_edge_irq, "edge");
3744 
3745 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3746 	}
3747 	return err;
3748 }
3749 #endif /* CONFIG_HT_IRQ */
3750 
3751 #ifdef CONFIG_X86_UV
3752 /*
3753  * Re-target the irq to the specified CPU and enable the specified MMR located
3754  * on the specified blade to allow the sending of MSIs to the specified CPU.
3755  */
3756 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3757 		       unsigned long mmr_offset)
3758 {
3759 	const struct cpumask *eligible_cpu = cpumask_of(cpu);
3760 	struct irq_cfg *cfg;
3761 	int mmr_pnode;
3762 	unsigned long mmr_value;
3763 	struct uv_IO_APIC_route_entry *entry;
3764 	unsigned long flags;
3765 	int err;
3766 
3767 	BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3768 
3769 	cfg = irq_cfg(irq);
3770 
3771 	err = assign_irq_vector(irq, cfg, eligible_cpu);
3772 	if (err != 0)
3773 		return err;
3774 
3775 	spin_lock_irqsave(&vector_lock, flags);
3776 	set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3777 				      irq_name);
3778 	spin_unlock_irqrestore(&vector_lock, flags);
3779 
3780 	mmr_value = 0;
3781 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3782 	entry->vector		= cfg->vector;
3783 	entry->delivery_mode	= apic->irq_delivery_mode;
3784 	entry->dest_mode	= apic->irq_dest_mode;
3785 	entry->polarity		= 0;
3786 	entry->trigger		= 0;
3787 	entry->mask		= 0;
3788 	entry->dest		= apic->cpu_mask_to_apicid(eligible_cpu);
3789 
3790 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3791 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3792 
3793 	return irq;
3794 }
3795 
3796 /*
3797  * Disable the specified MMR located on the specified blade so that MSIs are
3798  * longer allowed to be sent.
3799  */
3800 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3801 {
3802 	unsigned long mmr_value;
3803 	struct uv_IO_APIC_route_entry *entry;
3804 	int mmr_pnode;
3805 
3806 	BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3807 
3808 	mmr_value = 0;
3809 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3810 	entry->mask = 1;
3811 
3812 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3813 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3814 }
3815 #endif /* CONFIG_X86_64 */
3816 
3817 int __init io_apic_get_redir_entries (int ioapic)
3818 {
3819 	union IO_APIC_reg_01	reg_01;
3820 	unsigned long flags;
3821 
3822 	spin_lock_irqsave(&ioapic_lock, flags);
3823 	reg_01.raw = io_apic_read(ioapic, 1);
3824 	spin_unlock_irqrestore(&ioapic_lock, flags);
3825 
3826 	return reg_01.bits.entries;
3827 }
3828 
3829 void __init probe_nr_irqs_gsi(void)
3830 {
3831 	int nr = 0;
3832 
3833 	nr = acpi_probe_gsi();
3834 	if (nr > nr_irqs_gsi) {
3835 		nr_irqs_gsi = nr;
3836 	} else {
3837 		/* for acpi=off or acpi is not compiled in */
3838 		int idx;
3839 
3840 		nr = 0;
3841 		for (idx = 0; idx < nr_ioapics; idx++)
3842 			nr += io_apic_get_redir_entries(idx) + 1;
3843 
3844 		if (nr > nr_irqs_gsi)
3845 			nr_irqs_gsi = nr;
3846 	}
3847 
3848 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3849 }
3850 
3851 #ifdef CONFIG_SPARSE_IRQ
3852 int __init arch_probe_nr_irqs(void)
3853 {
3854 	int nr;
3855 
3856 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3857 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3858 
3859 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3860 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3861 	/*
3862 	 * for MSI and HT dyn irq
3863 	 */
3864 	nr += nr_irqs_gsi * 16;
3865 #endif
3866 	if (nr < nr_irqs)
3867 		nr_irqs = nr;
3868 
3869 	return 0;
3870 }
3871 #endif
3872 
3873 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3874 				struct io_apic_irq_attr *irq_attr)
3875 {
3876 	struct irq_desc *desc;
3877 	struct irq_cfg *cfg;
3878 	int node;
3879 	int ioapic, pin;
3880 	int trigger, polarity;
3881 
3882 	ioapic = irq_attr->ioapic;
3883 	if (!IO_APIC_IRQ(irq)) {
3884 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3885 			ioapic);
3886 		return -EINVAL;
3887 	}
3888 
3889 	if (dev)
3890 		node = dev_to_node(dev);
3891 	else
3892 		node = cpu_to_node(boot_cpu_id);
3893 
3894 	desc = irq_to_desc_alloc_node(irq, node);
3895 	if (!desc) {
3896 		printk(KERN_INFO "can not get irq_desc %d\n", irq);
3897 		return 0;
3898 	}
3899 
3900 	pin = irq_attr->ioapic_pin;
3901 	trigger = irq_attr->trigger;
3902 	polarity = irq_attr->polarity;
3903 
3904 	/*
3905 	 * IRQs < 16 are already in the irq_2_pin[] map
3906 	 */
3907 	if (irq >= NR_IRQS_LEGACY) {
3908 		cfg = desc->chip_data;
3909 		add_pin_to_irq_node(cfg, node, ioapic, pin);
3910 	}
3911 
3912 	setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity);
3913 
3914 	return 0;
3915 }
3916 
3917 int io_apic_set_pci_routing(struct device *dev, int irq,
3918 				struct io_apic_irq_attr *irq_attr)
3919 {
3920 	int ioapic, pin;
3921 	/*
3922 	 * Avoid pin reprogramming.  PRTs typically include entries
3923 	 * with redundant pin->gsi mappings (but unique PCI devices);
3924 	 * we only program the IOAPIC on the first.
3925 	 */
3926 	ioapic = irq_attr->ioapic;
3927 	pin = irq_attr->ioapic_pin;
3928 	if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3929 		pr_debug("Pin %d-%d already programmed\n",
3930 			 mp_ioapics[ioapic].apicid, pin);
3931 		return 0;
3932 	}
3933 	set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3934 
3935 	return __io_apic_set_pci_routing(dev, irq, irq_attr);
3936 }
3937 
3938 /* --------------------------------------------------------------------------
3939                           ACPI-based IOAPIC Configuration
3940    -------------------------------------------------------------------------- */
3941 
3942 #ifdef CONFIG_ACPI
3943 
3944 #ifdef CONFIG_X86_32
3945 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3946 {
3947 	union IO_APIC_reg_00 reg_00;
3948 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3949 	physid_mask_t tmp;
3950 	unsigned long flags;
3951 	int i = 0;
3952 
3953 	/*
3954 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3955 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3956 	 * supports up to 16 on one shared APIC bus.
3957 	 *
3958 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3959 	 *      advantage of new APIC bus architecture.
3960 	 */
3961 
3962 	if (physids_empty(apic_id_map))
3963 		apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3964 
3965 	spin_lock_irqsave(&ioapic_lock, flags);
3966 	reg_00.raw = io_apic_read(ioapic, 0);
3967 	spin_unlock_irqrestore(&ioapic_lock, flags);
3968 
3969 	if (apic_id >= get_physical_broadcast()) {
3970 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3971 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3972 		apic_id = reg_00.bits.ID;
3973 	}
3974 
3975 	/*
3976 	 * Every APIC in a system must have a unique ID or we get lots of nice
3977 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3978 	 */
3979 	if (apic->check_apicid_used(apic_id_map, apic_id)) {
3980 
3981 		for (i = 0; i < get_physical_broadcast(); i++) {
3982 			if (!apic->check_apicid_used(apic_id_map, i))
3983 				break;
3984 		}
3985 
3986 		if (i == get_physical_broadcast())
3987 			panic("Max apic_id exceeded!\n");
3988 
3989 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3990 			"trying %d\n", ioapic, apic_id, i);
3991 
3992 		apic_id = i;
3993 	}
3994 
3995 	tmp = apic->apicid_to_cpu_present(apic_id);
3996 	physids_or(apic_id_map, apic_id_map, tmp);
3997 
3998 	if (reg_00.bits.ID != apic_id) {
3999 		reg_00.bits.ID = apic_id;
4000 
4001 		spin_lock_irqsave(&ioapic_lock, flags);
4002 		io_apic_write(ioapic, 0, reg_00.raw);
4003 		reg_00.raw = io_apic_read(ioapic, 0);
4004 		spin_unlock_irqrestore(&ioapic_lock, flags);
4005 
4006 		/* Sanity check */
4007 		if (reg_00.bits.ID != apic_id) {
4008 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
4009 			return -1;
4010 		}
4011 	}
4012 
4013 	apic_printk(APIC_VERBOSE, KERN_INFO
4014 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
4015 
4016 	return apic_id;
4017 }
4018 #endif
4019 
4020 int __init io_apic_get_version(int ioapic)
4021 {
4022 	union IO_APIC_reg_01	reg_01;
4023 	unsigned long flags;
4024 
4025 	spin_lock_irqsave(&ioapic_lock, flags);
4026 	reg_01.raw = io_apic_read(ioapic, 1);
4027 	spin_unlock_irqrestore(&ioapic_lock, flags);
4028 
4029 	return reg_01.bits.version;
4030 }
4031 
4032 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4033 {
4034 	int i;
4035 
4036 	if (skip_ioapic_setup)
4037 		return -1;
4038 
4039 	for (i = 0; i < mp_irq_entries; i++)
4040 		if (mp_irqs[i].irqtype == mp_INT &&
4041 		    mp_irqs[i].srcbusirq == bus_irq)
4042 			break;
4043 	if (i >= mp_irq_entries)
4044 		return -1;
4045 
4046 	*trigger = irq_trigger(i);
4047 	*polarity = irq_polarity(i);
4048 	return 0;
4049 }
4050 
4051 #endif /* CONFIG_ACPI */
4052 
4053 /*
4054  * This function currently is only a helper for the i386 smp boot process where
4055  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4056  * so mask in all cases should simply be apic->target_cpus()
4057  */
4058 #ifdef CONFIG_SMP
4059 void __init setup_ioapic_dest(void)
4060 {
4061 	int pin, ioapic = 0, irq, irq_entry;
4062 	struct irq_desc *desc;
4063 	const struct cpumask *mask;
4064 
4065 	if (skip_ioapic_setup == 1)
4066 		return;
4067 
4068 #ifdef CONFIG_ACPI
4069 	if (!acpi_disabled && acpi_ioapic) {
4070 		ioapic = mp_find_ioapic(0);
4071 		if (ioapic < 0)
4072 			ioapic = 0;
4073 	}
4074 #endif
4075 
4076 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4077 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4078 		if (irq_entry == -1)
4079 			continue;
4080 		irq = pin_2_irq(irq_entry, ioapic, pin);
4081 
4082 		desc = irq_to_desc(irq);
4083 
4084 		/*
4085 		 * Honour affinities which have been set in early boot
4086 		 */
4087 		if (desc->status &
4088 		    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4089 			mask = desc->affinity;
4090 		else
4091 			mask = apic->target_cpus();
4092 
4093 		if (intr_remapping_enabled)
4094 			set_ir_ioapic_affinity_irq_desc(desc, mask);
4095 		else
4096 			set_ioapic_affinity_irq_desc(desc, mask);
4097 	}
4098 
4099 }
4100 #endif
4101 
4102 #define IOAPIC_RESOURCE_NAME_SIZE 11
4103 
4104 static struct resource *ioapic_resources;
4105 
4106 static struct resource * __init ioapic_setup_resources(void)
4107 {
4108 	unsigned long n;
4109 	struct resource *res;
4110 	char *mem;
4111 	int i;
4112 
4113 	if (nr_ioapics <= 0)
4114 		return NULL;
4115 
4116 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4117 	n *= nr_ioapics;
4118 
4119 	mem = alloc_bootmem(n);
4120 	res = (void *)mem;
4121 
4122 	if (mem != NULL) {
4123 		mem += sizeof(struct resource) * nr_ioapics;
4124 
4125 		for (i = 0; i < nr_ioapics; i++) {
4126 			res[i].name = mem;
4127 			res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4128 			sprintf(mem,  "IOAPIC %u", i);
4129 			mem += IOAPIC_RESOURCE_NAME_SIZE;
4130 		}
4131 	}
4132 
4133 	ioapic_resources = res;
4134 
4135 	return res;
4136 }
4137 
4138 void __init ioapic_init_mappings(void)
4139 {
4140 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4141 	struct resource *ioapic_res;
4142 	int i;
4143 
4144 	ioapic_res = ioapic_setup_resources();
4145 	for (i = 0; i < nr_ioapics; i++) {
4146 		if (smp_found_config) {
4147 			ioapic_phys = mp_ioapics[i].apicaddr;
4148 #ifdef CONFIG_X86_32
4149 			if (!ioapic_phys) {
4150 				printk(KERN_ERR
4151 				       "WARNING: bogus zero IO-APIC "
4152 				       "address found in MPTABLE, "
4153 				       "disabling IO/APIC support!\n");
4154 				smp_found_config = 0;
4155 				skip_ioapic_setup = 1;
4156 				goto fake_ioapic_page;
4157 			}
4158 #endif
4159 		} else {
4160 #ifdef CONFIG_X86_32
4161 fake_ioapic_page:
4162 #endif
4163 			ioapic_phys = (unsigned long)
4164 				alloc_bootmem_pages(PAGE_SIZE);
4165 			ioapic_phys = __pa(ioapic_phys);
4166 		}
4167 		set_fixmap_nocache(idx, ioapic_phys);
4168 		apic_printk(APIC_VERBOSE,
4169 			    "mapped IOAPIC to %08lx (%08lx)\n",
4170 			    __fix_to_virt(idx), ioapic_phys);
4171 		idx++;
4172 
4173 		if (ioapic_res != NULL) {
4174 			ioapic_res->start = ioapic_phys;
4175 			ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4176 			ioapic_res++;
4177 		}
4178 	}
4179 }
4180 
4181 static int __init ioapic_insert_resources(void)
4182 {
4183 	int i;
4184 	struct resource *r = ioapic_resources;
4185 
4186 	if (!r) {
4187 		if (nr_ioapics > 0) {
4188 			printk(KERN_ERR
4189 				"IO APIC resources couldn't be allocated.\n");
4190 			return -1;
4191 		}
4192 		return 0;
4193 	}
4194 
4195 	for (i = 0; i < nr_ioapics; i++) {
4196 		insert_resource(&iomem_resource, r);
4197 		r++;
4198 	}
4199 
4200 	return 0;
4201 }
4202 
4203 /* Insert the IO APIC resources after PCI initialization has occured to handle
4204  * IO APICS that are mapped in on a BAR in PCI space. */
4205 late_initcall(ioapic_insert_resources);
4206