xref: /openbmc/linux/arch/x86/kernel/apic/io_apic.c (revision 15bac20b)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46 
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 
64 #include <asm/apic.h>
65 
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 	for (entry = head; entry; entry = entry->next)
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
78 
79 /*
80  * # of IRQ routing registers
81  */
82 int nr_ioapic_registers[MAX_IO_APICS];
83 
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87 
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi  mp_gsi_routing[MAX_IO_APICS];
90 
91 /* The one past the highest gsi number used */
92 u32 gsi_top;
93 
94 /* MP IRQ source entries */
95 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
96 
97 /* # of MP IRQ source entries */
98 int mp_irq_entries;
99 
100 /* GSI interrupts */
101 static int nr_irqs_gsi = NR_IRQS_LEGACY;
102 
103 /*
104  * Saved I/O APIC state during suspend/resume, or while enabling intr-remap.
105 */
106 static struct IO_APIC_route_entry *ioapic_saved_data[MAX_IO_APICS];
107 
108 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
109 int mp_bus_id_to_type[MAX_MP_BUSSES];
110 #endif
111 
112 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
113 
114 int skip_ioapic_setup;
115 
116 /**
117  * disable_ioapic_support() - disables ioapic support at runtime
118  */
119 void disable_ioapic_support(void)
120 {
121 #ifdef CONFIG_PCI
122 	noioapicquirk = 1;
123 	noioapicreroute = -1;
124 #endif
125 	skip_ioapic_setup = 1;
126 }
127 
128 static int __init parse_noapic(char *str)
129 {
130 	/* disable IO-APIC */
131 	disable_ioapic_support();
132 	return 0;
133 }
134 early_param("noapic", parse_noapic);
135 
136 static int io_apic_setup_irq_pin(unsigned int irq, int node,
137 				 struct io_apic_irq_attr *attr);
138 
139 /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
140 void mp_save_irq(struct mpc_intsrc *m)
141 {
142 	int i;
143 
144 	apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
145 		" IRQ %02x, APIC ID %x, APIC INT %02x\n",
146 		m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
147 		m->srcbusirq, m->dstapic, m->dstirq);
148 
149 	for (i = 0; i < mp_irq_entries; i++) {
150 		if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
151 			return;
152 	}
153 
154 	memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
155 	if (++mp_irq_entries == MAX_IRQ_SOURCES)
156 		panic("Max # of irq sources exceeded!!\n");
157 }
158 
159 struct irq_pin_list {
160 	int apic, pin;
161 	struct irq_pin_list *next;
162 };
163 
164 static struct irq_pin_list *alloc_irq_pin_list(int node)
165 {
166 	return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
167 }
168 
169 
170 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
171 #ifdef CONFIG_SPARSE_IRQ
172 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
173 #else
174 static struct irq_cfg irq_cfgx[NR_IRQS];
175 #endif
176 
177 int __init arch_early_irq_init(void)
178 {
179 	struct irq_cfg *cfg;
180 	int count, node, i;
181 
182 	if (!legacy_pic->nr_legacy_irqs) {
183 		nr_irqs_gsi = 0;
184 		io_apic_irqs = ~0UL;
185 	}
186 
187 	for (i = 0; i < nr_ioapics; i++) {
188 		ioapic_saved_data[i] =
189 			kzalloc(sizeof(struct IO_APIC_route_entry) *
190 				nr_ioapic_registers[i], GFP_KERNEL);
191 		if (!ioapic_saved_data[i])
192 			pr_err("IOAPIC %d: suspend/resume impossible!\n", i);
193 	}
194 
195 	cfg = irq_cfgx;
196 	count = ARRAY_SIZE(irq_cfgx);
197 	node = cpu_to_node(0);
198 
199 	/* Make sure the legacy interrupts are marked in the bitmap */
200 	irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
201 
202 	for (i = 0; i < count; i++) {
203 		irq_set_chip_data(i, &cfg[i]);
204 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
205 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
206 		/*
207 		 * For legacy IRQ's, start with assigning irq0 to irq15 to
208 		 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
209 		 */
210 		if (i < legacy_pic->nr_legacy_irqs) {
211 			cfg[i].vector = IRQ0_VECTOR + i;
212 			cpumask_set_cpu(0, cfg[i].domain);
213 		}
214 	}
215 
216 	return 0;
217 }
218 
219 #ifdef CONFIG_SPARSE_IRQ
220 static struct irq_cfg *irq_cfg(unsigned int irq)
221 {
222 	return irq_get_chip_data(irq);
223 }
224 
225 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
226 {
227 	struct irq_cfg *cfg;
228 
229 	cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
230 	if (!cfg)
231 		return NULL;
232 	if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
233 		goto out_cfg;
234 	if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
235 		goto out_domain;
236 	return cfg;
237 out_domain:
238 	free_cpumask_var(cfg->domain);
239 out_cfg:
240 	kfree(cfg);
241 	return NULL;
242 }
243 
244 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
245 {
246 	if (!cfg)
247 		return;
248 	irq_set_chip_data(at, NULL);
249 	free_cpumask_var(cfg->domain);
250 	free_cpumask_var(cfg->old_domain);
251 	kfree(cfg);
252 }
253 
254 #else
255 
256 struct irq_cfg *irq_cfg(unsigned int irq)
257 {
258 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
259 }
260 
261 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
262 {
263 	return irq_cfgx + irq;
264 }
265 
266 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
267 
268 #endif
269 
270 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
271 {
272 	int res = irq_alloc_desc_at(at, node);
273 	struct irq_cfg *cfg;
274 
275 	if (res < 0) {
276 		if (res != -EEXIST)
277 			return NULL;
278 		cfg = irq_get_chip_data(at);
279 		if (cfg)
280 			return cfg;
281 	}
282 
283 	cfg = alloc_irq_cfg(at, node);
284 	if (cfg)
285 		irq_set_chip_data(at, cfg);
286 	else
287 		irq_free_desc(at);
288 	return cfg;
289 }
290 
291 static int alloc_irq_from(unsigned int from, int node)
292 {
293 	return irq_alloc_desc_from(from, node);
294 }
295 
296 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
297 {
298 	free_irq_cfg(at, cfg);
299 	irq_free_desc(at);
300 }
301 
302 struct io_apic {
303 	unsigned int index;
304 	unsigned int unused[3];
305 	unsigned int data;
306 	unsigned int unused2[11];
307 	unsigned int eoi;
308 };
309 
310 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
311 {
312 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
313 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
314 }
315 
316 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
317 {
318 	struct io_apic __iomem *io_apic = io_apic_base(apic);
319 	writel(vector, &io_apic->eoi);
320 }
321 
322 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
323 {
324 	struct io_apic __iomem *io_apic = io_apic_base(apic);
325 	writel(reg, &io_apic->index);
326 	return readl(&io_apic->data);
327 }
328 
329 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
330 {
331 	struct io_apic __iomem *io_apic = io_apic_base(apic);
332 	writel(reg, &io_apic->index);
333 	writel(value, &io_apic->data);
334 }
335 
336 /*
337  * Re-write a value: to be used for read-modify-write
338  * cycles where the read already set up the index register.
339  *
340  * Older SiS APIC requires we rewrite the index register
341  */
342 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
343 {
344 	struct io_apic __iomem *io_apic = io_apic_base(apic);
345 
346 	if (sis_apic_bug)
347 		writel(reg, &io_apic->index);
348 	writel(value, &io_apic->data);
349 }
350 
351 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
352 {
353 	struct irq_pin_list *entry;
354 	unsigned long flags;
355 
356 	raw_spin_lock_irqsave(&ioapic_lock, flags);
357 	for_each_irq_pin(entry, cfg->irq_2_pin) {
358 		unsigned int reg;
359 		int pin;
360 
361 		pin = entry->pin;
362 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
363 		/* Is the remote IRR bit set? */
364 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
365 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
366 			return true;
367 		}
368 	}
369 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
370 
371 	return false;
372 }
373 
374 union entry_union {
375 	struct { u32 w1, w2; };
376 	struct IO_APIC_route_entry entry;
377 };
378 
379 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
380 {
381 	union entry_union eu;
382 	unsigned long flags;
383 	raw_spin_lock_irqsave(&ioapic_lock, flags);
384 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
385 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
386 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
387 	return eu.entry;
388 }
389 
390 /*
391  * When we write a new IO APIC routing entry, we need to write the high
392  * word first! If the mask bit in the low word is clear, we will enable
393  * the interrupt, and we need to make sure the entry is fully populated
394  * before that happens.
395  */
396 static void
397 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
398 {
399 	union entry_union eu = {{0, 0}};
400 
401 	eu.entry = e;
402 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
403 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
404 }
405 
406 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
407 {
408 	unsigned long flags;
409 	raw_spin_lock_irqsave(&ioapic_lock, flags);
410 	__ioapic_write_entry(apic, pin, e);
411 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
412 }
413 
414 /*
415  * When we mask an IO APIC routing entry, we need to write the low
416  * word first, in order to set the mask bit before we change the
417  * high bits!
418  */
419 static void ioapic_mask_entry(int apic, int pin)
420 {
421 	unsigned long flags;
422 	union entry_union eu = { .entry.mask = 1 };
423 
424 	raw_spin_lock_irqsave(&ioapic_lock, flags);
425 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
426 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
427 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
428 }
429 
430 /*
431  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
432  * shared ISA-space IRQs, so we have to support them. We are super
433  * fast in the common case, and fast for shared ISA-space IRQs.
434  */
435 static int
436 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
437 {
438 	struct irq_pin_list **last, *entry;
439 
440 	/* don't allow duplicates */
441 	last = &cfg->irq_2_pin;
442 	for_each_irq_pin(entry, cfg->irq_2_pin) {
443 		if (entry->apic == apic && entry->pin == pin)
444 			return 0;
445 		last = &entry->next;
446 	}
447 
448 	entry = alloc_irq_pin_list(node);
449 	if (!entry) {
450 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
451 				node, apic, pin);
452 		return -ENOMEM;
453 	}
454 	entry->apic = apic;
455 	entry->pin = pin;
456 
457 	*last = entry;
458 	return 0;
459 }
460 
461 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
462 {
463 	if (__add_pin_to_irq_node(cfg, node, apic, pin))
464 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
465 }
466 
467 /*
468  * Reroute an IRQ to a different pin.
469  */
470 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
471 					   int oldapic, int oldpin,
472 					   int newapic, int newpin)
473 {
474 	struct irq_pin_list *entry;
475 
476 	for_each_irq_pin(entry, cfg->irq_2_pin) {
477 		if (entry->apic == oldapic && entry->pin == oldpin) {
478 			entry->apic = newapic;
479 			entry->pin = newpin;
480 			/* every one is different, right? */
481 			return;
482 		}
483 	}
484 
485 	/* old apic/pin didn't exist, so just add new ones */
486 	add_pin_to_irq_node(cfg, node, newapic, newpin);
487 }
488 
489 static void __io_apic_modify_irq(struct irq_pin_list *entry,
490 				 int mask_and, int mask_or,
491 				 void (*final)(struct irq_pin_list *entry))
492 {
493 	unsigned int reg, pin;
494 
495 	pin = entry->pin;
496 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
497 	reg &= mask_and;
498 	reg |= mask_or;
499 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
500 	if (final)
501 		final(entry);
502 }
503 
504 static void io_apic_modify_irq(struct irq_cfg *cfg,
505 			       int mask_and, int mask_or,
506 			       void (*final)(struct irq_pin_list *entry))
507 {
508 	struct irq_pin_list *entry;
509 
510 	for_each_irq_pin(entry, cfg->irq_2_pin)
511 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
512 }
513 
514 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
515 {
516 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
517 			     IO_APIC_REDIR_MASKED, NULL);
518 }
519 
520 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
521 {
522 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
523 			     IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
524 }
525 
526 static void io_apic_sync(struct irq_pin_list *entry)
527 {
528 	/*
529 	 * Synchronize the IO-APIC and the CPU by doing
530 	 * a dummy read from the IO-APIC
531 	 */
532 	struct io_apic __iomem *io_apic;
533 	io_apic = io_apic_base(entry->apic);
534 	readl(&io_apic->data);
535 }
536 
537 static void mask_ioapic(struct irq_cfg *cfg)
538 {
539 	unsigned long flags;
540 
541 	raw_spin_lock_irqsave(&ioapic_lock, flags);
542 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
543 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
544 }
545 
546 static void mask_ioapic_irq(struct irq_data *data)
547 {
548 	mask_ioapic(data->chip_data);
549 }
550 
551 static void __unmask_ioapic(struct irq_cfg *cfg)
552 {
553 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
554 }
555 
556 static void unmask_ioapic(struct irq_cfg *cfg)
557 {
558 	unsigned long flags;
559 
560 	raw_spin_lock_irqsave(&ioapic_lock, flags);
561 	__unmask_ioapic(cfg);
562 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
563 }
564 
565 static void unmask_ioapic_irq(struct irq_data *data)
566 {
567 	unmask_ioapic(data->chip_data);
568 }
569 
570 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
571 {
572 	struct IO_APIC_route_entry entry;
573 
574 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
575 	entry = ioapic_read_entry(apic, pin);
576 	if (entry.delivery_mode == dest_SMI)
577 		return;
578 	/*
579 	 * Disable it in the IO-APIC irq-routing table:
580 	 */
581 	ioapic_mask_entry(apic, pin);
582 }
583 
584 static void clear_IO_APIC (void)
585 {
586 	int apic, pin;
587 
588 	for (apic = 0; apic < nr_ioapics; apic++)
589 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
590 			clear_IO_APIC_pin(apic, pin);
591 }
592 
593 #ifdef CONFIG_X86_32
594 /*
595  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
596  * specific CPU-side IRQs.
597  */
598 
599 #define MAX_PIRQS 8
600 static int pirq_entries[MAX_PIRQS] = {
601 	[0 ... MAX_PIRQS - 1] = -1
602 };
603 
604 static int __init ioapic_pirq_setup(char *str)
605 {
606 	int i, max;
607 	int ints[MAX_PIRQS+1];
608 
609 	get_options(str, ARRAY_SIZE(ints), ints);
610 
611 	apic_printk(APIC_VERBOSE, KERN_INFO
612 			"PIRQ redirection, working around broken MP-BIOS.\n");
613 	max = MAX_PIRQS;
614 	if (ints[0] < MAX_PIRQS)
615 		max = ints[0];
616 
617 	for (i = 0; i < max; i++) {
618 		apic_printk(APIC_VERBOSE, KERN_DEBUG
619 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
620 		/*
621 		 * PIRQs are mapped upside down, usually.
622 		 */
623 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
624 	}
625 	return 1;
626 }
627 
628 __setup("pirq=", ioapic_pirq_setup);
629 #endif /* CONFIG_X86_32 */
630 
631 /*
632  * Saves all the IO-APIC RTE's
633  */
634 int save_ioapic_entries(void)
635 {
636 	int apic, pin;
637 	int err = 0;
638 
639 	for (apic = 0; apic < nr_ioapics; apic++) {
640 		if (!ioapic_saved_data[apic]) {
641 			err = -ENOMEM;
642 			continue;
643 		}
644 
645 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
646 			ioapic_saved_data[apic][pin] =
647 				ioapic_read_entry(apic, pin);
648 	}
649 
650 	return err;
651 }
652 
653 /*
654  * Mask all IO APIC entries.
655  */
656 void mask_ioapic_entries(void)
657 {
658 	int apic, pin;
659 
660 	for (apic = 0; apic < nr_ioapics; apic++) {
661 		if (!ioapic_saved_data[apic])
662 			continue;
663 
664 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
665 			struct IO_APIC_route_entry entry;
666 
667 			entry = ioapic_saved_data[apic][pin];
668 			if (!entry.mask) {
669 				entry.mask = 1;
670 				ioapic_write_entry(apic, pin, entry);
671 			}
672 		}
673 	}
674 }
675 
676 /*
677  * Restore IO APIC entries which was saved in ioapic_saved_data
678  */
679 int restore_ioapic_entries(void)
680 {
681 	int apic, pin;
682 
683 	for (apic = 0; apic < nr_ioapics; apic++) {
684 		if (!ioapic_saved_data[apic])
685 			continue;
686 
687 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
688 			ioapic_write_entry(apic, pin,
689 					   ioapic_saved_data[apic][pin]);
690 	}
691 	return 0;
692 }
693 
694 /*
695  * Find the IRQ entry number of a certain pin.
696  */
697 static int find_irq_entry(int apic, int pin, int type)
698 {
699 	int i;
700 
701 	for (i = 0; i < mp_irq_entries; i++)
702 		if (mp_irqs[i].irqtype == type &&
703 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
704 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
705 		    mp_irqs[i].dstirq == pin)
706 			return i;
707 
708 	return -1;
709 }
710 
711 /*
712  * Find the pin to which IRQ[irq] (ISA) is connected
713  */
714 static int __init find_isa_irq_pin(int irq, int type)
715 {
716 	int i;
717 
718 	for (i = 0; i < mp_irq_entries; i++) {
719 		int lbus = mp_irqs[i].srcbus;
720 
721 		if (test_bit(lbus, mp_bus_not_pci) &&
722 		    (mp_irqs[i].irqtype == type) &&
723 		    (mp_irqs[i].srcbusirq == irq))
724 
725 			return mp_irqs[i].dstirq;
726 	}
727 	return -1;
728 }
729 
730 static int __init find_isa_irq_apic(int irq, int type)
731 {
732 	int i;
733 
734 	for (i = 0; i < mp_irq_entries; i++) {
735 		int lbus = mp_irqs[i].srcbus;
736 
737 		if (test_bit(lbus, mp_bus_not_pci) &&
738 		    (mp_irqs[i].irqtype == type) &&
739 		    (mp_irqs[i].srcbusirq == irq))
740 			break;
741 	}
742 	if (i < mp_irq_entries) {
743 		int apic;
744 		for(apic = 0; apic < nr_ioapics; apic++) {
745 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
746 				return apic;
747 		}
748 	}
749 
750 	return -1;
751 }
752 
753 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
754 /*
755  * EISA Edge/Level control register, ELCR
756  */
757 static int EISA_ELCR(unsigned int irq)
758 {
759 	if (irq < legacy_pic->nr_legacy_irqs) {
760 		unsigned int port = 0x4d0 + (irq >> 3);
761 		return (inb(port) >> (irq & 7)) & 1;
762 	}
763 	apic_printk(APIC_VERBOSE, KERN_INFO
764 			"Broken MPtable reports ISA irq %d\n", irq);
765 	return 0;
766 }
767 
768 #endif
769 
770 /* ISA interrupts are always polarity zero edge triggered,
771  * when listed as conforming in the MP table. */
772 
773 #define default_ISA_trigger(idx)	(0)
774 #define default_ISA_polarity(idx)	(0)
775 
776 /* EISA interrupts are always polarity zero and can be edge or level
777  * trigger depending on the ELCR value.  If an interrupt is listed as
778  * EISA conforming in the MP table, that means its trigger type must
779  * be read in from the ELCR */
780 
781 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
782 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
783 
784 /* PCI interrupts are always polarity one level triggered,
785  * when listed as conforming in the MP table. */
786 
787 #define default_PCI_trigger(idx)	(1)
788 #define default_PCI_polarity(idx)	(1)
789 
790 /* MCA interrupts are always polarity zero level triggered,
791  * when listed as conforming in the MP table. */
792 
793 #define default_MCA_trigger(idx)	(1)
794 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
795 
796 static int irq_polarity(int idx)
797 {
798 	int bus = mp_irqs[idx].srcbus;
799 	int polarity;
800 
801 	/*
802 	 * Determine IRQ line polarity (high active or low active):
803 	 */
804 	switch (mp_irqs[idx].irqflag & 3)
805 	{
806 		case 0: /* conforms, ie. bus-type dependent polarity */
807 			if (test_bit(bus, mp_bus_not_pci))
808 				polarity = default_ISA_polarity(idx);
809 			else
810 				polarity = default_PCI_polarity(idx);
811 			break;
812 		case 1: /* high active */
813 		{
814 			polarity = 0;
815 			break;
816 		}
817 		case 2: /* reserved */
818 		{
819 			printk(KERN_WARNING "broken BIOS!!\n");
820 			polarity = 1;
821 			break;
822 		}
823 		case 3: /* low active */
824 		{
825 			polarity = 1;
826 			break;
827 		}
828 		default: /* invalid */
829 		{
830 			printk(KERN_WARNING "broken BIOS!!\n");
831 			polarity = 1;
832 			break;
833 		}
834 	}
835 	return polarity;
836 }
837 
838 static int irq_trigger(int idx)
839 {
840 	int bus = mp_irqs[idx].srcbus;
841 	int trigger;
842 
843 	/*
844 	 * Determine IRQ trigger mode (edge or level sensitive):
845 	 */
846 	switch ((mp_irqs[idx].irqflag>>2) & 3)
847 	{
848 		case 0: /* conforms, ie. bus-type dependent */
849 			if (test_bit(bus, mp_bus_not_pci))
850 				trigger = default_ISA_trigger(idx);
851 			else
852 				trigger = default_PCI_trigger(idx);
853 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
854 			switch (mp_bus_id_to_type[bus]) {
855 				case MP_BUS_ISA: /* ISA pin */
856 				{
857 					/* set before the switch */
858 					break;
859 				}
860 				case MP_BUS_EISA: /* EISA pin */
861 				{
862 					trigger = default_EISA_trigger(idx);
863 					break;
864 				}
865 				case MP_BUS_PCI: /* PCI pin */
866 				{
867 					/* set before the switch */
868 					break;
869 				}
870 				case MP_BUS_MCA: /* MCA pin */
871 				{
872 					trigger = default_MCA_trigger(idx);
873 					break;
874 				}
875 				default:
876 				{
877 					printk(KERN_WARNING "broken BIOS!!\n");
878 					trigger = 1;
879 					break;
880 				}
881 			}
882 #endif
883 			break;
884 		case 1: /* edge */
885 		{
886 			trigger = 0;
887 			break;
888 		}
889 		case 2: /* reserved */
890 		{
891 			printk(KERN_WARNING "broken BIOS!!\n");
892 			trigger = 1;
893 			break;
894 		}
895 		case 3: /* level */
896 		{
897 			trigger = 1;
898 			break;
899 		}
900 		default: /* invalid */
901 		{
902 			printk(KERN_WARNING "broken BIOS!!\n");
903 			trigger = 0;
904 			break;
905 		}
906 	}
907 	return trigger;
908 }
909 
910 static int pin_2_irq(int idx, int apic, int pin)
911 {
912 	int irq;
913 	int bus = mp_irqs[idx].srcbus;
914 
915 	/*
916 	 * Debugging check, we are in big trouble if this message pops up!
917 	 */
918 	if (mp_irqs[idx].dstirq != pin)
919 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
920 
921 	if (test_bit(bus, mp_bus_not_pci)) {
922 		irq = mp_irqs[idx].srcbusirq;
923 	} else {
924 		u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
925 
926 		if (gsi >= NR_IRQS_LEGACY)
927 			irq = gsi;
928 		else
929 			irq = gsi_top + gsi;
930 	}
931 
932 #ifdef CONFIG_X86_32
933 	/*
934 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
935 	 */
936 	if ((pin >= 16) && (pin <= 23)) {
937 		if (pirq_entries[pin-16] != -1) {
938 			if (!pirq_entries[pin-16]) {
939 				apic_printk(APIC_VERBOSE, KERN_DEBUG
940 						"disabling PIRQ%d\n", pin-16);
941 			} else {
942 				irq = pirq_entries[pin-16];
943 				apic_printk(APIC_VERBOSE, KERN_DEBUG
944 						"using PIRQ%d -> IRQ %d\n",
945 						pin-16, irq);
946 			}
947 		}
948 	}
949 #endif
950 
951 	return irq;
952 }
953 
954 /*
955  * Find a specific PCI IRQ entry.
956  * Not an __init, possibly needed by modules
957  */
958 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
959 				struct io_apic_irq_attr *irq_attr)
960 {
961 	int apic, i, best_guess = -1;
962 
963 	apic_printk(APIC_DEBUG,
964 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
965 		    bus, slot, pin);
966 	if (test_bit(bus, mp_bus_not_pci)) {
967 		apic_printk(APIC_VERBOSE,
968 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
969 		return -1;
970 	}
971 	for (i = 0; i < mp_irq_entries; i++) {
972 		int lbus = mp_irqs[i].srcbus;
973 
974 		for (apic = 0; apic < nr_ioapics; apic++)
975 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
976 			    mp_irqs[i].dstapic == MP_APIC_ALL)
977 				break;
978 
979 		if (!test_bit(lbus, mp_bus_not_pci) &&
980 		    !mp_irqs[i].irqtype &&
981 		    (bus == lbus) &&
982 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
983 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
984 
985 			if (!(apic || IO_APIC_IRQ(irq)))
986 				continue;
987 
988 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
989 				set_io_apic_irq_attr(irq_attr, apic,
990 						     mp_irqs[i].dstirq,
991 						     irq_trigger(i),
992 						     irq_polarity(i));
993 				return irq;
994 			}
995 			/*
996 			 * Use the first all-but-pin matching entry as a
997 			 * best-guess fuzzy result for broken mptables.
998 			 */
999 			if (best_guess < 0) {
1000 				set_io_apic_irq_attr(irq_attr, apic,
1001 						     mp_irqs[i].dstirq,
1002 						     irq_trigger(i),
1003 						     irq_polarity(i));
1004 				best_guess = irq;
1005 			}
1006 		}
1007 	}
1008 	return best_guess;
1009 }
1010 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1011 
1012 void lock_vector_lock(void)
1013 {
1014 	/* Used to the online set of cpus does not change
1015 	 * during assign_irq_vector.
1016 	 */
1017 	raw_spin_lock(&vector_lock);
1018 }
1019 
1020 void unlock_vector_lock(void)
1021 {
1022 	raw_spin_unlock(&vector_lock);
1023 }
1024 
1025 static int
1026 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1027 {
1028 	/*
1029 	 * NOTE! The local APIC isn't very good at handling
1030 	 * multiple interrupts at the same interrupt level.
1031 	 * As the interrupt level is determined by taking the
1032 	 * vector number and shifting that right by 4, we
1033 	 * want to spread these out a bit so that they don't
1034 	 * all fall in the same interrupt level.
1035 	 *
1036 	 * Also, we've got to be careful not to trash gate
1037 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1038 	 */
1039 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1040 	static int current_offset = VECTOR_OFFSET_START % 8;
1041 	unsigned int old_vector;
1042 	int cpu, err;
1043 	cpumask_var_t tmp_mask;
1044 
1045 	if (cfg->move_in_progress)
1046 		return -EBUSY;
1047 
1048 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1049 		return -ENOMEM;
1050 
1051 	old_vector = cfg->vector;
1052 	if (old_vector) {
1053 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1054 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1055 		if (!cpumask_empty(tmp_mask)) {
1056 			free_cpumask_var(tmp_mask);
1057 			return 0;
1058 		}
1059 	}
1060 
1061 	/* Only try and allocate irqs on cpus that are present */
1062 	err = -ENOSPC;
1063 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1064 		int new_cpu;
1065 		int vector, offset;
1066 
1067 		apic->vector_allocation_domain(cpu, tmp_mask);
1068 
1069 		vector = current_vector;
1070 		offset = current_offset;
1071 next:
1072 		vector += 8;
1073 		if (vector >= first_system_vector) {
1074 			/* If out of vectors on large boxen, must share them. */
1075 			offset = (offset + 1) % 8;
1076 			vector = FIRST_EXTERNAL_VECTOR + offset;
1077 		}
1078 		if (unlikely(current_vector == vector))
1079 			continue;
1080 
1081 		if (test_bit(vector, used_vectors))
1082 			goto next;
1083 
1084 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1085 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1086 				goto next;
1087 		/* Found one! */
1088 		current_vector = vector;
1089 		current_offset = offset;
1090 		if (old_vector) {
1091 			cfg->move_in_progress = 1;
1092 			cpumask_copy(cfg->old_domain, cfg->domain);
1093 		}
1094 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1095 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1096 		cfg->vector = vector;
1097 		cpumask_copy(cfg->domain, tmp_mask);
1098 		err = 0;
1099 		break;
1100 	}
1101 	free_cpumask_var(tmp_mask);
1102 	return err;
1103 }
1104 
1105 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1106 {
1107 	int err;
1108 	unsigned long flags;
1109 
1110 	raw_spin_lock_irqsave(&vector_lock, flags);
1111 	err = __assign_irq_vector(irq, cfg, mask);
1112 	raw_spin_unlock_irqrestore(&vector_lock, flags);
1113 	return err;
1114 }
1115 
1116 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1117 {
1118 	int cpu, vector;
1119 
1120 	BUG_ON(!cfg->vector);
1121 
1122 	vector = cfg->vector;
1123 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1124 		per_cpu(vector_irq, cpu)[vector] = -1;
1125 
1126 	cfg->vector = 0;
1127 	cpumask_clear(cfg->domain);
1128 
1129 	if (likely(!cfg->move_in_progress))
1130 		return;
1131 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1132 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1133 								vector++) {
1134 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1135 				continue;
1136 			per_cpu(vector_irq, cpu)[vector] = -1;
1137 			break;
1138 		}
1139 	}
1140 	cfg->move_in_progress = 0;
1141 }
1142 
1143 void __setup_vector_irq(int cpu)
1144 {
1145 	/* Initialize vector_irq on a new cpu */
1146 	int irq, vector;
1147 	struct irq_cfg *cfg;
1148 
1149 	/*
1150 	 * vector_lock will make sure that we don't run into irq vector
1151 	 * assignments that might be happening on another cpu in parallel,
1152 	 * while we setup our initial vector to irq mappings.
1153 	 */
1154 	raw_spin_lock(&vector_lock);
1155 	/* Mark the inuse vectors */
1156 	for_each_active_irq(irq) {
1157 		cfg = irq_get_chip_data(irq);
1158 		if (!cfg)
1159 			continue;
1160 		/*
1161 		 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1162 		 * will be part of the irq_cfg's domain.
1163 		 */
1164 		if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1165 			cpumask_set_cpu(cpu, cfg->domain);
1166 
1167 		if (!cpumask_test_cpu(cpu, cfg->domain))
1168 			continue;
1169 		vector = cfg->vector;
1170 		per_cpu(vector_irq, cpu)[vector] = irq;
1171 	}
1172 	/* Mark the free vectors */
1173 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1174 		irq = per_cpu(vector_irq, cpu)[vector];
1175 		if (irq < 0)
1176 			continue;
1177 
1178 		cfg = irq_cfg(irq);
1179 		if (!cpumask_test_cpu(cpu, cfg->domain))
1180 			per_cpu(vector_irq, cpu)[vector] = -1;
1181 	}
1182 	raw_spin_unlock(&vector_lock);
1183 }
1184 
1185 static struct irq_chip ioapic_chip;
1186 static struct irq_chip ir_ioapic_chip;
1187 
1188 #ifdef CONFIG_X86_32
1189 static inline int IO_APIC_irq_trigger(int irq)
1190 {
1191 	int apic, idx, pin;
1192 
1193 	for (apic = 0; apic < nr_ioapics; apic++) {
1194 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1195 			idx = find_irq_entry(apic, pin, mp_INT);
1196 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1197 				return irq_trigger(idx);
1198 		}
1199 	}
1200 	/*
1201          * nonexistent IRQs are edge default
1202          */
1203 	return 0;
1204 }
1205 #else
1206 static inline int IO_APIC_irq_trigger(int irq)
1207 {
1208 	return 1;
1209 }
1210 #endif
1211 
1212 static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg,
1213 				 unsigned long trigger)
1214 {
1215 	struct irq_chip *chip = &ioapic_chip;
1216 	irq_flow_handler_t hdl;
1217 	bool fasteoi;
1218 
1219 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1220 	    trigger == IOAPIC_LEVEL) {
1221 		irq_set_status_flags(irq, IRQ_LEVEL);
1222 		fasteoi = true;
1223 	} else {
1224 		irq_clear_status_flags(irq, IRQ_LEVEL);
1225 		fasteoi = false;
1226 	}
1227 
1228 	if (irq_remapped(cfg)) {
1229 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1230 		chip = &ir_ioapic_chip;
1231 		fasteoi = trigger != 0;
1232 	}
1233 
1234 	hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
1235 	irq_set_chip_and_handler_name(irq, chip, hdl,
1236 				      fasteoi ? "fasteoi" : "edge");
1237 }
1238 
1239 static int setup_ioapic_entry(int apic_id, int irq,
1240 			      struct IO_APIC_route_entry *entry,
1241 			      unsigned int destination, int trigger,
1242 			      int polarity, int vector, int pin)
1243 {
1244 	/*
1245 	 * add it to the IO-APIC irq-routing table:
1246 	 */
1247 	memset(entry,0,sizeof(*entry));
1248 
1249 	if (intr_remapping_enabled) {
1250 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1251 		struct irte irte;
1252 		struct IR_IO_APIC_route_entry *ir_entry =
1253 			(struct IR_IO_APIC_route_entry *) entry;
1254 		int index;
1255 
1256 		if (!iommu)
1257 			panic("No mapping iommu for ioapic %d\n", apic_id);
1258 
1259 		index = alloc_irte(iommu, irq, 1);
1260 		if (index < 0)
1261 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1262 
1263 		prepare_irte(&irte, vector, destination);
1264 
1265 		/* Set source-id of interrupt request */
1266 		set_ioapic_sid(&irte, apic_id);
1267 
1268 		modify_irte(irq, &irte);
1269 
1270 		ir_entry->index2 = (index >> 15) & 0x1;
1271 		ir_entry->zero = 0;
1272 		ir_entry->format = 1;
1273 		ir_entry->index = (index & 0x7fff);
1274 		/*
1275 		 * IO-APIC RTE will be configured with virtual vector.
1276 		 * irq handler will do the explicit EOI to the io-apic.
1277 		 */
1278 		ir_entry->vector = pin;
1279 	} else {
1280 		entry->delivery_mode = apic->irq_delivery_mode;
1281 		entry->dest_mode = apic->irq_dest_mode;
1282 		entry->dest = destination;
1283 		entry->vector = vector;
1284 	}
1285 
1286 	entry->mask = 0;				/* enable IRQ */
1287 	entry->trigger = trigger;
1288 	entry->polarity = polarity;
1289 
1290 	/* Mask level triggered irqs.
1291 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1292 	 */
1293 	if (trigger)
1294 		entry->mask = 1;
1295 	return 0;
1296 }
1297 
1298 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1299 			     struct irq_cfg *cfg, int trigger, int polarity)
1300 {
1301 	struct IO_APIC_route_entry entry;
1302 	unsigned int dest;
1303 
1304 	if (!IO_APIC_IRQ(irq))
1305 		return;
1306 	/*
1307 	 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1308 	 * controllers like 8259. Now that IO-APIC can handle this irq, update
1309 	 * the cfg->domain.
1310 	 */
1311 	if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1312 		apic->vector_allocation_domain(0, cfg->domain);
1313 
1314 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1315 		return;
1316 
1317 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1318 
1319 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1320 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1321 		    "IRQ %d Mode:%i Active:%i)\n",
1322 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1323 		    irq, trigger, polarity);
1324 
1325 
1326 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1327 			       dest, trigger, polarity, cfg->vector, pin)) {
1328 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1329 		       mp_ioapics[apic_id].apicid, pin);
1330 		__clear_irq_vector(irq, cfg);
1331 		return;
1332 	}
1333 
1334 	ioapic_register_intr(irq, cfg, trigger);
1335 	if (irq < legacy_pic->nr_legacy_irqs)
1336 		legacy_pic->mask(irq);
1337 
1338 	ioapic_write_entry(apic_id, pin, entry);
1339 }
1340 
1341 static struct {
1342 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1343 } mp_ioapic_routing[MAX_IO_APICS];
1344 
1345 static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin)
1346 {
1347 	if (idx != -1)
1348 		return false;
1349 
1350 	apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
1351 		    mp_ioapics[apic_id].apicid, pin);
1352 	return true;
1353 }
1354 
1355 static void __init __io_apic_setup_irqs(unsigned int apic_id)
1356 {
1357 	int idx, node = cpu_to_node(0);
1358 	struct io_apic_irq_attr attr;
1359 	unsigned int pin, irq;
1360 
1361 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1362 		idx = find_irq_entry(apic_id, pin, mp_INT);
1363 		if (io_apic_pin_not_connected(idx, apic_id, pin))
1364 			continue;
1365 
1366 		irq = pin_2_irq(idx, apic_id, pin);
1367 
1368 		if ((apic_id > 0) && (irq > 16))
1369 			continue;
1370 
1371 		/*
1372 		 * Skip the timer IRQ if there's a quirk handler
1373 		 * installed and if it returns 1:
1374 		 */
1375 		if (apic->multi_timer_check &&
1376 		    apic->multi_timer_check(apic_id, irq))
1377 			continue;
1378 
1379 		set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1380 				     irq_polarity(idx));
1381 
1382 		io_apic_setup_irq_pin(irq, node, &attr);
1383 	}
1384 }
1385 
1386 static void __init setup_IO_APIC_irqs(void)
1387 {
1388 	unsigned int apic_id;
1389 
1390 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1391 
1392 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1393 		__io_apic_setup_irqs(apic_id);
1394 }
1395 
1396 /*
1397  * for the gsit that is not in first ioapic
1398  * but could not use acpi_register_gsi()
1399  * like some special sci in IBM x3330
1400  */
1401 void setup_IO_APIC_irq_extra(u32 gsi)
1402 {
1403 	int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1404 	struct io_apic_irq_attr attr;
1405 
1406 	/*
1407 	 * Convert 'gsi' to 'ioapic.pin'.
1408 	 */
1409 	apic_id = mp_find_ioapic(gsi);
1410 	if (apic_id < 0)
1411 		return;
1412 
1413 	pin = mp_find_ioapic_pin(apic_id, gsi);
1414 	idx = find_irq_entry(apic_id, pin, mp_INT);
1415 	if (idx == -1)
1416 		return;
1417 
1418 	irq = pin_2_irq(idx, apic_id, pin);
1419 
1420 	/* Only handle the non legacy irqs on secondary ioapics */
1421 	if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1422 		return;
1423 
1424 	set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1425 			     irq_polarity(idx));
1426 
1427 	io_apic_setup_irq_pin_once(irq, node, &attr);
1428 }
1429 
1430 /*
1431  * Set up the timer pin, possibly with the 8259A-master behind.
1432  */
1433 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1434 					int vector)
1435 {
1436 	struct IO_APIC_route_entry entry;
1437 
1438 	if (intr_remapping_enabled)
1439 		return;
1440 
1441 	memset(&entry, 0, sizeof(entry));
1442 
1443 	/*
1444 	 * We use logical delivery to get the timer IRQ
1445 	 * to the first CPU.
1446 	 */
1447 	entry.dest_mode = apic->irq_dest_mode;
1448 	entry.mask = 0;			/* don't mask IRQ for edge */
1449 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1450 	entry.delivery_mode = apic->irq_delivery_mode;
1451 	entry.polarity = 0;
1452 	entry.trigger = 0;
1453 	entry.vector = vector;
1454 
1455 	/*
1456 	 * The timer IRQ doesn't have to know that behind the
1457 	 * scene we may have a 8259A-master in AEOI mode ...
1458 	 */
1459 	irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
1460 				      "edge");
1461 
1462 	/*
1463 	 * Add it to the IO-APIC irq-routing table:
1464 	 */
1465 	ioapic_write_entry(apic_id, pin, entry);
1466 }
1467 
1468 
1469 __apicdebuginit(void) print_IO_APIC(void)
1470 {
1471 	int apic, i;
1472 	union IO_APIC_reg_00 reg_00;
1473 	union IO_APIC_reg_01 reg_01;
1474 	union IO_APIC_reg_02 reg_02;
1475 	union IO_APIC_reg_03 reg_03;
1476 	unsigned long flags;
1477 	struct irq_cfg *cfg;
1478 	unsigned int irq;
1479 
1480 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1481 	for (i = 0; i < nr_ioapics; i++)
1482 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1483 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1484 
1485 	/*
1486 	 * We are a bit conservative about what we expect.  We have to
1487 	 * know about every hardware change ASAP.
1488 	 */
1489 	printk(KERN_INFO "testing the IO APIC.......................\n");
1490 
1491 	for (apic = 0; apic < nr_ioapics; apic++) {
1492 
1493 	raw_spin_lock_irqsave(&ioapic_lock, flags);
1494 	reg_00.raw = io_apic_read(apic, 0);
1495 	reg_01.raw = io_apic_read(apic, 1);
1496 	if (reg_01.bits.version >= 0x10)
1497 		reg_02.raw = io_apic_read(apic, 2);
1498 	if (reg_01.bits.version >= 0x20)
1499 		reg_03.raw = io_apic_read(apic, 3);
1500 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1501 
1502 	printk("\n");
1503 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1504 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1505 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1506 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1507 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1508 
1509 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1510 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1511 
1512 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1513 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1514 
1515 	/*
1516 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1517 	 * but the value of reg_02 is read as the previous read register
1518 	 * value, so ignore it if reg_02 == reg_01.
1519 	 */
1520 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1521 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1522 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1523 	}
1524 
1525 	/*
1526 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1527 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1528 	 * register value, so ignore it if reg_03 == reg_0[12].
1529 	 */
1530 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1531 	    reg_03.raw != reg_01.raw) {
1532 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1533 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1534 	}
1535 
1536 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1537 
1538 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1539 			  " Stat Dmod Deli Vect:\n");
1540 
1541 	for (i = 0; i <= reg_01.bits.entries; i++) {
1542 		struct IO_APIC_route_entry entry;
1543 
1544 		entry = ioapic_read_entry(apic, i);
1545 
1546 		printk(KERN_DEBUG " %02x %03X ",
1547 			i,
1548 			entry.dest
1549 		);
1550 
1551 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1552 			entry.mask,
1553 			entry.trigger,
1554 			entry.irr,
1555 			entry.polarity,
1556 			entry.delivery_status,
1557 			entry.dest_mode,
1558 			entry.delivery_mode,
1559 			entry.vector
1560 		);
1561 	}
1562 	}
1563 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1564 	for_each_active_irq(irq) {
1565 		struct irq_pin_list *entry;
1566 
1567 		cfg = irq_get_chip_data(irq);
1568 		if (!cfg)
1569 			continue;
1570 		entry = cfg->irq_2_pin;
1571 		if (!entry)
1572 			continue;
1573 		printk(KERN_DEBUG "IRQ%d ", irq);
1574 		for_each_irq_pin(entry, cfg->irq_2_pin)
1575 			printk("-> %d:%d", entry->apic, entry->pin);
1576 		printk("\n");
1577 	}
1578 
1579 	printk(KERN_INFO ".................................... done.\n");
1580 
1581 	return;
1582 }
1583 
1584 __apicdebuginit(void) print_APIC_field(int base)
1585 {
1586 	int i;
1587 
1588 	printk(KERN_DEBUG);
1589 
1590 	for (i = 0; i < 8; i++)
1591 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1592 
1593 	printk(KERN_CONT "\n");
1594 }
1595 
1596 __apicdebuginit(void) print_local_APIC(void *dummy)
1597 {
1598 	unsigned int i, v, ver, maxlvt;
1599 	u64 icr;
1600 
1601 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1602 		smp_processor_id(), hard_smp_processor_id());
1603 	v = apic_read(APIC_ID);
1604 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1605 	v = apic_read(APIC_LVR);
1606 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1607 	ver = GET_APIC_VERSION(v);
1608 	maxlvt = lapic_get_maxlvt();
1609 
1610 	v = apic_read(APIC_TASKPRI);
1611 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1612 
1613 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1614 		if (!APIC_XAPIC(ver)) {
1615 			v = apic_read(APIC_ARBPRI);
1616 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1617 			       v & APIC_ARBPRI_MASK);
1618 		}
1619 		v = apic_read(APIC_PROCPRI);
1620 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1621 	}
1622 
1623 	/*
1624 	 * Remote read supported only in the 82489DX and local APIC for
1625 	 * Pentium processors.
1626 	 */
1627 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1628 		v = apic_read(APIC_RRR);
1629 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1630 	}
1631 
1632 	v = apic_read(APIC_LDR);
1633 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1634 	if (!x2apic_enabled()) {
1635 		v = apic_read(APIC_DFR);
1636 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1637 	}
1638 	v = apic_read(APIC_SPIV);
1639 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1640 
1641 	printk(KERN_DEBUG "... APIC ISR field:\n");
1642 	print_APIC_field(APIC_ISR);
1643 	printk(KERN_DEBUG "... APIC TMR field:\n");
1644 	print_APIC_field(APIC_TMR);
1645 	printk(KERN_DEBUG "... APIC IRR field:\n");
1646 	print_APIC_field(APIC_IRR);
1647 
1648 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1649 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1650 			apic_write(APIC_ESR, 0);
1651 
1652 		v = apic_read(APIC_ESR);
1653 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1654 	}
1655 
1656 	icr = apic_icr_read();
1657 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1658 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1659 
1660 	v = apic_read(APIC_LVTT);
1661 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1662 
1663 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1664 		v = apic_read(APIC_LVTPC);
1665 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1666 	}
1667 	v = apic_read(APIC_LVT0);
1668 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1669 	v = apic_read(APIC_LVT1);
1670 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1671 
1672 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1673 		v = apic_read(APIC_LVTERR);
1674 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1675 	}
1676 
1677 	v = apic_read(APIC_TMICT);
1678 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1679 	v = apic_read(APIC_TMCCT);
1680 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1681 	v = apic_read(APIC_TDCR);
1682 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1683 
1684 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1685 		v = apic_read(APIC_EFEAT);
1686 		maxlvt = (v >> 16) & 0xff;
1687 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1688 		v = apic_read(APIC_ECTRL);
1689 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1690 		for (i = 0; i < maxlvt; i++) {
1691 			v = apic_read(APIC_EILVTn(i));
1692 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1693 		}
1694 	}
1695 	printk("\n");
1696 }
1697 
1698 __apicdebuginit(void) print_local_APICs(int maxcpu)
1699 {
1700 	int cpu;
1701 
1702 	if (!maxcpu)
1703 		return;
1704 
1705 	preempt_disable();
1706 	for_each_online_cpu(cpu) {
1707 		if (cpu >= maxcpu)
1708 			break;
1709 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1710 	}
1711 	preempt_enable();
1712 }
1713 
1714 __apicdebuginit(void) print_PIC(void)
1715 {
1716 	unsigned int v;
1717 	unsigned long flags;
1718 
1719 	if (!legacy_pic->nr_legacy_irqs)
1720 		return;
1721 
1722 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1723 
1724 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1725 
1726 	v = inb(0xa1) << 8 | inb(0x21);
1727 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1728 
1729 	v = inb(0xa0) << 8 | inb(0x20);
1730 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1731 
1732 	outb(0x0b,0xa0);
1733 	outb(0x0b,0x20);
1734 	v = inb(0xa0) << 8 | inb(0x20);
1735 	outb(0x0a,0xa0);
1736 	outb(0x0a,0x20);
1737 
1738 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1739 
1740 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1741 
1742 	v = inb(0x4d1) << 8 | inb(0x4d0);
1743 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1744 }
1745 
1746 static int __initdata show_lapic = 1;
1747 static __init int setup_show_lapic(char *arg)
1748 {
1749 	int num = -1;
1750 
1751 	if (strcmp(arg, "all") == 0) {
1752 		show_lapic = CONFIG_NR_CPUS;
1753 	} else {
1754 		get_option(&arg, &num);
1755 		if (num >= 0)
1756 			show_lapic = num;
1757 	}
1758 
1759 	return 1;
1760 }
1761 __setup("show_lapic=", setup_show_lapic);
1762 
1763 __apicdebuginit(int) print_ICs(void)
1764 {
1765 	if (apic_verbosity == APIC_QUIET)
1766 		return 0;
1767 
1768 	print_PIC();
1769 
1770 	/* don't print out if apic is not there */
1771 	if (!cpu_has_apic && !apic_from_smp_config())
1772 		return 0;
1773 
1774 	print_local_APICs(show_lapic);
1775 	print_IO_APIC();
1776 
1777 	return 0;
1778 }
1779 
1780 fs_initcall(print_ICs);
1781 
1782 
1783 /* Where if anywhere is the i8259 connect in external int mode */
1784 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1785 
1786 void __init enable_IO_APIC(void)
1787 {
1788 	int i8259_apic, i8259_pin;
1789 	int apic;
1790 
1791 	if (!legacy_pic->nr_legacy_irqs)
1792 		return;
1793 
1794 	for(apic = 0; apic < nr_ioapics; apic++) {
1795 		int pin;
1796 		/* See if any of the pins is in ExtINT mode */
1797 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1798 			struct IO_APIC_route_entry entry;
1799 			entry = ioapic_read_entry(apic, pin);
1800 
1801 			/* If the interrupt line is enabled and in ExtInt mode
1802 			 * I have found the pin where the i8259 is connected.
1803 			 */
1804 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1805 				ioapic_i8259.apic = apic;
1806 				ioapic_i8259.pin  = pin;
1807 				goto found_i8259;
1808 			}
1809 		}
1810 	}
1811  found_i8259:
1812 	/* Look to see what if the MP table has reported the ExtINT */
1813 	/* If we could not find the appropriate pin by looking at the ioapic
1814 	 * the i8259 probably is not connected the ioapic but give the
1815 	 * mptable a chance anyway.
1816 	 */
1817 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1818 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1819 	/* Trust the MP table if nothing is setup in the hardware */
1820 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1821 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1822 		ioapic_i8259.pin  = i8259_pin;
1823 		ioapic_i8259.apic = i8259_apic;
1824 	}
1825 	/* Complain if the MP table and the hardware disagree */
1826 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1827 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1828 	{
1829 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1830 	}
1831 
1832 	/*
1833 	 * Do not trust the IO-APIC being empty at bootup
1834 	 */
1835 	clear_IO_APIC();
1836 }
1837 
1838 /*
1839  * Not an __init, needed by the reboot code
1840  */
1841 void disable_IO_APIC(void)
1842 {
1843 	/*
1844 	 * Clear the IO-APIC before rebooting:
1845 	 */
1846 	clear_IO_APIC();
1847 
1848 	if (!legacy_pic->nr_legacy_irqs)
1849 		return;
1850 
1851 	/*
1852 	 * If the i8259 is routed through an IOAPIC
1853 	 * Put that IOAPIC in virtual wire mode
1854 	 * so legacy interrupts can be delivered.
1855 	 *
1856 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1857 	 * as virtual wire B is little complex (need to configure both
1858 	 * IOAPIC RTE as well as interrupt-remapping table entry).
1859 	 * As this gets called during crash dump, keep this simple for now.
1860 	 */
1861 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1862 		struct IO_APIC_route_entry entry;
1863 
1864 		memset(&entry, 0, sizeof(entry));
1865 		entry.mask            = 0; /* Enabled */
1866 		entry.trigger         = 0; /* Edge */
1867 		entry.irr             = 0;
1868 		entry.polarity        = 0; /* High */
1869 		entry.delivery_status = 0;
1870 		entry.dest_mode       = 0; /* Physical */
1871 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1872 		entry.vector          = 0;
1873 		entry.dest            = read_apic_id();
1874 
1875 		/*
1876 		 * Add it to the IO-APIC irq-routing table:
1877 		 */
1878 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1879 	}
1880 
1881 	/*
1882 	 * Use virtual wire A mode when interrupt remapping is enabled.
1883 	 */
1884 	if (cpu_has_apic || apic_from_smp_config())
1885 		disconnect_bsp_APIC(!intr_remapping_enabled &&
1886 				ioapic_i8259.pin != -1);
1887 }
1888 
1889 #ifdef CONFIG_X86_32
1890 /*
1891  * function to set the IO-APIC physical IDs based on the
1892  * values stored in the MPC table.
1893  *
1894  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
1895  */
1896 void __init setup_ioapic_ids_from_mpc_nocheck(void)
1897 {
1898 	union IO_APIC_reg_00 reg_00;
1899 	physid_mask_t phys_id_present_map;
1900 	int apic_id;
1901 	int i;
1902 	unsigned char old_id;
1903 	unsigned long flags;
1904 
1905 	/*
1906 	 * This is broken; anything with a real cpu count has to
1907 	 * circumvent this idiocy regardless.
1908 	 */
1909 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1910 
1911 	/*
1912 	 * Set the IOAPIC ID to the value stored in the MPC table.
1913 	 */
1914 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1915 
1916 		/* Read the register 0 value */
1917 		raw_spin_lock_irqsave(&ioapic_lock, flags);
1918 		reg_00.raw = io_apic_read(apic_id, 0);
1919 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1920 
1921 		old_id = mp_ioapics[apic_id].apicid;
1922 
1923 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1924 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1925 				apic_id, mp_ioapics[apic_id].apicid);
1926 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1927 				reg_00.bits.ID);
1928 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1929 		}
1930 
1931 		/*
1932 		 * Sanity check, is the ID really free? Every APIC in a
1933 		 * system must have a unique ID or we get lots of nice
1934 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
1935 		 */
1936 		if (apic->check_apicid_used(&phys_id_present_map,
1937 					mp_ioapics[apic_id].apicid)) {
1938 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1939 				apic_id, mp_ioapics[apic_id].apicid);
1940 			for (i = 0; i < get_physical_broadcast(); i++)
1941 				if (!physid_isset(i, phys_id_present_map))
1942 					break;
1943 			if (i >= get_physical_broadcast())
1944 				panic("Max APIC ID exceeded!\n");
1945 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1946 				i);
1947 			physid_set(i, phys_id_present_map);
1948 			mp_ioapics[apic_id].apicid = i;
1949 		} else {
1950 			physid_mask_t tmp;
1951 			apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
1952 			apic_printk(APIC_VERBOSE, "Setting %d in the "
1953 					"phys_id_present_map\n",
1954 					mp_ioapics[apic_id].apicid);
1955 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
1956 		}
1957 
1958 		/*
1959 		 * We need to adjust the IRQ routing table
1960 		 * if the ID changed.
1961 		 */
1962 		if (old_id != mp_ioapics[apic_id].apicid)
1963 			for (i = 0; i < mp_irq_entries; i++)
1964 				if (mp_irqs[i].dstapic == old_id)
1965 					mp_irqs[i].dstapic
1966 						= mp_ioapics[apic_id].apicid;
1967 
1968 		/*
1969 		 * Update the ID register according to the right value
1970 		 * from the MPC table if they are different.
1971 		 */
1972 		if (mp_ioapics[apic_id].apicid == reg_00.bits.ID)
1973 			continue;
1974 
1975 		apic_printk(APIC_VERBOSE, KERN_INFO
1976 			"...changing IO-APIC physical APIC ID to %d ...",
1977 			mp_ioapics[apic_id].apicid);
1978 
1979 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
1980 		raw_spin_lock_irqsave(&ioapic_lock, flags);
1981 		io_apic_write(apic_id, 0, reg_00.raw);
1982 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1983 
1984 		/*
1985 		 * Sanity check
1986 		 */
1987 		raw_spin_lock_irqsave(&ioapic_lock, flags);
1988 		reg_00.raw = io_apic_read(apic_id, 0);
1989 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1990 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
1991 			printk("could not set ID!\n");
1992 		else
1993 			apic_printk(APIC_VERBOSE, " ok.\n");
1994 	}
1995 }
1996 
1997 void __init setup_ioapic_ids_from_mpc(void)
1998 {
1999 
2000 	if (acpi_ioapic)
2001 		return;
2002 	/*
2003 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2004 	 * no meaning without the serial APIC bus.
2005 	 */
2006 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2007 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2008 		return;
2009 	setup_ioapic_ids_from_mpc_nocheck();
2010 }
2011 #endif
2012 
2013 int no_timer_check __initdata;
2014 
2015 static int __init notimercheck(char *s)
2016 {
2017 	no_timer_check = 1;
2018 	return 1;
2019 }
2020 __setup("no_timer_check", notimercheck);
2021 
2022 /*
2023  * There is a nasty bug in some older SMP boards, their mptable lies
2024  * about the timer IRQ. We do the following to work around the situation:
2025  *
2026  *	- timer IRQ defaults to IO-APIC IRQ
2027  *	- if this function detects that timer IRQs are defunct, then we fall
2028  *	  back to ISA timer IRQs
2029  */
2030 static int __init timer_irq_works(void)
2031 {
2032 	unsigned long t1 = jiffies;
2033 	unsigned long flags;
2034 
2035 	if (no_timer_check)
2036 		return 1;
2037 
2038 	local_save_flags(flags);
2039 	local_irq_enable();
2040 	/* Let ten ticks pass... */
2041 	mdelay((10 * 1000) / HZ);
2042 	local_irq_restore(flags);
2043 
2044 	/*
2045 	 * Expect a few ticks at least, to be sure some possible
2046 	 * glue logic does not lock up after one or two first
2047 	 * ticks in a non-ExtINT mode.  Also the local APIC
2048 	 * might have cached one ExtINT interrupt.  Finally, at
2049 	 * least one tick may be lost due to delays.
2050 	 */
2051 
2052 	/* jiffies wrap? */
2053 	if (time_after(jiffies, t1 + 4))
2054 		return 1;
2055 	return 0;
2056 }
2057 
2058 /*
2059  * In the SMP+IOAPIC case it might happen that there are an unspecified
2060  * number of pending IRQ events unhandled. These cases are very rare,
2061  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2062  * better to do it this way as thus we do not have to be aware of
2063  * 'pending' interrupts in the IRQ path, except at this point.
2064  */
2065 /*
2066  * Edge triggered needs to resend any interrupt
2067  * that was delayed but this is now handled in the device
2068  * independent code.
2069  */
2070 
2071 /*
2072  * Starting up a edge-triggered IO-APIC interrupt is
2073  * nasty - we need to make sure that we get the edge.
2074  * If it is already asserted for some reason, we need
2075  * return 1 to indicate that is was pending.
2076  *
2077  * This is not complete - we should be able to fake
2078  * an edge even if it isn't on the 8259A...
2079  */
2080 
2081 static unsigned int startup_ioapic_irq(struct irq_data *data)
2082 {
2083 	int was_pending = 0, irq = data->irq;
2084 	unsigned long flags;
2085 
2086 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2087 	if (irq < legacy_pic->nr_legacy_irqs) {
2088 		legacy_pic->mask(irq);
2089 		if (legacy_pic->irq_pending(irq))
2090 			was_pending = 1;
2091 	}
2092 	__unmask_ioapic(data->chip_data);
2093 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2094 
2095 	return was_pending;
2096 }
2097 
2098 static int ioapic_retrigger_irq(struct irq_data *data)
2099 {
2100 	struct irq_cfg *cfg = data->chip_data;
2101 	unsigned long flags;
2102 
2103 	raw_spin_lock_irqsave(&vector_lock, flags);
2104 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2105 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2106 
2107 	return 1;
2108 }
2109 
2110 /*
2111  * Level and edge triggered IO-APIC interrupts need different handling,
2112  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2113  * handled with the level-triggered descriptor, but that one has slightly
2114  * more overhead. Level-triggered interrupts cannot be handled with the
2115  * edge-triggered handler, without risking IRQ storms and other ugly
2116  * races.
2117  */
2118 
2119 #ifdef CONFIG_SMP
2120 void send_cleanup_vector(struct irq_cfg *cfg)
2121 {
2122 	cpumask_var_t cleanup_mask;
2123 
2124 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2125 		unsigned int i;
2126 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2127 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2128 	} else {
2129 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2130 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2131 		free_cpumask_var(cleanup_mask);
2132 	}
2133 	cfg->move_in_progress = 0;
2134 }
2135 
2136 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2137 {
2138 	int apic, pin;
2139 	struct irq_pin_list *entry;
2140 	u8 vector = cfg->vector;
2141 
2142 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2143 		unsigned int reg;
2144 
2145 		apic = entry->apic;
2146 		pin = entry->pin;
2147 		/*
2148 		 * With interrupt-remapping, destination information comes
2149 		 * from interrupt-remapping table entry.
2150 		 */
2151 		if (!irq_remapped(cfg))
2152 			io_apic_write(apic, 0x11 + pin*2, dest);
2153 		reg = io_apic_read(apic, 0x10 + pin*2);
2154 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2155 		reg |= vector;
2156 		io_apic_modify(apic, 0x10 + pin*2, reg);
2157 	}
2158 }
2159 
2160 /*
2161  * Either sets data->affinity to a valid value, and returns
2162  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2163  * leaves data->affinity untouched.
2164  */
2165 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2166 			  unsigned int *dest_id)
2167 {
2168 	struct irq_cfg *cfg = data->chip_data;
2169 
2170 	if (!cpumask_intersects(mask, cpu_online_mask))
2171 		return -1;
2172 
2173 	if (assign_irq_vector(data->irq, data->chip_data, mask))
2174 		return -1;
2175 
2176 	cpumask_copy(data->affinity, mask);
2177 
2178 	*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2179 	return 0;
2180 }
2181 
2182 static int
2183 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2184 		    bool force)
2185 {
2186 	unsigned int dest, irq = data->irq;
2187 	unsigned long flags;
2188 	int ret;
2189 
2190 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2191 	ret = __ioapic_set_affinity(data, mask, &dest);
2192 	if (!ret) {
2193 		/* Only the high 8 bits are valid. */
2194 		dest = SET_APIC_LOGICAL_ID(dest);
2195 		__target_IO_APIC_irq(irq, dest, data->chip_data);
2196 	}
2197 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2198 	return ret;
2199 }
2200 
2201 #ifdef CONFIG_INTR_REMAP
2202 
2203 /*
2204  * Migrate the IO-APIC irq in the presence of intr-remapping.
2205  *
2206  * For both level and edge triggered, irq migration is a simple atomic
2207  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2208  *
2209  * For level triggered, we eliminate the io-apic RTE modification (with the
2210  * updated vector information), by using a virtual vector (io-apic pin number).
2211  * Real vector that is used for interrupting cpu will be coming from
2212  * the interrupt-remapping table entry.
2213  */
2214 static int
2215 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2216 		       bool force)
2217 {
2218 	struct irq_cfg *cfg = data->chip_data;
2219 	unsigned int dest, irq = data->irq;
2220 	struct irte irte;
2221 
2222 	if (!cpumask_intersects(mask, cpu_online_mask))
2223 		return -EINVAL;
2224 
2225 	if (get_irte(irq, &irte))
2226 		return -EBUSY;
2227 
2228 	if (assign_irq_vector(irq, cfg, mask))
2229 		return -EBUSY;
2230 
2231 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2232 
2233 	irte.vector = cfg->vector;
2234 	irte.dest_id = IRTE_DEST(dest);
2235 
2236 	/*
2237 	 * Modified the IRTE and flushes the Interrupt entry cache.
2238 	 */
2239 	modify_irte(irq, &irte);
2240 
2241 	if (cfg->move_in_progress)
2242 		send_cleanup_vector(cfg);
2243 
2244 	cpumask_copy(data->affinity, mask);
2245 	return 0;
2246 }
2247 
2248 #else
2249 static inline int
2250 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2251 		       bool force)
2252 {
2253 	return 0;
2254 }
2255 #endif
2256 
2257 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2258 {
2259 	unsigned vector, me;
2260 
2261 	ack_APIC_irq();
2262 	exit_idle();
2263 	irq_enter();
2264 
2265 	me = smp_processor_id();
2266 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2267 		unsigned int irq;
2268 		unsigned int irr;
2269 		struct irq_desc *desc;
2270 		struct irq_cfg *cfg;
2271 		irq = __this_cpu_read(vector_irq[vector]);
2272 
2273 		if (irq == -1)
2274 			continue;
2275 
2276 		desc = irq_to_desc(irq);
2277 		if (!desc)
2278 			continue;
2279 
2280 		cfg = irq_cfg(irq);
2281 		raw_spin_lock(&desc->lock);
2282 
2283 		/*
2284 		 * Check if the irq migration is in progress. If so, we
2285 		 * haven't received the cleanup request yet for this irq.
2286 		 */
2287 		if (cfg->move_in_progress)
2288 			goto unlock;
2289 
2290 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2291 			goto unlock;
2292 
2293 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2294 		/*
2295 		 * Check if the vector that needs to be cleanedup is
2296 		 * registered at the cpu's IRR. If so, then this is not
2297 		 * the best time to clean it up. Lets clean it up in the
2298 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2299 		 * to myself.
2300 		 */
2301 		if (irr  & (1 << (vector % 32))) {
2302 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2303 			goto unlock;
2304 		}
2305 		__this_cpu_write(vector_irq[vector], -1);
2306 unlock:
2307 		raw_spin_unlock(&desc->lock);
2308 	}
2309 
2310 	irq_exit();
2311 }
2312 
2313 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2314 {
2315 	unsigned me;
2316 
2317 	if (likely(!cfg->move_in_progress))
2318 		return;
2319 
2320 	me = smp_processor_id();
2321 
2322 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2323 		send_cleanup_vector(cfg);
2324 }
2325 
2326 static void irq_complete_move(struct irq_cfg *cfg)
2327 {
2328 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2329 }
2330 
2331 void irq_force_complete_move(int irq)
2332 {
2333 	struct irq_cfg *cfg = irq_get_chip_data(irq);
2334 
2335 	if (!cfg)
2336 		return;
2337 
2338 	__irq_complete_move(cfg, cfg->vector);
2339 }
2340 #else
2341 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2342 #endif
2343 
2344 static void ack_apic_edge(struct irq_data *data)
2345 {
2346 	irq_complete_move(data->chip_data);
2347 	irq_move_irq(data);
2348 	ack_APIC_irq();
2349 }
2350 
2351 atomic_t irq_mis_count;
2352 
2353 /*
2354  * IO-APIC versions below 0x20 don't support EOI register.
2355  * For the record, here is the information about various versions:
2356  *     0Xh     82489DX
2357  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2358  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
2359  *     30h-FFh Reserved
2360  *
2361  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2362  * version as 0x2. This is an error with documentation and these ICH chips
2363  * use io-apic's of version 0x20.
2364  *
2365  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2366  * Otherwise, we simulate the EOI message manually by changing the trigger
2367  * mode to edge and then back to level, with RTE being masked during this.
2368 */
2369 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2370 {
2371 	struct irq_pin_list *entry;
2372 	unsigned long flags;
2373 
2374 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2375 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2376 		if (mp_ioapics[entry->apic].apicver >= 0x20) {
2377 			/*
2378 			 * Intr-remapping uses pin number as the virtual vector
2379 			 * in the RTE. Actual vector is programmed in
2380 			 * intr-remapping table entry. Hence for the io-apic
2381 			 * EOI we use the pin number.
2382 			 */
2383 			if (irq_remapped(cfg))
2384 				io_apic_eoi(entry->apic, entry->pin);
2385 			else
2386 				io_apic_eoi(entry->apic, cfg->vector);
2387 		} else {
2388 			__mask_and_edge_IO_APIC_irq(entry);
2389 			__unmask_and_level_IO_APIC_irq(entry);
2390 		}
2391 	}
2392 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2393 }
2394 
2395 static void ack_apic_level(struct irq_data *data)
2396 {
2397 	struct irq_cfg *cfg = data->chip_data;
2398 	int i, do_unmask_irq = 0, irq = data->irq;
2399 	unsigned long v;
2400 
2401 	irq_complete_move(cfg);
2402 #ifdef CONFIG_GENERIC_PENDING_IRQ
2403 	/* If we are moving the irq we need to mask it */
2404 	if (unlikely(irqd_is_setaffinity_pending(data))) {
2405 		do_unmask_irq = 1;
2406 		mask_ioapic(cfg);
2407 	}
2408 #endif
2409 
2410 	/*
2411 	 * It appears there is an erratum which affects at least version 0x11
2412 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2413 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2414 	 * erroneously delivered as edge-triggered one but the respective IRR
2415 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2416 	 * message but it will never arrive and further interrupts are blocked
2417 	 * from the source.  The exact reason is so far unknown, but the
2418 	 * phenomenon was observed when two consecutive interrupt requests
2419 	 * from a given source get delivered to the same CPU and the source is
2420 	 * temporarily disabled in between.
2421 	 *
2422 	 * A workaround is to simulate an EOI message manually.  We achieve it
2423 	 * by setting the trigger mode to edge and then to level when the edge
2424 	 * trigger mode gets detected in the TMR of a local APIC for a
2425 	 * level-triggered interrupt.  We mask the source for the time of the
2426 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2427 	 * The idea is from Manfred Spraul.  --macro
2428 	 *
2429 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2430 	 * any unhandled interrupt on the offlined cpu to the new cpu
2431 	 * destination that is handling the corresponding interrupt. This
2432 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2433 	 * level-triggered io-apic interrupt will be seen as an edge
2434 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2435 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2436 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2437 	 * supporting EOI register, we do an explicit EOI to clear the
2438 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2439 	 * we use the above logic (mask+edge followed by unmask+level) from
2440 	 * Manfred Spraul to clear the remote IRR.
2441 	 */
2442 	i = cfg->vector;
2443 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2444 
2445 	/*
2446 	 * We must acknowledge the irq before we move it or the acknowledge will
2447 	 * not propagate properly.
2448 	 */
2449 	ack_APIC_irq();
2450 
2451 	/*
2452 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2453 	 * message via io-apic EOI register write or simulating it using
2454 	 * mask+edge followed by unnask+level logic) manually when the
2455 	 * level triggered interrupt is seen as the edge triggered interrupt
2456 	 * at the cpu.
2457 	 */
2458 	if (!(v & (1 << (i & 0x1f)))) {
2459 		atomic_inc(&irq_mis_count);
2460 
2461 		eoi_ioapic_irq(irq, cfg);
2462 	}
2463 
2464 	/* Now we can move and renable the irq */
2465 	if (unlikely(do_unmask_irq)) {
2466 		/* Only migrate the irq if the ack has been received.
2467 		 *
2468 		 * On rare occasions the broadcast level triggered ack gets
2469 		 * delayed going to ioapics, and if we reprogram the
2470 		 * vector while Remote IRR is still set the irq will never
2471 		 * fire again.
2472 		 *
2473 		 * To prevent this scenario we read the Remote IRR bit
2474 		 * of the ioapic.  This has two effects.
2475 		 * - On any sane system the read of the ioapic will
2476 		 *   flush writes (and acks) going to the ioapic from
2477 		 *   this cpu.
2478 		 * - We get to see if the ACK has actually been delivered.
2479 		 *
2480 		 * Based on failed experiments of reprogramming the
2481 		 * ioapic entry from outside of irq context starting
2482 		 * with masking the ioapic entry and then polling until
2483 		 * Remote IRR was clear before reprogramming the
2484 		 * ioapic I don't trust the Remote IRR bit to be
2485 		 * completey accurate.
2486 		 *
2487 		 * However there appears to be no other way to plug
2488 		 * this race, so if the Remote IRR bit is not
2489 		 * accurate and is causing problems then it is a hardware bug
2490 		 * and you can go talk to the chipset vendor about it.
2491 		 */
2492 		if (!io_apic_level_ack_pending(cfg))
2493 			irq_move_masked_irq(data);
2494 		unmask_ioapic(cfg);
2495 	}
2496 }
2497 
2498 #ifdef CONFIG_INTR_REMAP
2499 static void ir_ack_apic_edge(struct irq_data *data)
2500 {
2501 	ack_APIC_irq();
2502 }
2503 
2504 static void ir_ack_apic_level(struct irq_data *data)
2505 {
2506 	ack_APIC_irq();
2507 	eoi_ioapic_irq(data->irq, data->chip_data);
2508 }
2509 #endif /* CONFIG_INTR_REMAP */
2510 
2511 static struct irq_chip ioapic_chip __read_mostly = {
2512 	.name			= "IO-APIC",
2513 	.irq_startup		= startup_ioapic_irq,
2514 	.irq_mask		= mask_ioapic_irq,
2515 	.irq_unmask		= unmask_ioapic_irq,
2516 	.irq_ack		= ack_apic_edge,
2517 	.irq_eoi		= ack_apic_level,
2518 #ifdef CONFIG_SMP
2519 	.irq_set_affinity	= ioapic_set_affinity,
2520 #endif
2521 	.irq_retrigger		= ioapic_retrigger_irq,
2522 };
2523 
2524 static struct irq_chip ir_ioapic_chip __read_mostly = {
2525 	.name			= "IR-IO-APIC",
2526 	.irq_startup		= startup_ioapic_irq,
2527 	.irq_mask		= mask_ioapic_irq,
2528 	.irq_unmask		= unmask_ioapic_irq,
2529 #ifdef CONFIG_INTR_REMAP
2530 	.irq_ack		= ir_ack_apic_edge,
2531 	.irq_eoi		= ir_ack_apic_level,
2532 #ifdef CONFIG_SMP
2533 	.irq_set_affinity	= ir_ioapic_set_affinity,
2534 #endif
2535 #endif
2536 	.irq_retrigger		= ioapic_retrigger_irq,
2537 };
2538 
2539 static inline void init_IO_APIC_traps(void)
2540 {
2541 	struct irq_cfg *cfg;
2542 	unsigned int irq;
2543 
2544 	/*
2545 	 * NOTE! The local APIC isn't very good at handling
2546 	 * multiple interrupts at the same interrupt level.
2547 	 * As the interrupt level is determined by taking the
2548 	 * vector number and shifting that right by 4, we
2549 	 * want to spread these out a bit so that they don't
2550 	 * all fall in the same interrupt level.
2551 	 *
2552 	 * Also, we've got to be careful not to trash gate
2553 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2554 	 */
2555 	for_each_active_irq(irq) {
2556 		cfg = irq_get_chip_data(irq);
2557 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2558 			/*
2559 			 * Hmm.. We don't have an entry for this,
2560 			 * so default to an old-fashioned 8259
2561 			 * interrupt if we can..
2562 			 */
2563 			if (irq < legacy_pic->nr_legacy_irqs)
2564 				legacy_pic->make_irq(irq);
2565 			else
2566 				/* Strange. Oh, well.. */
2567 				irq_set_chip(irq, &no_irq_chip);
2568 		}
2569 	}
2570 }
2571 
2572 /*
2573  * The local APIC irq-chip implementation:
2574  */
2575 
2576 static void mask_lapic_irq(struct irq_data *data)
2577 {
2578 	unsigned long v;
2579 
2580 	v = apic_read(APIC_LVT0);
2581 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2582 }
2583 
2584 static void unmask_lapic_irq(struct irq_data *data)
2585 {
2586 	unsigned long v;
2587 
2588 	v = apic_read(APIC_LVT0);
2589 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2590 }
2591 
2592 static void ack_lapic_irq(struct irq_data *data)
2593 {
2594 	ack_APIC_irq();
2595 }
2596 
2597 static struct irq_chip lapic_chip __read_mostly = {
2598 	.name		= "local-APIC",
2599 	.irq_mask	= mask_lapic_irq,
2600 	.irq_unmask	= unmask_lapic_irq,
2601 	.irq_ack	= ack_lapic_irq,
2602 };
2603 
2604 static void lapic_register_intr(int irq)
2605 {
2606 	irq_clear_status_flags(irq, IRQ_LEVEL);
2607 	irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2608 				      "edge");
2609 }
2610 
2611 /*
2612  * This looks a bit hackish but it's about the only one way of sending
2613  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2614  * not support the ExtINT mode, unfortunately.  We need to send these
2615  * cycles as some i82489DX-based boards have glue logic that keeps the
2616  * 8259A interrupt line asserted until INTA.  --macro
2617  */
2618 static inline void __init unlock_ExtINT_logic(void)
2619 {
2620 	int apic, pin, i;
2621 	struct IO_APIC_route_entry entry0, entry1;
2622 	unsigned char save_control, save_freq_select;
2623 
2624 	pin  = find_isa_irq_pin(8, mp_INT);
2625 	if (pin == -1) {
2626 		WARN_ON_ONCE(1);
2627 		return;
2628 	}
2629 	apic = find_isa_irq_apic(8, mp_INT);
2630 	if (apic == -1) {
2631 		WARN_ON_ONCE(1);
2632 		return;
2633 	}
2634 
2635 	entry0 = ioapic_read_entry(apic, pin);
2636 	clear_IO_APIC_pin(apic, pin);
2637 
2638 	memset(&entry1, 0, sizeof(entry1));
2639 
2640 	entry1.dest_mode = 0;			/* physical delivery */
2641 	entry1.mask = 0;			/* unmask IRQ now */
2642 	entry1.dest = hard_smp_processor_id();
2643 	entry1.delivery_mode = dest_ExtINT;
2644 	entry1.polarity = entry0.polarity;
2645 	entry1.trigger = 0;
2646 	entry1.vector = 0;
2647 
2648 	ioapic_write_entry(apic, pin, entry1);
2649 
2650 	save_control = CMOS_READ(RTC_CONTROL);
2651 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2652 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2653 		   RTC_FREQ_SELECT);
2654 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2655 
2656 	i = 100;
2657 	while (i-- > 0) {
2658 		mdelay(10);
2659 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2660 			i -= 10;
2661 	}
2662 
2663 	CMOS_WRITE(save_control, RTC_CONTROL);
2664 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2665 	clear_IO_APIC_pin(apic, pin);
2666 
2667 	ioapic_write_entry(apic, pin, entry0);
2668 }
2669 
2670 static int disable_timer_pin_1 __initdata;
2671 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2672 static int __init disable_timer_pin_setup(char *arg)
2673 {
2674 	disable_timer_pin_1 = 1;
2675 	return 0;
2676 }
2677 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2678 
2679 int timer_through_8259 __initdata;
2680 
2681 /*
2682  * This code may look a bit paranoid, but it's supposed to cooperate with
2683  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2684  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2685  * fanatically on his truly buggy board.
2686  *
2687  * FIXME: really need to revamp this for all platforms.
2688  */
2689 static inline void __init check_timer(void)
2690 {
2691 	struct irq_cfg *cfg = irq_get_chip_data(0);
2692 	int node = cpu_to_node(0);
2693 	int apic1, pin1, apic2, pin2;
2694 	unsigned long flags;
2695 	int no_pin1 = 0;
2696 
2697 	local_irq_save(flags);
2698 
2699 	/*
2700 	 * get/set the timer IRQ vector:
2701 	 */
2702 	legacy_pic->mask(0);
2703 	assign_irq_vector(0, cfg, apic->target_cpus());
2704 
2705 	/*
2706 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2707 	 * wire has to be disabled in the local APIC.  Also
2708 	 * timer interrupts need to be acknowledged manually in
2709 	 * the 8259A for the i82489DX when using the NMI
2710 	 * watchdog as that APIC treats NMIs as level-triggered.
2711 	 * The AEOI mode will finish them in the 8259A
2712 	 * automatically.
2713 	 */
2714 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2715 	legacy_pic->init(1);
2716 
2717 	pin1  = find_isa_irq_pin(0, mp_INT);
2718 	apic1 = find_isa_irq_apic(0, mp_INT);
2719 	pin2  = ioapic_i8259.pin;
2720 	apic2 = ioapic_i8259.apic;
2721 
2722 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2723 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2724 		    cfg->vector, apic1, pin1, apic2, pin2);
2725 
2726 	/*
2727 	 * Some BIOS writers are clueless and report the ExtINTA
2728 	 * I/O APIC input from the cascaded 8259A as the timer
2729 	 * interrupt input.  So just in case, if only one pin
2730 	 * was found above, try it both directly and through the
2731 	 * 8259A.
2732 	 */
2733 	if (pin1 == -1) {
2734 		if (intr_remapping_enabled)
2735 			panic("BIOS bug: timer not connected to IO-APIC");
2736 		pin1 = pin2;
2737 		apic1 = apic2;
2738 		no_pin1 = 1;
2739 	} else if (pin2 == -1) {
2740 		pin2 = pin1;
2741 		apic2 = apic1;
2742 	}
2743 
2744 	if (pin1 != -1) {
2745 		/*
2746 		 * Ok, does IRQ0 through the IOAPIC work?
2747 		 */
2748 		if (no_pin1) {
2749 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2750 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2751 		} else {
2752 			/* for edge trigger, setup_ioapic_irq already
2753 			 * leave it unmasked.
2754 			 * so only need to unmask if it is level-trigger
2755 			 * do we really have level trigger timer?
2756 			 */
2757 			int idx;
2758 			idx = find_irq_entry(apic1, pin1, mp_INT);
2759 			if (idx != -1 && irq_trigger(idx))
2760 				unmask_ioapic(cfg);
2761 		}
2762 		if (timer_irq_works()) {
2763 			if (disable_timer_pin_1 > 0)
2764 				clear_IO_APIC_pin(0, pin1);
2765 			goto out;
2766 		}
2767 		if (intr_remapping_enabled)
2768 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2769 		local_irq_disable();
2770 		clear_IO_APIC_pin(apic1, pin1);
2771 		if (!no_pin1)
2772 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2773 				    "8254 timer not connected to IO-APIC\n");
2774 
2775 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2776 			    "(IRQ0) through the 8259A ...\n");
2777 		apic_printk(APIC_QUIET, KERN_INFO
2778 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2779 		/*
2780 		 * legacy devices should be connected to IO APIC #0
2781 		 */
2782 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2783 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2784 		legacy_pic->unmask(0);
2785 		if (timer_irq_works()) {
2786 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2787 			timer_through_8259 = 1;
2788 			goto out;
2789 		}
2790 		/*
2791 		 * Cleanup, just in case ...
2792 		 */
2793 		local_irq_disable();
2794 		legacy_pic->mask(0);
2795 		clear_IO_APIC_pin(apic2, pin2);
2796 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2797 	}
2798 
2799 	apic_printk(APIC_QUIET, KERN_INFO
2800 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2801 
2802 	lapic_register_intr(0);
2803 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
2804 	legacy_pic->unmask(0);
2805 
2806 	if (timer_irq_works()) {
2807 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2808 		goto out;
2809 	}
2810 	local_irq_disable();
2811 	legacy_pic->mask(0);
2812 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2813 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2814 
2815 	apic_printk(APIC_QUIET, KERN_INFO
2816 		    "...trying to set up timer as ExtINT IRQ...\n");
2817 
2818 	legacy_pic->init(0);
2819 	legacy_pic->make_irq(0);
2820 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
2821 
2822 	unlock_ExtINT_logic();
2823 
2824 	if (timer_irq_works()) {
2825 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2826 		goto out;
2827 	}
2828 	local_irq_disable();
2829 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2830 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
2831 		"report.  Then try booting with the 'noapic' option.\n");
2832 out:
2833 	local_irq_restore(flags);
2834 }
2835 
2836 /*
2837  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2838  * to devices.  However there may be an I/O APIC pin available for
2839  * this interrupt regardless.  The pin may be left unconnected, but
2840  * typically it will be reused as an ExtINT cascade interrupt for
2841  * the master 8259A.  In the MPS case such a pin will normally be
2842  * reported as an ExtINT interrupt in the MP table.  With ACPI
2843  * there is no provision for ExtINT interrupts, and in the absence
2844  * of an override it would be treated as an ordinary ISA I/O APIC
2845  * interrupt, that is edge-triggered and unmasked by default.  We
2846  * used to do this, but it caused problems on some systems because
2847  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2848  * the same ExtINT cascade interrupt to drive the local APIC of the
2849  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
2850  * the I/O APIC in all cases now.  No actual device should request
2851  * it anyway.  --macro
2852  */
2853 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
2854 
2855 void __init setup_IO_APIC(void)
2856 {
2857 
2858 	/*
2859 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2860 	 */
2861 	io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2862 
2863 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2864 	/*
2865          * Set up IO-APIC IRQ routing.
2866          */
2867 	x86_init.mpparse.setup_ioapic_ids();
2868 
2869 	sync_Arb_IDs();
2870 	setup_IO_APIC_irqs();
2871 	init_IO_APIC_traps();
2872 	if (legacy_pic->nr_legacy_irqs)
2873 		check_timer();
2874 }
2875 
2876 /*
2877  *      Called after all the initialization is done. If we didn't find any
2878  *      APIC bugs then we can allow the modify fast path
2879  */
2880 
2881 static int __init io_apic_bug_finalize(void)
2882 {
2883 	if (sis_apic_bug == -1)
2884 		sis_apic_bug = 0;
2885 	return 0;
2886 }
2887 
2888 late_initcall(io_apic_bug_finalize);
2889 
2890 static void resume_ioapic_id(int ioapic_id)
2891 {
2892 	unsigned long flags;
2893 	union IO_APIC_reg_00 reg_00;
2894 
2895 
2896 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2897 	reg_00.raw = io_apic_read(ioapic_id, 0);
2898 	if (reg_00.bits.ID != mp_ioapics[ioapic_id].apicid) {
2899 		reg_00.bits.ID = mp_ioapics[ioapic_id].apicid;
2900 		io_apic_write(ioapic_id, 0, reg_00.raw);
2901 	}
2902 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2903 }
2904 
2905 static void ioapic_resume(void)
2906 {
2907 	int ioapic_id;
2908 
2909 	for (ioapic_id = nr_ioapics - 1; ioapic_id >= 0; ioapic_id--)
2910 		resume_ioapic_id(ioapic_id);
2911 
2912 	restore_ioapic_entries();
2913 }
2914 
2915 static struct syscore_ops ioapic_syscore_ops = {
2916 	.suspend = save_ioapic_entries,
2917 	.resume = ioapic_resume,
2918 };
2919 
2920 static int __init ioapic_init_ops(void)
2921 {
2922 	register_syscore_ops(&ioapic_syscore_ops);
2923 
2924 	return 0;
2925 }
2926 
2927 device_initcall(ioapic_init_ops);
2928 
2929 /*
2930  * Dynamic irq allocate and deallocation
2931  */
2932 unsigned int create_irq_nr(unsigned int from, int node)
2933 {
2934 	struct irq_cfg *cfg;
2935 	unsigned long flags;
2936 	unsigned int ret = 0;
2937 	int irq;
2938 
2939 	if (from < nr_irqs_gsi)
2940 		from = nr_irqs_gsi;
2941 
2942 	irq = alloc_irq_from(from, node);
2943 	if (irq < 0)
2944 		return 0;
2945 	cfg = alloc_irq_cfg(irq, node);
2946 	if (!cfg) {
2947 		free_irq_at(irq, NULL);
2948 		return 0;
2949 	}
2950 
2951 	raw_spin_lock_irqsave(&vector_lock, flags);
2952 	if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
2953 		ret = irq;
2954 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2955 
2956 	if (ret) {
2957 		irq_set_chip_data(irq, cfg);
2958 		irq_clear_status_flags(irq, IRQ_NOREQUEST);
2959 	} else {
2960 		free_irq_at(irq, cfg);
2961 	}
2962 	return ret;
2963 }
2964 
2965 int create_irq(void)
2966 {
2967 	int node = cpu_to_node(0);
2968 	unsigned int irq_want;
2969 	int irq;
2970 
2971 	irq_want = nr_irqs_gsi;
2972 	irq = create_irq_nr(irq_want, node);
2973 
2974 	if (irq == 0)
2975 		irq = -1;
2976 
2977 	return irq;
2978 }
2979 
2980 void destroy_irq(unsigned int irq)
2981 {
2982 	struct irq_cfg *cfg = irq_get_chip_data(irq);
2983 	unsigned long flags;
2984 
2985 	irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
2986 
2987 	if (irq_remapped(cfg))
2988 		free_irte(irq);
2989 	raw_spin_lock_irqsave(&vector_lock, flags);
2990 	__clear_irq_vector(irq, cfg);
2991 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2992 	free_irq_at(irq, cfg);
2993 }
2994 
2995 /*
2996  * MSI message composition
2997  */
2998 #ifdef CONFIG_PCI_MSI
2999 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3000 			   struct msi_msg *msg, u8 hpet_id)
3001 {
3002 	struct irq_cfg *cfg;
3003 	int err;
3004 	unsigned dest;
3005 
3006 	if (disable_apic)
3007 		return -ENXIO;
3008 
3009 	cfg = irq_cfg(irq);
3010 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3011 	if (err)
3012 		return err;
3013 
3014 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3015 
3016 	if (irq_remapped(cfg)) {
3017 		struct irte irte;
3018 		int ir_index;
3019 		u16 sub_handle;
3020 
3021 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3022 		BUG_ON(ir_index == -1);
3023 
3024 		prepare_irte(&irte, cfg->vector, dest);
3025 
3026 		/* Set source-id of interrupt request */
3027 		if (pdev)
3028 			set_msi_sid(&irte, pdev);
3029 		else
3030 			set_hpet_sid(&irte, hpet_id);
3031 
3032 		modify_irte(irq, &irte);
3033 
3034 		msg->address_hi = MSI_ADDR_BASE_HI;
3035 		msg->data = sub_handle;
3036 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3037 				  MSI_ADDR_IR_SHV |
3038 				  MSI_ADDR_IR_INDEX1(ir_index) |
3039 				  MSI_ADDR_IR_INDEX2(ir_index);
3040 	} else {
3041 		if (x2apic_enabled())
3042 			msg->address_hi = MSI_ADDR_BASE_HI |
3043 					  MSI_ADDR_EXT_DEST_ID(dest);
3044 		else
3045 			msg->address_hi = MSI_ADDR_BASE_HI;
3046 
3047 		msg->address_lo =
3048 			MSI_ADDR_BASE_LO |
3049 			((apic->irq_dest_mode == 0) ?
3050 				MSI_ADDR_DEST_MODE_PHYSICAL:
3051 				MSI_ADDR_DEST_MODE_LOGICAL) |
3052 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3053 				MSI_ADDR_REDIRECTION_CPU:
3054 				MSI_ADDR_REDIRECTION_LOWPRI) |
3055 			MSI_ADDR_DEST_ID(dest);
3056 
3057 		msg->data =
3058 			MSI_DATA_TRIGGER_EDGE |
3059 			MSI_DATA_LEVEL_ASSERT |
3060 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3061 				MSI_DATA_DELIVERY_FIXED:
3062 				MSI_DATA_DELIVERY_LOWPRI) |
3063 			MSI_DATA_VECTOR(cfg->vector);
3064 	}
3065 	return err;
3066 }
3067 
3068 #ifdef CONFIG_SMP
3069 static int
3070 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3071 {
3072 	struct irq_cfg *cfg = data->chip_data;
3073 	struct msi_msg msg;
3074 	unsigned int dest;
3075 
3076 	if (__ioapic_set_affinity(data, mask, &dest))
3077 		return -1;
3078 
3079 	__get_cached_msi_msg(data->msi_desc, &msg);
3080 
3081 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3082 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3083 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3084 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3085 
3086 	__write_msi_msg(data->msi_desc, &msg);
3087 
3088 	return 0;
3089 }
3090 #ifdef CONFIG_INTR_REMAP
3091 /*
3092  * Migrate the MSI irq to another cpumask. This migration is
3093  * done in the process context using interrupt-remapping hardware.
3094  */
3095 static int
3096 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3097 		    bool force)
3098 {
3099 	struct irq_cfg *cfg = data->chip_data;
3100 	unsigned int dest, irq = data->irq;
3101 	struct irte irte;
3102 
3103 	if (get_irte(irq, &irte))
3104 		return -1;
3105 
3106 	if (__ioapic_set_affinity(data, mask, &dest))
3107 		return -1;
3108 
3109 	irte.vector = cfg->vector;
3110 	irte.dest_id = IRTE_DEST(dest);
3111 
3112 	/*
3113 	 * atomically update the IRTE with the new destination and vector.
3114 	 */
3115 	modify_irte(irq, &irte);
3116 
3117 	/*
3118 	 * After this point, all the interrupts will start arriving
3119 	 * at the new destination. So, time to cleanup the previous
3120 	 * vector allocation.
3121 	 */
3122 	if (cfg->move_in_progress)
3123 		send_cleanup_vector(cfg);
3124 
3125 	return 0;
3126 }
3127 
3128 #endif
3129 #endif /* CONFIG_SMP */
3130 
3131 /*
3132  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3133  * which implement the MSI or MSI-X Capability Structure.
3134  */
3135 static struct irq_chip msi_chip = {
3136 	.name			= "PCI-MSI",
3137 	.irq_unmask		= unmask_msi_irq,
3138 	.irq_mask		= mask_msi_irq,
3139 	.irq_ack		= ack_apic_edge,
3140 #ifdef CONFIG_SMP
3141 	.irq_set_affinity	= msi_set_affinity,
3142 #endif
3143 	.irq_retrigger		= ioapic_retrigger_irq,
3144 };
3145 
3146 static struct irq_chip msi_ir_chip = {
3147 	.name			= "IR-PCI-MSI",
3148 	.irq_unmask		= unmask_msi_irq,
3149 	.irq_mask		= mask_msi_irq,
3150 #ifdef CONFIG_INTR_REMAP
3151 	.irq_ack		= ir_ack_apic_edge,
3152 #ifdef CONFIG_SMP
3153 	.irq_set_affinity	= ir_msi_set_affinity,
3154 #endif
3155 #endif
3156 	.irq_retrigger		= ioapic_retrigger_irq,
3157 };
3158 
3159 /*
3160  * Map the PCI dev to the corresponding remapping hardware unit
3161  * and allocate 'nvec' consecutive interrupt-remapping table entries
3162  * in it.
3163  */
3164 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3165 {
3166 	struct intel_iommu *iommu;
3167 	int index;
3168 
3169 	iommu = map_dev_to_ir(dev);
3170 	if (!iommu) {
3171 		printk(KERN_ERR
3172 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3173 		return -ENOENT;
3174 	}
3175 
3176 	index = alloc_irte(iommu, irq, nvec);
3177 	if (index < 0) {
3178 		printk(KERN_ERR
3179 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3180 		       pci_name(dev));
3181 		return -ENOSPC;
3182 	}
3183 	return index;
3184 }
3185 
3186 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3187 {
3188 	struct irq_chip *chip = &msi_chip;
3189 	struct msi_msg msg;
3190 	int ret;
3191 
3192 	ret = msi_compose_msg(dev, irq, &msg, -1);
3193 	if (ret < 0)
3194 		return ret;
3195 
3196 	irq_set_msi_desc(irq, msidesc);
3197 	write_msi_msg(irq, &msg);
3198 
3199 	if (irq_remapped(irq_get_chip_data(irq))) {
3200 		irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3201 		chip = &msi_ir_chip;
3202 	}
3203 
3204 	irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3205 
3206 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3207 
3208 	return 0;
3209 }
3210 
3211 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3212 {
3213 	int node, ret, sub_handle, index = 0;
3214 	unsigned int irq, irq_want;
3215 	struct msi_desc *msidesc;
3216 	struct intel_iommu *iommu = NULL;
3217 
3218 	/* x86 doesn't support multiple MSI yet */
3219 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3220 		return 1;
3221 
3222 	node = dev_to_node(&dev->dev);
3223 	irq_want = nr_irqs_gsi;
3224 	sub_handle = 0;
3225 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3226 		irq = create_irq_nr(irq_want, node);
3227 		if (irq == 0)
3228 			return -1;
3229 		irq_want = irq + 1;
3230 		if (!intr_remapping_enabled)
3231 			goto no_ir;
3232 
3233 		if (!sub_handle) {
3234 			/*
3235 			 * allocate the consecutive block of IRTE's
3236 			 * for 'nvec'
3237 			 */
3238 			index = msi_alloc_irte(dev, irq, nvec);
3239 			if (index < 0) {
3240 				ret = index;
3241 				goto error;
3242 			}
3243 		} else {
3244 			iommu = map_dev_to_ir(dev);
3245 			if (!iommu) {
3246 				ret = -ENOENT;
3247 				goto error;
3248 			}
3249 			/*
3250 			 * setup the mapping between the irq and the IRTE
3251 			 * base index, the sub_handle pointing to the
3252 			 * appropriate interrupt remap table entry.
3253 			 */
3254 			set_irte_irq(irq, iommu, index, sub_handle);
3255 		}
3256 no_ir:
3257 		ret = setup_msi_irq(dev, msidesc, irq);
3258 		if (ret < 0)
3259 			goto error;
3260 		sub_handle++;
3261 	}
3262 	return 0;
3263 
3264 error:
3265 	destroy_irq(irq);
3266 	return ret;
3267 }
3268 
3269 void native_teardown_msi_irq(unsigned int irq)
3270 {
3271 	destroy_irq(irq);
3272 }
3273 
3274 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3275 #ifdef CONFIG_SMP
3276 static int
3277 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3278 		      bool force)
3279 {
3280 	struct irq_cfg *cfg = data->chip_data;
3281 	unsigned int dest, irq = data->irq;
3282 	struct msi_msg msg;
3283 
3284 	if (__ioapic_set_affinity(data, mask, &dest))
3285 		return -1;
3286 
3287 	dmar_msi_read(irq, &msg);
3288 
3289 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3290 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3291 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3292 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3293 	msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3294 
3295 	dmar_msi_write(irq, &msg);
3296 
3297 	return 0;
3298 }
3299 
3300 #endif /* CONFIG_SMP */
3301 
3302 static struct irq_chip dmar_msi_type = {
3303 	.name			= "DMAR_MSI",
3304 	.irq_unmask		= dmar_msi_unmask,
3305 	.irq_mask		= dmar_msi_mask,
3306 	.irq_ack		= ack_apic_edge,
3307 #ifdef CONFIG_SMP
3308 	.irq_set_affinity	= dmar_msi_set_affinity,
3309 #endif
3310 	.irq_retrigger		= ioapic_retrigger_irq,
3311 };
3312 
3313 int arch_setup_dmar_msi(unsigned int irq)
3314 {
3315 	int ret;
3316 	struct msi_msg msg;
3317 
3318 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3319 	if (ret < 0)
3320 		return ret;
3321 	dmar_msi_write(irq, &msg);
3322 	irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3323 				      "edge");
3324 	return 0;
3325 }
3326 #endif
3327 
3328 #ifdef CONFIG_HPET_TIMER
3329 
3330 #ifdef CONFIG_SMP
3331 static int hpet_msi_set_affinity(struct irq_data *data,
3332 				 const struct cpumask *mask, bool force)
3333 {
3334 	struct irq_cfg *cfg = data->chip_data;
3335 	struct msi_msg msg;
3336 	unsigned int dest;
3337 
3338 	if (__ioapic_set_affinity(data, mask, &dest))
3339 		return -1;
3340 
3341 	hpet_msi_read(data->handler_data, &msg);
3342 
3343 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3344 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3345 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3346 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3347 
3348 	hpet_msi_write(data->handler_data, &msg);
3349 
3350 	return 0;
3351 }
3352 
3353 #endif /* CONFIG_SMP */
3354 
3355 static struct irq_chip ir_hpet_msi_type = {
3356 	.name			= "IR-HPET_MSI",
3357 	.irq_unmask		= hpet_msi_unmask,
3358 	.irq_mask		= hpet_msi_mask,
3359 #ifdef CONFIG_INTR_REMAP
3360 	.irq_ack		= ir_ack_apic_edge,
3361 #ifdef CONFIG_SMP
3362 	.irq_set_affinity	= ir_msi_set_affinity,
3363 #endif
3364 #endif
3365 	.irq_retrigger		= ioapic_retrigger_irq,
3366 };
3367 
3368 static struct irq_chip hpet_msi_type = {
3369 	.name = "HPET_MSI",
3370 	.irq_unmask = hpet_msi_unmask,
3371 	.irq_mask = hpet_msi_mask,
3372 	.irq_ack = ack_apic_edge,
3373 #ifdef CONFIG_SMP
3374 	.irq_set_affinity = hpet_msi_set_affinity,
3375 #endif
3376 	.irq_retrigger = ioapic_retrigger_irq,
3377 };
3378 
3379 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3380 {
3381 	struct irq_chip *chip = &hpet_msi_type;
3382 	struct msi_msg msg;
3383 	int ret;
3384 
3385 	if (intr_remapping_enabled) {
3386 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3387 		int index;
3388 
3389 		if (!iommu)
3390 			return -1;
3391 
3392 		index = alloc_irte(iommu, irq, 1);
3393 		if (index < 0)
3394 			return -1;
3395 	}
3396 
3397 	ret = msi_compose_msg(NULL, irq, &msg, id);
3398 	if (ret < 0)
3399 		return ret;
3400 
3401 	hpet_msi_write(irq_get_handler_data(irq), &msg);
3402 	irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3403 	if (irq_remapped(irq_get_chip_data(irq)))
3404 		chip = &ir_hpet_msi_type;
3405 
3406 	irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3407 	return 0;
3408 }
3409 #endif
3410 
3411 #endif /* CONFIG_PCI_MSI */
3412 /*
3413  * Hypertransport interrupt support
3414  */
3415 #ifdef CONFIG_HT_IRQ
3416 
3417 #ifdef CONFIG_SMP
3418 
3419 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3420 {
3421 	struct ht_irq_msg msg;
3422 	fetch_ht_irq_msg(irq, &msg);
3423 
3424 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3425 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3426 
3427 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3428 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3429 
3430 	write_ht_irq_msg(irq, &msg);
3431 }
3432 
3433 static int
3434 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3435 {
3436 	struct irq_cfg *cfg = data->chip_data;
3437 	unsigned int dest;
3438 
3439 	if (__ioapic_set_affinity(data, mask, &dest))
3440 		return -1;
3441 
3442 	target_ht_irq(data->irq, dest, cfg->vector);
3443 	return 0;
3444 }
3445 
3446 #endif
3447 
3448 static struct irq_chip ht_irq_chip = {
3449 	.name			= "PCI-HT",
3450 	.irq_mask		= mask_ht_irq,
3451 	.irq_unmask		= unmask_ht_irq,
3452 	.irq_ack		= ack_apic_edge,
3453 #ifdef CONFIG_SMP
3454 	.irq_set_affinity	= ht_set_affinity,
3455 #endif
3456 	.irq_retrigger		= ioapic_retrigger_irq,
3457 };
3458 
3459 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3460 {
3461 	struct irq_cfg *cfg;
3462 	int err;
3463 
3464 	if (disable_apic)
3465 		return -ENXIO;
3466 
3467 	cfg = irq_cfg(irq);
3468 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3469 	if (!err) {
3470 		struct ht_irq_msg msg;
3471 		unsigned dest;
3472 
3473 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3474 						    apic->target_cpus());
3475 
3476 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3477 
3478 		msg.address_lo =
3479 			HT_IRQ_LOW_BASE |
3480 			HT_IRQ_LOW_DEST_ID(dest) |
3481 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3482 			((apic->irq_dest_mode == 0) ?
3483 				HT_IRQ_LOW_DM_PHYSICAL :
3484 				HT_IRQ_LOW_DM_LOGICAL) |
3485 			HT_IRQ_LOW_RQEOI_EDGE |
3486 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3487 				HT_IRQ_LOW_MT_FIXED :
3488 				HT_IRQ_LOW_MT_ARBITRATED) |
3489 			HT_IRQ_LOW_IRQ_MASKED;
3490 
3491 		write_ht_irq_msg(irq, &msg);
3492 
3493 		irq_set_chip_and_handler_name(irq, &ht_irq_chip,
3494 					      handle_edge_irq, "edge");
3495 
3496 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3497 	}
3498 	return err;
3499 }
3500 #endif /* CONFIG_HT_IRQ */
3501 
3502 static int
3503 io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
3504 {
3505 	struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
3506 	int ret;
3507 
3508 	if (!cfg)
3509 		return -EINVAL;
3510 	ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
3511 	if (!ret)
3512 		setup_ioapic_irq(attr->ioapic, attr->ioapic_pin, irq, cfg,
3513 				 attr->trigger, attr->polarity);
3514 	return ret;
3515 }
3516 
3517 int io_apic_setup_irq_pin_once(unsigned int irq, int node,
3518 			       struct io_apic_irq_attr *attr)
3519 {
3520 	unsigned int id = attr->ioapic, pin = attr->ioapic_pin;
3521 	int ret;
3522 
3523 	/* Avoid redundant programming */
3524 	if (test_bit(pin, mp_ioapic_routing[id].pin_programmed)) {
3525 		pr_debug("Pin %d-%d already programmed\n",
3526 			 mp_ioapics[id].apicid, pin);
3527 		return 0;
3528 	}
3529 	ret = io_apic_setup_irq_pin(irq, node, attr);
3530 	if (!ret)
3531 		set_bit(pin, mp_ioapic_routing[id].pin_programmed);
3532 	return ret;
3533 }
3534 
3535 static int __init io_apic_get_redir_entries(int ioapic)
3536 {
3537 	union IO_APIC_reg_01	reg_01;
3538 	unsigned long flags;
3539 
3540 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3541 	reg_01.raw = io_apic_read(ioapic, 1);
3542 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3543 
3544 	/* The register returns the maximum index redir index
3545 	 * supported, which is one less than the total number of redir
3546 	 * entries.
3547 	 */
3548 	return reg_01.bits.entries + 1;
3549 }
3550 
3551 static void __init probe_nr_irqs_gsi(void)
3552 {
3553 	int nr;
3554 
3555 	nr = gsi_top + NR_IRQS_LEGACY;
3556 	if (nr > nr_irqs_gsi)
3557 		nr_irqs_gsi = nr;
3558 
3559 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3560 }
3561 
3562 int get_nr_irqs_gsi(void)
3563 {
3564 	return nr_irqs_gsi;
3565 }
3566 
3567 #ifdef CONFIG_SPARSE_IRQ
3568 int __init arch_probe_nr_irqs(void)
3569 {
3570 	int nr;
3571 
3572 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3573 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3574 
3575 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3576 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3577 	/*
3578 	 * for MSI and HT dyn irq
3579 	 */
3580 	nr += nr_irqs_gsi * 16;
3581 #endif
3582 	if (nr < nr_irqs)
3583 		nr_irqs = nr;
3584 
3585 	return NR_IRQS_LEGACY;
3586 }
3587 #endif
3588 
3589 int io_apic_set_pci_routing(struct device *dev, int irq,
3590 			    struct io_apic_irq_attr *irq_attr)
3591 {
3592 	int node;
3593 
3594 	if (!IO_APIC_IRQ(irq)) {
3595 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3596 			    irq_attr->ioapic);
3597 		return -EINVAL;
3598 	}
3599 
3600 	node = dev ? dev_to_node(dev) : cpu_to_node(0);
3601 
3602 	return io_apic_setup_irq_pin_once(irq, node, irq_attr);
3603 }
3604 
3605 #ifdef CONFIG_X86_32
3606 static int __init io_apic_get_unique_id(int ioapic, int apic_id)
3607 {
3608 	union IO_APIC_reg_00 reg_00;
3609 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3610 	physid_mask_t tmp;
3611 	unsigned long flags;
3612 	int i = 0;
3613 
3614 	/*
3615 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3616 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3617 	 * supports up to 16 on one shared APIC bus.
3618 	 *
3619 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3620 	 *      advantage of new APIC bus architecture.
3621 	 */
3622 
3623 	if (physids_empty(apic_id_map))
3624 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3625 
3626 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3627 	reg_00.raw = io_apic_read(ioapic, 0);
3628 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3629 
3630 	if (apic_id >= get_physical_broadcast()) {
3631 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3632 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3633 		apic_id = reg_00.bits.ID;
3634 	}
3635 
3636 	/*
3637 	 * Every APIC in a system must have a unique ID or we get lots of nice
3638 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3639 	 */
3640 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3641 
3642 		for (i = 0; i < get_physical_broadcast(); i++) {
3643 			if (!apic->check_apicid_used(&apic_id_map, i))
3644 				break;
3645 		}
3646 
3647 		if (i == get_physical_broadcast())
3648 			panic("Max apic_id exceeded!\n");
3649 
3650 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3651 			"trying %d\n", ioapic, apic_id, i);
3652 
3653 		apic_id = i;
3654 	}
3655 
3656 	apic->apicid_to_cpu_present(apic_id, &tmp);
3657 	physids_or(apic_id_map, apic_id_map, tmp);
3658 
3659 	if (reg_00.bits.ID != apic_id) {
3660 		reg_00.bits.ID = apic_id;
3661 
3662 		raw_spin_lock_irqsave(&ioapic_lock, flags);
3663 		io_apic_write(ioapic, 0, reg_00.raw);
3664 		reg_00.raw = io_apic_read(ioapic, 0);
3665 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3666 
3667 		/* Sanity check */
3668 		if (reg_00.bits.ID != apic_id) {
3669 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3670 			return -1;
3671 		}
3672 	}
3673 
3674 	apic_printk(APIC_VERBOSE, KERN_INFO
3675 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3676 
3677 	return apic_id;
3678 }
3679 
3680 static u8 __init io_apic_unique_id(u8 id)
3681 {
3682 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3683 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3684 		return io_apic_get_unique_id(nr_ioapics, id);
3685 	else
3686 		return id;
3687 }
3688 #else
3689 static u8 __init io_apic_unique_id(u8 id)
3690 {
3691 	int i;
3692 	DECLARE_BITMAP(used, 256);
3693 
3694 	bitmap_zero(used, 256);
3695 	for (i = 0; i < nr_ioapics; i++) {
3696 		struct mpc_ioapic *ia = &mp_ioapics[i];
3697 		__set_bit(ia->apicid, used);
3698 	}
3699 	if (!test_bit(id, used))
3700 		return id;
3701 	return find_first_zero_bit(used, 256);
3702 }
3703 #endif
3704 
3705 static int __init io_apic_get_version(int ioapic)
3706 {
3707 	union IO_APIC_reg_01	reg_01;
3708 	unsigned long flags;
3709 
3710 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3711 	reg_01.raw = io_apic_read(ioapic, 1);
3712 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3713 
3714 	return reg_01.bits.version;
3715 }
3716 
3717 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3718 {
3719 	int ioapic, pin, idx;
3720 
3721 	if (skip_ioapic_setup)
3722 		return -1;
3723 
3724 	ioapic = mp_find_ioapic(gsi);
3725 	if (ioapic < 0)
3726 		return -1;
3727 
3728 	pin = mp_find_ioapic_pin(ioapic, gsi);
3729 	if (pin < 0)
3730 		return -1;
3731 
3732 	idx = find_irq_entry(ioapic, pin, mp_INT);
3733 	if (idx < 0)
3734 		return -1;
3735 
3736 	*trigger = irq_trigger(idx);
3737 	*polarity = irq_polarity(idx);
3738 	return 0;
3739 }
3740 
3741 /*
3742  * This function currently is only a helper for the i386 smp boot process where
3743  * we need to reprogram the ioredtbls to cater for the cpus which have come online
3744  * so mask in all cases should simply be apic->target_cpus()
3745  */
3746 #ifdef CONFIG_SMP
3747 void __init setup_ioapic_dest(void)
3748 {
3749 	int pin, ioapic, irq, irq_entry;
3750 	const struct cpumask *mask;
3751 	struct irq_data *idata;
3752 
3753 	if (skip_ioapic_setup == 1)
3754 		return;
3755 
3756 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3757 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3758 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3759 		if (irq_entry == -1)
3760 			continue;
3761 		irq = pin_2_irq(irq_entry, ioapic, pin);
3762 
3763 		if ((ioapic > 0) && (irq > 16))
3764 			continue;
3765 
3766 		idata = irq_get_irq_data(irq);
3767 
3768 		/*
3769 		 * Honour affinities which have been set in early boot
3770 		 */
3771 		if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata))
3772 			mask = idata->affinity;
3773 		else
3774 			mask = apic->target_cpus();
3775 
3776 		if (intr_remapping_enabled)
3777 			ir_ioapic_set_affinity(idata, mask, false);
3778 		else
3779 			ioapic_set_affinity(idata, mask, false);
3780 	}
3781 
3782 }
3783 #endif
3784 
3785 #define IOAPIC_RESOURCE_NAME_SIZE 11
3786 
3787 static struct resource *ioapic_resources;
3788 
3789 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3790 {
3791 	unsigned long n;
3792 	struct resource *res;
3793 	char *mem;
3794 	int i;
3795 
3796 	if (nr_ioapics <= 0)
3797 		return NULL;
3798 
3799 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3800 	n *= nr_ioapics;
3801 
3802 	mem = alloc_bootmem(n);
3803 	res = (void *)mem;
3804 
3805 	mem += sizeof(struct resource) * nr_ioapics;
3806 
3807 	for (i = 0; i < nr_ioapics; i++) {
3808 		res[i].name = mem;
3809 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3810 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3811 		mem += IOAPIC_RESOURCE_NAME_SIZE;
3812 	}
3813 
3814 	ioapic_resources = res;
3815 
3816 	return res;
3817 }
3818 
3819 void __init ioapic_and_gsi_init(void)
3820 {
3821 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3822 	struct resource *ioapic_res;
3823 	int i;
3824 
3825 	ioapic_res = ioapic_setup_resources(nr_ioapics);
3826 	for (i = 0; i < nr_ioapics; i++) {
3827 		if (smp_found_config) {
3828 			ioapic_phys = mp_ioapics[i].apicaddr;
3829 #ifdef CONFIG_X86_32
3830 			if (!ioapic_phys) {
3831 				printk(KERN_ERR
3832 				       "WARNING: bogus zero IO-APIC "
3833 				       "address found in MPTABLE, "
3834 				       "disabling IO/APIC support!\n");
3835 				smp_found_config = 0;
3836 				skip_ioapic_setup = 1;
3837 				goto fake_ioapic_page;
3838 			}
3839 #endif
3840 		} else {
3841 #ifdef CONFIG_X86_32
3842 fake_ioapic_page:
3843 #endif
3844 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3845 			ioapic_phys = __pa(ioapic_phys);
3846 		}
3847 		set_fixmap_nocache(idx, ioapic_phys);
3848 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3849 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3850 			ioapic_phys);
3851 		idx++;
3852 
3853 		ioapic_res->start = ioapic_phys;
3854 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3855 		ioapic_res++;
3856 	}
3857 
3858 	probe_nr_irqs_gsi();
3859 }
3860 
3861 void __init ioapic_insert_resources(void)
3862 {
3863 	int i;
3864 	struct resource *r = ioapic_resources;
3865 
3866 	if (!r) {
3867 		if (nr_ioapics > 0)
3868 			printk(KERN_ERR
3869 				"IO APIC resources couldn't be allocated.\n");
3870 		return;
3871 	}
3872 
3873 	for (i = 0; i < nr_ioapics; i++) {
3874 		insert_resource(&iomem_resource, r);
3875 		r++;
3876 	}
3877 }
3878 
3879 int mp_find_ioapic(u32 gsi)
3880 {
3881 	int i = 0;
3882 
3883 	if (nr_ioapics == 0)
3884 		return -1;
3885 
3886 	/* Find the IOAPIC that manages this GSI. */
3887 	for (i = 0; i < nr_ioapics; i++) {
3888 		if ((gsi >= mp_gsi_routing[i].gsi_base)
3889 		    && (gsi <= mp_gsi_routing[i].gsi_end))
3890 			return i;
3891 	}
3892 
3893 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3894 	return -1;
3895 }
3896 
3897 int mp_find_ioapic_pin(int ioapic, u32 gsi)
3898 {
3899 	if (WARN_ON(ioapic == -1))
3900 		return -1;
3901 	if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
3902 		return -1;
3903 
3904 	return gsi - mp_gsi_routing[ioapic].gsi_base;
3905 }
3906 
3907 static __init int bad_ioapic(unsigned long address)
3908 {
3909 	if (nr_ioapics >= MAX_IO_APICS) {
3910 		printk(KERN_WARNING "WARNING: Max # of I/O APICs (%d) exceeded "
3911 		       "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
3912 		return 1;
3913 	}
3914 	if (!address) {
3915 		printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
3916 		       " found in table, skipping!\n");
3917 		return 1;
3918 	}
3919 	return 0;
3920 }
3921 
3922 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
3923 {
3924 	int idx = 0;
3925 	int entries;
3926 
3927 	if (bad_ioapic(address))
3928 		return;
3929 
3930 	idx = nr_ioapics;
3931 
3932 	mp_ioapics[idx].type = MP_IOAPIC;
3933 	mp_ioapics[idx].flags = MPC_APIC_USABLE;
3934 	mp_ioapics[idx].apicaddr = address;
3935 
3936 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
3937 	mp_ioapics[idx].apicid = io_apic_unique_id(id);
3938 	mp_ioapics[idx].apicver = io_apic_get_version(idx);
3939 
3940 	/*
3941 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
3942 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
3943 	 */
3944 	entries = io_apic_get_redir_entries(idx);
3945 	mp_gsi_routing[idx].gsi_base = gsi_base;
3946 	mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
3947 
3948 	/*
3949 	 * The number of IO-APIC IRQ registers (== #pins):
3950 	 */
3951 	nr_ioapic_registers[idx] = entries;
3952 
3953 	if (mp_gsi_routing[idx].gsi_end >= gsi_top)
3954 		gsi_top = mp_gsi_routing[idx].gsi_end + 1;
3955 
3956 	printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
3957 	       "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
3958 	       mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
3959 	       mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
3960 
3961 	nr_ioapics++;
3962 }
3963 
3964 /* Enable IOAPIC early just for system timer */
3965 void __init pre_init_apic_IRQ0(void)
3966 {
3967 	struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
3968 
3969 	printk(KERN_INFO "Early APIC setup for system timer0\n");
3970 #ifndef CONFIG_SMP
3971 	physid_set_mask_of_physid(boot_cpu_physical_apicid,
3972 					 &phys_cpu_present_map);
3973 #endif
3974 	setup_local_APIC();
3975 
3976 	io_apic_setup_irq_pin(0, 0, &attr);
3977 	irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
3978 				      "edge");
3979 }
3980