xref: /openbmc/linux/arch/x86/kernel/apic/apic.c (revision bbaf1ff0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	Local APIC handling, local APIC timers
4  *
5  *	(c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *
7  *	Fixes
8  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
9  *					thanks to Eric Gilmore
10  *					and Rolf G. Tews
11  *					for testing these extensively.
12  *	Maciej W. Rozycki	:	Various updates and fixes.
13  *	Mikael Pettersson	:	Power Management for UP-APIC.
14  *	Pavel Machek and
15  *	Mikael Pettersson	:	PM converted to driver model.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/acpi_pmtmr.h>
22 #include <linux/clockchips.h>
23 #include <linux/interrupt.h>
24 #include <linux/memblock.h>
25 #include <linux/ftrace.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/delay.h>
30 #include <linux/timex.h>
31 #include <linux/i8253.h>
32 #include <linux/dmar.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/dmi.h>
36 #include <linux/smp.h>
37 #include <linux/mm.h>
38 
39 #include <asm/trace/irq_vectors.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/pc-conf-reg.h>
42 #include <asm/perf_event.h>
43 #include <asm/x86_init.h>
44 #include <linux/atomic.h>
45 #include <asm/barrier.h>
46 #include <asm/mpspec.h>
47 #include <asm/i8259.h>
48 #include <asm/proto.h>
49 #include <asm/traps.h>
50 #include <asm/apic.h>
51 #include <asm/acpi.h>
52 #include <asm/io_apic.h>
53 #include <asm/desc.h>
54 #include <asm/hpet.h>
55 #include <asm/mtrr.h>
56 #include <asm/time.h>
57 #include <asm/smp.h>
58 #include <asm/mce.h>
59 #include <asm/tsc.h>
60 #include <asm/hypervisor.h>
61 #include <asm/cpu_device_id.h>
62 #include <asm/intel-family.h>
63 #include <asm/irq_regs.h>
64 #include <asm/cpu.h>
65 
66 unsigned int num_processors;
67 
68 unsigned disabled_cpus;
69 
70 /* Processor that is doing the boot up */
71 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U;
72 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
73 
74 u8 boot_cpu_apic_version __ro_after_init;
75 
76 /*
77  * The highest APIC ID seen during enumeration.
78  */
79 static unsigned int max_physical_apicid;
80 
81 /*
82  * Bitmask of physically existing CPUs:
83  */
84 physid_mask_t phys_cpu_present_map;
85 
86 /*
87  * Processor to be disabled specified by kernel parameter
88  * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
89  * avoid undefined behaviour caused by sending INIT from AP to BSP.
90  */
91 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID;
92 
93 /*
94  * This variable controls which CPUs receive external NMIs.  By default,
95  * external NMIs are delivered only to the BSP.
96  */
97 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
98 
99 /*
100  * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
101  */
102 static bool virt_ext_dest_id __ro_after_init;
103 
104 /* For parallel bootup. */
105 unsigned long apic_mmio_base __ro_after_init;
106 
107 /*
108  * Map cpu index to physical APIC ID
109  */
110 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
111 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
112 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
113 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
114 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
115 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
116 
117 #ifdef CONFIG_X86_32
118 
119 /*
120  * On x86_32, the mapping between cpu and logical apicid may vary
121  * depending on apic in use.  The following early percpu variable is
122  * used for the mapping.  This is where the behaviors of x86_64 and 32
123  * actually diverge.  Let's keep it ugly for now.
124  */
125 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
126 
127 /* Local APIC was disabled by the BIOS and enabled by the kernel */
128 static int enabled_via_apicbase __ro_after_init;
129 
130 /*
131  * Handle interrupt mode configuration register (IMCR).
132  * This register controls whether the interrupt signals
133  * that reach the BSP come from the master PIC or from the
134  * local APIC. Before entering Symmetric I/O Mode, either
135  * the BIOS or the operating system must switch out of
136  * PIC Mode by changing the IMCR.
137  */
138 static inline void imcr_pic_to_apic(void)
139 {
140 	/* NMI and 8259 INTR go through APIC */
141 	pc_conf_set(PC_CONF_MPS_IMCR, 0x01);
142 }
143 
144 static inline void imcr_apic_to_pic(void)
145 {
146 	/* NMI and 8259 INTR go directly to BSP */
147 	pc_conf_set(PC_CONF_MPS_IMCR, 0x00);
148 }
149 #endif
150 
151 /*
152  * Knob to control our willingness to enable the local APIC.
153  *
154  * +1=force-enable
155  */
156 static int force_enable_local_apic __initdata;
157 
158 /*
159  * APIC command line parameters
160  */
161 static int __init parse_lapic(char *arg)
162 {
163 	if (IS_ENABLED(CONFIG_X86_32) && !arg)
164 		force_enable_local_apic = 1;
165 	else if (arg && !strncmp(arg, "notscdeadline", 13))
166 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
167 	return 0;
168 }
169 early_param("lapic", parse_lapic);
170 
171 #ifdef CONFIG_X86_64
172 static int apic_calibrate_pmtmr __initdata;
173 static __init int setup_apicpmtimer(char *s)
174 {
175 	apic_calibrate_pmtmr = 1;
176 	notsc_setup(NULL);
177 	return 1;
178 }
179 __setup("apicpmtimer", setup_apicpmtimer);
180 #endif
181 
182 unsigned long mp_lapic_addr __ro_after_init;
183 int disable_apic __ro_after_init;
184 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
185 static int disable_apic_timer __initdata;
186 /* Local APIC timer works in C2 */
187 int local_apic_timer_c2_ok __ro_after_init;
188 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
189 
190 /*
191  * Debug level, exported for io_apic.c
192  */
193 int apic_verbosity __ro_after_init;
194 
195 int pic_mode __ro_after_init;
196 
197 /* Have we found an MP table */
198 int smp_found_config __ro_after_init;
199 
200 static struct resource lapic_resource = {
201 	.name = "Local APIC",
202 	.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
203 };
204 
205 unsigned int lapic_timer_period = 0;
206 
207 static void apic_pm_activate(void);
208 
209 static unsigned long apic_phys __ro_after_init;
210 
211 /*
212  * Get the LAPIC version
213  */
214 static inline int lapic_get_version(void)
215 {
216 	return GET_APIC_VERSION(apic_read(APIC_LVR));
217 }
218 
219 /*
220  * Check, if the APIC is integrated or a separate chip
221  */
222 static inline int lapic_is_integrated(void)
223 {
224 	return APIC_INTEGRATED(lapic_get_version());
225 }
226 
227 /*
228  * Check, whether this is a modern or a first generation APIC
229  */
230 static int modern_apic(void)
231 {
232 	/* AMD systems use old APIC versions, so check the CPU */
233 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
234 	    boot_cpu_data.x86 >= 0xf)
235 		return 1;
236 
237 	/* Hygon systems use modern APIC */
238 	if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
239 		return 1;
240 
241 	return lapic_get_version() >= 0x14;
242 }
243 
244 /*
245  * right after this call apic become NOOP driven
246  * so apic->write/read doesn't do anything
247  */
248 static void __init apic_disable(void)
249 {
250 	pr_info("APIC: switched to apic NOOP\n");
251 	apic = &apic_noop;
252 }
253 
254 void native_apic_wait_icr_idle(void)
255 {
256 	while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
257 		cpu_relax();
258 }
259 
260 u32 native_safe_apic_wait_icr_idle(void)
261 {
262 	u32 send_status;
263 	int timeout;
264 
265 	timeout = 0;
266 	do {
267 		send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
268 		if (!send_status)
269 			break;
270 		inc_irq_stat(icr_read_retry_count);
271 		udelay(100);
272 	} while (timeout++ < 1000);
273 
274 	return send_status;
275 }
276 
277 void native_apic_icr_write(u32 low, u32 id)
278 {
279 	unsigned long flags;
280 
281 	local_irq_save(flags);
282 	apic_write(APIC_ICR2, SET_XAPIC_DEST_FIELD(id));
283 	apic_write(APIC_ICR, low);
284 	local_irq_restore(flags);
285 }
286 
287 u64 native_apic_icr_read(void)
288 {
289 	u32 icr1, icr2;
290 
291 	icr2 = apic_read(APIC_ICR2);
292 	icr1 = apic_read(APIC_ICR);
293 
294 	return icr1 | ((u64)icr2 << 32);
295 }
296 
297 #ifdef CONFIG_X86_32
298 /**
299  * get_physical_broadcast - Get number of physical broadcast IDs
300  */
301 int get_physical_broadcast(void)
302 {
303 	return modern_apic() ? 0xff : 0xf;
304 }
305 #endif
306 
307 /**
308  * lapic_get_maxlvt - get the maximum number of local vector table entries
309  */
310 int lapic_get_maxlvt(void)
311 {
312 	/*
313 	 * - we always have APIC integrated on 64bit mode
314 	 * - 82489DXs do not report # of LVT entries
315 	 */
316 	return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
317 }
318 
319 /*
320  * Local APIC timer
321  */
322 
323 /* Clock divisor */
324 #define APIC_DIVISOR 16
325 #define TSC_DIVISOR  8
326 
327 /* i82489DX specific */
328 #define		I82489DX_BASE_DIVIDER		(((0x2) << 18))
329 
330 /*
331  * This function sets up the local APIC timer, with a timeout of
332  * 'clocks' APIC bus clock. During calibration we actually call
333  * this function twice on the boot CPU, once with a bogus timeout
334  * value, second time for real. The other (noncalibrating) CPUs
335  * call this function only once, with the real, calibrated value.
336  *
337  * We do reads before writes even if unnecessary, to get around the
338  * P5 APIC double write bug.
339  */
340 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
341 {
342 	unsigned int lvtt_value, tmp_value;
343 
344 	lvtt_value = LOCAL_TIMER_VECTOR;
345 	if (!oneshot)
346 		lvtt_value |= APIC_LVT_TIMER_PERIODIC;
347 	else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
348 		lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
349 
350 	/*
351 	 * The i82489DX APIC uses bit 18 and 19 for the base divider.  This
352 	 * overlaps with bit 18 on integrated APICs, but is not documented
353 	 * in the SDM. No problem though. i82489DX equipped systems do not
354 	 * have TSC deadline timer.
355 	 */
356 	if (!lapic_is_integrated())
357 		lvtt_value |= I82489DX_BASE_DIVIDER;
358 
359 	if (!irqen)
360 		lvtt_value |= APIC_LVT_MASKED;
361 
362 	apic_write(APIC_LVTT, lvtt_value);
363 
364 	if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
365 		/*
366 		 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
367 		 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
368 		 * According to Intel, MFENCE can do the serialization here.
369 		 */
370 		asm volatile("mfence" : : : "memory");
371 		return;
372 	}
373 
374 	/*
375 	 * Divide PICLK by 16
376 	 */
377 	tmp_value = apic_read(APIC_TDCR);
378 	apic_write(APIC_TDCR,
379 		(tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
380 		APIC_TDR_DIV_16);
381 
382 	if (!oneshot)
383 		apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
384 }
385 
386 /*
387  * Setup extended LVT, AMD specific
388  *
389  * Software should use the LVT offsets the BIOS provides.  The offsets
390  * are determined by the subsystems using it like those for MCE
391  * threshold or IBS.  On K8 only offset 0 (APIC500) and MCE interrupts
392  * are supported. Beginning with family 10h at least 4 offsets are
393  * available.
394  *
395  * Since the offsets must be consistent for all cores, we keep track
396  * of the LVT offsets in software and reserve the offset for the same
397  * vector also to be used on other cores. An offset is freed by
398  * setting the entry to APIC_EILVT_MASKED.
399  *
400  * If the BIOS is right, there should be no conflicts. Otherwise a
401  * "[Firmware Bug]: ..." error message is generated. However, if
402  * software does not properly determines the offsets, it is not
403  * necessarily a BIOS bug.
404  */
405 
406 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
407 
408 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
409 {
410 	return (old & APIC_EILVT_MASKED)
411 		|| (new == APIC_EILVT_MASKED)
412 		|| ((new & ~APIC_EILVT_MASKED) == old);
413 }
414 
415 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
416 {
417 	unsigned int rsvd, vector;
418 
419 	if (offset >= APIC_EILVT_NR_MAX)
420 		return ~0;
421 
422 	rsvd = atomic_read(&eilvt_offsets[offset]);
423 	do {
424 		vector = rsvd & ~APIC_EILVT_MASKED;	/* 0: unassigned */
425 		if (vector && !eilvt_entry_is_changeable(vector, new))
426 			/* may not change if vectors are different */
427 			return rsvd;
428 	} while (!atomic_try_cmpxchg(&eilvt_offsets[offset], &rsvd, new));
429 
430 	rsvd = new & ~APIC_EILVT_MASKED;
431 	if (rsvd && rsvd != vector)
432 		pr_info("LVT offset %d assigned for vector 0x%02x\n",
433 			offset, rsvd);
434 
435 	return new;
436 }
437 
438 /*
439  * If mask=1, the LVT entry does not generate interrupts while mask=0
440  * enables the vector. See also the BKDGs. Must be called with
441  * preemption disabled.
442  */
443 
444 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
445 {
446 	unsigned long reg = APIC_EILVTn(offset);
447 	unsigned int new, old, reserved;
448 
449 	new = (mask << 16) | (msg_type << 8) | vector;
450 	old = apic_read(reg);
451 	reserved = reserve_eilvt_offset(offset, new);
452 
453 	if (reserved != new) {
454 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
455 		       "vector 0x%x, but the register is already in use for "
456 		       "vector 0x%x on another cpu\n",
457 		       smp_processor_id(), reg, offset, new, reserved);
458 		return -EINVAL;
459 	}
460 
461 	if (!eilvt_entry_is_changeable(old, new)) {
462 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
463 		       "vector 0x%x, but the register is already in use for "
464 		       "vector 0x%x on this cpu\n",
465 		       smp_processor_id(), reg, offset, new, old);
466 		return -EBUSY;
467 	}
468 
469 	apic_write(reg, new);
470 
471 	return 0;
472 }
473 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
474 
475 /*
476  * Program the next event, relative to now
477  */
478 static int lapic_next_event(unsigned long delta,
479 			    struct clock_event_device *evt)
480 {
481 	apic_write(APIC_TMICT, delta);
482 	return 0;
483 }
484 
485 static int lapic_next_deadline(unsigned long delta,
486 			       struct clock_event_device *evt)
487 {
488 	u64 tsc;
489 
490 	/* This MSR is special and need a special fence: */
491 	weak_wrmsr_fence();
492 
493 	tsc = rdtsc();
494 	wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
495 	return 0;
496 }
497 
498 static int lapic_timer_shutdown(struct clock_event_device *evt)
499 {
500 	unsigned int v;
501 
502 	/* Lapic used as dummy for broadcast ? */
503 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
504 		return 0;
505 
506 	v = apic_read(APIC_LVTT);
507 	v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
508 	apic_write(APIC_LVTT, v);
509 	apic_write(APIC_TMICT, 0);
510 	return 0;
511 }
512 
513 static inline int
514 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
515 {
516 	/* Lapic used as dummy for broadcast ? */
517 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
518 		return 0;
519 
520 	__setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
521 	return 0;
522 }
523 
524 static int lapic_timer_set_periodic(struct clock_event_device *evt)
525 {
526 	return lapic_timer_set_periodic_oneshot(evt, false);
527 }
528 
529 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
530 {
531 	return lapic_timer_set_periodic_oneshot(evt, true);
532 }
533 
534 /*
535  * Local APIC timer broadcast function
536  */
537 static void lapic_timer_broadcast(const struct cpumask *mask)
538 {
539 #ifdef CONFIG_SMP
540 	apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
541 #endif
542 }
543 
544 
545 /*
546  * The local apic timer can be used for any function which is CPU local.
547  */
548 static struct clock_event_device lapic_clockevent = {
549 	.name				= "lapic",
550 	.features			= CLOCK_EVT_FEAT_PERIODIC |
551 					  CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
552 					  | CLOCK_EVT_FEAT_DUMMY,
553 	.shift				= 32,
554 	.set_state_shutdown		= lapic_timer_shutdown,
555 	.set_state_periodic		= lapic_timer_set_periodic,
556 	.set_state_oneshot		= lapic_timer_set_oneshot,
557 	.set_state_oneshot_stopped	= lapic_timer_shutdown,
558 	.set_next_event			= lapic_next_event,
559 	.broadcast			= lapic_timer_broadcast,
560 	.rating				= 100,
561 	.irq				= -1,
562 };
563 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
564 
565 static const struct x86_cpu_id deadline_match[] __initconst = {
566 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
567 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
568 
569 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X,	0x0b000020),
570 
571 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
572 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
573 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
574 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
575 
576 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
577 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
578 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
579 
580 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL,		0x22),
581 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L,		0x20),
582 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G,		0x17),
583 
584 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL,		0x25),
585 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G,	0x17),
586 
587 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L,		0xb2),
588 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE,		0xb2),
589 
590 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L,		0x52),
591 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE,		0x52),
592 
593 	{},
594 };
595 
596 static __init bool apic_validate_deadline_timer(void)
597 {
598 	const struct x86_cpu_id *m;
599 	u32 rev;
600 
601 	if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
602 		return false;
603 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
604 		return true;
605 
606 	m = x86_match_cpu(deadline_match);
607 	if (!m)
608 		return true;
609 
610 	rev = (u32)m->driver_data;
611 
612 	if (boot_cpu_data.microcode >= rev)
613 		return true;
614 
615 	setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
616 	pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
617 	       "please update microcode to version: 0x%x (or later)\n", rev);
618 	return false;
619 }
620 
621 /*
622  * Setup the local APIC timer for this CPU. Copy the initialized values
623  * of the boot CPU and register the clock event in the framework.
624  */
625 static void setup_APIC_timer(void)
626 {
627 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
628 
629 	if (this_cpu_has(X86_FEATURE_ARAT)) {
630 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
631 		/* Make LAPIC timer preferable over percpu HPET */
632 		lapic_clockevent.rating = 150;
633 	}
634 
635 	memcpy(levt, &lapic_clockevent, sizeof(*levt));
636 	levt->cpumask = cpumask_of(smp_processor_id());
637 
638 	if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
639 		levt->name = "lapic-deadline";
640 		levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
641 				    CLOCK_EVT_FEAT_DUMMY);
642 		levt->set_next_event = lapic_next_deadline;
643 		clockevents_config_and_register(levt,
644 						tsc_khz * (1000 / TSC_DIVISOR),
645 						0xF, ~0UL);
646 	} else
647 		clockevents_register_device(levt);
648 }
649 
650 /*
651  * Install the updated TSC frequency from recalibration at the TSC
652  * deadline clockevent devices.
653  */
654 static void __lapic_update_tsc_freq(void *info)
655 {
656 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
657 
658 	if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
659 		return;
660 
661 	clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
662 }
663 
664 void lapic_update_tsc_freq(void)
665 {
666 	/*
667 	 * The clockevent device's ->mult and ->shift can both be
668 	 * changed. In order to avoid races, schedule the frequency
669 	 * update code on each CPU.
670 	 */
671 	on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
672 }
673 
674 /*
675  * In this functions we calibrate APIC bus clocks to the external timer.
676  *
677  * We want to do the calibration only once since we want to have local timer
678  * irqs synchronous. CPUs connected by the same APIC bus have the very same bus
679  * frequency.
680  *
681  * This was previously done by reading the PIT/HPET and waiting for a wrap
682  * around to find out, that a tick has elapsed. I have a box, where the PIT
683  * readout is broken, so it never gets out of the wait loop again. This was
684  * also reported by others.
685  *
686  * Monitoring the jiffies value is inaccurate and the clockevents
687  * infrastructure allows us to do a simple substitution of the interrupt
688  * handler.
689  *
690  * The calibration routine also uses the pm_timer when possible, as the PIT
691  * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
692  * back to normal later in the boot process).
693  */
694 
695 #define LAPIC_CAL_LOOPS		(HZ/10)
696 
697 static __initdata int lapic_cal_loops = -1;
698 static __initdata long lapic_cal_t1, lapic_cal_t2;
699 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
700 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
701 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
702 
703 /*
704  * Temporary interrupt handler and polled calibration function.
705  */
706 static void __init lapic_cal_handler(struct clock_event_device *dev)
707 {
708 	unsigned long long tsc = 0;
709 	long tapic = apic_read(APIC_TMCCT);
710 	unsigned long pm = acpi_pm_read_early();
711 
712 	if (boot_cpu_has(X86_FEATURE_TSC))
713 		tsc = rdtsc();
714 
715 	switch (lapic_cal_loops++) {
716 	case 0:
717 		lapic_cal_t1 = tapic;
718 		lapic_cal_tsc1 = tsc;
719 		lapic_cal_pm1 = pm;
720 		lapic_cal_j1 = jiffies;
721 		break;
722 
723 	case LAPIC_CAL_LOOPS:
724 		lapic_cal_t2 = tapic;
725 		lapic_cal_tsc2 = tsc;
726 		if (pm < lapic_cal_pm1)
727 			pm += ACPI_PM_OVRRUN;
728 		lapic_cal_pm2 = pm;
729 		lapic_cal_j2 = jiffies;
730 		break;
731 	}
732 }
733 
734 static int __init
735 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
736 {
737 	const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
738 	const long pm_thresh = pm_100ms / 100;
739 	unsigned long mult;
740 	u64 res;
741 
742 #ifndef CONFIG_X86_PM_TIMER
743 	return -1;
744 #endif
745 
746 	apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
747 
748 	/* Check, if the PM timer is available */
749 	if (!deltapm)
750 		return -1;
751 
752 	mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
753 
754 	if (deltapm > (pm_100ms - pm_thresh) &&
755 	    deltapm < (pm_100ms + pm_thresh)) {
756 		apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
757 		return 0;
758 	}
759 
760 	res = (((u64)deltapm) *  mult) >> 22;
761 	do_div(res, 1000000);
762 	pr_warn("APIC calibration not consistent "
763 		"with PM-Timer: %ldms instead of 100ms\n", (long)res);
764 
765 	/* Correct the lapic counter value */
766 	res = (((u64)(*delta)) * pm_100ms);
767 	do_div(res, deltapm);
768 	pr_info("APIC delta adjusted to PM-Timer: "
769 		"%lu (%ld)\n", (unsigned long)res, *delta);
770 	*delta = (long)res;
771 
772 	/* Correct the tsc counter value */
773 	if (boot_cpu_has(X86_FEATURE_TSC)) {
774 		res = (((u64)(*deltatsc)) * pm_100ms);
775 		do_div(res, deltapm);
776 		apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
777 					  "PM-Timer: %lu (%ld)\n",
778 					(unsigned long)res, *deltatsc);
779 		*deltatsc = (long)res;
780 	}
781 
782 	return 0;
783 }
784 
785 static int __init lapic_init_clockevent(void)
786 {
787 	if (!lapic_timer_period)
788 		return -1;
789 
790 	/* Calculate the scaled math multiplication factor */
791 	lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
792 					TICK_NSEC, lapic_clockevent.shift);
793 	lapic_clockevent.max_delta_ns =
794 		clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
795 	lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
796 	lapic_clockevent.min_delta_ns =
797 		clockevent_delta2ns(0xF, &lapic_clockevent);
798 	lapic_clockevent.min_delta_ticks = 0xF;
799 
800 	return 0;
801 }
802 
803 bool __init apic_needs_pit(void)
804 {
805 	/*
806 	 * If the frequencies are not known, PIT is required for both TSC
807 	 * and apic timer calibration.
808 	 */
809 	if (!tsc_khz || !cpu_khz)
810 		return true;
811 
812 	/* Is there an APIC at all or is it disabled? */
813 	if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic)
814 		return true;
815 
816 	/*
817 	 * If interrupt delivery mode is legacy PIC or virtual wire without
818 	 * configuration, the local APIC timer wont be set up. Make sure
819 	 * that the PIT is initialized.
820 	 */
821 	if (apic_intr_mode == APIC_PIC ||
822 	    apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
823 		return true;
824 
825 	/* Virt guests may lack ARAT, but still have DEADLINE */
826 	if (!boot_cpu_has(X86_FEATURE_ARAT))
827 		return true;
828 
829 	/* Deadline timer is based on TSC so no further PIT action required */
830 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
831 		return false;
832 
833 	/* APIC timer disabled? */
834 	if (disable_apic_timer)
835 		return true;
836 	/*
837 	 * The APIC timer frequency is known already, no PIT calibration
838 	 * required. If unknown, let the PIT be initialized.
839 	 */
840 	return lapic_timer_period == 0;
841 }
842 
843 static int __init calibrate_APIC_clock(void)
844 {
845 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
846 	u64 tsc_perj = 0, tsc_start = 0;
847 	unsigned long jif_start;
848 	unsigned long deltaj;
849 	long delta, deltatsc;
850 	int pm_referenced = 0;
851 
852 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
853 		return 0;
854 
855 	/*
856 	 * Check if lapic timer has already been calibrated by platform
857 	 * specific routine, such as tsc calibration code. If so just fill
858 	 * in the clockevent structure and return.
859 	 */
860 	if (!lapic_init_clockevent()) {
861 		apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
862 			    lapic_timer_period);
863 		/*
864 		 * Direct calibration methods must have an always running
865 		 * local APIC timer, no need for broadcast timer.
866 		 */
867 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
868 		return 0;
869 	}
870 
871 	apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
872 		    "calibrating APIC timer ...\n");
873 
874 	/*
875 	 * There are platforms w/o global clockevent devices. Instead of
876 	 * making the calibration conditional on that, use a polling based
877 	 * approach everywhere.
878 	 */
879 	local_irq_disable();
880 
881 	/*
882 	 * Setup the APIC counter to maximum. There is no way the lapic
883 	 * can underflow in the 100ms detection time frame
884 	 */
885 	__setup_APIC_LVTT(0xffffffff, 0, 0);
886 
887 	/*
888 	 * Methods to terminate the calibration loop:
889 	 *  1) Global clockevent if available (jiffies)
890 	 *  2) TSC if available and frequency is known
891 	 */
892 	jif_start = READ_ONCE(jiffies);
893 
894 	if (tsc_khz) {
895 		tsc_start = rdtsc();
896 		tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
897 	}
898 
899 	/*
900 	 * Enable interrupts so the tick can fire, if a global
901 	 * clockevent device is available
902 	 */
903 	local_irq_enable();
904 
905 	while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
906 		/* Wait for a tick to elapse */
907 		while (1) {
908 			if (tsc_khz) {
909 				u64 tsc_now = rdtsc();
910 				if ((tsc_now - tsc_start) >= tsc_perj) {
911 					tsc_start += tsc_perj;
912 					break;
913 				}
914 			} else {
915 				unsigned long jif_now = READ_ONCE(jiffies);
916 
917 				if (time_after(jif_now, jif_start)) {
918 					jif_start = jif_now;
919 					break;
920 				}
921 			}
922 			cpu_relax();
923 		}
924 
925 		/* Invoke the calibration routine */
926 		local_irq_disable();
927 		lapic_cal_handler(NULL);
928 		local_irq_enable();
929 	}
930 
931 	local_irq_disable();
932 
933 	/* Build delta t1-t2 as apic timer counts down */
934 	delta = lapic_cal_t1 - lapic_cal_t2;
935 	apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
936 
937 	deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
938 
939 	/* we trust the PM based calibration if possible */
940 	pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
941 					&delta, &deltatsc);
942 
943 	lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
944 	lapic_init_clockevent();
945 
946 	apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
947 	apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
948 	apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
949 		    lapic_timer_period);
950 
951 	if (boot_cpu_has(X86_FEATURE_TSC)) {
952 		apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
953 			    "%ld.%04ld MHz.\n",
954 			    (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
955 			    (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
956 	}
957 
958 	apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
959 		    "%u.%04u MHz.\n",
960 		    lapic_timer_period / (1000000 / HZ),
961 		    lapic_timer_period % (1000000 / HZ));
962 
963 	/*
964 	 * Do a sanity check on the APIC calibration result
965 	 */
966 	if (lapic_timer_period < (1000000 / HZ)) {
967 		local_irq_enable();
968 		pr_warn("APIC frequency too slow, disabling apic timer\n");
969 		return -1;
970 	}
971 
972 	levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
973 
974 	/*
975 	 * PM timer calibration failed or not turned on so lets try APIC
976 	 * timer based calibration, if a global clockevent device is
977 	 * available.
978 	 */
979 	if (!pm_referenced && global_clock_event) {
980 		apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
981 
982 		/*
983 		 * Setup the apic timer manually
984 		 */
985 		levt->event_handler = lapic_cal_handler;
986 		lapic_timer_set_periodic(levt);
987 		lapic_cal_loops = -1;
988 
989 		/* Let the interrupts run */
990 		local_irq_enable();
991 
992 		while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
993 			cpu_relax();
994 
995 		/* Stop the lapic timer */
996 		local_irq_disable();
997 		lapic_timer_shutdown(levt);
998 
999 		/* Jiffies delta */
1000 		deltaj = lapic_cal_j2 - lapic_cal_j1;
1001 		apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
1002 
1003 		/* Check, if the jiffies result is consistent */
1004 		if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
1005 			apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
1006 		else
1007 			levt->features |= CLOCK_EVT_FEAT_DUMMY;
1008 	}
1009 	local_irq_enable();
1010 
1011 	if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1012 		pr_warn("APIC timer disabled due to verification failure\n");
1013 		return -1;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Setup the boot APIC
1021  *
1022  * Calibrate and verify the result.
1023  */
1024 void __init setup_boot_APIC_clock(void)
1025 {
1026 	/*
1027 	 * The local apic timer can be disabled via the kernel
1028 	 * commandline or from the CPU detection code. Register the lapic
1029 	 * timer as a dummy clock event source on SMP systems, so the
1030 	 * broadcast mechanism is used. On UP systems simply ignore it.
1031 	 */
1032 	if (disable_apic_timer) {
1033 		pr_info("Disabling APIC timer\n");
1034 		/* No broadcast on UP ! */
1035 		if (num_possible_cpus() > 1) {
1036 			lapic_clockevent.mult = 1;
1037 			setup_APIC_timer();
1038 		}
1039 		return;
1040 	}
1041 
1042 	if (calibrate_APIC_clock()) {
1043 		/* No broadcast on UP ! */
1044 		if (num_possible_cpus() > 1)
1045 			setup_APIC_timer();
1046 		return;
1047 	}
1048 
1049 	/*
1050 	 * If nmi_watchdog is set to IO_APIC, we need the
1051 	 * PIT/HPET going.  Otherwise register lapic as a dummy
1052 	 * device.
1053 	 */
1054 	lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1055 
1056 	/* Setup the lapic or request the broadcast */
1057 	setup_APIC_timer();
1058 	amd_e400_c1e_apic_setup();
1059 }
1060 
1061 void setup_secondary_APIC_clock(void)
1062 {
1063 	setup_APIC_timer();
1064 	amd_e400_c1e_apic_setup();
1065 }
1066 
1067 /*
1068  * The guts of the apic timer interrupt
1069  */
1070 static void local_apic_timer_interrupt(void)
1071 {
1072 	struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1073 
1074 	/*
1075 	 * Normally we should not be here till LAPIC has been initialized but
1076 	 * in some cases like kdump, its possible that there is a pending LAPIC
1077 	 * timer interrupt from previous kernel's context and is delivered in
1078 	 * new kernel the moment interrupts are enabled.
1079 	 *
1080 	 * Interrupts are enabled early and LAPIC is setup much later, hence
1081 	 * its possible that when we get here evt->event_handler is NULL.
1082 	 * Check for event_handler being NULL and discard the interrupt as
1083 	 * spurious.
1084 	 */
1085 	if (!evt->event_handler) {
1086 		pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1087 			smp_processor_id());
1088 		/* Switch it off */
1089 		lapic_timer_shutdown(evt);
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * the NMI deadlock-detector uses this.
1095 	 */
1096 	inc_irq_stat(apic_timer_irqs);
1097 
1098 	evt->event_handler(evt);
1099 }
1100 
1101 /*
1102  * Local APIC timer interrupt. This is the most natural way for doing
1103  * local interrupts, but local timer interrupts can be emulated by
1104  * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1105  *
1106  * [ if a single-CPU system runs an SMP kernel then we call the local
1107  *   interrupt as well. Thus we cannot inline the local irq ... ]
1108  */
1109 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1110 {
1111 	struct pt_regs *old_regs = set_irq_regs(regs);
1112 
1113 	ack_APIC_irq();
1114 	trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1115 	local_apic_timer_interrupt();
1116 	trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1117 
1118 	set_irq_regs(old_regs);
1119 }
1120 
1121 /*
1122  * Local APIC start and shutdown
1123  */
1124 
1125 /**
1126  * clear_local_APIC - shutdown the local APIC
1127  *
1128  * This is called, when a CPU is disabled and before rebooting, so the state of
1129  * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1130  * leftovers during boot.
1131  */
1132 void clear_local_APIC(void)
1133 {
1134 	int maxlvt;
1135 	u32 v;
1136 
1137 	/* APIC hasn't been mapped yet */
1138 	if (!x2apic_mode && !apic_phys)
1139 		return;
1140 
1141 	maxlvt = lapic_get_maxlvt();
1142 	/*
1143 	 * Masking an LVT entry can trigger a local APIC error
1144 	 * if the vector is zero. Mask LVTERR first to prevent this.
1145 	 */
1146 	if (maxlvt >= 3) {
1147 		v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1148 		apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1149 	}
1150 	/*
1151 	 * Careful: we have to set masks only first to deassert
1152 	 * any level-triggered sources.
1153 	 */
1154 	v = apic_read(APIC_LVTT);
1155 	apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1156 	v = apic_read(APIC_LVT0);
1157 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1158 	v = apic_read(APIC_LVT1);
1159 	apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1160 	if (maxlvt >= 4) {
1161 		v = apic_read(APIC_LVTPC);
1162 		apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1163 	}
1164 
1165 	/* lets not touch this if we didn't frob it */
1166 #ifdef CONFIG_X86_THERMAL_VECTOR
1167 	if (maxlvt >= 5) {
1168 		v = apic_read(APIC_LVTTHMR);
1169 		apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1170 	}
1171 #endif
1172 #ifdef CONFIG_X86_MCE_INTEL
1173 	if (maxlvt >= 6) {
1174 		v = apic_read(APIC_LVTCMCI);
1175 		if (!(v & APIC_LVT_MASKED))
1176 			apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1177 	}
1178 #endif
1179 
1180 	/*
1181 	 * Clean APIC state for other OSs:
1182 	 */
1183 	apic_write(APIC_LVTT, APIC_LVT_MASKED);
1184 	apic_write(APIC_LVT0, APIC_LVT_MASKED);
1185 	apic_write(APIC_LVT1, APIC_LVT_MASKED);
1186 	if (maxlvt >= 3)
1187 		apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1188 	if (maxlvt >= 4)
1189 		apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1190 
1191 	/* Integrated APIC (!82489DX) ? */
1192 	if (lapic_is_integrated()) {
1193 		if (maxlvt > 3)
1194 			/* Clear ESR due to Pentium errata 3AP and 11AP */
1195 			apic_write(APIC_ESR, 0);
1196 		apic_read(APIC_ESR);
1197 	}
1198 }
1199 
1200 /**
1201  * apic_soft_disable - Clears and software disables the local APIC on hotplug
1202  *
1203  * Contrary to disable_local_APIC() this does not touch the enable bit in
1204  * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1205  * bus would require a hardware reset as the APIC would lose track of bus
1206  * arbitration. On systems with FSB delivery APICBASE could be disabled,
1207  * but it has to be guaranteed that no interrupt is sent to the APIC while
1208  * in that state and it's not clear from the SDM whether it still responds
1209  * to INIT/SIPI messages. Stay on the safe side and use software disable.
1210  */
1211 void apic_soft_disable(void)
1212 {
1213 	u32 value;
1214 
1215 	clear_local_APIC();
1216 
1217 	/* Soft disable APIC (implies clearing of registers for 82489DX!). */
1218 	value = apic_read(APIC_SPIV);
1219 	value &= ~APIC_SPIV_APIC_ENABLED;
1220 	apic_write(APIC_SPIV, value);
1221 }
1222 
1223 /**
1224  * disable_local_APIC - clear and disable the local APIC
1225  */
1226 void disable_local_APIC(void)
1227 {
1228 	/* APIC hasn't been mapped yet */
1229 	if (!x2apic_mode && !apic_phys)
1230 		return;
1231 
1232 	apic_soft_disable();
1233 
1234 #ifdef CONFIG_X86_32
1235 	/*
1236 	 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1237 	 * restore the disabled state.
1238 	 */
1239 	if (enabled_via_apicbase) {
1240 		unsigned int l, h;
1241 
1242 		rdmsr(MSR_IA32_APICBASE, l, h);
1243 		l &= ~MSR_IA32_APICBASE_ENABLE;
1244 		wrmsr(MSR_IA32_APICBASE, l, h);
1245 	}
1246 #endif
1247 }
1248 
1249 /*
1250  * If Linux enabled the LAPIC against the BIOS default disable it down before
1251  * re-entering the BIOS on shutdown.  Otherwise the BIOS may get confused and
1252  * not power-off.  Additionally clear all LVT entries before disable_local_APIC
1253  * for the case where Linux didn't enable the LAPIC.
1254  */
1255 void lapic_shutdown(void)
1256 {
1257 	unsigned long flags;
1258 
1259 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1260 		return;
1261 
1262 	local_irq_save(flags);
1263 
1264 #ifdef CONFIG_X86_32
1265 	if (!enabled_via_apicbase)
1266 		clear_local_APIC();
1267 	else
1268 #endif
1269 		disable_local_APIC();
1270 
1271 
1272 	local_irq_restore(flags);
1273 }
1274 
1275 /**
1276  * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1277  */
1278 void __init sync_Arb_IDs(void)
1279 {
1280 	/*
1281 	 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1282 	 * needed on AMD.
1283 	 */
1284 	if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1285 		return;
1286 
1287 	/*
1288 	 * Wait for idle.
1289 	 */
1290 	apic_wait_icr_idle();
1291 
1292 	apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1293 	apic_write(APIC_ICR, APIC_DEST_ALLINC |
1294 			APIC_INT_LEVELTRIG | APIC_DM_INIT);
1295 }
1296 
1297 enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1298 
1299 static int __init __apic_intr_mode_select(void)
1300 {
1301 	/* Check kernel option */
1302 	if (disable_apic) {
1303 		pr_info("APIC disabled via kernel command line\n");
1304 		return APIC_PIC;
1305 	}
1306 
1307 	/* Check BIOS */
1308 #ifdef CONFIG_X86_64
1309 	/* On 64-bit, the APIC must be integrated, Check local APIC only */
1310 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1311 		disable_apic = 1;
1312 		pr_info("APIC disabled by BIOS\n");
1313 		return APIC_PIC;
1314 	}
1315 #else
1316 	/* On 32-bit, the APIC may be integrated APIC or 82489DX */
1317 
1318 	/* Neither 82489DX nor integrated APIC ? */
1319 	if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1320 		disable_apic = 1;
1321 		return APIC_PIC;
1322 	}
1323 
1324 	/* If the BIOS pretends there is an integrated APIC ? */
1325 	if (!boot_cpu_has(X86_FEATURE_APIC) &&
1326 		APIC_INTEGRATED(boot_cpu_apic_version)) {
1327 		disable_apic = 1;
1328 		pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1329 				       boot_cpu_physical_apicid);
1330 		return APIC_PIC;
1331 	}
1332 #endif
1333 
1334 	/* Check MP table or ACPI MADT configuration */
1335 	if (!smp_found_config) {
1336 		disable_ioapic_support();
1337 		if (!acpi_lapic) {
1338 			pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1339 			return APIC_VIRTUAL_WIRE_NO_CONFIG;
1340 		}
1341 		return APIC_VIRTUAL_WIRE;
1342 	}
1343 
1344 #ifdef CONFIG_SMP
1345 	/* If SMP should be disabled, then really disable it! */
1346 	if (!setup_max_cpus) {
1347 		pr_info("APIC: SMP mode deactivated\n");
1348 		return APIC_SYMMETRIC_IO_NO_ROUTING;
1349 	}
1350 
1351 	if (read_apic_id() != boot_cpu_physical_apicid) {
1352 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1353 		     read_apic_id(), boot_cpu_physical_apicid);
1354 		/* Or can we switch back to PIC here? */
1355 	}
1356 #endif
1357 
1358 	return APIC_SYMMETRIC_IO;
1359 }
1360 
1361 /* Select the interrupt delivery mode for the BSP */
1362 void __init apic_intr_mode_select(void)
1363 {
1364 	apic_intr_mode = __apic_intr_mode_select();
1365 }
1366 
1367 /*
1368  * An initial setup of the virtual wire mode.
1369  */
1370 void __init init_bsp_APIC(void)
1371 {
1372 	unsigned int value;
1373 
1374 	/*
1375 	 * Don't do the setup now if we have a SMP BIOS as the
1376 	 * through-I/O-APIC virtual wire mode might be active.
1377 	 */
1378 	if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1379 		return;
1380 
1381 	/*
1382 	 * Do not trust the local APIC being empty at bootup.
1383 	 */
1384 	clear_local_APIC();
1385 
1386 	/*
1387 	 * Enable APIC.
1388 	 */
1389 	value = apic_read(APIC_SPIV);
1390 	value &= ~APIC_VECTOR_MASK;
1391 	value |= APIC_SPIV_APIC_ENABLED;
1392 
1393 #ifdef CONFIG_X86_32
1394 	/* This bit is reserved on P4/Xeon and should be cleared */
1395 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1396 	    (boot_cpu_data.x86 == 15))
1397 		value &= ~APIC_SPIV_FOCUS_DISABLED;
1398 	else
1399 #endif
1400 		value |= APIC_SPIV_FOCUS_DISABLED;
1401 	value |= SPURIOUS_APIC_VECTOR;
1402 	apic_write(APIC_SPIV, value);
1403 
1404 	/*
1405 	 * Set up the virtual wire mode.
1406 	 */
1407 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
1408 	value = APIC_DM_NMI;
1409 	if (!lapic_is_integrated())		/* 82489DX */
1410 		value |= APIC_LVT_LEVEL_TRIGGER;
1411 	if (apic_extnmi == APIC_EXTNMI_NONE)
1412 		value |= APIC_LVT_MASKED;
1413 	apic_write(APIC_LVT1, value);
1414 }
1415 
1416 static void __init apic_bsp_setup(bool upmode);
1417 
1418 /* Init the interrupt delivery mode for the BSP */
1419 void __init apic_intr_mode_init(void)
1420 {
1421 	bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1422 
1423 	switch (apic_intr_mode) {
1424 	case APIC_PIC:
1425 		pr_info("APIC: Keep in PIC mode(8259)\n");
1426 		return;
1427 	case APIC_VIRTUAL_WIRE:
1428 		pr_info("APIC: Switch to virtual wire mode setup\n");
1429 		break;
1430 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1431 		pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1432 		upmode = true;
1433 		break;
1434 	case APIC_SYMMETRIC_IO:
1435 		pr_info("APIC: Switch to symmetric I/O mode setup\n");
1436 		break;
1437 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1438 		pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1439 		break;
1440 	}
1441 
1442 	default_setup_apic_routing();
1443 
1444 	if (x86_platform.apic_post_init)
1445 		x86_platform.apic_post_init();
1446 
1447 	apic_bsp_setup(upmode);
1448 }
1449 
1450 static void lapic_setup_esr(void)
1451 {
1452 	unsigned int oldvalue, value, maxlvt;
1453 
1454 	if (!lapic_is_integrated()) {
1455 		pr_info("No ESR for 82489DX.\n");
1456 		return;
1457 	}
1458 
1459 	if (apic->disable_esr) {
1460 		/*
1461 		 * Something untraceable is creating bad interrupts on
1462 		 * secondary quads ... for the moment, just leave the
1463 		 * ESR disabled - we can't do anything useful with the
1464 		 * errors anyway - mbligh
1465 		 */
1466 		pr_info("Leaving ESR disabled.\n");
1467 		return;
1468 	}
1469 
1470 	maxlvt = lapic_get_maxlvt();
1471 	if (maxlvt > 3)		/* Due to the Pentium erratum 3AP. */
1472 		apic_write(APIC_ESR, 0);
1473 	oldvalue = apic_read(APIC_ESR);
1474 
1475 	/* enables sending errors */
1476 	value = ERROR_APIC_VECTOR;
1477 	apic_write(APIC_LVTERR, value);
1478 
1479 	/*
1480 	 * spec says clear errors after enabling vector.
1481 	 */
1482 	if (maxlvt > 3)
1483 		apic_write(APIC_ESR, 0);
1484 	value = apic_read(APIC_ESR);
1485 	if (value != oldvalue)
1486 		apic_printk(APIC_VERBOSE, "ESR value before enabling "
1487 			"vector: 0x%08x  after: 0x%08x\n",
1488 			oldvalue, value);
1489 }
1490 
1491 #define APIC_IR_REGS		APIC_ISR_NR
1492 #define APIC_IR_BITS		(APIC_IR_REGS * 32)
1493 #define APIC_IR_MAPSIZE		(APIC_IR_BITS / BITS_PER_LONG)
1494 
1495 union apic_ir {
1496 	unsigned long	map[APIC_IR_MAPSIZE];
1497 	u32		regs[APIC_IR_REGS];
1498 };
1499 
1500 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
1501 {
1502 	int i, bit;
1503 
1504 	/* Read the IRRs */
1505 	for (i = 0; i < APIC_IR_REGS; i++)
1506 		irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
1507 
1508 	/* Read the ISRs */
1509 	for (i = 0; i < APIC_IR_REGS; i++)
1510 		isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1511 
1512 	/*
1513 	 * If the ISR map is not empty. ACK the APIC and run another round
1514 	 * to verify whether a pending IRR has been unblocked and turned
1515 	 * into a ISR.
1516 	 */
1517 	if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
1518 		/*
1519 		 * There can be multiple ISR bits set when a high priority
1520 		 * interrupt preempted a lower priority one. Issue an ACK
1521 		 * per set bit.
1522 		 */
1523 		for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1524 			ack_APIC_irq();
1525 		return true;
1526 	}
1527 
1528 	return !bitmap_empty(irr->map, APIC_IR_BITS);
1529 }
1530 
1531 /*
1532  * After a crash, we no longer service the interrupts and a pending
1533  * interrupt from previous kernel might still have ISR bit set.
1534  *
1535  * Most probably by now the CPU has serviced that pending interrupt and it
1536  * might not have done the ack_APIC_irq() because it thought, interrupt
1537  * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
1538  * the ISR bit and cpu thinks it has already serviced the interrupt. Hence
1539  * a vector might get locked. It was noticed for timer irq (vector
1540  * 0x31). Issue an extra EOI to clear ISR.
1541  *
1542  * If there are pending IRR bits they turn into ISR bits after a higher
1543  * priority ISR bit has been acked.
1544  */
1545 static void apic_pending_intr_clear(void)
1546 {
1547 	union apic_ir irr, isr;
1548 	unsigned int i;
1549 
1550 	/* 512 loops are way oversized and give the APIC a chance to obey. */
1551 	for (i = 0; i < 512; i++) {
1552 		if (!apic_check_and_ack(&irr, &isr))
1553 			return;
1554 	}
1555 	/* Dump the IRR/ISR content if that failed */
1556 	pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
1557 }
1558 
1559 /**
1560  * setup_local_APIC - setup the local APIC
1561  *
1562  * Used to setup local APIC while initializing BSP or bringing up APs.
1563  * Always called with preemption disabled.
1564  */
1565 static void setup_local_APIC(void)
1566 {
1567 	int cpu = smp_processor_id();
1568 	unsigned int value;
1569 
1570 	if (disable_apic) {
1571 		disable_ioapic_support();
1572 		return;
1573 	}
1574 
1575 	/*
1576 	 * If this comes from kexec/kcrash the APIC might be enabled in
1577 	 * SPIV. Soft disable it before doing further initialization.
1578 	 */
1579 	value = apic_read(APIC_SPIV);
1580 	value &= ~APIC_SPIV_APIC_ENABLED;
1581 	apic_write(APIC_SPIV, value);
1582 
1583 #ifdef CONFIG_X86_32
1584 	/* Pound the ESR really hard over the head with a big hammer - mbligh */
1585 	if (lapic_is_integrated() && apic->disable_esr) {
1586 		apic_write(APIC_ESR, 0);
1587 		apic_write(APIC_ESR, 0);
1588 		apic_write(APIC_ESR, 0);
1589 		apic_write(APIC_ESR, 0);
1590 	}
1591 #endif
1592 	/*
1593 	 * Double-check whether this APIC is really registered.
1594 	 * This is meaningless in clustered apic mode, so we skip it.
1595 	 */
1596 	BUG_ON(!apic->apic_id_registered());
1597 
1598 	/*
1599 	 * Intel recommends to set DFR, LDR and TPR before enabling
1600 	 * an APIC.  See e.g. "AP-388 82489DX User's Manual" (Intel
1601 	 * document number 292116).  So here it goes...
1602 	 */
1603 	apic->init_apic_ldr();
1604 
1605 #ifdef CONFIG_X86_32
1606 	if (apic->dest_mode_logical) {
1607 		int logical_apicid, ldr_apicid;
1608 
1609 		/*
1610 		 * APIC LDR is initialized.  If logical_apicid mapping was
1611 		 * initialized during get_smp_config(), make sure it matches
1612 		 * the actual value.
1613 		 */
1614 		logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1615 		ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1616 		if (logical_apicid != BAD_APICID)
1617 			WARN_ON(logical_apicid != ldr_apicid);
1618 		/* Always use the value from LDR. */
1619 		early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1620 	}
1621 #endif
1622 
1623 	/*
1624 	 * Set Task Priority to 'accept all except vectors 0-31'.  An APIC
1625 	 * vector in the 16-31 range could be delivered if TPR == 0, but we
1626 	 * would think it's an exception and terrible things will happen.  We
1627 	 * never change this later on.
1628 	 */
1629 	value = apic_read(APIC_TASKPRI);
1630 	value &= ~APIC_TPRI_MASK;
1631 	value |= 0x10;
1632 	apic_write(APIC_TASKPRI, value);
1633 
1634 	/* Clear eventually stale ISR/IRR bits */
1635 	apic_pending_intr_clear();
1636 
1637 	/*
1638 	 * Now that we are all set up, enable the APIC
1639 	 */
1640 	value = apic_read(APIC_SPIV);
1641 	value &= ~APIC_VECTOR_MASK;
1642 	/*
1643 	 * Enable APIC
1644 	 */
1645 	value |= APIC_SPIV_APIC_ENABLED;
1646 
1647 #ifdef CONFIG_X86_32
1648 	/*
1649 	 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1650 	 * certain networking cards. If high frequency interrupts are
1651 	 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1652 	 * entry is masked/unmasked at a high rate as well then sooner or
1653 	 * later IOAPIC line gets 'stuck', no more interrupts are received
1654 	 * from the device. If focus CPU is disabled then the hang goes
1655 	 * away, oh well :-(
1656 	 *
1657 	 * [ This bug can be reproduced easily with a level-triggered
1658 	 *   PCI Ne2000 networking cards and PII/PIII processors, dual
1659 	 *   BX chipset. ]
1660 	 */
1661 	/*
1662 	 * Actually disabling the focus CPU check just makes the hang less
1663 	 * frequent as it makes the interrupt distribution model be more
1664 	 * like LRU than MRU (the short-term load is more even across CPUs).
1665 	 */
1666 
1667 	/*
1668 	 * - enable focus processor (bit==0)
1669 	 * - 64bit mode always use processor focus
1670 	 *   so no need to set it
1671 	 */
1672 	value &= ~APIC_SPIV_FOCUS_DISABLED;
1673 #endif
1674 
1675 	/*
1676 	 * Set spurious IRQ vector
1677 	 */
1678 	value |= SPURIOUS_APIC_VECTOR;
1679 	apic_write(APIC_SPIV, value);
1680 
1681 	perf_events_lapic_init();
1682 
1683 	/*
1684 	 * Set up LVT0, LVT1:
1685 	 *
1686 	 * set up through-local-APIC on the boot CPU's LINT0. This is not
1687 	 * strictly necessary in pure symmetric-IO mode, but sometimes
1688 	 * we delegate interrupts to the 8259A.
1689 	 */
1690 	/*
1691 	 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1692 	 */
1693 	value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1694 	if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1695 		value = APIC_DM_EXTINT;
1696 		apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1697 	} else {
1698 		value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1699 		apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1700 	}
1701 	apic_write(APIC_LVT0, value);
1702 
1703 	/*
1704 	 * Only the BSP sees the LINT1 NMI signal by default. This can be
1705 	 * modified by apic_extnmi= boot option.
1706 	 */
1707 	if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1708 	    apic_extnmi == APIC_EXTNMI_ALL)
1709 		value = APIC_DM_NMI;
1710 	else
1711 		value = APIC_DM_NMI | APIC_LVT_MASKED;
1712 
1713 	/* Is 82489DX ? */
1714 	if (!lapic_is_integrated())
1715 		value |= APIC_LVT_LEVEL_TRIGGER;
1716 	apic_write(APIC_LVT1, value);
1717 
1718 #ifdef CONFIG_X86_MCE_INTEL
1719 	/* Recheck CMCI information after local APIC is up on CPU #0 */
1720 	if (!cpu)
1721 		cmci_recheck();
1722 #endif
1723 }
1724 
1725 static void end_local_APIC_setup(void)
1726 {
1727 	lapic_setup_esr();
1728 
1729 #ifdef CONFIG_X86_32
1730 	{
1731 		unsigned int value;
1732 		/* Disable the local apic timer */
1733 		value = apic_read(APIC_LVTT);
1734 		value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1735 		apic_write(APIC_LVTT, value);
1736 	}
1737 #endif
1738 
1739 	apic_pm_activate();
1740 }
1741 
1742 /*
1743  * APIC setup function for application processors. Called from smpboot.c
1744  */
1745 void apic_ap_setup(void)
1746 {
1747 	setup_local_APIC();
1748 	end_local_APIC_setup();
1749 }
1750 
1751 #ifdef CONFIG_X86_X2APIC
1752 int x2apic_mode;
1753 EXPORT_SYMBOL_GPL(x2apic_mode);
1754 
1755 enum {
1756 	X2APIC_OFF,
1757 	X2APIC_DISABLED,
1758 	/* All states below here have X2APIC enabled */
1759 	X2APIC_ON,
1760 	X2APIC_ON_LOCKED
1761 };
1762 static int x2apic_state;
1763 
1764 static bool x2apic_hw_locked(void)
1765 {
1766 	u64 ia32_cap;
1767 	u64 msr;
1768 
1769 	ia32_cap = x86_read_arch_cap_msr();
1770 	if (ia32_cap & ARCH_CAP_XAPIC_DISABLE) {
1771 		rdmsrl(MSR_IA32_XAPIC_DISABLE_STATUS, msr);
1772 		return (msr & LEGACY_XAPIC_DISABLED);
1773 	}
1774 	return false;
1775 }
1776 
1777 static void __x2apic_disable(void)
1778 {
1779 	u64 msr;
1780 
1781 	if (!boot_cpu_has(X86_FEATURE_APIC))
1782 		return;
1783 
1784 	rdmsrl(MSR_IA32_APICBASE, msr);
1785 	if (!(msr & X2APIC_ENABLE))
1786 		return;
1787 	/* Disable xapic and x2apic first and then reenable xapic mode */
1788 	wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1789 	wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1790 	printk_once(KERN_INFO "x2apic disabled\n");
1791 }
1792 
1793 static void __x2apic_enable(void)
1794 {
1795 	u64 msr;
1796 
1797 	rdmsrl(MSR_IA32_APICBASE, msr);
1798 	if (msr & X2APIC_ENABLE)
1799 		return;
1800 	wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1801 	printk_once(KERN_INFO "x2apic enabled\n");
1802 }
1803 
1804 static int __init setup_nox2apic(char *str)
1805 {
1806 	if (x2apic_enabled()) {
1807 		int apicid = native_apic_msr_read(APIC_ID);
1808 
1809 		if (apicid >= 255) {
1810 			pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1811 				apicid);
1812 			return 0;
1813 		}
1814 		if (x2apic_hw_locked()) {
1815 			pr_warn("APIC locked in x2apic mode, can't disable\n");
1816 			return 0;
1817 		}
1818 		pr_warn("x2apic already enabled.\n");
1819 		__x2apic_disable();
1820 	}
1821 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1822 	x2apic_state = X2APIC_DISABLED;
1823 	x2apic_mode = 0;
1824 	return 0;
1825 }
1826 early_param("nox2apic", setup_nox2apic);
1827 
1828 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1829 void x2apic_setup(void)
1830 {
1831 	/*
1832 	 * Try to make the AP's APIC state match that of the BSP,  but if the
1833 	 * BSP is unlocked and the AP is locked then there is a state mismatch.
1834 	 * Warn about the mismatch in case a GP fault occurs due to a locked AP
1835 	 * trying to be turned off.
1836 	 */
1837 	if (x2apic_state != X2APIC_ON_LOCKED && x2apic_hw_locked())
1838 		pr_warn("x2apic lock mismatch between BSP and AP.\n");
1839 	/*
1840 	 * If x2apic is not in ON or LOCKED state, disable it if already enabled
1841 	 * from BIOS.
1842 	 */
1843 	if (x2apic_state < X2APIC_ON) {
1844 		__x2apic_disable();
1845 		return;
1846 	}
1847 	__x2apic_enable();
1848 }
1849 
1850 static __init void x2apic_disable(void)
1851 {
1852 	u32 x2apic_id, state = x2apic_state;
1853 
1854 	x2apic_mode = 0;
1855 	x2apic_state = X2APIC_DISABLED;
1856 
1857 	if (state != X2APIC_ON)
1858 		return;
1859 
1860 	x2apic_id = read_apic_id();
1861 	if (x2apic_id >= 255)
1862 		panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1863 
1864 	if (x2apic_hw_locked()) {
1865 		pr_warn("Cannot disable locked x2apic, id: %08x\n", x2apic_id);
1866 		return;
1867 	}
1868 
1869 	__x2apic_disable();
1870 	register_lapic_address(mp_lapic_addr);
1871 }
1872 
1873 static __init void x2apic_enable(void)
1874 {
1875 	if (x2apic_state != X2APIC_OFF)
1876 		return;
1877 
1878 	x2apic_mode = 1;
1879 	x2apic_state = X2APIC_ON;
1880 	__x2apic_enable();
1881 }
1882 
1883 static __init void try_to_enable_x2apic(int remap_mode)
1884 {
1885 	if (x2apic_state == X2APIC_DISABLED)
1886 		return;
1887 
1888 	if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1889 		u32 apic_limit = 255;
1890 
1891 		/*
1892 		 * Using X2APIC without IR is not architecturally supported
1893 		 * on bare metal but may be supported in guests.
1894 		 */
1895 		if (!x86_init.hyper.x2apic_available()) {
1896 			pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1897 			x2apic_disable();
1898 			return;
1899 		}
1900 
1901 		/*
1902 		 * If the hypervisor supports extended destination ID in
1903 		 * MSI, that increases the maximum APIC ID that can be
1904 		 * used for non-remapped IRQ domains.
1905 		 */
1906 		if (x86_init.hyper.msi_ext_dest_id()) {
1907 			virt_ext_dest_id = 1;
1908 			apic_limit = 32767;
1909 		}
1910 
1911 		/*
1912 		 * Without IR, all CPUs can be addressed by IOAPIC/MSI only
1913 		 * in physical mode, and CPUs with an APIC ID that cannot
1914 		 * be addressed must not be brought online.
1915 		 */
1916 		x2apic_set_max_apicid(apic_limit);
1917 		x2apic_phys = 1;
1918 	}
1919 	x2apic_enable();
1920 }
1921 
1922 void __init check_x2apic(void)
1923 {
1924 	if (x2apic_enabled()) {
1925 		pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1926 		x2apic_mode = 1;
1927 		if (x2apic_hw_locked())
1928 			x2apic_state = X2APIC_ON_LOCKED;
1929 		else
1930 			x2apic_state = X2APIC_ON;
1931 	} else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1932 		x2apic_state = X2APIC_DISABLED;
1933 	}
1934 }
1935 #else /* CONFIG_X86_X2APIC */
1936 void __init check_x2apic(void)
1937 {
1938 	if (!apic_is_x2apic_enabled())
1939 		return;
1940 	/*
1941 	 * Checkme: Can we simply turn off x2APIC here instead of disabling the APIC?
1942 	 */
1943 	pr_err("Kernel does not support x2APIC, please recompile with CONFIG_X86_X2APIC.\n");
1944 	pr_err("Disabling APIC, expect reduced performance and functionality.\n");
1945 
1946 	disable_apic = 1;
1947 	setup_clear_cpu_cap(X86_FEATURE_APIC);
1948 }
1949 
1950 static inline void try_to_enable_x2apic(int remap_mode) { }
1951 static inline void __x2apic_enable(void) { }
1952 #endif /* !CONFIG_X86_X2APIC */
1953 
1954 void __init enable_IR_x2apic(void)
1955 {
1956 	unsigned long flags;
1957 	int ret, ir_stat;
1958 
1959 	if (skip_ioapic_setup) {
1960 		pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1961 		return;
1962 	}
1963 
1964 	ir_stat = irq_remapping_prepare();
1965 	if (ir_stat < 0 && !x2apic_supported())
1966 		return;
1967 
1968 	ret = save_ioapic_entries();
1969 	if (ret) {
1970 		pr_info("Saving IO-APIC state failed: %d\n", ret);
1971 		return;
1972 	}
1973 
1974 	local_irq_save(flags);
1975 	legacy_pic->mask_all();
1976 	mask_ioapic_entries();
1977 
1978 	/* If irq_remapping_prepare() succeeded, try to enable it */
1979 	if (ir_stat >= 0)
1980 		ir_stat = irq_remapping_enable();
1981 	/* ir_stat contains the remap mode or an error code */
1982 	try_to_enable_x2apic(ir_stat);
1983 
1984 	if (ir_stat < 0)
1985 		restore_ioapic_entries();
1986 	legacy_pic->restore_mask();
1987 	local_irq_restore(flags);
1988 }
1989 
1990 #ifdef CONFIG_X86_64
1991 /*
1992  * Detect and enable local APICs on non-SMP boards.
1993  * Original code written by Keir Fraser.
1994  * On AMD64 we trust the BIOS - if it says no APIC it is likely
1995  * not correctly set up (usually the APIC timer won't work etc.)
1996  */
1997 static int __init detect_init_APIC(void)
1998 {
1999 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
2000 		pr_info("No local APIC present\n");
2001 		return -1;
2002 	}
2003 
2004 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
2005 	return 0;
2006 }
2007 #else
2008 
2009 static int __init apic_verify(void)
2010 {
2011 	u32 features, h, l;
2012 
2013 	/*
2014 	 * The APIC feature bit should now be enabled
2015 	 * in `cpuid'
2016 	 */
2017 	features = cpuid_edx(1);
2018 	if (!(features & (1 << X86_FEATURE_APIC))) {
2019 		pr_warn("Could not enable APIC!\n");
2020 		return -1;
2021 	}
2022 	set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
2023 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
2024 
2025 	/* The BIOS may have set up the APIC at some other address */
2026 	if (boot_cpu_data.x86 >= 6) {
2027 		rdmsr(MSR_IA32_APICBASE, l, h);
2028 		if (l & MSR_IA32_APICBASE_ENABLE)
2029 			mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
2030 	}
2031 
2032 	pr_info("Found and enabled local APIC!\n");
2033 	return 0;
2034 }
2035 
2036 int __init apic_force_enable(unsigned long addr)
2037 {
2038 	u32 h, l;
2039 
2040 	if (disable_apic)
2041 		return -1;
2042 
2043 	/*
2044 	 * Some BIOSes disable the local APIC in the APIC_BASE
2045 	 * MSR. This can only be done in software for Intel P6 or later
2046 	 * and AMD K7 (Model > 1) or later.
2047 	 */
2048 	if (boot_cpu_data.x86 >= 6) {
2049 		rdmsr(MSR_IA32_APICBASE, l, h);
2050 		if (!(l & MSR_IA32_APICBASE_ENABLE)) {
2051 			pr_info("Local APIC disabled by BIOS -- reenabling.\n");
2052 			l &= ~MSR_IA32_APICBASE_BASE;
2053 			l |= MSR_IA32_APICBASE_ENABLE | addr;
2054 			wrmsr(MSR_IA32_APICBASE, l, h);
2055 			enabled_via_apicbase = 1;
2056 		}
2057 	}
2058 	return apic_verify();
2059 }
2060 
2061 /*
2062  * Detect and initialize APIC
2063  */
2064 static int __init detect_init_APIC(void)
2065 {
2066 	/* Disabled by kernel option? */
2067 	if (disable_apic)
2068 		return -1;
2069 
2070 	switch (boot_cpu_data.x86_vendor) {
2071 	case X86_VENDOR_AMD:
2072 		if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2073 		    (boot_cpu_data.x86 >= 15))
2074 			break;
2075 		goto no_apic;
2076 	case X86_VENDOR_HYGON:
2077 		break;
2078 	case X86_VENDOR_INTEL:
2079 		if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
2080 		    (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2081 			break;
2082 		goto no_apic;
2083 	default:
2084 		goto no_apic;
2085 	}
2086 
2087 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
2088 		/*
2089 		 * Over-ride BIOS and try to enable the local APIC only if
2090 		 * "lapic" specified.
2091 		 */
2092 		if (!force_enable_local_apic) {
2093 			pr_info("Local APIC disabled by BIOS -- "
2094 				"you can enable it with \"lapic\"\n");
2095 			return -1;
2096 		}
2097 		if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2098 			return -1;
2099 	} else {
2100 		if (apic_verify())
2101 			return -1;
2102 	}
2103 
2104 	apic_pm_activate();
2105 
2106 	return 0;
2107 
2108 no_apic:
2109 	pr_info("No local APIC present or hardware disabled\n");
2110 	return -1;
2111 }
2112 #endif
2113 
2114 /**
2115  * init_apic_mappings - initialize APIC mappings
2116  */
2117 void __init init_apic_mappings(void)
2118 {
2119 	unsigned int new_apicid;
2120 
2121 	if (apic_validate_deadline_timer())
2122 		pr_info("TSC deadline timer available\n");
2123 
2124 	if (x2apic_mode) {
2125 		boot_cpu_physical_apicid = read_apic_id();
2126 		return;
2127 	}
2128 
2129 	/* If no local APIC can be found return early */
2130 	if (!smp_found_config && detect_init_APIC()) {
2131 		/* lets NOP'ify apic operations */
2132 		pr_info("APIC: disable apic facility\n");
2133 		apic_disable();
2134 	} else {
2135 		apic_phys = mp_lapic_addr;
2136 
2137 		/*
2138 		 * If the system has ACPI MADT tables or MP info, the LAPIC
2139 		 * address is already registered.
2140 		 */
2141 		if (!acpi_lapic && !smp_found_config)
2142 			register_lapic_address(apic_phys);
2143 	}
2144 
2145 	/*
2146 	 * Fetch the APIC ID of the BSP in case we have a
2147 	 * default configuration (or the MP table is broken).
2148 	 */
2149 	new_apicid = read_apic_id();
2150 	if (boot_cpu_physical_apicid != new_apicid) {
2151 		boot_cpu_physical_apicid = new_apicid;
2152 		/*
2153 		 * yeah -- we lie about apic_version
2154 		 * in case if apic was disabled via boot option
2155 		 * but it's not a problem for SMP compiled kernel
2156 		 * since apic_intr_mode_select is prepared for such
2157 		 * a case and disable smp mode
2158 		 */
2159 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2160 	}
2161 }
2162 
2163 void __init register_lapic_address(unsigned long address)
2164 {
2165 	mp_lapic_addr = address;
2166 
2167 	if (!x2apic_mode) {
2168 		set_fixmap_nocache(FIX_APIC_BASE, address);
2169 		apic_mmio_base = APIC_BASE;
2170 		apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2171 			    APIC_BASE, address);
2172 	}
2173 	if (boot_cpu_physical_apicid == -1U) {
2174 		boot_cpu_physical_apicid  = read_apic_id();
2175 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2176 	}
2177 }
2178 
2179 /*
2180  * Local APIC interrupts
2181  */
2182 
2183 /*
2184  * Common handling code for spurious_interrupt and spurious_vector entry
2185  * points below. No point in allowing the compiler to inline it twice.
2186  */
2187 static noinline void handle_spurious_interrupt(u8 vector)
2188 {
2189 	u32 v;
2190 
2191 	trace_spurious_apic_entry(vector);
2192 
2193 	inc_irq_stat(irq_spurious_count);
2194 
2195 	/*
2196 	 * If this is a spurious interrupt then do not acknowledge
2197 	 */
2198 	if (vector == SPURIOUS_APIC_VECTOR) {
2199 		/* See SDM vol 3 */
2200 		pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2201 			smp_processor_id());
2202 		goto out;
2203 	}
2204 
2205 	/*
2206 	 * If it is a vectored one, verify it's set in the ISR. If set,
2207 	 * acknowledge it.
2208 	 */
2209 	v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2210 	if (v & (1 << (vector & 0x1f))) {
2211 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2212 			vector, smp_processor_id());
2213 		ack_APIC_irq();
2214 	} else {
2215 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2216 			vector, smp_processor_id());
2217 	}
2218 out:
2219 	trace_spurious_apic_exit(vector);
2220 }
2221 
2222 /**
2223  * spurious_interrupt - Catch all for interrupts raised on unused vectors
2224  * @regs:	Pointer to pt_regs on stack
2225  * @vector:	The vector number
2226  *
2227  * This is invoked from ASM entry code to catch all interrupts which
2228  * trigger on an entry which is routed to the common_spurious idtentry
2229  * point.
2230  */
2231 DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2232 {
2233 	handle_spurious_interrupt(vector);
2234 }
2235 
2236 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2237 {
2238 	handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2239 }
2240 
2241 /*
2242  * This interrupt should never happen with our APIC/SMP architecture
2243  */
2244 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2245 {
2246 	static const char * const error_interrupt_reason[] = {
2247 		"Send CS error",		/* APIC Error Bit 0 */
2248 		"Receive CS error",		/* APIC Error Bit 1 */
2249 		"Send accept error",		/* APIC Error Bit 2 */
2250 		"Receive accept error",		/* APIC Error Bit 3 */
2251 		"Redirectable IPI",		/* APIC Error Bit 4 */
2252 		"Send illegal vector",		/* APIC Error Bit 5 */
2253 		"Received illegal vector",	/* APIC Error Bit 6 */
2254 		"Illegal register address",	/* APIC Error Bit 7 */
2255 	};
2256 	u32 v, i = 0;
2257 
2258 	trace_error_apic_entry(ERROR_APIC_VECTOR);
2259 
2260 	/* First tickle the hardware, only then report what went on. -- REW */
2261 	if (lapic_get_maxlvt() > 3)	/* Due to the Pentium erratum 3AP. */
2262 		apic_write(APIC_ESR, 0);
2263 	v = apic_read(APIC_ESR);
2264 	ack_APIC_irq();
2265 	atomic_inc(&irq_err_count);
2266 
2267 	apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2268 		    smp_processor_id(), v);
2269 
2270 	v &= 0xff;
2271 	while (v) {
2272 		if (v & 0x1)
2273 			apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2274 		i++;
2275 		v >>= 1;
2276 	}
2277 
2278 	apic_printk(APIC_DEBUG, KERN_CONT "\n");
2279 
2280 	trace_error_apic_exit(ERROR_APIC_VECTOR);
2281 }
2282 
2283 /**
2284  * connect_bsp_APIC - attach the APIC to the interrupt system
2285  */
2286 static void __init connect_bsp_APIC(void)
2287 {
2288 #ifdef CONFIG_X86_32
2289 	if (pic_mode) {
2290 		/*
2291 		 * Do not trust the local APIC being empty at bootup.
2292 		 */
2293 		clear_local_APIC();
2294 		/*
2295 		 * PIC mode, enable APIC mode in the IMCR, i.e.  connect BSP's
2296 		 * local APIC to INT and NMI lines.
2297 		 */
2298 		apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2299 				"enabling APIC mode.\n");
2300 		imcr_pic_to_apic();
2301 	}
2302 #endif
2303 }
2304 
2305 /**
2306  * disconnect_bsp_APIC - detach the APIC from the interrupt system
2307  * @virt_wire_setup:	indicates, whether virtual wire mode is selected
2308  *
2309  * Virtual wire mode is necessary to deliver legacy interrupts even when the
2310  * APIC is disabled.
2311  */
2312 void disconnect_bsp_APIC(int virt_wire_setup)
2313 {
2314 	unsigned int value;
2315 
2316 #ifdef CONFIG_X86_32
2317 	if (pic_mode) {
2318 		/*
2319 		 * Put the board back into PIC mode (has an effect only on
2320 		 * certain older boards).  Note that APIC interrupts, including
2321 		 * IPIs, won't work beyond this point!  The only exception are
2322 		 * INIT IPIs.
2323 		 */
2324 		apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2325 				"entering PIC mode.\n");
2326 		imcr_apic_to_pic();
2327 		return;
2328 	}
2329 #endif
2330 
2331 	/* Go back to Virtual Wire compatibility mode */
2332 
2333 	/* For the spurious interrupt use vector F, and enable it */
2334 	value = apic_read(APIC_SPIV);
2335 	value &= ~APIC_VECTOR_MASK;
2336 	value |= APIC_SPIV_APIC_ENABLED;
2337 	value |= 0xf;
2338 	apic_write(APIC_SPIV, value);
2339 
2340 	if (!virt_wire_setup) {
2341 		/*
2342 		 * For LVT0 make it edge triggered, active high,
2343 		 * external and enabled
2344 		 */
2345 		value = apic_read(APIC_LVT0);
2346 		value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2347 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2348 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2349 		value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2350 		value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2351 		apic_write(APIC_LVT0, value);
2352 	} else {
2353 		/* Disable LVT0 */
2354 		apic_write(APIC_LVT0, APIC_LVT_MASKED);
2355 	}
2356 
2357 	/*
2358 	 * For LVT1 make it edge triggered, active high,
2359 	 * nmi and enabled
2360 	 */
2361 	value = apic_read(APIC_LVT1);
2362 	value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2363 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2364 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2365 	value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2366 	value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2367 	apic_write(APIC_LVT1, value);
2368 }
2369 
2370 /*
2371  * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2372  * contiguously, it equals to current allocated max logical CPU ID plus 1.
2373  * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2374  * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2375  *
2376  * NOTE: Reserve 0 for BSP.
2377  */
2378 static int nr_logical_cpuids = 1;
2379 
2380 /*
2381  * Used to store mapping between logical CPU IDs and APIC IDs.
2382  */
2383 int cpuid_to_apicid[] = {
2384 	[0 ... NR_CPUS - 1] = -1,
2385 };
2386 
2387 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
2388 {
2389 	return phys_id == cpuid_to_apicid[cpu];
2390 }
2391 
2392 #ifdef CONFIG_SMP
2393 static void cpu_mark_primary_thread(unsigned int cpu, unsigned int apicid)
2394 {
2395 	/* Isolate the SMT bit(s) in the APICID and check for 0 */
2396 	u32 mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2397 
2398 	if (smp_num_siblings == 1 || !(apicid & mask))
2399 		cpumask_set_cpu(cpu, &__cpu_primary_thread_mask);
2400 }
2401 
2402 /*
2403  * Due to the utter mess of CPUID evaluation smp_num_siblings is not valid
2404  * during early boot. Initialize the primary thread mask before SMP
2405  * bringup.
2406  */
2407 static int __init smp_init_primary_thread_mask(void)
2408 {
2409 	unsigned int cpu;
2410 
2411 	for (cpu = 0; cpu < nr_logical_cpuids; cpu++)
2412 		cpu_mark_primary_thread(cpu, cpuid_to_apicid[cpu]);
2413 	return 0;
2414 }
2415 early_initcall(smp_init_primary_thread_mask);
2416 #else
2417 static inline void cpu_mark_primary_thread(unsigned int cpu, unsigned int apicid) { }
2418 #endif
2419 
2420 /*
2421  * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2422  * and cpuid_to_apicid[] synchronized.
2423  */
2424 static int allocate_logical_cpuid(int apicid)
2425 {
2426 	int i;
2427 
2428 	/*
2429 	 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2430 	 * check if the kernel has allocated a cpuid for it.
2431 	 */
2432 	for (i = 0; i < nr_logical_cpuids; i++) {
2433 		if (cpuid_to_apicid[i] == apicid)
2434 			return i;
2435 	}
2436 
2437 	/* Allocate a new cpuid. */
2438 	if (nr_logical_cpuids >= nr_cpu_ids) {
2439 		WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2440 			     "Processor %d/0x%x and the rest are ignored.\n",
2441 			     nr_cpu_ids, nr_logical_cpuids, apicid);
2442 		return -EINVAL;
2443 	}
2444 
2445 	cpuid_to_apicid[nr_logical_cpuids] = apicid;
2446 	return nr_logical_cpuids++;
2447 }
2448 
2449 int generic_processor_info(int apicid, int version)
2450 {
2451 	int cpu, max = nr_cpu_ids;
2452 	bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2453 				phys_cpu_present_map);
2454 
2455 	/*
2456 	 * boot_cpu_physical_apicid is designed to have the apicid
2457 	 * returned by read_apic_id(), i.e, the apicid of the
2458 	 * currently booting-up processor. However, on some platforms,
2459 	 * it is temporarily modified by the apicid reported as BSP
2460 	 * through MP table. Concretely:
2461 	 *
2462 	 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2463 	 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2464 	 *
2465 	 * This function is executed with the modified
2466 	 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2467 	 * parameter doesn't work to disable APs on kdump 2nd kernel.
2468 	 *
2469 	 * Since fixing handling of boot_cpu_physical_apicid requires
2470 	 * another discussion and tests on each platform, we leave it
2471 	 * for now and here we use read_apic_id() directly in this
2472 	 * function, generic_processor_info().
2473 	 */
2474 	if (disabled_cpu_apicid != BAD_APICID &&
2475 	    disabled_cpu_apicid != read_apic_id() &&
2476 	    disabled_cpu_apicid == apicid) {
2477 		int thiscpu = num_processors + disabled_cpus;
2478 
2479 		pr_warn("APIC: Disabling requested cpu."
2480 			" Processor %d/0x%x ignored.\n", thiscpu, apicid);
2481 
2482 		disabled_cpus++;
2483 		return -ENODEV;
2484 	}
2485 
2486 	/*
2487 	 * If boot cpu has not been detected yet, then only allow upto
2488 	 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2489 	 */
2490 	if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2491 	    apicid != boot_cpu_physical_apicid) {
2492 		int thiscpu = max + disabled_cpus - 1;
2493 
2494 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost"
2495 			" reached. Keeping one slot for boot cpu."
2496 			"  Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2497 
2498 		disabled_cpus++;
2499 		return -ENODEV;
2500 	}
2501 
2502 	if (num_processors >= nr_cpu_ids) {
2503 		int thiscpu = max + disabled_cpus;
2504 
2505 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. "
2506 			"Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2507 
2508 		disabled_cpus++;
2509 		return -EINVAL;
2510 	}
2511 
2512 	if (apicid == boot_cpu_physical_apicid) {
2513 		/*
2514 		 * x86_bios_cpu_apicid is required to have processors listed
2515 		 * in same order as logical cpu numbers. Hence the first
2516 		 * entry is BSP, and so on.
2517 		 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2518 		 * for BSP.
2519 		 */
2520 		cpu = 0;
2521 
2522 		/* Logical cpuid 0 is reserved for BSP. */
2523 		cpuid_to_apicid[0] = apicid;
2524 	} else {
2525 		cpu = allocate_logical_cpuid(apicid);
2526 		if (cpu < 0) {
2527 			disabled_cpus++;
2528 			return -EINVAL;
2529 		}
2530 	}
2531 
2532 	/*
2533 	 * Validate version
2534 	 */
2535 	if (version == 0x0) {
2536 		pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2537 			cpu, apicid);
2538 		version = 0x10;
2539 	}
2540 
2541 	if (version != boot_cpu_apic_version) {
2542 		pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2543 			boot_cpu_apic_version, cpu, version);
2544 	}
2545 
2546 	if (apicid > max_physical_apicid)
2547 		max_physical_apicid = apicid;
2548 
2549 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2550 	early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2551 	early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2552 #endif
2553 #ifdef CONFIG_X86_32
2554 	early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2555 		apic->x86_32_early_logical_apicid(cpu);
2556 #endif
2557 	set_cpu_possible(cpu, true);
2558 	physid_set(apicid, phys_cpu_present_map);
2559 	set_cpu_present(cpu, true);
2560 	num_processors++;
2561 
2562 	if (system_state != SYSTEM_BOOTING)
2563 		cpu_mark_primary_thread(cpu, apicid);
2564 
2565 	return cpu;
2566 }
2567 
2568 int hard_smp_processor_id(void)
2569 {
2570 	return read_apic_id();
2571 }
2572 
2573 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2574 			   bool dmar)
2575 {
2576 	memset(msg, 0, sizeof(*msg));
2577 
2578 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2579 	msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2580 	msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2581 
2582 	msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2583 	msg->arch_data.vector = cfg->vector;
2584 
2585 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2586 	/*
2587 	 * Only the IOMMU itself can use the trick of putting destination
2588 	 * APIC ID into the high bits of the address. Anything else would
2589 	 * just be writing to memory if it tried that, and needs IR to
2590 	 * address APICs which can't be addressed in the normal 32-bit
2591 	 * address range at 0xFFExxxxx. That is typically just 8 bits, but
2592 	 * some hypervisors allow the extended destination ID field in bits
2593 	 * 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2594 	 */
2595 	if (dmar)
2596 		msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2597 	else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2598 		msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2599 	else
2600 		WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2601 }
2602 
2603 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2604 {
2605 	u32 dest = msg->arch_addr_lo.destid_0_7;
2606 
2607 	if (extid)
2608 		dest |= msg->arch_addr_hi.destid_8_31 << 8;
2609 	return dest;
2610 }
2611 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
2612 
2613 #ifdef CONFIG_X86_64
2614 void __init acpi_wake_cpu_handler_update(wakeup_cpu_handler handler)
2615 {
2616 	struct apic **drv;
2617 
2618 	for (drv = __apicdrivers; drv < __apicdrivers_end; drv++)
2619 		(*drv)->wakeup_secondary_cpu_64 = handler;
2620 }
2621 #endif
2622 
2623 /*
2624  * Override the generic EOI implementation with an optimized version.
2625  * Only called during early boot when only one CPU is active and with
2626  * interrupts disabled, so we know this does not race with actual APIC driver
2627  * use.
2628  */
2629 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2630 {
2631 	struct apic **drv;
2632 
2633 	for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2634 		/* Should happen once for each apic */
2635 		WARN_ON((*drv)->eoi_write == eoi_write);
2636 		(*drv)->native_eoi_write = (*drv)->eoi_write;
2637 		(*drv)->eoi_write = eoi_write;
2638 	}
2639 }
2640 
2641 static void __init apic_bsp_up_setup(void)
2642 {
2643 #ifdef CONFIG_X86_64
2644 	apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2645 #else
2646 	/*
2647 	 * Hack: In case of kdump, after a crash, kernel might be booting
2648 	 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2649 	 * might be zero if read from MP tables. Get it from LAPIC.
2650 	 */
2651 # ifdef CONFIG_CRASH_DUMP
2652 	boot_cpu_physical_apicid = read_apic_id();
2653 # endif
2654 #endif
2655 	physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2656 }
2657 
2658 /**
2659  * apic_bsp_setup - Setup function for local apic and io-apic
2660  * @upmode:		Force UP mode (for APIC_init_uniprocessor)
2661  */
2662 static void __init apic_bsp_setup(bool upmode)
2663 {
2664 	connect_bsp_APIC();
2665 	if (upmode)
2666 		apic_bsp_up_setup();
2667 	setup_local_APIC();
2668 
2669 	enable_IO_APIC();
2670 	end_local_APIC_setup();
2671 	irq_remap_enable_fault_handling();
2672 	setup_IO_APIC();
2673 	lapic_update_legacy_vectors();
2674 }
2675 
2676 #ifdef CONFIG_UP_LATE_INIT
2677 void __init up_late_init(void)
2678 {
2679 	if (apic_intr_mode == APIC_PIC)
2680 		return;
2681 
2682 	/* Setup local timer */
2683 	x86_init.timers.setup_percpu_clockev();
2684 }
2685 #endif
2686 
2687 /*
2688  * Power management
2689  */
2690 #ifdef CONFIG_PM
2691 
2692 static struct {
2693 	/*
2694 	 * 'active' is true if the local APIC was enabled by us and
2695 	 * not the BIOS; this signifies that we are also responsible
2696 	 * for disabling it before entering apm/acpi suspend
2697 	 */
2698 	int active;
2699 	/* r/w apic fields */
2700 	unsigned int apic_id;
2701 	unsigned int apic_taskpri;
2702 	unsigned int apic_ldr;
2703 	unsigned int apic_dfr;
2704 	unsigned int apic_spiv;
2705 	unsigned int apic_lvtt;
2706 	unsigned int apic_lvtpc;
2707 	unsigned int apic_lvt0;
2708 	unsigned int apic_lvt1;
2709 	unsigned int apic_lvterr;
2710 	unsigned int apic_tmict;
2711 	unsigned int apic_tdcr;
2712 	unsigned int apic_thmr;
2713 	unsigned int apic_cmci;
2714 } apic_pm_state;
2715 
2716 static int lapic_suspend(void)
2717 {
2718 	unsigned long flags;
2719 	int maxlvt;
2720 
2721 	if (!apic_pm_state.active)
2722 		return 0;
2723 
2724 	maxlvt = lapic_get_maxlvt();
2725 
2726 	apic_pm_state.apic_id = apic_read(APIC_ID);
2727 	apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2728 	apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2729 	apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2730 	apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2731 	apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2732 	if (maxlvt >= 4)
2733 		apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2734 	apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2735 	apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2736 	apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2737 	apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2738 	apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2739 #ifdef CONFIG_X86_THERMAL_VECTOR
2740 	if (maxlvt >= 5)
2741 		apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2742 #endif
2743 #ifdef CONFIG_X86_MCE_INTEL
2744 	if (maxlvt >= 6)
2745 		apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2746 #endif
2747 
2748 	local_irq_save(flags);
2749 
2750 	/*
2751 	 * Mask IOAPIC before disabling the local APIC to prevent stale IRR
2752 	 * entries on some implementations.
2753 	 */
2754 	mask_ioapic_entries();
2755 
2756 	disable_local_APIC();
2757 
2758 	irq_remapping_disable();
2759 
2760 	local_irq_restore(flags);
2761 	return 0;
2762 }
2763 
2764 static void lapic_resume(void)
2765 {
2766 	unsigned int l, h;
2767 	unsigned long flags;
2768 	int maxlvt;
2769 
2770 	if (!apic_pm_state.active)
2771 		return;
2772 
2773 	local_irq_save(flags);
2774 
2775 	/*
2776 	 * IO-APIC and PIC have their own resume routines.
2777 	 * We just mask them here to make sure the interrupt
2778 	 * subsystem is completely quiet while we enable x2apic
2779 	 * and interrupt-remapping.
2780 	 */
2781 	mask_ioapic_entries();
2782 	legacy_pic->mask_all();
2783 
2784 	if (x2apic_mode) {
2785 		__x2apic_enable();
2786 	} else {
2787 		/*
2788 		 * Make sure the APICBASE points to the right address
2789 		 *
2790 		 * FIXME! This will be wrong if we ever support suspend on
2791 		 * SMP! We'll need to do this as part of the CPU restore!
2792 		 */
2793 		if (boot_cpu_data.x86 >= 6) {
2794 			rdmsr(MSR_IA32_APICBASE, l, h);
2795 			l &= ~MSR_IA32_APICBASE_BASE;
2796 			l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2797 			wrmsr(MSR_IA32_APICBASE, l, h);
2798 		}
2799 	}
2800 
2801 	maxlvt = lapic_get_maxlvt();
2802 	apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2803 	apic_write(APIC_ID, apic_pm_state.apic_id);
2804 	apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2805 	apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2806 	apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2807 	apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2808 	apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2809 	apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2810 #ifdef CONFIG_X86_THERMAL_VECTOR
2811 	if (maxlvt >= 5)
2812 		apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2813 #endif
2814 #ifdef CONFIG_X86_MCE_INTEL
2815 	if (maxlvt >= 6)
2816 		apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2817 #endif
2818 	if (maxlvt >= 4)
2819 		apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2820 	apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2821 	apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2822 	apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2823 	apic_write(APIC_ESR, 0);
2824 	apic_read(APIC_ESR);
2825 	apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2826 	apic_write(APIC_ESR, 0);
2827 	apic_read(APIC_ESR);
2828 
2829 	irq_remapping_reenable(x2apic_mode);
2830 
2831 	local_irq_restore(flags);
2832 }
2833 
2834 /*
2835  * This device has no shutdown method - fully functioning local APICs
2836  * are needed on every CPU up until machine_halt/restart/poweroff.
2837  */
2838 
2839 static struct syscore_ops lapic_syscore_ops = {
2840 	.resume		= lapic_resume,
2841 	.suspend	= lapic_suspend,
2842 };
2843 
2844 static void apic_pm_activate(void)
2845 {
2846 	apic_pm_state.active = 1;
2847 }
2848 
2849 static int __init init_lapic_sysfs(void)
2850 {
2851 	/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2852 	if (boot_cpu_has(X86_FEATURE_APIC))
2853 		register_syscore_ops(&lapic_syscore_ops);
2854 
2855 	return 0;
2856 }
2857 
2858 /* local apic needs to resume before other devices access its registers. */
2859 core_initcall(init_lapic_sysfs);
2860 
2861 #else	/* CONFIG_PM */
2862 
2863 static void apic_pm_activate(void) { }
2864 
2865 #endif	/* CONFIG_PM */
2866 
2867 #ifdef CONFIG_X86_64
2868 
2869 static int multi_checked;
2870 static int multi;
2871 
2872 static int set_multi(const struct dmi_system_id *d)
2873 {
2874 	if (multi)
2875 		return 0;
2876 	pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2877 	multi = 1;
2878 	return 0;
2879 }
2880 
2881 static const struct dmi_system_id multi_dmi_table[] = {
2882 	{
2883 		.callback = set_multi,
2884 		.ident = "IBM System Summit2",
2885 		.matches = {
2886 			DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2887 			DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2888 		},
2889 	},
2890 	{}
2891 };
2892 
2893 static void dmi_check_multi(void)
2894 {
2895 	if (multi_checked)
2896 		return;
2897 
2898 	dmi_check_system(multi_dmi_table);
2899 	multi_checked = 1;
2900 }
2901 
2902 /*
2903  * apic_is_clustered_box() -- Check if we can expect good TSC
2904  *
2905  * Thus far, the major user of this is IBM's Summit2 series:
2906  * Clustered boxes may have unsynced TSC problems if they are
2907  * multi-chassis.
2908  * Use DMI to check them
2909  */
2910 int apic_is_clustered_box(void)
2911 {
2912 	dmi_check_multi();
2913 	return multi;
2914 }
2915 #endif
2916 
2917 /*
2918  * APIC command line parameters
2919  */
2920 static int __init setup_disableapic(char *arg)
2921 {
2922 	disable_apic = 1;
2923 	setup_clear_cpu_cap(X86_FEATURE_APIC);
2924 	return 0;
2925 }
2926 early_param("disableapic", setup_disableapic);
2927 
2928 /* same as disableapic, for compatibility */
2929 static int __init setup_nolapic(char *arg)
2930 {
2931 	return setup_disableapic(arg);
2932 }
2933 early_param("nolapic", setup_nolapic);
2934 
2935 static int __init parse_lapic_timer_c2_ok(char *arg)
2936 {
2937 	local_apic_timer_c2_ok = 1;
2938 	return 0;
2939 }
2940 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2941 
2942 static int __init parse_disable_apic_timer(char *arg)
2943 {
2944 	disable_apic_timer = 1;
2945 	return 0;
2946 }
2947 early_param("noapictimer", parse_disable_apic_timer);
2948 
2949 static int __init parse_nolapic_timer(char *arg)
2950 {
2951 	disable_apic_timer = 1;
2952 	return 0;
2953 }
2954 early_param("nolapic_timer", parse_nolapic_timer);
2955 
2956 static int __init apic_set_verbosity(char *arg)
2957 {
2958 	if (!arg)  {
2959 #ifdef CONFIG_X86_64
2960 		skip_ioapic_setup = 0;
2961 		return 0;
2962 #endif
2963 		return -EINVAL;
2964 	}
2965 
2966 	if (strcmp("debug", arg) == 0)
2967 		apic_verbosity = APIC_DEBUG;
2968 	else if (strcmp("verbose", arg) == 0)
2969 		apic_verbosity = APIC_VERBOSE;
2970 #ifdef CONFIG_X86_64
2971 	else {
2972 		pr_warn("APIC Verbosity level %s not recognised"
2973 			" use apic=verbose or apic=debug\n", arg);
2974 		return -EINVAL;
2975 	}
2976 #endif
2977 
2978 	return 0;
2979 }
2980 early_param("apic", apic_set_verbosity);
2981 
2982 static int __init lapic_insert_resource(void)
2983 {
2984 	if (!apic_phys)
2985 		return -1;
2986 
2987 	/* Put local APIC into the resource map. */
2988 	lapic_resource.start = apic_phys;
2989 	lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2990 	insert_resource(&iomem_resource, &lapic_resource);
2991 
2992 	return 0;
2993 }
2994 
2995 /*
2996  * need call insert after e820__reserve_resources()
2997  * that is using request_resource
2998  */
2999 late_initcall(lapic_insert_resource);
3000 
3001 static int __init apic_set_disabled_cpu_apicid(char *arg)
3002 {
3003 	if (!arg || !get_option(&arg, &disabled_cpu_apicid))
3004 		return -EINVAL;
3005 
3006 	return 0;
3007 }
3008 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
3009 
3010 static int __init apic_set_extnmi(char *arg)
3011 {
3012 	if (!arg)
3013 		return -EINVAL;
3014 
3015 	if (!strncmp("all", arg, 3))
3016 		apic_extnmi = APIC_EXTNMI_ALL;
3017 	else if (!strncmp("none", arg, 4))
3018 		apic_extnmi = APIC_EXTNMI_NONE;
3019 	else if (!strncmp("bsp", arg, 3))
3020 		apic_extnmi = APIC_EXTNMI_BSP;
3021 	else {
3022 		pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
3023 		return -EINVAL;
3024 	}
3025 
3026 	return 0;
3027 }
3028 early_param("apic_extnmi", apic_set_extnmi);
3029