1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC handling, local APIC timers 4 * 5 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * 7 * Fixes 8 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 9 * thanks to Eric Gilmore 10 * and Rolf G. Tews 11 * for testing these extensively. 12 * Maciej W. Rozycki : Various updates and fixes. 13 * Mikael Pettersson : Power Management for UP-APIC. 14 * Pavel Machek and 15 * Mikael Pettersson : PM converted to driver model. 16 */ 17 18 #include <linux/perf_event.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mc146818rtc.h> 21 #include <linux/acpi_pmtmr.h> 22 #include <linux/clockchips.h> 23 #include <linux/interrupt.h> 24 #include <linux/memblock.h> 25 #include <linux/ftrace.h> 26 #include <linux/ioport.h> 27 #include <linux/export.h> 28 #include <linux/syscore_ops.h> 29 #include <linux/delay.h> 30 #include <linux/timex.h> 31 #include <linux/i8253.h> 32 #include <linux/dmar.h> 33 #include <linux/init.h> 34 #include <linux/cpu.h> 35 #include <linux/dmi.h> 36 #include <linux/smp.h> 37 #include <linux/mm.h> 38 39 #include <asm/trace/irq_vectors.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/perf_event.h> 42 #include <asm/x86_init.h> 43 #include <asm/pgalloc.h> 44 #include <linux/atomic.h> 45 #include <asm/mpspec.h> 46 #include <asm/i8259.h> 47 #include <asm/proto.h> 48 #include <asm/traps.h> 49 #include <asm/apic.h> 50 #include <asm/io_apic.h> 51 #include <asm/desc.h> 52 #include <asm/hpet.h> 53 #include <asm/mtrr.h> 54 #include <asm/time.h> 55 #include <asm/smp.h> 56 #include <asm/mce.h> 57 #include <asm/tsc.h> 58 #include <asm/hypervisor.h> 59 #include <asm/cpu_device_id.h> 60 #include <asm/intel-family.h> 61 #include <asm/irq_regs.h> 62 63 unsigned int num_processors; 64 65 unsigned disabled_cpus; 66 67 /* Processor that is doing the boot up */ 68 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U; 69 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); 70 71 u8 boot_cpu_apic_version __ro_after_init; 72 73 /* 74 * The highest APIC ID seen during enumeration. 75 */ 76 static unsigned int max_physical_apicid; 77 78 /* 79 * Bitmask of physically existing CPUs: 80 */ 81 physid_mask_t phys_cpu_present_map; 82 83 /* 84 * Processor to be disabled specified by kernel parameter 85 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to 86 * avoid undefined behaviour caused by sending INIT from AP to BSP. 87 */ 88 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID; 89 90 /* 91 * This variable controls which CPUs receive external NMIs. By default, 92 * external NMIs are delivered only to the BSP. 93 */ 94 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; 95 96 /* 97 * Map cpu index to physical APIC ID 98 */ 99 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); 100 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); 101 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); 102 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); 103 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); 104 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); 105 106 #ifdef CONFIG_X86_32 107 108 /* 109 * On x86_32, the mapping between cpu and logical apicid may vary 110 * depending on apic in use. The following early percpu variable is 111 * used for the mapping. This is where the behaviors of x86_64 and 32 112 * actually diverge. Let's keep it ugly for now. 113 */ 114 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); 115 116 /* Local APIC was disabled by the BIOS and enabled by the kernel */ 117 static int enabled_via_apicbase __ro_after_init; 118 119 /* 120 * Handle interrupt mode configuration register (IMCR). 121 * This register controls whether the interrupt signals 122 * that reach the BSP come from the master PIC or from the 123 * local APIC. Before entering Symmetric I/O Mode, either 124 * the BIOS or the operating system must switch out of 125 * PIC Mode by changing the IMCR. 126 */ 127 static inline void imcr_pic_to_apic(void) 128 { 129 /* select IMCR register */ 130 outb(0x70, 0x22); 131 /* NMI and 8259 INTR go through APIC */ 132 outb(0x01, 0x23); 133 } 134 135 static inline void imcr_apic_to_pic(void) 136 { 137 /* select IMCR register */ 138 outb(0x70, 0x22); 139 /* NMI and 8259 INTR go directly to BSP */ 140 outb(0x00, 0x23); 141 } 142 #endif 143 144 /* 145 * Knob to control our willingness to enable the local APIC. 146 * 147 * +1=force-enable 148 */ 149 static int force_enable_local_apic __initdata; 150 151 /* 152 * APIC command line parameters 153 */ 154 static int __init parse_lapic(char *arg) 155 { 156 if (IS_ENABLED(CONFIG_X86_32) && !arg) 157 force_enable_local_apic = 1; 158 else if (arg && !strncmp(arg, "notscdeadline", 13)) 159 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 160 return 0; 161 } 162 early_param("lapic", parse_lapic); 163 164 #ifdef CONFIG_X86_64 165 static int apic_calibrate_pmtmr __initdata; 166 static __init int setup_apicpmtimer(char *s) 167 { 168 apic_calibrate_pmtmr = 1; 169 notsc_setup(NULL); 170 return 0; 171 } 172 __setup("apicpmtimer", setup_apicpmtimer); 173 #endif 174 175 unsigned long mp_lapic_addr __ro_after_init; 176 int disable_apic __ro_after_init; 177 /* Disable local APIC timer from the kernel commandline or via dmi quirk */ 178 static int disable_apic_timer __initdata; 179 /* Local APIC timer works in C2 */ 180 int local_apic_timer_c2_ok __ro_after_init; 181 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); 182 183 /* 184 * Debug level, exported for io_apic.c 185 */ 186 int apic_verbosity __ro_after_init; 187 188 int pic_mode __ro_after_init; 189 190 /* Have we found an MP table */ 191 int smp_found_config __ro_after_init; 192 193 static struct resource lapic_resource = { 194 .name = "Local APIC", 195 .flags = IORESOURCE_MEM | IORESOURCE_BUSY, 196 }; 197 198 unsigned int lapic_timer_period = 0; 199 200 static void apic_pm_activate(void); 201 202 static unsigned long apic_phys __ro_after_init; 203 204 /* 205 * Get the LAPIC version 206 */ 207 static inline int lapic_get_version(void) 208 { 209 return GET_APIC_VERSION(apic_read(APIC_LVR)); 210 } 211 212 /* 213 * Check, if the APIC is integrated or a separate chip 214 */ 215 static inline int lapic_is_integrated(void) 216 { 217 return APIC_INTEGRATED(lapic_get_version()); 218 } 219 220 /* 221 * Check, whether this is a modern or a first generation APIC 222 */ 223 static int modern_apic(void) 224 { 225 /* AMD systems use old APIC versions, so check the CPU */ 226 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 227 boot_cpu_data.x86 >= 0xf) 228 return 1; 229 230 /* Hygon systems use modern APIC */ 231 if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 232 return 1; 233 234 return lapic_get_version() >= 0x14; 235 } 236 237 /* 238 * right after this call apic become NOOP driven 239 * so apic->write/read doesn't do anything 240 */ 241 static void __init apic_disable(void) 242 { 243 pr_info("APIC: switched to apic NOOP\n"); 244 apic = &apic_noop; 245 } 246 247 void native_apic_wait_icr_idle(void) 248 { 249 while (apic_read(APIC_ICR) & APIC_ICR_BUSY) 250 cpu_relax(); 251 } 252 253 u32 native_safe_apic_wait_icr_idle(void) 254 { 255 u32 send_status; 256 int timeout; 257 258 timeout = 0; 259 do { 260 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; 261 if (!send_status) 262 break; 263 inc_irq_stat(icr_read_retry_count); 264 udelay(100); 265 } while (timeout++ < 1000); 266 267 return send_status; 268 } 269 270 void native_apic_icr_write(u32 low, u32 id) 271 { 272 unsigned long flags; 273 274 local_irq_save(flags); 275 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); 276 apic_write(APIC_ICR, low); 277 local_irq_restore(flags); 278 } 279 280 u64 native_apic_icr_read(void) 281 { 282 u32 icr1, icr2; 283 284 icr2 = apic_read(APIC_ICR2); 285 icr1 = apic_read(APIC_ICR); 286 287 return icr1 | ((u64)icr2 << 32); 288 } 289 290 #ifdef CONFIG_X86_32 291 /** 292 * get_physical_broadcast - Get number of physical broadcast IDs 293 */ 294 int get_physical_broadcast(void) 295 { 296 return modern_apic() ? 0xff : 0xf; 297 } 298 #endif 299 300 /** 301 * lapic_get_maxlvt - get the maximum number of local vector table entries 302 */ 303 int lapic_get_maxlvt(void) 304 { 305 /* 306 * - we always have APIC integrated on 64bit mode 307 * - 82489DXs do not report # of LVT entries 308 */ 309 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; 310 } 311 312 /* 313 * Local APIC timer 314 */ 315 316 /* Clock divisor */ 317 #define APIC_DIVISOR 16 318 #define TSC_DIVISOR 8 319 320 /* 321 * This function sets up the local APIC timer, with a timeout of 322 * 'clocks' APIC bus clock. During calibration we actually call 323 * this function twice on the boot CPU, once with a bogus timeout 324 * value, second time for real. The other (noncalibrating) CPUs 325 * call this function only once, with the real, calibrated value. 326 * 327 * We do reads before writes even if unnecessary, to get around the 328 * P5 APIC double write bug. 329 */ 330 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) 331 { 332 unsigned int lvtt_value, tmp_value; 333 334 lvtt_value = LOCAL_TIMER_VECTOR; 335 if (!oneshot) 336 lvtt_value |= APIC_LVT_TIMER_PERIODIC; 337 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 338 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; 339 340 if (!lapic_is_integrated()) 341 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); 342 343 if (!irqen) 344 lvtt_value |= APIC_LVT_MASKED; 345 346 apic_write(APIC_LVTT, lvtt_value); 347 348 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { 349 /* 350 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, 351 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. 352 * According to Intel, MFENCE can do the serialization here. 353 */ 354 asm volatile("mfence" : : : "memory"); 355 return; 356 } 357 358 /* 359 * Divide PICLK by 16 360 */ 361 tmp_value = apic_read(APIC_TDCR); 362 apic_write(APIC_TDCR, 363 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | 364 APIC_TDR_DIV_16); 365 366 if (!oneshot) 367 apic_write(APIC_TMICT, clocks / APIC_DIVISOR); 368 } 369 370 /* 371 * Setup extended LVT, AMD specific 372 * 373 * Software should use the LVT offsets the BIOS provides. The offsets 374 * are determined by the subsystems using it like those for MCE 375 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts 376 * are supported. Beginning with family 10h at least 4 offsets are 377 * available. 378 * 379 * Since the offsets must be consistent for all cores, we keep track 380 * of the LVT offsets in software and reserve the offset for the same 381 * vector also to be used on other cores. An offset is freed by 382 * setting the entry to APIC_EILVT_MASKED. 383 * 384 * If the BIOS is right, there should be no conflicts. Otherwise a 385 * "[Firmware Bug]: ..." error message is generated. However, if 386 * software does not properly determines the offsets, it is not 387 * necessarily a BIOS bug. 388 */ 389 390 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; 391 392 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) 393 { 394 return (old & APIC_EILVT_MASKED) 395 || (new == APIC_EILVT_MASKED) 396 || ((new & ~APIC_EILVT_MASKED) == old); 397 } 398 399 static unsigned int reserve_eilvt_offset(int offset, unsigned int new) 400 { 401 unsigned int rsvd, vector; 402 403 if (offset >= APIC_EILVT_NR_MAX) 404 return ~0; 405 406 rsvd = atomic_read(&eilvt_offsets[offset]); 407 do { 408 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ 409 if (vector && !eilvt_entry_is_changeable(vector, new)) 410 /* may not change if vectors are different */ 411 return rsvd; 412 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); 413 } while (rsvd != new); 414 415 rsvd &= ~APIC_EILVT_MASKED; 416 if (rsvd && rsvd != vector) 417 pr_info("LVT offset %d assigned for vector 0x%02x\n", 418 offset, rsvd); 419 420 return new; 421 } 422 423 /* 424 * If mask=1, the LVT entry does not generate interrupts while mask=0 425 * enables the vector. See also the BKDGs. Must be called with 426 * preemption disabled. 427 */ 428 429 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) 430 { 431 unsigned long reg = APIC_EILVTn(offset); 432 unsigned int new, old, reserved; 433 434 new = (mask << 16) | (msg_type << 8) | vector; 435 old = apic_read(reg); 436 reserved = reserve_eilvt_offset(offset, new); 437 438 if (reserved != new) { 439 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 440 "vector 0x%x, but the register is already in use for " 441 "vector 0x%x on another cpu\n", 442 smp_processor_id(), reg, offset, new, reserved); 443 return -EINVAL; 444 } 445 446 if (!eilvt_entry_is_changeable(old, new)) { 447 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 448 "vector 0x%x, but the register is already in use for " 449 "vector 0x%x on this cpu\n", 450 smp_processor_id(), reg, offset, new, old); 451 return -EBUSY; 452 } 453 454 apic_write(reg, new); 455 456 return 0; 457 } 458 EXPORT_SYMBOL_GPL(setup_APIC_eilvt); 459 460 /* 461 * Program the next event, relative to now 462 */ 463 static int lapic_next_event(unsigned long delta, 464 struct clock_event_device *evt) 465 { 466 apic_write(APIC_TMICT, delta); 467 return 0; 468 } 469 470 static int lapic_next_deadline(unsigned long delta, 471 struct clock_event_device *evt) 472 { 473 u64 tsc; 474 475 tsc = rdtsc(); 476 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); 477 return 0; 478 } 479 480 static int lapic_timer_shutdown(struct clock_event_device *evt) 481 { 482 unsigned int v; 483 484 /* Lapic used as dummy for broadcast ? */ 485 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 486 return 0; 487 488 v = apic_read(APIC_LVTT); 489 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 490 apic_write(APIC_LVTT, v); 491 apic_write(APIC_TMICT, 0); 492 return 0; 493 } 494 495 static inline int 496 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) 497 { 498 /* Lapic used as dummy for broadcast ? */ 499 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 500 return 0; 501 502 __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); 503 return 0; 504 } 505 506 static int lapic_timer_set_periodic(struct clock_event_device *evt) 507 { 508 return lapic_timer_set_periodic_oneshot(evt, false); 509 } 510 511 static int lapic_timer_set_oneshot(struct clock_event_device *evt) 512 { 513 return lapic_timer_set_periodic_oneshot(evt, true); 514 } 515 516 /* 517 * Local APIC timer broadcast function 518 */ 519 static void lapic_timer_broadcast(const struct cpumask *mask) 520 { 521 #ifdef CONFIG_SMP 522 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); 523 #endif 524 } 525 526 527 /* 528 * The local apic timer can be used for any function which is CPU local. 529 */ 530 static struct clock_event_device lapic_clockevent = { 531 .name = "lapic", 532 .features = CLOCK_EVT_FEAT_PERIODIC | 533 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP 534 | CLOCK_EVT_FEAT_DUMMY, 535 .shift = 32, 536 .set_state_shutdown = lapic_timer_shutdown, 537 .set_state_periodic = lapic_timer_set_periodic, 538 .set_state_oneshot = lapic_timer_set_oneshot, 539 .set_state_oneshot_stopped = lapic_timer_shutdown, 540 .set_next_event = lapic_next_event, 541 .broadcast = lapic_timer_broadcast, 542 .rating = 100, 543 .irq = -1, 544 }; 545 static DEFINE_PER_CPU(struct clock_event_device, lapic_events); 546 547 static const struct x86_cpu_id deadline_match[] __initconst = { 548 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */ 549 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */ 550 551 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X, 0x0b000020), 552 553 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011), 554 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e), 555 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c), 556 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003), 557 558 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136), 559 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014), 560 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0), 561 562 X86_MATCH_INTEL_FAM6_MODEL( HASWELL, 0x22), 563 X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L, 0x20), 564 X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G, 0x17), 565 566 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL, 0x25), 567 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G, 0x17), 568 569 X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L, 0xb2), 570 X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE, 0xb2), 571 572 X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L, 0x52), 573 X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE, 0x52), 574 575 {}, 576 }; 577 578 static __init bool apic_validate_deadline_timer(void) 579 { 580 const struct x86_cpu_id *m; 581 u32 rev; 582 583 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 584 return false; 585 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 586 return true; 587 588 m = x86_match_cpu(deadline_match); 589 if (!m) 590 return true; 591 592 rev = (u32)m->driver_data; 593 594 if (boot_cpu_data.microcode >= rev) 595 return true; 596 597 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 598 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " 599 "please update microcode to version: 0x%x (or later)\n", rev); 600 return false; 601 } 602 603 /* 604 * Setup the local APIC timer for this CPU. Copy the initialized values 605 * of the boot CPU and register the clock event in the framework. 606 */ 607 static void setup_APIC_timer(void) 608 { 609 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 610 611 if (this_cpu_has(X86_FEATURE_ARAT)) { 612 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; 613 /* Make LAPIC timer preferrable over percpu HPET */ 614 lapic_clockevent.rating = 150; 615 } 616 617 memcpy(levt, &lapic_clockevent, sizeof(*levt)); 618 levt->cpumask = cpumask_of(smp_processor_id()); 619 620 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 621 levt->name = "lapic-deadline"; 622 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | 623 CLOCK_EVT_FEAT_DUMMY); 624 levt->set_next_event = lapic_next_deadline; 625 clockevents_config_and_register(levt, 626 tsc_khz * (1000 / TSC_DIVISOR), 627 0xF, ~0UL); 628 } else 629 clockevents_register_device(levt); 630 } 631 632 /* 633 * Install the updated TSC frequency from recalibration at the TSC 634 * deadline clockevent devices. 635 */ 636 static void __lapic_update_tsc_freq(void *info) 637 { 638 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 639 640 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 641 return; 642 643 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); 644 } 645 646 void lapic_update_tsc_freq(void) 647 { 648 /* 649 * The clockevent device's ->mult and ->shift can both be 650 * changed. In order to avoid races, schedule the frequency 651 * update code on each CPU. 652 */ 653 on_each_cpu(__lapic_update_tsc_freq, NULL, 0); 654 } 655 656 /* 657 * In this functions we calibrate APIC bus clocks to the external timer. 658 * 659 * We want to do the calibration only once since we want to have local timer 660 * irqs syncron. CPUs connected by the same APIC bus have the very same bus 661 * frequency. 662 * 663 * This was previously done by reading the PIT/HPET and waiting for a wrap 664 * around to find out, that a tick has elapsed. I have a box, where the PIT 665 * readout is broken, so it never gets out of the wait loop again. This was 666 * also reported by others. 667 * 668 * Monitoring the jiffies value is inaccurate and the clockevents 669 * infrastructure allows us to do a simple substitution of the interrupt 670 * handler. 671 * 672 * The calibration routine also uses the pm_timer when possible, as the PIT 673 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes 674 * back to normal later in the boot process). 675 */ 676 677 #define LAPIC_CAL_LOOPS (HZ/10) 678 679 static __initdata int lapic_cal_loops = -1; 680 static __initdata long lapic_cal_t1, lapic_cal_t2; 681 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; 682 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; 683 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; 684 685 /* 686 * Temporary interrupt handler and polled calibration function. 687 */ 688 static void __init lapic_cal_handler(struct clock_event_device *dev) 689 { 690 unsigned long long tsc = 0; 691 long tapic = apic_read(APIC_TMCCT); 692 unsigned long pm = acpi_pm_read_early(); 693 694 if (boot_cpu_has(X86_FEATURE_TSC)) 695 tsc = rdtsc(); 696 697 switch (lapic_cal_loops++) { 698 case 0: 699 lapic_cal_t1 = tapic; 700 lapic_cal_tsc1 = tsc; 701 lapic_cal_pm1 = pm; 702 lapic_cal_j1 = jiffies; 703 break; 704 705 case LAPIC_CAL_LOOPS: 706 lapic_cal_t2 = tapic; 707 lapic_cal_tsc2 = tsc; 708 if (pm < lapic_cal_pm1) 709 pm += ACPI_PM_OVRRUN; 710 lapic_cal_pm2 = pm; 711 lapic_cal_j2 = jiffies; 712 break; 713 } 714 } 715 716 static int __init 717 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) 718 { 719 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; 720 const long pm_thresh = pm_100ms / 100; 721 unsigned long mult; 722 u64 res; 723 724 #ifndef CONFIG_X86_PM_TIMER 725 return -1; 726 #endif 727 728 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); 729 730 /* Check, if the PM timer is available */ 731 if (!deltapm) 732 return -1; 733 734 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); 735 736 if (deltapm > (pm_100ms - pm_thresh) && 737 deltapm < (pm_100ms + pm_thresh)) { 738 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); 739 return 0; 740 } 741 742 res = (((u64)deltapm) * mult) >> 22; 743 do_div(res, 1000000); 744 pr_warn("APIC calibration not consistent " 745 "with PM-Timer: %ldms instead of 100ms\n", (long)res); 746 747 /* Correct the lapic counter value */ 748 res = (((u64)(*delta)) * pm_100ms); 749 do_div(res, deltapm); 750 pr_info("APIC delta adjusted to PM-Timer: " 751 "%lu (%ld)\n", (unsigned long)res, *delta); 752 *delta = (long)res; 753 754 /* Correct the tsc counter value */ 755 if (boot_cpu_has(X86_FEATURE_TSC)) { 756 res = (((u64)(*deltatsc)) * pm_100ms); 757 do_div(res, deltapm); 758 apic_printk(APIC_VERBOSE, "TSC delta adjusted to " 759 "PM-Timer: %lu (%ld)\n", 760 (unsigned long)res, *deltatsc); 761 *deltatsc = (long)res; 762 } 763 764 return 0; 765 } 766 767 static int __init lapic_init_clockevent(void) 768 { 769 if (!lapic_timer_period) 770 return -1; 771 772 /* Calculate the scaled math multiplication factor */ 773 lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, 774 TICK_NSEC, lapic_clockevent.shift); 775 lapic_clockevent.max_delta_ns = 776 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); 777 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; 778 lapic_clockevent.min_delta_ns = 779 clockevent_delta2ns(0xF, &lapic_clockevent); 780 lapic_clockevent.min_delta_ticks = 0xF; 781 782 return 0; 783 } 784 785 bool __init apic_needs_pit(void) 786 { 787 /* 788 * If the frequencies are not known, PIT is required for both TSC 789 * and apic timer calibration. 790 */ 791 if (!tsc_khz || !cpu_khz) 792 return true; 793 794 /* Is there an APIC at all or is it disabled? */ 795 if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic) 796 return true; 797 798 /* 799 * If interrupt delivery mode is legacy PIC or virtual wire without 800 * configuration, the local APIC timer wont be set up. Make sure 801 * that the PIT is initialized. 802 */ 803 if (apic_intr_mode == APIC_PIC || 804 apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG) 805 return true; 806 807 /* Virt guests may lack ARAT, but still have DEADLINE */ 808 if (!boot_cpu_has(X86_FEATURE_ARAT)) 809 return true; 810 811 /* Deadline timer is based on TSC so no further PIT action required */ 812 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 813 return false; 814 815 /* APIC timer disabled? */ 816 if (disable_apic_timer) 817 return true; 818 /* 819 * The APIC timer frequency is known already, no PIT calibration 820 * required. If unknown, let the PIT be initialized. 821 */ 822 return lapic_timer_period == 0; 823 } 824 825 static int __init calibrate_APIC_clock(void) 826 { 827 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 828 u64 tsc_perj = 0, tsc_start = 0; 829 unsigned long jif_start; 830 unsigned long deltaj; 831 long delta, deltatsc; 832 int pm_referenced = 0; 833 834 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 835 return 0; 836 837 /* 838 * Check if lapic timer has already been calibrated by platform 839 * specific routine, such as tsc calibration code. If so just fill 840 * in the clockevent structure and return. 841 */ 842 if (!lapic_init_clockevent()) { 843 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", 844 lapic_timer_period); 845 /* 846 * Direct calibration methods must have an always running 847 * local APIC timer, no need for broadcast timer. 848 */ 849 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 850 return 0; 851 } 852 853 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" 854 "calibrating APIC timer ...\n"); 855 856 /* 857 * There are platforms w/o global clockevent devices. Instead of 858 * making the calibration conditional on that, use a polling based 859 * approach everywhere. 860 */ 861 local_irq_disable(); 862 863 /* 864 * Setup the APIC counter to maximum. There is no way the lapic 865 * can underflow in the 100ms detection time frame 866 */ 867 __setup_APIC_LVTT(0xffffffff, 0, 0); 868 869 /* 870 * Methods to terminate the calibration loop: 871 * 1) Global clockevent if available (jiffies) 872 * 2) TSC if available and frequency is known 873 */ 874 jif_start = READ_ONCE(jiffies); 875 876 if (tsc_khz) { 877 tsc_start = rdtsc(); 878 tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); 879 } 880 881 /* 882 * Enable interrupts so the tick can fire, if a global 883 * clockevent device is available 884 */ 885 local_irq_enable(); 886 887 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { 888 /* Wait for a tick to elapse */ 889 while (1) { 890 if (tsc_khz) { 891 u64 tsc_now = rdtsc(); 892 if ((tsc_now - tsc_start) >= tsc_perj) { 893 tsc_start += tsc_perj; 894 break; 895 } 896 } else { 897 unsigned long jif_now = READ_ONCE(jiffies); 898 899 if (time_after(jif_now, jif_start)) { 900 jif_start = jif_now; 901 break; 902 } 903 } 904 cpu_relax(); 905 } 906 907 /* Invoke the calibration routine */ 908 local_irq_disable(); 909 lapic_cal_handler(NULL); 910 local_irq_enable(); 911 } 912 913 local_irq_disable(); 914 915 /* Build delta t1-t2 as apic timer counts down */ 916 delta = lapic_cal_t1 - lapic_cal_t2; 917 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); 918 919 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); 920 921 /* we trust the PM based calibration if possible */ 922 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, 923 &delta, &deltatsc); 924 925 lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; 926 lapic_init_clockevent(); 927 928 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); 929 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); 930 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", 931 lapic_timer_period); 932 933 if (boot_cpu_has(X86_FEATURE_TSC)) { 934 apic_printk(APIC_VERBOSE, "..... CPU clock speed is " 935 "%ld.%04ld MHz.\n", 936 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), 937 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); 938 } 939 940 apic_printk(APIC_VERBOSE, "..... host bus clock speed is " 941 "%u.%04u MHz.\n", 942 lapic_timer_period / (1000000 / HZ), 943 lapic_timer_period % (1000000 / HZ)); 944 945 /* 946 * Do a sanity check on the APIC calibration result 947 */ 948 if (lapic_timer_period < (1000000 / HZ)) { 949 local_irq_enable(); 950 pr_warn("APIC frequency too slow, disabling apic timer\n"); 951 return -1; 952 } 953 954 levt->features &= ~CLOCK_EVT_FEAT_DUMMY; 955 956 /* 957 * PM timer calibration failed or not turned on so lets try APIC 958 * timer based calibration, if a global clockevent device is 959 * available. 960 */ 961 if (!pm_referenced && global_clock_event) { 962 apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); 963 964 /* 965 * Setup the apic timer manually 966 */ 967 levt->event_handler = lapic_cal_handler; 968 lapic_timer_set_periodic(levt); 969 lapic_cal_loops = -1; 970 971 /* Let the interrupts run */ 972 local_irq_enable(); 973 974 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 975 cpu_relax(); 976 977 /* Stop the lapic timer */ 978 local_irq_disable(); 979 lapic_timer_shutdown(levt); 980 981 /* Jiffies delta */ 982 deltaj = lapic_cal_j2 - lapic_cal_j1; 983 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); 984 985 /* Check, if the jiffies result is consistent */ 986 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) 987 apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); 988 else 989 levt->features |= CLOCK_EVT_FEAT_DUMMY; 990 } 991 local_irq_enable(); 992 993 if (levt->features & CLOCK_EVT_FEAT_DUMMY) { 994 pr_warn("APIC timer disabled due to verification failure\n"); 995 return -1; 996 } 997 998 return 0; 999 } 1000 1001 /* 1002 * Setup the boot APIC 1003 * 1004 * Calibrate and verify the result. 1005 */ 1006 void __init setup_boot_APIC_clock(void) 1007 { 1008 /* 1009 * The local apic timer can be disabled via the kernel 1010 * commandline or from the CPU detection code. Register the lapic 1011 * timer as a dummy clock event source on SMP systems, so the 1012 * broadcast mechanism is used. On UP systems simply ignore it. 1013 */ 1014 if (disable_apic_timer) { 1015 pr_info("Disabling APIC timer\n"); 1016 /* No broadcast on UP ! */ 1017 if (num_possible_cpus() > 1) { 1018 lapic_clockevent.mult = 1; 1019 setup_APIC_timer(); 1020 } 1021 return; 1022 } 1023 1024 if (calibrate_APIC_clock()) { 1025 /* No broadcast on UP ! */ 1026 if (num_possible_cpus() > 1) 1027 setup_APIC_timer(); 1028 return; 1029 } 1030 1031 /* 1032 * If nmi_watchdog is set to IO_APIC, we need the 1033 * PIT/HPET going. Otherwise register lapic as a dummy 1034 * device. 1035 */ 1036 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 1037 1038 /* Setup the lapic or request the broadcast */ 1039 setup_APIC_timer(); 1040 amd_e400_c1e_apic_setup(); 1041 } 1042 1043 void setup_secondary_APIC_clock(void) 1044 { 1045 setup_APIC_timer(); 1046 amd_e400_c1e_apic_setup(); 1047 } 1048 1049 /* 1050 * The guts of the apic timer interrupt 1051 */ 1052 static void local_apic_timer_interrupt(void) 1053 { 1054 struct clock_event_device *evt = this_cpu_ptr(&lapic_events); 1055 1056 /* 1057 * Normally we should not be here till LAPIC has been initialized but 1058 * in some cases like kdump, its possible that there is a pending LAPIC 1059 * timer interrupt from previous kernel's context and is delivered in 1060 * new kernel the moment interrupts are enabled. 1061 * 1062 * Interrupts are enabled early and LAPIC is setup much later, hence 1063 * its possible that when we get here evt->event_handler is NULL. 1064 * Check for event_handler being NULL and discard the interrupt as 1065 * spurious. 1066 */ 1067 if (!evt->event_handler) { 1068 pr_warn("Spurious LAPIC timer interrupt on cpu %d\n", 1069 smp_processor_id()); 1070 /* Switch it off */ 1071 lapic_timer_shutdown(evt); 1072 return; 1073 } 1074 1075 /* 1076 * the NMI deadlock-detector uses this. 1077 */ 1078 inc_irq_stat(apic_timer_irqs); 1079 1080 evt->event_handler(evt); 1081 } 1082 1083 /* 1084 * Local APIC timer interrupt. This is the most natural way for doing 1085 * local interrupts, but local timer interrupts can be emulated by 1086 * broadcast interrupts too. [in case the hw doesn't support APIC timers] 1087 * 1088 * [ if a single-CPU system runs an SMP kernel then we call the local 1089 * interrupt as well. Thus we cannot inline the local irq ... ] 1090 */ 1091 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) 1092 { 1093 struct pt_regs *old_regs = set_irq_regs(regs); 1094 1095 /* 1096 * NOTE! We'd better ACK the irq immediately, 1097 * because timer handling can be slow. 1098 * 1099 * update_process_times() expects us to have done irq_enter(). 1100 * Besides, if we don't timer interrupts ignore the global 1101 * interrupt lock, which is the WrongThing (tm) to do. 1102 */ 1103 entering_ack_irq(); 1104 trace_local_timer_entry(LOCAL_TIMER_VECTOR); 1105 local_apic_timer_interrupt(); 1106 trace_local_timer_exit(LOCAL_TIMER_VECTOR); 1107 exiting_irq(); 1108 1109 set_irq_regs(old_regs); 1110 } 1111 1112 int setup_profiling_timer(unsigned int multiplier) 1113 { 1114 return -EINVAL; 1115 } 1116 1117 /* 1118 * Local APIC start and shutdown 1119 */ 1120 1121 /** 1122 * clear_local_APIC - shutdown the local APIC 1123 * 1124 * This is called, when a CPU is disabled and before rebooting, so the state of 1125 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS 1126 * leftovers during boot. 1127 */ 1128 void clear_local_APIC(void) 1129 { 1130 int maxlvt; 1131 u32 v; 1132 1133 /* APIC hasn't been mapped yet */ 1134 if (!x2apic_mode && !apic_phys) 1135 return; 1136 1137 maxlvt = lapic_get_maxlvt(); 1138 /* 1139 * Masking an LVT entry can trigger a local APIC error 1140 * if the vector is zero. Mask LVTERR first to prevent this. 1141 */ 1142 if (maxlvt >= 3) { 1143 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ 1144 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); 1145 } 1146 /* 1147 * Careful: we have to set masks only first to deassert 1148 * any level-triggered sources. 1149 */ 1150 v = apic_read(APIC_LVTT); 1151 apic_write(APIC_LVTT, v | APIC_LVT_MASKED); 1152 v = apic_read(APIC_LVT0); 1153 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1154 v = apic_read(APIC_LVT1); 1155 apic_write(APIC_LVT1, v | APIC_LVT_MASKED); 1156 if (maxlvt >= 4) { 1157 v = apic_read(APIC_LVTPC); 1158 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); 1159 } 1160 1161 /* lets not touch this if we didn't frob it */ 1162 #ifdef CONFIG_X86_THERMAL_VECTOR 1163 if (maxlvt >= 5) { 1164 v = apic_read(APIC_LVTTHMR); 1165 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); 1166 } 1167 #endif 1168 #ifdef CONFIG_X86_MCE_INTEL 1169 if (maxlvt >= 6) { 1170 v = apic_read(APIC_LVTCMCI); 1171 if (!(v & APIC_LVT_MASKED)) 1172 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); 1173 } 1174 #endif 1175 1176 /* 1177 * Clean APIC state for other OSs: 1178 */ 1179 apic_write(APIC_LVTT, APIC_LVT_MASKED); 1180 apic_write(APIC_LVT0, APIC_LVT_MASKED); 1181 apic_write(APIC_LVT1, APIC_LVT_MASKED); 1182 if (maxlvt >= 3) 1183 apic_write(APIC_LVTERR, APIC_LVT_MASKED); 1184 if (maxlvt >= 4) 1185 apic_write(APIC_LVTPC, APIC_LVT_MASKED); 1186 1187 /* Integrated APIC (!82489DX) ? */ 1188 if (lapic_is_integrated()) { 1189 if (maxlvt > 3) 1190 /* Clear ESR due to Pentium errata 3AP and 11AP */ 1191 apic_write(APIC_ESR, 0); 1192 apic_read(APIC_ESR); 1193 } 1194 } 1195 1196 /** 1197 * apic_soft_disable - Clears and software disables the local APIC on hotplug 1198 * 1199 * Contrary to disable_local_APIC() this does not touch the enable bit in 1200 * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC 1201 * bus would require a hardware reset as the APIC would lose track of bus 1202 * arbitration. On systems with FSB delivery APICBASE could be disabled, 1203 * but it has to be guaranteed that no interrupt is sent to the APIC while 1204 * in that state and it's not clear from the SDM whether it still responds 1205 * to INIT/SIPI messages. Stay on the safe side and use software disable. 1206 */ 1207 void apic_soft_disable(void) 1208 { 1209 u32 value; 1210 1211 clear_local_APIC(); 1212 1213 /* Soft disable APIC (implies clearing of registers for 82489DX!). */ 1214 value = apic_read(APIC_SPIV); 1215 value &= ~APIC_SPIV_APIC_ENABLED; 1216 apic_write(APIC_SPIV, value); 1217 } 1218 1219 /** 1220 * disable_local_APIC - clear and disable the local APIC 1221 */ 1222 void disable_local_APIC(void) 1223 { 1224 /* APIC hasn't been mapped yet */ 1225 if (!x2apic_mode && !apic_phys) 1226 return; 1227 1228 apic_soft_disable(); 1229 1230 #ifdef CONFIG_X86_32 1231 /* 1232 * When LAPIC was disabled by the BIOS and enabled by the kernel, 1233 * restore the disabled state. 1234 */ 1235 if (enabled_via_apicbase) { 1236 unsigned int l, h; 1237 1238 rdmsr(MSR_IA32_APICBASE, l, h); 1239 l &= ~MSR_IA32_APICBASE_ENABLE; 1240 wrmsr(MSR_IA32_APICBASE, l, h); 1241 } 1242 #endif 1243 } 1244 1245 /* 1246 * If Linux enabled the LAPIC against the BIOS default disable it down before 1247 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and 1248 * not power-off. Additionally clear all LVT entries before disable_local_APIC 1249 * for the case where Linux didn't enable the LAPIC. 1250 */ 1251 void lapic_shutdown(void) 1252 { 1253 unsigned long flags; 1254 1255 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1256 return; 1257 1258 local_irq_save(flags); 1259 1260 #ifdef CONFIG_X86_32 1261 if (!enabled_via_apicbase) 1262 clear_local_APIC(); 1263 else 1264 #endif 1265 disable_local_APIC(); 1266 1267 1268 local_irq_restore(flags); 1269 } 1270 1271 /** 1272 * sync_Arb_IDs - synchronize APIC bus arbitration IDs 1273 */ 1274 void __init sync_Arb_IDs(void) 1275 { 1276 /* 1277 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not 1278 * needed on AMD. 1279 */ 1280 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1281 return; 1282 1283 /* 1284 * Wait for idle. 1285 */ 1286 apic_wait_icr_idle(); 1287 1288 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); 1289 apic_write(APIC_ICR, APIC_DEST_ALLINC | 1290 APIC_INT_LEVELTRIG | APIC_DM_INIT); 1291 } 1292 1293 enum apic_intr_mode_id apic_intr_mode __ro_after_init; 1294 1295 static int __init __apic_intr_mode_select(void) 1296 { 1297 /* Check kernel option */ 1298 if (disable_apic) { 1299 pr_info("APIC disabled via kernel command line\n"); 1300 return APIC_PIC; 1301 } 1302 1303 /* Check BIOS */ 1304 #ifdef CONFIG_X86_64 1305 /* On 64-bit, the APIC must be integrated, Check local APIC only */ 1306 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1307 disable_apic = 1; 1308 pr_info("APIC disabled by BIOS\n"); 1309 return APIC_PIC; 1310 } 1311 #else 1312 /* On 32-bit, the APIC may be integrated APIC or 82489DX */ 1313 1314 /* Neither 82489DX nor integrated APIC ? */ 1315 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { 1316 disable_apic = 1; 1317 return APIC_PIC; 1318 } 1319 1320 /* If the BIOS pretends there is an integrated APIC ? */ 1321 if (!boot_cpu_has(X86_FEATURE_APIC) && 1322 APIC_INTEGRATED(boot_cpu_apic_version)) { 1323 disable_apic = 1; 1324 pr_err(FW_BUG "Local APIC %d not detected, force emulation\n", 1325 boot_cpu_physical_apicid); 1326 return APIC_PIC; 1327 } 1328 #endif 1329 1330 /* Check MP table or ACPI MADT configuration */ 1331 if (!smp_found_config) { 1332 disable_ioapic_support(); 1333 if (!acpi_lapic) { 1334 pr_info("APIC: ACPI MADT or MP tables are not detected\n"); 1335 return APIC_VIRTUAL_WIRE_NO_CONFIG; 1336 } 1337 return APIC_VIRTUAL_WIRE; 1338 } 1339 1340 #ifdef CONFIG_SMP 1341 /* If SMP should be disabled, then really disable it! */ 1342 if (!setup_max_cpus) { 1343 pr_info("APIC: SMP mode deactivated\n"); 1344 return APIC_SYMMETRIC_IO_NO_ROUTING; 1345 } 1346 1347 if (read_apic_id() != boot_cpu_physical_apicid) { 1348 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1349 read_apic_id(), boot_cpu_physical_apicid); 1350 /* Or can we switch back to PIC here? */ 1351 } 1352 #endif 1353 1354 return APIC_SYMMETRIC_IO; 1355 } 1356 1357 /* Select the interrupt delivery mode for the BSP */ 1358 void __init apic_intr_mode_select(void) 1359 { 1360 apic_intr_mode = __apic_intr_mode_select(); 1361 } 1362 1363 /* 1364 * An initial setup of the virtual wire mode. 1365 */ 1366 void __init init_bsp_APIC(void) 1367 { 1368 unsigned int value; 1369 1370 /* 1371 * Don't do the setup now if we have a SMP BIOS as the 1372 * through-I/O-APIC virtual wire mode might be active. 1373 */ 1374 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) 1375 return; 1376 1377 /* 1378 * Do not trust the local APIC being empty at bootup. 1379 */ 1380 clear_local_APIC(); 1381 1382 /* 1383 * Enable APIC. 1384 */ 1385 value = apic_read(APIC_SPIV); 1386 value &= ~APIC_VECTOR_MASK; 1387 value |= APIC_SPIV_APIC_ENABLED; 1388 1389 #ifdef CONFIG_X86_32 1390 /* This bit is reserved on P4/Xeon and should be cleared */ 1391 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 1392 (boot_cpu_data.x86 == 15)) 1393 value &= ~APIC_SPIV_FOCUS_DISABLED; 1394 else 1395 #endif 1396 value |= APIC_SPIV_FOCUS_DISABLED; 1397 value |= SPURIOUS_APIC_VECTOR; 1398 apic_write(APIC_SPIV, value); 1399 1400 /* 1401 * Set up the virtual wire mode. 1402 */ 1403 apic_write(APIC_LVT0, APIC_DM_EXTINT); 1404 value = APIC_DM_NMI; 1405 if (!lapic_is_integrated()) /* 82489DX */ 1406 value |= APIC_LVT_LEVEL_TRIGGER; 1407 if (apic_extnmi == APIC_EXTNMI_NONE) 1408 value |= APIC_LVT_MASKED; 1409 apic_write(APIC_LVT1, value); 1410 } 1411 1412 static void __init apic_bsp_setup(bool upmode); 1413 1414 /* Init the interrupt delivery mode for the BSP */ 1415 void __init apic_intr_mode_init(void) 1416 { 1417 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); 1418 1419 switch (apic_intr_mode) { 1420 case APIC_PIC: 1421 pr_info("APIC: Keep in PIC mode(8259)\n"); 1422 return; 1423 case APIC_VIRTUAL_WIRE: 1424 pr_info("APIC: Switch to virtual wire mode setup\n"); 1425 default_setup_apic_routing(); 1426 break; 1427 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1428 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); 1429 upmode = true; 1430 default_setup_apic_routing(); 1431 break; 1432 case APIC_SYMMETRIC_IO: 1433 pr_info("APIC: Switch to symmetric I/O mode setup\n"); 1434 default_setup_apic_routing(); 1435 break; 1436 case APIC_SYMMETRIC_IO_NO_ROUTING: 1437 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); 1438 break; 1439 } 1440 1441 apic_bsp_setup(upmode); 1442 } 1443 1444 static void lapic_setup_esr(void) 1445 { 1446 unsigned int oldvalue, value, maxlvt; 1447 1448 if (!lapic_is_integrated()) { 1449 pr_info("No ESR for 82489DX.\n"); 1450 return; 1451 } 1452 1453 if (apic->disable_esr) { 1454 /* 1455 * Something untraceable is creating bad interrupts on 1456 * secondary quads ... for the moment, just leave the 1457 * ESR disabled - we can't do anything useful with the 1458 * errors anyway - mbligh 1459 */ 1460 pr_info("Leaving ESR disabled.\n"); 1461 return; 1462 } 1463 1464 maxlvt = lapic_get_maxlvt(); 1465 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1466 apic_write(APIC_ESR, 0); 1467 oldvalue = apic_read(APIC_ESR); 1468 1469 /* enables sending errors */ 1470 value = ERROR_APIC_VECTOR; 1471 apic_write(APIC_LVTERR, value); 1472 1473 /* 1474 * spec says clear errors after enabling vector. 1475 */ 1476 if (maxlvt > 3) 1477 apic_write(APIC_ESR, 0); 1478 value = apic_read(APIC_ESR); 1479 if (value != oldvalue) 1480 apic_printk(APIC_VERBOSE, "ESR value before enabling " 1481 "vector: 0x%08x after: 0x%08x\n", 1482 oldvalue, value); 1483 } 1484 1485 #define APIC_IR_REGS APIC_ISR_NR 1486 #define APIC_IR_BITS (APIC_IR_REGS * 32) 1487 #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) 1488 1489 union apic_ir { 1490 unsigned long map[APIC_IR_MAPSIZE]; 1491 u32 regs[APIC_IR_REGS]; 1492 }; 1493 1494 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) 1495 { 1496 int i, bit; 1497 1498 /* Read the IRRs */ 1499 for (i = 0; i < APIC_IR_REGS; i++) 1500 irr->regs[i] = apic_read(APIC_IRR + i * 0x10); 1501 1502 /* Read the ISRs */ 1503 for (i = 0; i < APIC_IR_REGS; i++) 1504 isr->regs[i] = apic_read(APIC_ISR + i * 0x10); 1505 1506 /* 1507 * If the ISR map is not empty. ACK the APIC and run another round 1508 * to verify whether a pending IRR has been unblocked and turned 1509 * into a ISR. 1510 */ 1511 if (!bitmap_empty(isr->map, APIC_IR_BITS)) { 1512 /* 1513 * There can be multiple ISR bits set when a high priority 1514 * interrupt preempted a lower priority one. Issue an ACK 1515 * per set bit. 1516 */ 1517 for_each_set_bit(bit, isr->map, APIC_IR_BITS) 1518 ack_APIC_irq(); 1519 return true; 1520 } 1521 1522 return !bitmap_empty(irr->map, APIC_IR_BITS); 1523 } 1524 1525 /* 1526 * After a crash, we no longer service the interrupts and a pending 1527 * interrupt from previous kernel might still have ISR bit set. 1528 * 1529 * Most probably by now the CPU has serviced that pending interrupt and it 1530 * might not have done the ack_APIC_irq() because it thought, interrupt 1531 * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear 1532 * the ISR bit and cpu thinks it has already serivced the interrupt. Hence 1533 * a vector might get locked. It was noticed for timer irq (vector 1534 * 0x31). Issue an extra EOI to clear ISR. 1535 * 1536 * If there are pending IRR bits they turn into ISR bits after a higher 1537 * priority ISR bit has been acked. 1538 */ 1539 static void apic_pending_intr_clear(void) 1540 { 1541 union apic_ir irr, isr; 1542 unsigned int i; 1543 1544 /* 512 loops are way oversized and give the APIC a chance to obey. */ 1545 for (i = 0; i < 512; i++) { 1546 if (!apic_check_and_ack(&irr, &isr)) 1547 return; 1548 } 1549 /* Dump the IRR/ISR content if that failed */ 1550 pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); 1551 } 1552 1553 /** 1554 * setup_local_APIC - setup the local APIC 1555 * 1556 * Used to setup local APIC while initializing BSP or bringing up APs. 1557 * Always called with preemption disabled. 1558 */ 1559 static void setup_local_APIC(void) 1560 { 1561 int cpu = smp_processor_id(); 1562 unsigned int value; 1563 1564 if (disable_apic) { 1565 disable_ioapic_support(); 1566 return; 1567 } 1568 1569 /* 1570 * If this comes from kexec/kcrash the APIC might be enabled in 1571 * SPIV. Soft disable it before doing further initialization. 1572 */ 1573 value = apic_read(APIC_SPIV); 1574 value &= ~APIC_SPIV_APIC_ENABLED; 1575 apic_write(APIC_SPIV, value); 1576 1577 #ifdef CONFIG_X86_32 1578 /* Pound the ESR really hard over the head with a big hammer - mbligh */ 1579 if (lapic_is_integrated() && apic->disable_esr) { 1580 apic_write(APIC_ESR, 0); 1581 apic_write(APIC_ESR, 0); 1582 apic_write(APIC_ESR, 0); 1583 apic_write(APIC_ESR, 0); 1584 } 1585 #endif 1586 /* 1587 * Double-check whether this APIC is really registered. 1588 * This is meaningless in clustered apic mode, so we skip it. 1589 */ 1590 BUG_ON(!apic->apic_id_registered()); 1591 1592 /* 1593 * Intel recommends to set DFR, LDR and TPR before enabling 1594 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel 1595 * document number 292116). So here it goes... 1596 */ 1597 apic->init_apic_ldr(); 1598 1599 #ifdef CONFIG_X86_32 1600 if (apic->dest_logical) { 1601 int logical_apicid, ldr_apicid; 1602 1603 /* 1604 * APIC LDR is initialized. If logical_apicid mapping was 1605 * initialized during get_smp_config(), make sure it matches 1606 * the actual value. 1607 */ 1608 logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu); 1609 ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 1610 if (logical_apicid != BAD_APICID) 1611 WARN_ON(logical_apicid != ldr_apicid); 1612 /* Always use the value from LDR. */ 1613 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid; 1614 } 1615 #endif 1616 1617 /* 1618 * Set Task Priority to 'accept all except vectors 0-31'. An APIC 1619 * vector in the 16-31 range could be delivered if TPR == 0, but we 1620 * would think it's an exception and terrible things will happen. We 1621 * never change this later on. 1622 */ 1623 value = apic_read(APIC_TASKPRI); 1624 value &= ~APIC_TPRI_MASK; 1625 value |= 0x10; 1626 apic_write(APIC_TASKPRI, value); 1627 1628 /* Clear eventually stale ISR/IRR bits */ 1629 apic_pending_intr_clear(); 1630 1631 /* 1632 * Now that we are all set up, enable the APIC 1633 */ 1634 value = apic_read(APIC_SPIV); 1635 value &= ~APIC_VECTOR_MASK; 1636 /* 1637 * Enable APIC 1638 */ 1639 value |= APIC_SPIV_APIC_ENABLED; 1640 1641 #ifdef CONFIG_X86_32 1642 /* 1643 * Some unknown Intel IO/APIC (or APIC) errata is biting us with 1644 * certain networking cards. If high frequency interrupts are 1645 * happening on a particular IOAPIC pin, plus the IOAPIC routing 1646 * entry is masked/unmasked at a high rate as well then sooner or 1647 * later IOAPIC line gets 'stuck', no more interrupts are received 1648 * from the device. If focus CPU is disabled then the hang goes 1649 * away, oh well :-( 1650 * 1651 * [ This bug can be reproduced easily with a level-triggered 1652 * PCI Ne2000 networking cards and PII/PIII processors, dual 1653 * BX chipset. ] 1654 */ 1655 /* 1656 * Actually disabling the focus CPU check just makes the hang less 1657 * frequent as it makes the interrupt distributon model be more 1658 * like LRU than MRU (the short-term load is more even across CPUs). 1659 */ 1660 1661 /* 1662 * - enable focus processor (bit==0) 1663 * - 64bit mode always use processor focus 1664 * so no need to set it 1665 */ 1666 value &= ~APIC_SPIV_FOCUS_DISABLED; 1667 #endif 1668 1669 /* 1670 * Set spurious IRQ vector 1671 */ 1672 value |= SPURIOUS_APIC_VECTOR; 1673 apic_write(APIC_SPIV, value); 1674 1675 perf_events_lapic_init(); 1676 1677 /* 1678 * Set up LVT0, LVT1: 1679 * 1680 * set up through-local-APIC on the boot CPU's LINT0. This is not 1681 * strictly necessary in pure symmetric-IO mode, but sometimes 1682 * we delegate interrupts to the 8259A. 1683 */ 1684 /* 1685 * TODO: set up through-local-APIC from through-I/O-APIC? --macro 1686 */ 1687 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; 1688 if (!cpu && (pic_mode || !value || skip_ioapic_setup)) { 1689 value = APIC_DM_EXTINT; 1690 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); 1691 } else { 1692 value = APIC_DM_EXTINT | APIC_LVT_MASKED; 1693 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); 1694 } 1695 apic_write(APIC_LVT0, value); 1696 1697 /* 1698 * Only the BSP sees the LINT1 NMI signal by default. This can be 1699 * modified by apic_extnmi= boot option. 1700 */ 1701 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || 1702 apic_extnmi == APIC_EXTNMI_ALL) 1703 value = APIC_DM_NMI; 1704 else 1705 value = APIC_DM_NMI | APIC_LVT_MASKED; 1706 1707 /* Is 82489DX ? */ 1708 if (!lapic_is_integrated()) 1709 value |= APIC_LVT_LEVEL_TRIGGER; 1710 apic_write(APIC_LVT1, value); 1711 1712 #ifdef CONFIG_X86_MCE_INTEL 1713 /* Recheck CMCI information after local APIC is up on CPU #0 */ 1714 if (!cpu) 1715 cmci_recheck(); 1716 #endif 1717 } 1718 1719 static void end_local_APIC_setup(void) 1720 { 1721 lapic_setup_esr(); 1722 1723 #ifdef CONFIG_X86_32 1724 { 1725 unsigned int value; 1726 /* Disable the local apic timer */ 1727 value = apic_read(APIC_LVTT); 1728 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 1729 apic_write(APIC_LVTT, value); 1730 } 1731 #endif 1732 1733 apic_pm_activate(); 1734 } 1735 1736 /* 1737 * APIC setup function for application processors. Called from smpboot.c 1738 */ 1739 void apic_ap_setup(void) 1740 { 1741 setup_local_APIC(); 1742 end_local_APIC_setup(); 1743 } 1744 1745 #ifdef CONFIG_X86_X2APIC 1746 int x2apic_mode; 1747 1748 enum { 1749 X2APIC_OFF, 1750 X2APIC_ON, 1751 X2APIC_DISABLED, 1752 }; 1753 static int x2apic_state; 1754 1755 static void __x2apic_disable(void) 1756 { 1757 u64 msr; 1758 1759 if (!boot_cpu_has(X86_FEATURE_APIC)) 1760 return; 1761 1762 rdmsrl(MSR_IA32_APICBASE, msr); 1763 if (!(msr & X2APIC_ENABLE)) 1764 return; 1765 /* Disable xapic and x2apic first and then reenable xapic mode */ 1766 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); 1767 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); 1768 printk_once(KERN_INFO "x2apic disabled\n"); 1769 } 1770 1771 static void __x2apic_enable(void) 1772 { 1773 u64 msr; 1774 1775 rdmsrl(MSR_IA32_APICBASE, msr); 1776 if (msr & X2APIC_ENABLE) 1777 return; 1778 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); 1779 printk_once(KERN_INFO "x2apic enabled\n"); 1780 } 1781 1782 static int __init setup_nox2apic(char *str) 1783 { 1784 if (x2apic_enabled()) { 1785 int apicid = native_apic_msr_read(APIC_ID); 1786 1787 if (apicid >= 255) { 1788 pr_warn("Apicid: %08x, cannot enforce nox2apic\n", 1789 apicid); 1790 return 0; 1791 } 1792 pr_warn("x2apic already enabled.\n"); 1793 __x2apic_disable(); 1794 } 1795 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 1796 x2apic_state = X2APIC_DISABLED; 1797 x2apic_mode = 0; 1798 return 0; 1799 } 1800 early_param("nox2apic", setup_nox2apic); 1801 1802 /* Called from cpu_init() to enable x2apic on (secondary) cpus */ 1803 void x2apic_setup(void) 1804 { 1805 /* 1806 * If x2apic is not in ON state, disable it if already enabled 1807 * from BIOS. 1808 */ 1809 if (x2apic_state != X2APIC_ON) { 1810 __x2apic_disable(); 1811 return; 1812 } 1813 __x2apic_enable(); 1814 } 1815 1816 static __init void x2apic_disable(void) 1817 { 1818 u32 x2apic_id, state = x2apic_state; 1819 1820 x2apic_mode = 0; 1821 x2apic_state = X2APIC_DISABLED; 1822 1823 if (state != X2APIC_ON) 1824 return; 1825 1826 x2apic_id = read_apic_id(); 1827 if (x2apic_id >= 255) 1828 panic("Cannot disable x2apic, id: %08x\n", x2apic_id); 1829 1830 __x2apic_disable(); 1831 register_lapic_address(mp_lapic_addr); 1832 } 1833 1834 static __init void x2apic_enable(void) 1835 { 1836 if (x2apic_state != X2APIC_OFF) 1837 return; 1838 1839 x2apic_mode = 1; 1840 x2apic_state = X2APIC_ON; 1841 __x2apic_enable(); 1842 } 1843 1844 static __init void try_to_enable_x2apic(int remap_mode) 1845 { 1846 if (x2apic_state == X2APIC_DISABLED) 1847 return; 1848 1849 if (remap_mode != IRQ_REMAP_X2APIC_MODE) { 1850 /* IR is required if there is APIC ID > 255 even when running 1851 * under KVM 1852 */ 1853 if (max_physical_apicid > 255 || 1854 !x86_init.hyper.x2apic_available()) { 1855 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); 1856 x2apic_disable(); 1857 return; 1858 } 1859 1860 /* 1861 * without IR all CPUs can be addressed by IOAPIC/MSI 1862 * only in physical mode 1863 */ 1864 x2apic_phys = 1; 1865 } 1866 x2apic_enable(); 1867 } 1868 1869 void __init check_x2apic(void) 1870 { 1871 if (x2apic_enabled()) { 1872 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); 1873 x2apic_mode = 1; 1874 x2apic_state = X2APIC_ON; 1875 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { 1876 x2apic_state = X2APIC_DISABLED; 1877 } 1878 } 1879 #else /* CONFIG_X86_X2APIC */ 1880 static int __init validate_x2apic(void) 1881 { 1882 if (!apic_is_x2apic_enabled()) 1883 return 0; 1884 /* 1885 * Checkme: Can we simply turn off x2apic here instead of panic? 1886 */ 1887 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); 1888 } 1889 early_initcall(validate_x2apic); 1890 1891 static inline void try_to_enable_x2apic(int remap_mode) { } 1892 static inline void __x2apic_enable(void) { } 1893 #endif /* !CONFIG_X86_X2APIC */ 1894 1895 void __init enable_IR_x2apic(void) 1896 { 1897 unsigned long flags; 1898 int ret, ir_stat; 1899 1900 if (skip_ioapic_setup) { 1901 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); 1902 return; 1903 } 1904 1905 ir_stat = irq_remapping_prepare(); 1906 if (ir_stat < 0 && !x2apic_supported()) 1907 return; 1908 1909 ret = save_ioapic_entries(); 1910 if (ret) { 1911 pr_info("Saving IO-APIC state failed: %d\n", ret); 1912 return; 1913 } 1914 1915 local_irq_save(flags); 1916 legacy_pic->mask_all(); 1917 mask_ioapic_entries(); 1918 1919 /* If irq_remapping_prepare() succeeded, try to enable it */ 1920 if (ir_stat >= 0) 1921 ir_stat = irq_remapping_enable(); 1922 /* ir_stat contains the remap mode or an error code */ 1923 try_to_enable_x2apic(ir_stat); 1924 1925 if (ir_stat < 0) 1926 restore_ioapic_entries(); 1927 legacy_pic->restore_mask(); 1928 local_irq_restore(flags); 1929 } 1930 1931 #ifdef CONFIG_X86_64 1932 /* 1933 * Detect and enable local APICs on non-SMP boards. 1934 * Original code written by Keir Fraser. 1935 * On AMD64 we trust the BIOS - if it says no APIC it is likely 1936 * not correctly set up (usually the APIC timer won't work etc.) 1937 */ 1938 static int __init detect_init_APIC(void) 1939 { 1940 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1941 pr_info("No local APIC present\n"); 1942 return -1; 1943 } 1944 1945 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1946 return 0; 1947 } 1948 #else 1949 1950 static int __init apic_verify(void) 1951 { 1952 u32 features, h, l; 1953 1954 /* 1955 * The APIC feature bit should now be enabled 1956 * in `cpuid' 1957 */ 1958 features = cpuid_edx(1); 1959 if (!(features & (1 << X86_FEATURE_APIC))) { 1960 pr_warn("Could not enable APIC!\n"); 1961 return -1; 1962 } 1963 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); 1964 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1965 1966 /* The BIOS may have set up the APIC at some other address */ 1967 if (boot_cpu_data.x86 >= 6) { 1968 rdmsr(MSR_IA32_APICBASE, l, h); 1969 if (l & MSR_IA32_APICBASE_ENABLE) 1970 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; 1971 } 1972 1973 pr_info("Found and enabled local APIC!\n"); 1974 return 0; 1975 } 1976 1977 int __init apic_force_enable(unsigned long addr) 1978 { 1979 u32 h, l; 1980 1981 if (disable_apic) 1982 return -1; 1983 1984 /* 1985 * Some BIOSes disable the local APIC in the APIC_BASE 1986 * MSR. This can only be done in software for Intel P6 or later 1987 * and AMD K7 (Model > 1) or later. 1988 */ 1989 if (boot_cpu_data.x86 >= 6) { 1990 rdmsr(MSR_IA32_APICBASE, l, h); 1991 if (!(l & MSR_IA32_APICBASE_ENABLE)) { 1992 pr_info("Local APIC disabled by BIOS -- reenabling.\n"); 1993 l &= ~MSR_IA32_APICBASE_BASE; 1994 l |= MSR_IA32_APICBASE_ENABLE | addr; 1995 wrmsr(MSR_IA32_APICBASE, l, h); 1996 enabled_via_apicbase = 1; 1997 } 1998 } 1999 return apic_verify(); 2000 } 2001 2002 /* 2003 * Detect and initialize APIC 2004 */ 2005 static int __init detect_init_APIC(void) 2006 { 2007 /* Disabled by kernel option? */ 2008 if (disable_apic) 2009 return -1; 2010 2011 switch (boot_cpu_data.x86_vendor) { 2012 case X86_VENDOR_AMD: 2013 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || 2014 (boot_cpu_data.x86 >= 15)) 2015 break; 2016 goto no_apic; 2017 case X86_VENDOR_HYGON: 2018 break; 2019 case X86_VENDOR_INTEL: 2020 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || 2021 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) 2022 break; 2023 goto no_apic; 2024 default: 2025 goto no_apic; 2026 } 2027 2028 if (!boot_cpu_has(X86_FEATURE_APIC)) { 2029 /* 2030 * Over-ride BIOS and try to enable the local APIC only if 2031 * "lapic" specified. 2032 */ 2033 if (!force_enable_local_apic) { 2034 pr_info("Local APIC disabled by BIOS -- " 2035 "you can enable it with \"lapic\"\n"); 2036 return -1; 2037 } 2038 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) 2039 return -1; 2040 } else { 2041 if (apic_verify()) 2042 return -1; 2043 } 2044 2045 apic_pm_activate(); 2046 2047 return 0; 2048 2049 no_apic: 2050 pr_info("No local APIC present or hardware disabled\n"); 2051 return -1; 2052 } 2053 #endif 2054 2055 /** 2056 * init_apic_mappings - initialize APIC mappings 2057 */ 2058 void __init init_apic_mappings(void) 2059 { 2060 unsigned int new_apicid; 2061 2062 if (apic_validate_deadline_timer()) 2063 pr_debug("TSC deadline timer available\n"); 2064 2065 if (x2apic_mode) { 2066 boot_cpu_physical_apicid = read_apic_id(); 2067 return; 2068 } 2069 2070 /* If no local APIC can be found return early */ 2071 if (!smp_found_config && detect_init_APIC()) { 2072 /* lets NOP'ify apic operations */ 2073 pr_info("APIC: disable apic facility\n"); 2074 apic_disable(); 2075 } else { 2076 apic_phys = mp_lapic_addr; 2077 2078 /* 2079 * If the system has ACPI MADT tables or MP info, the LAPIC 2080 * address is already registered. 2081 */ 2082 if (!acpi_lapic && !smp_found_config) 2083 register_lapic_address(apic_phys); 2084 } 2085 2086 /* 2087 * Fetch the APIC ID of the BSP in case we have a 2088 * default configuration (or the MP table is broken). 2089 */ 2090 new_apicid = read_apic_id(); 2091 if (boot_cpu_physical_apicid != new_apicid) { 2092 boot_cpu_physical_apicid = new_apicid; 2093 /* 2094 * yeah -- we lie about apic_version 2095 * in case if apic was disabled via boot option 2096 * but it's not a problem for SMP compiled kernel 2097 * since apic_intr_mode_select is prepared for such 2098 * a case and disable smp mode 2099 */ 2100 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 2101 } 2102 } 2103 2104 void __init register_lapic_address(unsigned long address) 2105 { 2106 mp_lapic_addr = address; 2107 2108 if (!x2apic_mode) { 2109 set_fixmap_nocache(FIX_APIC_BASE, address); 2110 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", 2111 APIC_BASE, address); 2112 } 2113 if (boot_cpu_physical_apicid == -1U) { 2114 boot_cpu_physical_apicid = read_apic_id(); 2115 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 2116 } 2117 } 2118 2119 /* 2120 * Local APIC interrupts 2121 */ 2122 2123 /* 2124 * This interrupt should _never_ happen with our APIC/SMP architecture 2125 */ 2126 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs) 2127 { 2128 u8 vector = ~regs->orig_ax; 2129 u32 v; 2130 2131 entering_irq(); 2132 trace_spurious_apic_entry(vector); 2133 2134 inc_irq_stat(irq_spurious_count); 2135 2136 /* 2137 * If this is a spurious interrupt then do not acknowledge 2138 */ 2139 if (vector == SPURIOUS_APIC_VECTOR) { 2140 /* See SDM vol 3 */ 2141 pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", 2142 smp_processor_id()); 2143 goto out; 2144 } 2145 2146 /* 2147 * If it is a vectored one, verify it's set in the ISR. If set, 2148 * acknowledge it. 2149 */ 2150 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); 2151 if (v & (1 << (vector & 0x1f))) { 2152 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", 2153 vector, smp_processor_id()); 2154 ack_APIC_irq(); 2155 } else { 2156 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", 2157 vector, smp_processor_id()); 2158 } 2159 out: 2160 trace_spurious_apic_exit(vector); 2161 exiting_irq(); 2162 } 2163 2164 /* 2165 * This interrupt should never happen with our APIC/SMP architecture 2166 */ 2167 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs) 2168 { 2169 static const char * const error_interrupt_reason[] = { 2170 "Send CS error", /* APIC Error Bit 0 */ 2171 "Receive CS error", /* APIC Error Bit 1 */ 2172 "Send accept error", /* APIC Error Bit 2 */ 2173 "Receive accept error", /* APIC Error Bit 3 */ 2174 "Redirectable IPI", /* APIC Error Bit 4 */ 2175 "Send illegal vector", /* APIC Error Bit 5 */ 2176 "Received illegal vector", /* APIC Error Bit 6 */ 2177 "Illegal register address", /* APIC Error Bit 7 */ 2178 }; 2179 u32 v, i = 0; 2180 2181 entering_irq(); 2182 trace_error_apic_entry(ERROR_APIC_VECTOR); 2183 2184 /* First tickle the hardware, only then report what went on. -- REW */ 2185 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ 2186 apic_write(APIC_ESR, 0); 2187 v = apic_read(APIC_ESR); 2188 ack_APIC_irq(); 2189 atomic_inc(&irq_err_count); 2190 2191 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", 2192 smp_processor_id(), v); 2193 2194 v &= 0xff; 2195 while (v) { 2196 if (v & 0x1) 2197 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); 2198 i++; 2199 v >>= 1; 2200 } 2201 2202 apic_printk(APIC_DEBUG, KERN_CONT "\n"); 2203 2204 trace_error_apic_exit(ERROR_APIC_VECTOR); 2205 exiting_irq(); 2206 } 2207 2208 /** 2209 * connect_bsp_APIC - attach the APIC to the interrupt system 2210 */ 2211 static void __init connect_bsp_APIC(void) 2212 { 2213 #ifdef CONFIG_X86_32 2214 if (pic_mode) { 2215 /* 2216 * Do not trust the local APIC being empty at bootup. 2217 */ 2218 clear_local_APIC(); 2219 /* 2220 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's 2221 * local APIC to INT and NMI lines. 2222 */ 2223 apic_printk(APIC_VERBOSE, "leaving PIC mode, " 2224 "enabling APIC mode.\n"); 2225 imcr_pic_to_apic(); 2226 } 2227 #endif 2228 } 2229 2230 /** 2231 * disconnect_bsp_APIC - detach the APIC from the interrupt system 2232 * @virt_wire_setup: indicates, whether virtual wire mode is selected 2233 * 2234 * Virtual wire mode is necessary to deliver legacy interrupts even when the 2235 * APIC is disabled. 2236 */ 2237 void disconnect_bsp_APIC(int virt_wire_setup) 2238 { 2239 unsigned int value; 2240 2241 #ifdef CONFIG_X86_32 2242 if (pic_mode) { 2243 /* 2244 * Put the board back into PIC mode (has an effect only on 2245 * certain older boards). Note that APIC interrupts, including 2246 * IPIs, won't work beyond this point! The only exception are 2247 * INIT IPIs. 2248 */ 2249 apic_printk(APIC_VERBOSE, "disabling APIC mode, " 2250 "entering PIC mode.\n"); 2251 imcr_apic_to_pic(); 2252 return; 2253 } 2254 #endif 2255 2256 /* Go back to Virtual Wire compatibility mode */ 2257 2258 /* For the spurious interrupt use vector F, and enable it */ 2259 value = apic_read(APIC_SPIV); 2260 value &= ~APIC_VECTOR_MASK; 2261 value |= APIC_SPIV_APIC_ENABLED; 2262 value |= 0xf; 2263 apic_write(APIC_SPIV, value); 2264 2265 if (!virt_wire_setup) { 2266 /* 2267 * For LVT0 make it edge triggered, active high, 2268 * external and enabled 2269 */ 2270 value = apic_read(APIC_LVT0); 2271 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2272 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2273 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2274 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2275 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); 2276 apic_write(APIC_LVT0, value); 2277 } else { 2278 /* Disable LVT0 */ 2279 apic_write(APIC_LVT0, APIC_LVT_MASKED); 2280 } 2281 2282 /* 2283 * For LVT1 make it edge triggered, active high, 2284 * nmi and enabled 2285 */ 2286 value = apic_read(APIC_LVT1); 2287 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2288 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2289 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2290 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2291 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); 2292 apic_write(APIC_LVT1, value); 2293 } 2294 2295 /* 2296 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated 2297 * contiguously, it equals to current allocated max logical CPU ID plus 1. 2298 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, 2299 * so the maximum of nr_logical_cpuids is nr_cpu_ids. 2300 * 2301 * NOTE: Reserve 0 for BSP. 2302 */ 2303 static int nr_logical_cpuids = 1; 2304 2305 /* 2306 * Used to store mapping between logical CPU IDs and APIC IDs. 2307 */ 2308 static int cpuid_to_apicid[] = { 2309 [0 ... NR_CPUS - 1] = -1, 2310 }; 2311 2312 #ifdef CONFIG_SMP 2313 /** 2314 * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread 2315 * @apicid: APIC ID to check 2316 */ 2317 bool apic_id_is_primary_thread(unsigned int apicid) 2318 { 2319 u32 mask; 2320 2321 if (smp_num_siblings == 1) 2322 return true; 2323 /* Isolate the SMT bit(s) in the APICID and check for 0 */ 2324 mask = (1U << (fls(smp_num_siblings) - 1)) - 1; 2325 return !(apicid & mask); 2326 } 2327 #endif 2328 2329 /* 2330 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids 2331 * and cpuid_to_apicid[] synchronized. 2332 */ 2333 static int allocate_logical_cpuid(int apicid) 2334 { 2335 int i; 2336 2337 /* 2338 * cpuid <-> apicid mapping is persistent, so when a cpu is up, 2339 * check if the kernel has allocated a cpuid for it. 2340 */ 2341 for (i = 0; i < nr_logical_cpuids; i++) { 2342 if (cpuid_to_apicid[i] == apicid) 2343 return i; 2344 } 2345 2346 /* Allocate a new cpuid. */ 2347 if (nr_logical_cpuids >= nr_cpu_ids) { 2348 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " 2349 "Processor %d/0x%x and the rest are ignored.\n", 2350 nr_cpu_ids, nr_logical_cpuids, apicid); 2351 return -EINVAL; 2352 } 2353 2354 cpuid_to_apicid[nr_logical_cpuids] = apicid; 2355 return nr_logical_cpuids++; 2356 } 2357 2358 int generic_processor_info(int apicid, int version) 2359 { 2360 int cpu, max = nr_cpu_ids; 2361 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, 2362 phys_cpu_present_map); 2363 2364 /* 2365 * boot_cpu_physical_apicid is designed to have the apicid 2366 * returned by read_apic_id(), i.e, the apicid of the 2367 * currently booting-up processor. However, on some platforms, 2368 * it is temporarily modified by the apicid reported as BSP 2369 * through MP table. Concretely: 2370 * 2371 * - arch/x86/kernel/mpparse.c: MP_processor_info() 2372 * - arch/x86/mm/amdtopology.c: amd_numa_init() 2373 * 2374 * This function is executed with the modified 2375 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel 2376 * parameter doesn't work to disable APs on kdump 2nd kernel. 2377 * 2378 * Since fixing handling of boot_cpu_physical_apicid requires 2379 * another discussion and tests on each platform, we leave it 2380 * for now and here we use read_apic_id() directly in this 2381 * function, generic_processor_info(). 2382 */ 2383 if (disabled_cpu_apicid != BAD_APICID && 2384 disabled_cpu_apicid != read_apic_id() && 2385 disabled_cpu_apicid == apicid) { 2386 int thiscpu = num_processors + disabled_cpus; 2387 2388 pr_warn("APIC: Disabling requested cpu." 2389 " Processor %d/0x%x ignored.\n", thiscpu, apicid); 2390 2391 disabled_cpus++; 2392 return -ENODEV; 2393 } 2394 2395 /* 2396 * If boot cpu has not been detected yet, then only allow upto 2397 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu 2398 */ 2399 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && 2400 apicid != boot_cpu_physical_apicid) { 2401 int thiscpu = max + disabled_cpus - 1; 2402 2403 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost" 2404 " reached. Keeping one slot for boot cpu." 2405 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2406 2407 disabled_cpus++; 2408 return -ENODEV; 2409 } 2410 2411 if (num_processors >= nr_cpu_ids) { 2412 int thiscpu = max + disabled_cpus; 2413 2414 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. " 2415 "Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2416 2417 disabled_cpus++; 2418 return -EINVAL; 2419 } 2420 2421 if (apicid == boot_cpu_physical_apicid) { 2422 /* 2423 * x86_bios_cpu_apicid is required to have processors listed 2424 * in same order as logical cpu numbers. Hence the first 2425 * entry is BSP, and so on. 2426 * boot_cpu_init() already hold bit 0 in cpu_present_mask 2427 * for BSP. 2428 */ 2429 cpu = 0; 2430 2431 /* Logical cpuid 0 is reserved for BSP. */ 2432 cpuid_to_apicid[0] = apicid; 2433 } else { 2434 cpu = allocate_logical_cpuid(apicid); 2435 if (cpu < 0) { 2436 disabled_cpus++; 2437 return -EINVAL; 2438 } 2439 } 2440 2441 /* 2442 * Validate version 2443 */ 2444 if (version == 0x0) { 2445 pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", 2446 cpu, apicid); 2447 version = 0x10; 2448 } 2449 2450 if (version != boot_cpu_apic_version) { 2451 pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", 2452 boot_cpu_apic_version, cpu, version); 2453 } 2454 2455 if (apicid > max_physical_apicid) 2456 max_physical_apicid = apicid; 2457 2458 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) 2459 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; 2460 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; 2461 #endif 2462 #ifdef CONFIG_X86_32 2463 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 2464 apic->x86_32_early_logical_apicid(cpu); 2465 #endif 2466 set_cpu_possible(cpu, true); 2467 physid_set(apicid, phys_cpu_present_map); 2468 set_cpu_present(cpu, true); 2469 num_processors++; 2470 2471 return cpu; 2472 } 2473 2474 int hard_smp_processor_id(void) 2475 { 2476 return read_apic_id(); 2477 } 2478 2479 /* 2480 * Override the generic EOI implementation with an optimized version. 2481 * Only called during early boot when only one CPU is active and with 2482 * interrupts disabled, so we know this does not race with actual APIC driver 2483 * use. 2484 */ 2485 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) 2486 { 2487 struct apic **drv; 2488 2489 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { 2490 /* Should happen once for each apic */ 2491 WARN_ON((*drv)->eoi_write == eoi_write); 2492 (*drv)->native_eoi_write = (*drv)->eoi_write; 2493 (*drv)->eoi_write = eoi_write; 2494 } 2495 } 2496 2497 static void __init apic_bsp_up_setup(void) 2498 { 2499 #ifdef CONFIG_X86_64 2500 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); 2501 #else 2502 /* 2503 * Hack: In case of kdump, after a crash, kernel might be booting 2504 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid 2505 * might be zero if read from MP tables. Get it from LAPIC. 2506 */ 2507 # ifdef CONFIG_CRASH_DUMP 2508 boot_cpu_physical_apicid = read_apic_id(); 2509 # endif 2510 #endif 2511 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 2512 } 2513 2514 /** 2515 * apic_bsp_setup - Setup function for local apic and io-apic 2516 * @upmode: Force UP mode (for APIC_init_uniprocessor) 2517 */ 2518 static void __init apic_bsp_setup(bool upmode) 2519 { 2520 connect_bsp_APIC(); 2521 if (upmode) 2522 apic_bsp_up_setup(); 2523 setup_local_APIC(); 2524 2525 enable_IO_APIC(); 2526 end_local_APIC_setup(); 2527 irq_remap_enable_fault_handling(); 2528 setup_IO_APIC(); 2529 } 2530 2531 #ifdef CONFIG_UP_LATE_INIT 2532 void __init up_late_init(void) 2533 { 2534 if (apic_intr_mode == APIC_PIC) 2535 return; 2536 2537 /* Setup local timer */ 2538 x86_init.timers.setup_percpu_clockev(); 2539 } 2540 #endif 2541 2542 /* 2543 * Power management 2544 */ 2545 #ifdef CONFIG_PM 2546 2547 static struct { 2548 /* 2549 * 'active' is true if the local APIC was enabled by us and 2550 * not the BIOS; this signifies that we are also responsible 2551 * for disabling it before entering apm/acpi suspend 2552 */ 2553 int active; 2554 /* r/w apic fields */ 2555 unsigned int apic_id; 2556 unsigned int apic_taskpri; 2557 unsigned int apic_ldr; 2558 unsigned int apic_dfr; 2559 unsigned int apic_spiv; 2560 unsigned int apic_lvtt; 2561 unsigned int apic_lvtpc; 2562 unsigned int apic_lvt0; 2563 unsigned int apic_lvt1; 2564 unsigned int apic_lvterr; 2565 unsigned int apic_tmict; 2566 unsigned int apic_tdcr; 2567 unsigned int apic_thmr; 2568 unsigned int apic_cmci; 2569 } apic_pm_state; 2570 2571 static int lapic_suspend(void) 2572 { 2573 unsigned long flags; 2574 int maxlvt; 2575 2576 if (!apic_pm_state.active) 2577 return 0; 2578 2579 maxlvt = lapic_get_maxlvt(); 2580 2581 apic_pm_state.apic_id = apic_read(APIC_ID); 2582 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); 2583 apic_pm_state.apic_ldr = apic_read(APIC_LDR); 2584 apic_pm_state.apic_dfr = apic_read(APIC_DFR); 2585 apic_pm_state.apic_spiv = apic_read(APIC_SPIV); 2586 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); 2587 if (maxlvt >= 4) 2588 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); 2589 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); 2590 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); 2591 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); 2592 apic_pm_state.apic_tmict = apic_read(APIC_TMICT); 2593 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); 2594 #ifdef CONFIG_X86_THERMAL_VECTOR 2595 if (maxlvt >= 5) 2596 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); 2597 #endif 2598 #ifdef CONFIG_X86_MCE_INTEL 2599 if (maxlvt >= 6) 2600 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); 2601 #endif 2602 2603 local_irq_save(flags); 2604 2605 /* 2606 * Mask IOAPIC before disabling the local APIC to prevent stale IRR 2607 * entries on some implementations. 2608 */ 2609 mask_ioapic_entries(); 2610 2611 disable_local_APIC(); 2612 2613 irq_remapping_disable(); 2614 2615 local_irq_restore(flags); 2616 return 0; 2617 } 2618 2619 static void lapic_resume(void) 2620 { 2621 unsigned int l, h; 2622 unsigned long flags; 2623 int maxlvt; 2624 2625 if (!apic_pm_state.active) 2626 return; 2627 2628 local_irq_save(flags); 2629 2630 /* 2631 * IO-APIC and PIC have their own resume routines. 2632 * We just mask them here to make sure the interrupt 2633 * subsystem is completely quiet while we enable x2apic 2634 * and interrupt-remapping. 2635 */ 2636 mask_ioapic_entries(); 2637 legacy_pic->mask_all(); 2638 2639 if (x2apic_mode) { 2640 __x2apic_enable(); 2641 } else { 2642 /* 2643 * Make sure the APICBASE points to the right address 2644 * 2645 * FIXME! This will be wrong if we ever support suspend on 2646 * SMP! We'll need to do this as part of the CPU restore! 2647 */ 2648 if (boot_cpu_data.x86 >= 6) { 2649 rdmsr(MSR_IA32_APICBASE, l, h); 2650 l &= ~MSR_IA32_APICBASE_BASE; 2651 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; 2652 wrmsr(MSR_IA32_APICBASE, l, h); 2653 } 2654 } 2655 2656 maxlvt = lapic_get_maxlvt(); 2657 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); 2658 apic_write(APIC_ID, apic_pm_state.apic_id); 2659 apic_write(APIC_DFR, apic_pm_state.apic_dfr); 2660 apic_write(APIC_LDR, apic_pm_state.apic_ldr); 2661 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); 2662 apic_write(APIC_SPIV, apic_pm_state.apic_spiv); 2663 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); 2664 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); 2665 #ifdef CONFIG_X86_THERMAL_VECTOR 2666 if (maxlvt >= 5) 2667 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); 2668 #endif 2669 #ifdef CONFIG_X86_MCE_INTEL 2670 if (maxlvt >= 6) 2671 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); 2672 #endif 2673 if (maxlvt >= 4) 2674 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); 2675 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); 2676 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); 2677 apic_write(APIC_TMICT, apic_pm_state.apic_tmict); 2678 apic_write(APIC_ESR, 0); 2679 apic_read(APIC_ESR); 2680 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); 2681 apic_write(APIC_ESR, 0); 2682 apic_read(APIC_ESR); 2683 2684 irq_remapping_reenable(x2apic_mode); 2685 2686 local_irq_restore(flags); 2687 } 2688 2689 /* 2690 * This device has no shutdown method - fully functioning local APICs 2691 * are needed on every CPU up until machine_halt/restart/poweroff. 2692 */ 2693 2694 static struct syscore_ops lapic_syscore_ops = { 2695 .resume = lapic_resume, 2696 .suspend = lapic_suspend, 2697 }; 2698 2699 static void apic_pm_activate(void) 2700 { 2701 apic_pm_state.active = 1; 2702 } 2703 2704 static int __init init_lapic_sysfs(void) 2705 { 2706 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ 2707 if (boot_cpu_has(X86_FEATURE_APIC)) 2708 register_syscore_ops(&lapic_syscore_ops); 2709 2710 return 0; 2711 } 2712 2713 /* local apic needs to resume before other devices access its registers. */ 2714 core_initcall(init_lapic_sysfs); 2715 2716 #else /* CONFIG_PM */ 2717 2718 static void apic_pm_activate(void) { } 2719 2720 #endif /* CONFIG_PM */ 2721 2722 #ifdef CONFIG_X86_64 2723 2724 static int multi_checked; 2725 static int multi; 2726 2727 static int set_multi(const struct dmi_system_id *d) 2728 { 2729 if (multi) 2730 return 0; 2731 pr_info("APIC: %s detected, Multi Chassis\n", d->ident); 2732 multi = 1; 2733 return 0; 2734 } 2735 2736 static const struct dmi_system_id multi_dmi_table[] = { 2737 { 2738 .callback = set_multi, 2739 .ident = "IBM System Summit2", 2740 .matches = { 2741 DMI_MATCH(DMI_SYS_VENDOR, "IBM"), 2742 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), 2743 }, 2744 }, 2745 {} 2746 }; 2747 2748 static void dmi_check_multi(void) 2749 { 2750 if (multi_checked) 2751 return; 2752 2753 dmi_check_system(multi_dmi_table); 2754 multi_checked = 1; 2755 } 2756 2757 /* 2758 * apic_is_clustered_box() -- Check if we can expect good TSC 2759 * 2760 * Thus far, the major user of this is IBM's Summit2 series: 2761 * Clustered boxes may have unsynced TSC problems if they are 2762 * multi-chassis. 2763 * Use DMI to check them 2764 */ 2765 int apic_is_clustered_box(void) 2766 { 2767 dmi_check_multi(); 2768 return multi; 2769 } 2770 #endif 2771 2772 /* 2773 * APIC command line parameters 2774 */ 2775 static int __init setup_disableapic(char *arg) 2776 { 2777 disable_apic = 1; 2778 setup_clear_cpu_cap(X86_FEATURE_APIC); 2779 return 0; 2780 } 2781 early_param("disableapic", setup_disableapic); 2782 2783 /* same as disableapic, for compatibility */ 2784 static int __init setup_nolapic(char *arg) 2785 { 2786 return setup_disableapic(arg); 2787 } 2788 early_param("nolapic", setup_nolapic); 2789 2790 static int __init parse_lapic_timer_c2_ok(char *arg) 2791 { 2792 local_apic_timer_c2_ok = 1; 2793 return 0; 2794 } 2795 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); 2796 2797 static int __init parse_disable_apic_timer(char *arg) 2798 { 2799 disable_apic_timer = 1; 2800 return 0; 2801 } 2802 early_param("noapictimer", parse_disable_apic_timer); 2803 2804 static int __init parse_nolapic_timer(char *arg) 2805 { 2806 disable_apic_timer = 1; 2807 return 0; 2808 } 2809 early_param("nolapic_timer", parse_nolapic_timer); 2810 2811 static int __init apic_set_verbosity(char *arg) 2812 { 2813 if (!arg) { 2814 #ifdef CONFIG_X86_64 2815 skip_ioapic_setup = 0; 2816 return 0; 2817 #endif 2818 return -EINVAL; 2819 } 2820 2821 if (strcmp("debug", arg) == 0) 2822 apic_verbosity = APIC_DEBUG; 2823 else if (strcmp("verbose", arg) == 0) 2824 apic_verbosity = APIC_VERBOSE; 2825 #ifdef CONFIG_X86_64 2826 else { 2827 pr_warn("APIC Verbosity level %s not recognised" 2828 " use apic=verbose or apic=debug\n", arg); 2829 return -EINVAL; 2830 } 2831 #endif 2832 2833 return 0; 2834 } 2835 early_param("apic", apic_set_verbosity); 2836 2837 static int __init lapic_insert_resource(void) 2838 { 2839 if (!apic_phys) 2840 return -1; 2841 2842 /* Put local APIC into the resource map. */ 2843 lapic_resource.start = apic_phys; 2844 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; 2845 insert_resource(&iomem_resource, &lapic_resource); 2846 2847 return 0; 2848 } 2849 2850 /* 2851 * need call insert after e820__reserve_resources() 2852 * that is using request_resource 2853 */ 2854 late_initcall(lapic_insert_resource); 2855 2856 static int __init apic_set_disabled_cpu_apicid(char *arg) 2857 { 2858 if (!arg || !get_option(&arg, &disabled_cpu_apicid)) 2859 return -EINVAL; 2860 2861 return 0; 2862 } 2863 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); 2864 2865 static int __init apic_set_extnmi(char *arg) 2866 { 2867 if (!arg) 2868 return -EINVAL; 2869 2870 if (!strncmp("all", arg, 3)) 2871 apic_extnmi = APIC_EXTNMI_ALL; 2872 else if (!strncmp("none", arg, 4)) 2873 apic_extnmi = APIC_EXTNMI_NONE; 2874 else if (!strncmp("bsp", arg, 3)) 2875 apic_extnmi = APIC_EXTNMI_BSP; 2876 else { 2877 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); 2878 return -EINVAL; 2879 } 2880 2881 return 0; 2882 } 2883 early_param("apic_extnmi", apic_set_extnmi); 2884