xref: /openbmc/linux/arch/x86/kernel/apic/apic.c (revision 92c005a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	Local APIC handling, local APIC timers
4  *
5  *	(c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *
7  *	Fixes
8  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
9  *					thanks to Eric Gilmore
10  *					and Rolf G. Tews
11  *					for testing these extensively.
12  *	Maciej W. Rozycki	:	Various updates and fixes.
13  *	Mikael Pettersson	:	Power Management for UP-APIC.
14  *	Pavel Machek and
15  *	Mikael Pettersson	:	PM converted to driver model.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/acpi_pmtmr.h>
22 #include <linux/clockchips.h>
23 #include <linux/interrupt.h>
24 #include <linux/memblock.h>
25 #include <linux/ftrace.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/delay.h>
30 #include <linux/timex.h>
31 #include <linux/i8253.h>
32 #include <linux/dmar.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/dmi.h>
36 #include <linux/smp.h>
37 #include <linux/mm.h>
38 
39 #include <asm/trace/irq_vectors.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/pc-conf-reg.h>
42 #include <asm/perf_event.h>
43 #include <asm/x86_init.h>
44 #include <linux/atomic.h>
45 #include <asm/barrier.h>
46 #include <asm/mpspec.h>
47 #include <asm/i8259.h>
48 #include <asm/proto.h>
49 #include <asm/traps.h>
50 #include <asm/apic.h>
51 #include <asm/acpi.h>
52 #include <asm/io_apic.h>
53 #include <asm/desc.h>
54 #include <asm/hpet.h>
55 #include <asm/mtrr.h>
56 #include <asm/time.h>
57 #include <asm/smp.h>
58 #include <asm/mce.h>
59 #include <asm/tsc.h>
60 #include <asm/hypervisor.h>
61 #include <asm/cpu_device_id.h>
62 #include <asm/intel-family.h>
63 #include <asm/irq_regs.h>
64 
65 unsigned int num_processors;
66 
67 unsigned disabled_cpus;
68 
69 /* Processor that is doing the boot up */
70 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U;
71 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
72 
73 u8 boot_cpu_apic_version __ro_after_init;
74 
75 /*
76  * The highest APIC ID seen during enumeration.
77  */
78 static unsigned int max_physical_apicid;
79 
80 /*
81  * Bitmask of physically existing CPUs:
82  */
83 physid_mask_t phys_cpu_present_map;
84 
85 /*
86  * Processor to be disabled specified by kernel parameter
87  * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
88  * avoid undefined behaviour caused by sending INIT from AP to BSP.
89  */
90 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID;
91 
92 /*
93  * This variable controls which CPUs receive external NMIs.  By default,
94  * external NMIs are delivered only to the BSP.
95  */
96 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
97 
98 /*
99  * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
100  */
101 static bool virt_ext_dest_id __ro_after_init;
102 
103 /*
104  * Map cpu index to physical APIC ID
105  */
106 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
107 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
108 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
109 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
110 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
111 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
112 
113 #ifdef CONFIG_X86_32
114 
115 /*
116  * On x86_32, the mapping between cpu and logical apicid may vary
117  * depending on apic in use.  The following early percpu variable is
118  * used for the mapping.  This is where the behaviors of x86_64 and 32
119  * actually diverge.  Let's keep it ugly for now.
120  */
121 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
122 
123 /* Local APIC was disabled by the BIOS and enabled by the kernel */
124 static int enabled_via_apicbase __ro_after_init;
125 
126 /*
127  * Handle interrupt mode configuration register (IMCR).
128  * This register controls whether the interrupt signals
129  * that reach the BSP come from the master PIC or from the
130  * local APIC. Before entering Symmetric I/O Mode, either
131  * the BIOS or the operating system must switch out of
132  * PIC Mode by changing the IMCR.
133  */
134 static inline void imcr_pic_to_apic(void)
135 {
136 	/* NMI and 8259 INTR go through APIC */
137 	pc_conf_set(PC_CONF_MPS_IMCR, 0x01);
138 }
139 
140 static inline void imcr_apic_to_pic(void)
141 {
142 	/* NMI and 8259 INTR go directly to BSP */
143 	pc_conf_set(PC_CONF_MPS_IMCR, 0x00);
144 }
145 #endif
146 
147 /*
148  * Knob to control our willingness to enable the local APIC.
149  *
150  * +1=force-enable
151  */
152 static int force_enable_local_apic __initdata;
153 
154 /*
155  * APIC command line parameters
156  */
157 static int __init parse_lapic(char *arg)
158 {
159 	if (IS_ENABLED(CONFIG_X86_32) && !arg)
160 		force_enable_local_apic = 1;
161 	else if (arg && !strncmp(arg, "notscdeadline", 13))
162 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
163 	return 0;
164 }
165 early_param("lapic", parse_lapic);
166 
167 #ifdef CONFIG_X86_64
168 static int apic_calibrate_pmtmr __initdata;
169 static __init int setup_apicpmtimer(char *s)
170 {
171 	apic_calibrate_pmtmr = 1;
172 	notsc_setup(NULL);
173 	return 1;
174 }
175 __setup("apicpmtimer", setup_apicpmtimer);
176 #endif
177 
178 unsigned long mp_lapic_addr __ro_after_init;
179 int disable_apic __ro_after_init;
180 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
181 static int disable_apic_timer __initdata;
182 /* Local APIC timer works in C2 */
183 int local_apic_timer_c2_ok __ro_after_init;
184 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
185 
186 /*
187  * Debug level, exported for io_apic.c
188  */
189 int apic_verbosity __ro_after_init;
190 
191 int pic_mode __ro_after_init;
192 
193 /* Have we found an MP table */
194 int smp_found_config __ro_after_init;
195 
196 static struct resource lapic_resource = {
197 	.name = "Local APIC",
198 	.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
199 };
200 
201 unsigned int lapic_timer_period = 0;
202 
203 static void apic_pm_activate(void);
204 
205 static unsigned long apic_phys __ro_after_init;
206 
207 /*
208  * Get the LAPIC version
209  */
210 static inline int lapic_get_version(void)
211 {
212 	return GET_APIC_VERSION(apic_read(APIC_LVR));
213 }
214 
215 /*
216  * Check, if the APIC is integrated or a separate chip
217  */
218 static inline int lapic_is_integrated(void)
219 {
220 	return APIC_INTEGRATED(lapic_get_version());
221 }
222 
223 /*
224  * Check, whether this is a modern or a first generation APIC
225  */
226 static int modern_apic(void)
227 {
228 	/* AMD systems use old APIC versions, so check the CPU */
229 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
230 	    boot_cpu_data.x86 >= 0xf)
231 		return 1;
232 
233 	/* Hygon systems use modern APIC */
234 	if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
235 		return 1;
236 
237 	return lapic_get_version() >= 0x14;
238 }
239 
240 /*
241  * right after this call apic become NOOP driven
242  * so apic->write/read doesn't do anything
243  */
244 static void __init apic_disable(void)
245 {
246 	pr_info("APIC: switched to apic NOOP\n");
247 	apic = &apic_noop;
248 }
249 
250 void native_apic_wait_icr_idle(void)
251 {
252 	while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
253 		cpu_relax();
254 }
255 
256 u32 native_safe_apic_wait_icr_idle(void)
257 {
258 	u32 send_status;
259 	int timeout;
260 
261 	timeout = 0;
262 	do {
263 		send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
264 		if (!send_status)
265 			break;
266 		inc_irq_stat(icr_read_retry_count);
267 		udelay(100);
268 	} while (timeout++ < 1000);
269 
270 	return send_status;
271 }
272 
273 void native_apic_icr_write(u32 low, u32 id)
274 {
275 	unsigned long flags;
276 
277 	local_irq_save(flags);
278 	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
279 	apic_write(APIC_ICR, low);
280 	local_irq_restore(flags);
281 }
282 
283 u64 native_apic_icr_read(void)
284 {
285 	u32 icr1, icr2;
286 
287 	icr2 = apic_read(APIC_ICR2);
288 	icr1 = apic_read(APIC_ICR);
289 
290 	return icr1 | ((u64)icr2 << 32);
291 }
292 
293 #ifdef CONFIG_X86_32
294 /**
295  * get_physical_broadcast - Get number of physical broadcast IDs
296  */
297 int get_physical_broadcast(void)
298 {
299 	return modern_apic() ? 0xff : 0xf;
300 }
301 #endif
302 
303 /**
304  * lapic_get_maxlvt - get the maximum number of local vector table entries
305  */
306 int lapic_get_maxlvt(void)
307 {
308 	/*
309 	 * - we always have APIC integrated on 64bit mode
310 	 * - 82489DXs do not report # of LVT entries
311 	 */
312 	return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
313 }
314 
315 /*
316  * Local APIC timer
317  */
318 
319 /* Clock divisor */
320 #define APIC_DIVISOR 16
321 #define TSC_DIVISOR  8
322 
323 /* i82489DX specific */
324 #define		I82489DX_BASE_DIVIDER		(((0x2) << 18))
325 
326 /*
327  * This function sets up the local APIC timer, with a timeout of
328  * 'clocks' APIC bus clock. During calibration we actually call
329  * this function twice on the boot CPU, once with a bogus timeout
330  * value, second time for real. The other (noncalibrating) CPUs
331  * call this function only once, with the real, calibrated value.
332  *
333  * We do reads before writes even if unnecessary, to get around the
334  * P5 APIC double write bug.
335  */
336 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
337 {
338 	unsigned int lvtt_value, tmp_value;
339 
340 	lvtt_value = LOCAL_TIMER_VECTOR;
341 	if (!oneshot)
342 		lvtt_value |= APIC_LVT_TIMER_PERIODIC;
343 	else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
344 		lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
345 
346 	/*
347 	 * The i82489DX APIC uses bit 18 and 19 for the base divider.  This
348 	 * overlaps with bit 18 on integrated APICs, but is not documented
349 	 * in the SDM. No problem though. i82489DX equipped systems do not
350 	 * have TSC deadline timer.
351 	 */
352 	if (!lapic_is_integrated())
353 		lvtt_value |= I82489DX_BASE_DIVIDER;
354 
355 	if (!irqen)
356 		lvtt_value |= APIC_LVT_MASKED;
357 
358 	apic_write(APIC_LVTT, lvtt_value);
359 
360 	if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
361 		/*
362 		 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
363 		 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
364 		 * According to Intel, MFENCE can do the serialization here.
365 		 */
366 		asm volatile("mfence" : : : "memory");
367 		return;
368 	}
369 
370 	/*
371 	 * Divide PICLK by 16
372 	 */
373 	tmp_value = apic_read(APIC_TDCR);
374 	apic_write(APIC_TDCR,
375 		(tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
376 		APIC_TDR_DIV_16);
377 
378 	if (!oneshot)
379 		apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
380 }
381 
382 /*
383  * Setup extended LVT, AMD specific
384  *
385  * Software should use the LVT offsets the BIOS provides.  The offsets
386  * are determined by the subsystems using it like those for MCE
387  * threshold or IBS.  On K8 only offset 0 (APIC500) and MCE interrupts
388  * are supported. Beginning with family 10h at least 4 offsets are
389  * available.
390  *
391  * Since the offsets must be consistent for all cores, we keep track
392  * of the LVT offsets in software and reserve the offset for the same
393  * vector also to be used on other cores. An offset is freed by
394  * setting the entry to APIC_EILVT_MASKED.
395  *
396  * If the BIOS is right, there should be no conflicts. Otherwise a
397  * "[Firmware Bug]: ..." error message is generated. However, if
398  * software does not properly determines the offsets, it is not
399  * necessarily a BIOS bug.
400  */
401 
402 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
403 
404 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
405 {
406 	return (old & APIC_EILVT_MASKED)
407 		|| (new == APIC_EILVT_MASKED)
408 		|| ((new & ~APIC_EILVT_MASKED) == old);
409 }
410 
411 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
412 {
413 	unsigned int rsvd, vector;
414 
415 	if (offset >= APIC_EILVT_NR_MAX)
416 		return ~0;
417 
418 	rsvd = atomic_read(&eilvt_offsets[offset]);
419 	do {
420 		vector = rsvd & ~APIC_EILVT_MASKED;	/* 0: unassigned */
421 		if (vector && !eilvt_entry_is_changeable(vector, new))
422 			/* may not change if vectors are different */
423 			return rsvd;
424 		rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
425 	} while (rsvd != new);
426 
427 	rsvd &= ~APIC_EILVT_MASKED;
428 	if (rsvd && rsvd != vector)
429 		pr_info("LVT offset %d assigned for vector 0x%02x\n",
430 			offset, rsvd);
431 
432 	return new;
433 }
434 
435 /*
436  * If mask=1, the LVT entry does not generate interrupts while mask=0
437  * enables the vector. See also the BKDGs. Must be called with
438  * preemption disabled.
439  */
440 
441 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
442 {
443 	unsigned long reg = APIC_EILVTn(offset);
444 	unsigned int new, old, reserved;
445 
446 	new = (mask << 16) | (msg_type << 8) | vector;
447 	old = apic_read(reg);
448 	reserved = reserve_eilvt_offset(offset, new);
449 
450 	if (reserved != new) {
451 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
452 		       "vector 0x%x, but the register is already in use for "
453 		       "vector 0x%x on another cpu\n",
454 		       smp_processor_id(), reg, offset, new, reserved);
455 		return -EINVAL;
456 	}
457 
458 	if (!eilvt_entry_is_changeable(old, new)) {
459 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
460 		       "vector 0x%x, but the register is already in use for "
461 		       "vector 0x%x on this cpu\n",
462 		       smp_processor_id(), reg, offset, new, old);
463 		return -EBUSY;
464 	}
465 
466 	apic_write(reg, new);
467 
468 	return 0;
469 }
470 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
471 
472 /*
473  * Program the next event, relative to now
474  */
475 static int lapic_next_event(unsigned long delta,
476 			    struct clock_event_device *evt)
477 {
478 	apic_write(APIC_TMICT, delta);
479 	return 0;
480 }
481 
482 static int lapic_next_deadline(unsigned long delta,
483 			       struct clock_event_device *evt)
484 {
485 	u64 tsc;
486 
487 	/* This MSR is special and need a special fence: */
488 	weak_wrmsr_fence();
489 
490 	tsc = rdtsc();
491 	wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
492 	return 0;
493 }
494 
495 static int lapic_timer_shutdown(struct clock_event_device *evt)
496 {
497 	unsigned int v;
498 
499 	/* Lapic used as dummy for broadcast ? */
500 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
501 		return 0;
502 
503 	v = apic_read(APIC_LVTT);
504 	v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
505 	apic_write(APIC_LVTT, v);
506 	apic_write(APIC_TMICT, 0);
507 	return 0;
508 }
509 
510 static inline int
511 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
512 {
513 	/* Lapic used as dummy for broadcast ? */
514 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
515 		return 0;
516 
517 	__setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
518 	return 0;
519 }
520 
521 static int lapic_timer_set_periodic(struct clock_event_device *evt)
522 {
523 	return lapic_timer_set_periodic_oneshot(evt, false);
524 }
525 
526 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
527 {
528 	return lapic_timer_set_periodic_oneshot(evt, true);
529 }
530 
531 /*
532  * Local APIC timer broadcast function
533  */
534 static void lapic_timer_broadcast(const struct cpumask *mask)
535 {
536 #ifdef CONFIG_SMP
537 	apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
538 #endif
539 }
540 
541 
542 /*
543  * The local apic timer can be used for any function which is CPU local.
544  */
545 static struct clock_event_device lapic_clockevent = {
546 	.name				= "lapic",
547 	.features			= CLOCK_EVT_FEAT_PERIODIC |
548 					  CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
549 					  | CLOCK_EVT_FEAT_DUMMY,
550 	.shift				= 32,
551 	.set_state_shutdown		= lapic_timer_shutdown,
552 	.set_state_periodic		= lapic_timer_set_periodic,
553 	.set_state_oneshot		= lapic_timer_set_oneshot,
554 	.set_state_oneshot_stopped	= lapic_timer_shutdown,
555 	.set_next_event			= lapic_next_event,
556 	.broadcast			= lapic_timer_broadcast,
557 	.rating				= 100,
558 	.irq				= -1,
559 };
560 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
561 
562 static const struct x86_cpu_id deadline_match[] __initconst = {
563 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
564 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
565 
566 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X,	0x0b000020),
567 
568 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
569 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
570 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
571 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
572 
573 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
574 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
575 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
576 
577 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL,		0x22),
578 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L,		0x20),
579 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G,		0x17),
580 
581 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL,		0x25),
582 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G,	0x17),
583 
584 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L,		0xb2),
585 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE,		0xb2),
586 
587 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L,		0x52),
588 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE,		0x52),
589 
590 	{},
591 };
592 
593 static __init bool apic_validate_deadline_timer(void)
594 {
595 	const struct x86_cpu_id *m;
596 	u32 rev;
597 
598 	if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
599 		return false;
600 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
601 		return true;
602 
603 	m = x86_match_cpu(deadline_match);
604 	if (!m)
605 		return true;
606 
607 	rev = (u32)m->driver_data;
608 
609 	if (boot_cpu_data.microcode >= rev)
610 		return true;
611 
612 	setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
613 	pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
614 	       "please update microcode to version: 0x%x (or later)\n", rev);
615 	return false;
616 }
617 
618 /*
619  * Setup the local APIC timer for this CPU. Copy the initialized values
620  * of the boot CPU and register the clock event in the framework.
621  */
622 static void setup_APIC_timer(void)
623 {
624 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
625 
626 	if (this_cpu_has(X86_FEATURE_ARAT)) {
627 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
628 		/* Make LAPIC timer preferable over percpu HPET */
629 		lapic_clockevent.rating = 150;
630 	}
631 
632 	memcpy(levt, &lapic_clockevent, sizeof(*levt));
633 	levt->cpumask = cpumask_of(smp_processor_id());
634 
635 	if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
636 		levt->name = "lapic-deadline";
637 		levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
638 				    CLOCK_EVT_FEAT_DUMMY);
639 		levt->set_next_event = lapic_next_deadline;
640 		clockevents_config_and_register(levt,
641 						tsc_khz * (1000 / TSC_DIVISOR),
642 						0xF, ~0UL);
643 	} else
644 		clockevents_register_device(levt);
645 }
646 
647 /*
648  * Install the updated TSC frequency from recalibration at the TSC
649  * deadline clockevent devices.
650  */
651 static void __lapic_update_tsc_freq(void *info)
652 {
653 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
654 
655 	if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
656 		return;
657 
658 	clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
659 }
660 
661 void lapic_update_tsc_freq(void)
662 {
663 	/*
664 	 * The clockevent device's ->mult and ->shift can both be
665 	 * changed. In order to avoid races, schedule the frequency
666 	 * update code on each CPU.
667 	 */
668 	on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
669 }
670 
671 /*
672  * In this functions we calibrate APIC bus clocks to the external timer.
673  *
674  * We want to do the calibration only once since we want to have local timer
675  * irqs synchronous. CPUs connected by the same APIC bus have the very same bus
676  * frequency.
677  *
678  * This was previously done by reading the PIT/HPET and waiting for a wrap
679  * around to find out, that a tick has elapsed. I have a box, where the PIT
680  * readout is broken, so it never gets out of the wait loop again. This was
681  * also reported by others.
682  *
683  * Monitoring the jiffies value is inaccurate and the clockevents
684  * infrastructure allows us to do a simple substitution of the interrupt
685  * handler.
686  *
687  * The calibration routine also uses the pm_timer when possible, as the PIT
688  * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
689  * back to normal later in the boot process).
690  */
691 
692 #define LAPIC_CAL_LOOPS		(HZ/10)
693 
694 static __initdata int lapic_cal_loops = -1;
695 static __initdata long lapic_cal_t1, lapic_cal_t2;
696 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
697 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
698 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
699 
700 /*
701  * Temporary interrupt handler and polled calibration function.
702  */
703 static void __init lapic_cal_handler(struct clock_event_device *dev)
704 {
705 	unsigned long long tsc = 0;
706 	long tapic = apic_read(APIC_TMCCT);
707 	unsigned long pm = acpi_pm_read_early();
708 
709 	if (boot_cpu_has(X86_FEATURE_TSC))
710 		tsc = rdtsc();
711 
712 	switch (lapic_cal_loops++) {
713 	case 0:
714 		lapic_cal_t1 = tapic;
715 		lapic_cal_tsc1 = tsc;
716 		lapic_cal_pm1 = pm;
717 		lapic_cal_j1 = jiffies;
718 		break;
719 
720 	case LAPIC_CAL_LOOPS:
721 		lapic_cal_t2 = tapic;
722 		lapic_cal_tsc2 = tsc;
723 		if (pm < lapic_cal_pm1)
724 			pm += ACPI_PM_OVRRUN;
725 		lapic_cal_pm2 = pm;
726 		lapic_cal_j2 = jiffies;
727 		break;
728 	}
729 }
730 
731 static int __init
732 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
733 {
734 	const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
735 	const long pm_thresh = pm_100ms / 100;
736 	unsigned long mult;
737 	u64 res;
738 
739 #ifndef CONFIG_X86_PM_TIMER
740 	return -1;
741 #endif
742 
743 	apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
744 
745 	/* Check, if the PM timer is available */
746 	if (!deltapm)
747 		return -1;
748 
749 	mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
750 
751 	if (deltapm > (pm_100ms - pm_thresh) &&
752 	    deltapm < (pm_100ms + pm_thresh)) {
753 		apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
754 		return 0;
755 	}
756 
757 	res = (((u64)deltapm) *  mult) >> 22;
758 	do_div(res, 1000000);
759 	pr_warn("APIC calibration not consistent "
760 		"with PM-Timer: %ldms instead of 100ms\n", (long)res);
761 
762 	/* Correct the lapic counter value */
763 	res = (((u64)(*delta)) * pm_100ms);
764 	do_div(res, deltapm);
765 	pr_info("APIC delta adjusted to PM-Timer: "
766 		"%lu (%ld)\n", (unsigned long)res, *delta);
767 	*delta = (long)res;
768 
769 	/* Correct the tsc counter value */
770 	if (boot_cpu_has(X86_FEATURE_TSC)) {
771 		res = (((u64)(*deltatsc)) * pm_100ms);
772 		do_div(res, deltapm);
773 		apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
774 					  "PM-Timer: %lu (%ld)\n",
775 					(unsigned long)res, *deltatsc);
776 		*deltatsc = (long)res;
777 	}
778 
779 	return 0;
780 }
781 
782 static int __init lapic_init_clockevent(void)
783 {
784 	if (!lapic_timer_period)
785 		return -1;
786 
787 	/* Calculate the scaled math multiplication factor */
788 	lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
789 					TICK_NSEC, lapic_clockevent.shift);
790 	lapic_clockevent.max_delta_ns =
791 		clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
792 	lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
793 	lapic_clockevent.min_delta_ns =
794 		clockevent_delta2ns(0xF, &lapic_clockevent);
795 	lapic_clockevent.min_delta_ticks = 0xF;
796 
797 	return 0;
798 }
799 
800 bool __init apic_needs_pit(void)
801 {
802 	/*
803 	 * If the frequencies are not known, PIT is required for both TSC
804 	 * and apic timer calibration.
805 	 */
806 	if (!tsc_khz || !cpu_khz)
807 		return true;
808 
809 	/* Is there an APIC at all or is it disabled? */
810 	if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic)
811 		return true;
812 
813 	/*
814 	 * If interrupt delivery mode is legacy PIC or virtual wire without
815 	 * configuration, the local APIC timer wont be set up. Make sure
816 	 * that the PIT is initialized.
817 	 */
818 	if (apic_intr_mode == APIC_PIC ||
819 	    apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
820 		return true;
821 
822 	/* Virt guests may lack ARAT, but still have DEADLINE */
823 	if (!boot_cpu_has(X86_FEATURE_ARAT))
824 		return true;
825 
826 	/* Deadline timer is based on TSC so no further PIT action required */
827 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
828 		return false;
829 
830 	/* APIC timer disabled? */
831 	if (disable_apic_timer)
832 		return true;
833 	/*
834 	 * The APIC timer frequency is known already, no PIT calibration
835 	 * required. If unknown, let the PIT be initialized.
836 	 */
837 	return lapic_timer_period == 0;
838 }
839 
840 static int __init calibrate_APIC_clock(void)
841 {
842 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
843 	u64 tsc_perj = 0, tsc_start = 0;
844 	unsigned long jif_start;
845 	unsigned long deltaj;
846 	long delta, deltatsc;
847 	int pm_referenced = 0;
848 
849 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
850 		return 0;
851 
852 	/*
853 	 * Check if lapic timer has already been calibrated by platform
854 	 * specific routine, such as tsc calibration code. If so just fill
855 	 * in the clockevent structure and return.
856 	 */
857 	if (!lapic_init_clockevent()) {
858 		apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
859 			    lapic_timer_period);
860 		/*
861 		 * Direct calibration methods must have an always running
862 		 * local APIC timer, no need for broadcast timer.
863 		 */
864 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
865 		return 0;
866 	}
867 
868 	apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
869 		    "calibrating APIC timer ...\n");
870 
871 	/*
872 	 * There are platforms w/o global clockevent devices. Instead of
873 	 * making the calibration conditional on that, use a polling based
874 	 * approach everywhere.
875 	 */
876 	local_irq_disable();
877 
878 	/*
879 	 * Setup the APIC counter to maximum. There is no way the lapic
880 	 * can underflow in the 100ms detection time frame
881 	 */
882 	__setup_APIC_LVTT(0xffffffff, 0, 0);
883 
884 	/*
885 	 * Methods to terminate the calibration loop:
886 	 *  1) Global clockevent if available (jiffies)
887 	 *  2) TSC if available and frequency is known
888 	 */
889 	jif_start = READ_ONCE(jiffies);
890 
891 	if (tsc_khz) {
892 		tsc_start = rdtsc();
893 		tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
894 	}
895 
896 	/*
897 	 * Enable interrupts so the tick can fire, if a global
898 	 * clockevent device is available
899 	 */
900 	local_irq_enable();
901 
902 	while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
903 		/* Wait for a tick to elapse */
904 		while (1) {
905 			if (tsc_khz) {
906 				u64 tsc_now = rdtsc();
907 				if ((tsc_now - tsc_start) >= tsc_perj) {
908 					tsc_start += tsc_perj;
909 					break;
910 				}
911 			} else {
912 				unsigned long jif_now = READ_ONCE(jiffies);
913 
914 				if (time_after(jif_now, jif_start)) {
915 					jif_start = jif_now;
916 					break;
917 				}
918 			}
919 			cpu_relax();
920 		}
921 
922 		/* Invoke the calibration routine */
923 		local_irq_disable();
924 		lapic_cal_handler(NULL);
925 		local_irq_enable();
926 	}
927 
928 	local_irq_disable();
929 
930 	/* Build delta t1-t2 as apic timer counts down */
931 	delta = lapic_cal_t1 - lapic_cal_t2;
932 	apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
933 
934 	deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
935 
936 	/* we trust the PM based calibration if possible */
937 	pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
938 					&delta, &deltatsc);
939 
940 	lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
941 	lapic_init_clockevent();
942 
943 	apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
944 	apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
945 	apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
946 		    lapic_timer_period);
947 
948 	if (boot_cpu_has(X86_FEATURE_TSC)) {
949 		apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
950 			    "%ld.%04ld MHz.\n",
951 			    (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
952 			    (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
953 	}
954 
955 	apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
956 		    "%u.%04u MHz.\n",
957 		    lapic_timer_period / (1000000 / HZ),
958 		    lapic_timer_period % (1000000 / HZ));
959 
960 	/*
961 	 * Do a sanity check on the APIC calibration result
962 	 */
963 	if (lapic_timer_period < (1000000 / HZ)) {
964 		local_irq_enable();
965 		pr_warn("APIC frequency too slow, disabling apic timer\n");
966 		return -1;
967 	}
968 
969 	levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
970 
971 	/*
972 	 * PM timer calibration failed or not turned on so lets try APIC
973 	 * timer based calibration, if a global clockevent device is
974 	 * available.
975 	 */
976 	if (!pm_referenced && global_clock_event) {
977 		apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
978 
979 		/*
980 		 * Setup the apic timer manually
981 		 */
982 		levt->event_handler = lapic_cal_handler;
983 		lapic_timer_set_periodic(levt);
984 		lapic_cal_loops = -1;
985 
986 		/* Let the interrupts run */
987 		local_irq_enable();
988 
989 		while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
990 			cpu_relax();
991 
992 		/* Stop the lapic timer */
993 		local_irq_disable();
994 		lapic_timer_shutdown(levt);
995 
996 		/* Jiffies delta */
997 		deltaj = lapic_cal_j2 - lapic_cal_j1;
998 		apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
999 
1000 		/* Check, if the jiffies result is consistent */
1001 		if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
1002 			apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
1003 		else
1004 			levt->features |= CLOCK_EVT_FEAT_DUMMY;
1005 	}
1006 	local_irq_enable();
1007 
1008 	if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1009 		pr_warn("APIC timer disabled due to verification failure\n");
1010 		return -1;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Setup the boot APIC
1018  *
1019  * Calibrate and verify the result.
1020  */
1021 void __init setup_boot_APIC_clock(void)
1022 {
1023 	/*
1024 	 * The local apic timer can be disabled via the kernel
1025 	 * commandline or from the CPU detection code. Register the lapic
1026 	 * timer as a dummy clock event source on SMP systems, so the
1027 	 * broadcast mechanism is used. On UP systems simply ignore it.
1028 	 */
1029 	if (disable_apic_timer) {
1030 		pr_info("Disabling APIC timer\n");
1031 		/* No broadcast on UP ! */
1032 		if (num_possible_cpus() > 1) {
1033 			lapic_clockevent.mult = 1;
1034 			setup_APIC_timer();
1035 		}
1036 		return;
1037 	}
1038 
1039 	if (calibrate_APIC_clock()) {
1040 		/* No broadcast on UP ! */
1041 		if (num_possible_cpus() > 1)
1042 			setup_APIC_timer();
1043 		return;
1044 	}
1045 
1046 	/*
1047 	 * If nmi_watchdog is set to IO_APIC, we need the
1048 	 * PIT/HPET going.  Otherwise register lapic as a dummy
1049 	 * device.
1050 	 */
1051 	lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1052 
1053 	/* Setup the lapic or request the broadcast */
1054 	setup_APIC_timer();
1055 	amd_e400_c1e_apic_setup();
1056 }
1057 
1058 void setup_secondary_APIC_clock(void)
1059 {
1060 	setup_APIC_timer();
1061 	amd_e400_c1e_apic_setup();
1062 }
1063 
1064 /*
1065  * The guts of the apic timer interrupt
1066  */
1067 static void local_apic_timer_interrupt(void)
1068 {
1069 	struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1070 
1071 	/*
1072 	 * Normally we should not be here till LAPIC has been initialized but
1073 	 * in some cases like kdump, its possible that there is a pending LAPIC
1074 	 * timer interrupt from previous kernel's context and is delivered in
1075 	 * new kernel the moment interrupts are enabled.
1076 	 *
1077 	 * Interrupts are enabled early and LAPIC is setup much later, hence
1078 	 * its possible that when we get here evt->event_handler is NULL.
1079 	 * Check for event_handler being NULL and discard the interrupt as
1080 	 * spurious.
1081 	 */
1082 	if (!evt->event_handler) {
1083 		pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1084 			smp_processor_id());
1085 		/* Switch it off */
1086 		lapic_timer_shutdown(evt);
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * the NMI deadlock-detector uses this.
1092 	 */
1093 	inc_irq_stat(apic_timer_irqs);
1094 
1095 	evt->event_handler(evt);
1096 }
1097 
1098 /*
1099  * Local APIC timer interrupt. This is the most natural way for doing
1100  * local interrupts, but local timer interrupts can be emulated by
1101  * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1102  *
1103  * [ if a single-CPU system runs an SMP kernel then we call the local
1104  *   interrupt as well. Thus we cannot inline the local irq ... ]
1105  */
1106 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1107 {
1108 	struct pt_regs *old_regs = set_irq_regs(regs);
1109 
1110 	ack_APIC_irq();
1111 	trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1112 	local_apic_timer_interrupt();
1113 	trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1114 
1115 	set_irq_regs(old_regs);
1116 }
1117 
1118 int setup_profiling_timer(unsigned int multiplier)
1119 {
1120 	return -EINVAL;
1121 }
1122 
1123 /*
1124  * Local APIC start and shutdown
1125  */
1126 
1127 /**
1128  * clear_local_APIC - shutdown the local APIC
1129  *
1130  * This is called, when a CPU is disabled and before rebooting, so the state of
1131  * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1132  * leftovers during boot.
1133  */
1134 void clear_local_APIC(void)
1135 {
1136 	int maxlvt;
1137 	u32 v;
1138 
1139 	/* APIC hasn't been mapped yet */
1140 	if (!x2apic_mode && !apic_phys)
1141 		return;
1142 
1143 	maxlvt = lapic_get_maxlvt();
1144 	/*
1145 	 * Masking an LVT entry can trigger a local APIC error
1146 	 * if the vector is zero. Mask LVTERR first to prevent this.
1147 	 */
1148 	if (maxlvt >= 3) {
1149 		v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1150 		apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1151 	}
1152 	/*
1153 	 * Careful: we have to set masks only first to deassert
1154 	 * any level-triggered sources.
1155 	 */
1156 	v = apic_read(APIC_LVTT);
1157 	apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1158 	v = apic_read(APIC_LVT0);
1159 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1160 	v = apic_read(APIC_LVT1);
1161 	apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1162 	if (maxlvt >= 4) {
1163 		v = apic_read(APIC_LVTPC);
1164 		apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1165 	}
1166 
1167 	/* lets not touch this if we didn't frob it */
1168 #ifdef CONFIG_X86_THERMAL_VECTOR
1169 	if (maxlvt >= 5) {
1170 		v = apic_read(APIC_LVTTHMR);
1171 		apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1172 	}
1173 #endif
1174 #ifdef CONFIG_X86_MCE_INTEL
1175 	if (maxlvt >= 6) {
1176 		v = apic_read(APIC_LVTCMCI);
1177 		if (!(v & APIC_LVT_MASKED))
1178 			apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1179 	}
1180 #endif
1181 
1182 	/*
1183 	 * Clean APIC state for other OSs:
1184 	 */
1185 	apic_write(APIC_LVTT, APIC_LVT_MASKED);
1186 	apic_write(APIC_LVT0, APIC_LVT_MASKED);
1187 	apic_write(APIC_LVT1, APIC_LVT_MASKED);
1188 	if (maxlvt >= 3)
1189 		apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1190 	if (maxlvt >= 4)
1191 		apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1192 
1193 	/* Integrated APIC (!82489DX) ? */
1194 	if (lapic_is_integrated()) {
1195 		if (maxlvt > 3)
1196 			/* Clear ESR due to Pentium errata 3AP and 11AP */
1197 			apic_write(APIC_ESR, 0);
1198 		apic_read(APIC_ESR);
1199 	}
1200 }
1201 
1202 /**
1203  * apic_soft_disable - Clears and software disables the local APIC on hotplug
1204  *
1205  * Contrary to disable_local_APIC() this does not touch the enable bit in
1206  * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1207  * bus would require a hardware reset as the APIC would lose track of bus
1208  * arbitration. On systems with FSB delivery APICBASE could be disabled,
1209  * but it has to be guaranteed that no interrupt is sent to the APIC while
1210  * in that state and it's not clear from the SDM whether it still responds
1211  * to INIT/SIPI messages. Stay on the safe side and use software disable.
1212  */
1213 void apic_soft_disable(void)
1214 {
1215 	u32 value;
1216 
1217 	clear_local_APIC();
1218 
1219 	/* Soft disable APIC (implies clearing of registers for 82489DX!). */
1220 	value = apic_read(APIC_SPIV);
1221 	value &= ~APIC_SPIV_APIC_ENABLED;
1222 	apic_write(APIC_SPIV, value);
1223 }
1224 
1225 /**
1226  * disable_local_APIC - clear and disable the local APIC
1227  */
1228 void disable_local_APIC(void)
1229 {
1230 	/* APIC hasn't been mapped yet */
1231 	if (!x2apic_mode && !apic_phys)
1232 		return;
1233 
1234 	apic_soft_disable();
1235 
1236 #ifdef CONFIG_X86_32
1237 	/*
1238 	 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1239 	 * restore the disabled state.
1240 	 */
1241 	if (enabled_via_apicbase) {
1242 		unsigned int l, h;
1243 
1244 		rdmsr(MSR_IA32_APICBASE, l, h);
1245 		l &= ~MSR_IA32_APICBASE_ENABLE;
1246 		wrmsr(MSR_IA32_APICBASE, l, h);
1247 	}
1248 #endif
1249 }
1250 
1251 /*
1252  * If Linux enabled the LAPIC against the BIOS default disable it down before
1253  * re-entering the BIOS on shutdown.  Otherwise the BIOS may get confused and
1254  * not power-off.  Additionally clear all LVT entries before disable_local_APIC
1255  * for the case where Linux didn't enable the LAPIC.
1256  */
1257 void lapic_shutdown(void)
1258 {
1259 	unsigned long flags;
1260 
1261 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1262 		return;
1263 
1264 	local_irq_save(flags);
1265 
1266 #ifdef CONFIG_X86_32
1267 	if (!enabled_via_apicbase)
1268 		clear_local_APIC();
1269 	else
1270 #endif
1271 		disable_local_APIC();
1272 
1273 
1274 	local_irq_restore(flags);
1275 }
1276 
1277 /**
1278  * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1279  */
1280 void __init sync_Arb_IDs(void)
1281 {
1282 	/*
1283 	 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1284 	 * needed on AMD.
1285 	 */
1286 	if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1287 		return;
1288 
1289 	/*
1290 	 * Wait for idle.
1291 	 */
1292 	apic_wait_icr_idle();
1293 
1294 	apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1295 	apic_write(APIC_ICR, APIC_DEST_ALLINC |
1296 			APIC_INT_LEVELTRIG | APIC_DM_INIT);
1297 }
1298 
1299 enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1300 
1301 static int __init __apic_intr_mode_select(void)
1302 {
1303 	/* Check kernel option */
1304 	if (disable_apic) {
1305 		pr_info("APIC disabled via kernel command line\n");
1306 		return APIC_PIC;
1307 	}
1308 
1309 	/* Check BIOS */
1310 #ifdef CONFIG_X86_64
1311 	/* On 64-bit, the APIC must be integrated, Check local APIC only */
1312 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1313 		disable_apic = 1;
1314 		pr_info("APIC disabled by BIOS\n");
1315 		return APIC_PIC;
1316 	}
1317 #else
1318 	/* On 32-bit, the APIC may be integrated APIC or 82489DX */
1319 
1320 	/* Neither 82489DX nor integrated APIC ? */
1321 	if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1322 		disable_apic = 1;
1323 		return APIC_PIC;
1324 	}
1325 
1326 	/* If the BIOS pretends there is an integrated APIC ? */
1327 	if (!boot_cpu_has(X86_FEATURE_APIC) &&
1328 		APIC_INTEGRATED(boot_cpu_apic_version)) {
1329 		disable_apic = 1;
1330 		pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1331 				       boot_cpu_physical_apicid);
1332 		return APIC_PIC;
1333 	}
1334 #endif
1335 
1336 	/* Check MP table or ACPI MADT configuration */
1337 	if (!smp_found_config) {
1338 		disable_ioapic_support();
1339 		if (!acpi_lapic) {
1340 			pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1341 			return APIC_VIRTUAL_WIRE_NO_CONFIG;
1342 		}
1343 		return APIC_VIRTUAL_WIRE;
1344 	}
1345 
1346 #ifdef CONFIG_SMP
1347 	/* If SMP should be disabled, then really disable it! */
1348 	if (!setup_max_cpus) {
1349 		pr_info("APIC: SMP mode deactivated\n");
1350 		return APIC_SYMMETRIC_IO_NO_ROUTING;
1351 	}
1352 
1353 	if (read_apic_id() != boot_cpu_physical_apicid) {
1354 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1355 		     read_apic_id(), boot_cpu_physical_apicid);
1356 		/* Or can we switch back to PIC here? */
1357 	}
1358 #endif
1359 
1360 	return APIC_SYMMETRIC_IO;
1361 }
1362 
1363 /* Select the interrupt delivery mode for the BSP */
1364 void __init apic_intr_mode_select(void)
1365 {
1366 	apic_intr_mode = __apic_intr_mode_select();
1367 }
1368 
1369 /*
1370  * An initial setup of the virtual wire mode.
1371  */
1372 void __init init_bsp_APIC(void)
1373 {
1374 	unsigned int value;
1375 
1376 	/*
1377 	 * Don't do the setup now if we have a SMP BIOS as the
1378 	 * through-I/O-APIC virtual wire mode might be active.
1379 	 */
1380 	if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1381 		return;
1382 
1383 	/*
1384 	 * Do not trust the local APIC being empty at bootup.
1385 	 */
1386 	clear_local_APIC();
1387 
1388 	/*
1389 	 * Enable APIC.
1390 	 */
1391 	value = apic_read(APIC_SPIV);
1392 	value &= ~APIC_VECTOR_MASK;
1393 	value |= APIC_SPIV_APIC_ENABLED;
1394 
1395 #ifdef CONFIG_X86_32
1396 	/* This bit is reserved on P4/Xeon and should be cleared */
1397 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1398 	    (boot_cpu_data.x86 == 15))
1399 		value &= ~APIC_SPIV_FOCUS_DISABLED;
1400 	else
1401 #endif
1402 		value |= APIC_SPIV_FOCUS_DISABLED;
1403 	value |= SPURIOUS_APIC_VECTOR;
1404 	apic_write(APIC_SPIV, value);
1405 
1406 	/*
1407 	 * Set up the virtual wire mode.
1408 	 */
1409 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
1410 	value = APIC_DM_NMI;
1411 	if (!lapic_is_integrated())		/* 82489DX */
1412 		value |= APIC_LVT_LEVEL_TRIGGER;
1413 	if (apic_extnmi == APIC_EXTNMI_NONE)
1414 		value |= APIC_LVT_MASKED;
1415 	apic_write(APIC_LVT1, value);
1416 }
1417 
1418 static void __init apic_bsp_setup(bool upmode);
1419 
1420 /* Init the interrupt delivery mode for the BSP */
1421 void __init apic_intr_mode_init(void)
1422 {
1423 	bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1424 
1425 	switch (apic_intr_mode) {
1426 	case APIC_PIC:
1427 		pr_info("APIC: Keep in PIC mode(8259)\n");
1428 		return;
1429 	case APIC_VIRTUAL_WIRE:
1430 		pr_info("APIC: Switch to virtual wire mode setup\n");
1431 		break;
1432 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1433 		pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1434 		upmode = true;
1435 		break;
1436 	case APIC_SYMMETRIC_IO:
1437 		pr_info("APIC: Switch to symmetric I/O mode setup\n");
1438 		break;
1439 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1440 		pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1441 		break;
1442 	}
1443 
1444 	default_setup_apic_routing();
1445 
1446 	if (x86_platform.apic_post_init)
1447 		x86_platform.apic_post_init();
1448 
1449 	apic_bsp_setup(upmode);
1450 }
1451 
1452 static void lapic_setup_esr(void)
1453 {
1454 	unsigned int oldvalue, value, maxlvt;
1455 
1456 	if (!lapic_is_integrated()) {
1457 		pr_info("No ESR for 82489DX.\n");
1458 		return;
1459 	}
1460 
1461 	if (apic->disable_esr) {
1462 		/*
1463 		 * Something untraceable is creating bad interrupts on
1464 		 * secondary quads ... for the moment, just leave the
1465 		 * ESR disabled - we can't do anything useful with the
1466 		 * errors anyway - mbligh
1467 		 */
1468 		pr_info("Leaving ESR disabled.\n");
1469 		return;
1470 	}
1471 
1472 	maxlvt = lapic_get_maxlvt();
1473 	if (maxlvt > 3)		/* Due to the Pentium erratum 3AP. */
1474 		apic_write(APIC_ESR, 0);
1475 	oldvalue = apic_read(APIC_ESR);
1476 
1477 	/* enables sending errors */
1478 	value = ERROR_APIC_VECTOR;
1479 	apic_write(APIC_LVTERR, value);
1480 
1481 	/*
1482 	 * spec says clear errors after enabling vector.
1483 	 */
1484 	if (maxlvt > 3)
1485 		apic_write(APIC_ESR, 0);
1486 	value = apic_read(APIC_ESR);
1487 	if (value != oldvalue)
1488 		apic_printk(APIC_VERBOSE, "ESR value before enabling "
1489 			"vector: 0x%08x  after: 0x%08x\n",
1490 			oldvalue, value);
1491 }
1492 
1493 #define APIC_IR_REGS		APIC_ISR_NR
1494 #define APIC_IR_BITS		(APIC_IR_REGS * 32)
1495 #define APIC_IR_MAPSIZE		(APIC_IR_BITS / BITS_PER_LONG)
1496 
1497 union apic_ir {
1498 	unsigned long	map[APIC_IR_MAPSIZE];
1499 	u32		regs[APIC_IR_REGS];
1500 };
1501 
1502 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
1503 {
1504 	int i, bit;
1505 
1506 	/* Read the IRRs */
1507 	for (i = 0; i < APIC_IR_REGS; i++)
1508 		irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
1509 
1510 	/* Read the ISRs */
1511 	for (i = 0; i < APIC_IR_REGS; i++)
1512 		isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1513 
1514 	/*
1515 	 * If the ISR map is not empty. ACK the APIC and run another round
1516 	 * to verify whether a pending IRR has been unblocked and turned
1517 	 * into a ISR.
1518 	 */
1519 	if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
1520 		/*
1521 		 * There can be multiple ISR bits set when a high priority
1522 		 * interrupt preempted a lower priority one. Issue an ACK
1523 		 * per set bit.
1524 		 */
1525 		for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1526 			ack_APIC_irq();
1527 		return true;
1528 	}
1529 
1530 	return !bitmap_empty(irr->map, APIC_IR_BITS);
1531 }
1532 
1533 /*
1534  * After a crash, we no longer service the interrupts and a pending
1535  * interrupt from previous kernel might still have ISR bit set.
1536  *
1537  * Most probably by now the CPU has serviced that pending interrupt and it
1538  * might not have done the ack_APIC_irq() because it thought, interrupt
1539  * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
1540  * the ISR bit and cpu thinks it has already serviced the interrupt. Hence
1541  * a vector might get locked. It was noticed for timer irq (vector
1542  * 0x31). Issue an extra EOI to clear ISR.
1543  *
1544  * If there are pending IRR bits they turn into ISR bits after a higher
1545  * priority ISR bit has been acked.
1546  */
1547 static void apic_pending_intr_clear(void)
1548 {
1549 	union apic_ir irr, isr;
1550 	unsigned int i;
1551 
1552 	/* 512 loops are way oversized and give the APIC a chance to obey. */
1553 	for (i = 0; i < 512; i++) {
1554 		if (!apic_check_and_ack(&irr, &isr))
1555 			return;
1556 	}
1557 	/* Dump the IRR/ISR content if that failed */
1558 	pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
1559 }
1560 
1561 /**
1562  * setup_local_APIC - setup the local APIC
1563  *
1564  * Used to setup local APIC while initializing BSP or bringing up APs.
1565  * Always called with preemption disabled.
1566  */
1567 static void setup_local_APIC(void)
1568 {
1569 	int cpu = smp_processor_id();
1570 	unsigned int value;
1571 
1572 	if (disable_apic) {
1573 		disable_ioapic_support();
1574 		return;
1575 	}
1576 
1577 	/*
1578 	 * If this comes from kexec/kcrash the APIC might be enabled in
1579 	 * SPIV. Soft disable it before doing further initialization.
1580 	 */
1581 	value = apic_read(APIC_SPIV);
1582 	value &= ~APIC_SPIV_APIC_ENABLED;
1583 	apic_write(APIC_SPIV, value);
1584 
1585 #ifdef CONFIG_X86_32
1586 	/* Pound the ESR really hard over the head with a big hammer - mbligh */
1587 	if (lapic_is_integrated() && apic->disable_esr) {
1588 		apic_write(APIC_ESR, 0);
1589 		apic_write(APIC_ESR, 0);
1590 		apic_write(APIC_ESR, 0);
1591 		apic_write(APIC_ESR, 0);
1592 	}
1593 #endif
1594 	/*
1595 	 * Double-check whether this APIC is really registered.
1596 	 * This is meaningless in clustered apic mode, so we skip it.
1597 	 */
1598 	BUG_ON(!apic->apic_id_registered());
1599 
1600 	/*
1601 	 * Intel recommends to set DFR, LDR and TPR before enabling
1602 	 * an APIC.  See e.g. "AP-388 82489DX User's Manual" (Intel
1603 	 * document number 292116).  So here it goes...
1604 	 */
1605 	apic->init_apic_ldr();
1606 
1607 #ifdef CONFIG_X86_32
1608 	if (apic->dest_mode_logical) {
1609 		int logical_apicid, ldr_apicid;
1610 
1611 		/*
1612 		 * APIC LDR is initialized.  If logical_apicid mapping was
1613 		 * initialized during get_smp_config(), make sure it matches
1614 		 * the actual value.
1615 		 */
1616 		logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1617 		ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1618 		if (logical_apicid != BAD_APICID)
1619 			WARN_ON(logical_apicid != ldr_apicid);
1620 		/* Always use the value from LDR. */
1621 		early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1622 	}
1623 #endif
1624 
1625 	/*
1626 	 * Set Task Priority to 'accept all except vectors 0-31'.  An APIC
1627 	 * vector in the 16-31 range could be delivered if TPR == 0, but we
1628 	 * would think it's an exception and terrible things will happen.  We
1629 	 * never change this later on.
1630 	 */
1631 	value = apic_read(APIC_TASKPRI);
1632 	value &= ~APIC_TPRI_MASK;
1633 	value |= 0x10;
1634 	apic_write(APIC_TASKPRI, value);
1635 
1636 	/* Clear eventually stale ISR/IRR bits */
1637 	apic_pending_intr_clear();
1638 
1639 	/*
1640 	 * Now that we are all set up, enable the APIC
1641 	 */
1642 	value = apic_read(APIC_SPIV);
1643 	value &= ~APIC_VECTOR_MASK;
1644 	/*
1645 	 * Enable APIC
1646 	 */
1647 	value |= APIC_SPIV_APIC_ENABLED;
1648 
1649 #ifdef CONFIG_X86_32
1650 	/*
1651 	 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1652 	 * certain networking cards. If high frequency interrupts are
1653 	 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1654 	 * entry is masked/unmasked at a high rate as well then sooner or
1655 	 * later IOAPIC line gets 'stuck', no more interrupts are received
1656 	 * from the device. If focus CPU is disabled then the hang goes
1657 	 * away, oh well :-(
1658 	 *
1659 	 * [ This bug can be reproduced easily with a level-triggered
1660 	 *   PCI Ne2000 networking cards and PII/PIII processors, dual
1661 	 *   BX chipset. ]
1662 	 */
1663 	/*
1664 	 * Actually disabling the focus CPU check just makes the hang less
1665 	 * frequent as it makes the interrupt distribution model be more
1666 	 * like LRU than MRU (the short-term load is more even across CPUs).
1667 	 */
1668 
1669 	/*
1670 	 * - enable focus processor (bit==0)
1671 	 * - 64bit mode always use processor focus
1672 	 *   so no need to set it
1673 	 */
1674 	value &= ~APIC_SPIV_FOCUS_DISABLED;
1675 #endif
1676 
1677 	/*
1678 	 * Set spurious IRQ vector
1679 	 */
1680 	value |= SPURIOUS_APIC_VECTOR;
1681 	apic_write(APIC_SPIV, value);
1682 
1683 	perf_events_lapic_init();
1684 
1685 	/*
1686 	 * Set up LVT0, LVT1:
1687 	 *
1688 	 * set up through-local-APIC on the boot CPU's LINT0. This is not
1689 	 * strictly necessary in pure symmetric-IO mode, but sometimes
1690 	 * we delegate interrupts to the 8259A.
1691 	 */
1692 	/*
1693 	 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1694 	 */
1695 	value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1696 	if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1697 		value = APIC_DM_EXTINT;
1698 		apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1699 	} else {
1700 		value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1701 		apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1702 	}
1703 	apic_write(APIC_LVT0, value);
1704 
1705 	/*
1706 	 * Only the BSP sees the LINT1 NMI signal by default. This can be
1707 	 * modified by apic_extnmi= boot option.
1708 	 */
1709 	if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1710 	    apic_extnmi == APIC_EXTNMI_ALL)
1711 		value = APIC_DM_NMI;
1712 	else
1713 		value = APIC_DM_NMI | APIC_LVT_MASKED;
1714 
1715 	/* Is 82489DX ? */
1716 	if (!lapic_is_integrated())
1717 		value |= APIC_LVT_LEVEL_TRIGGER;
1718 	apic_write(APIC_LVT1, value);
1719 
1720 #ifdef CONFIG_X86_MCE_INTEL
1721 	/* Recheck CMCI information after local APIC is up on CPU #0 */
1722 	if (!cpu)
1723 		cmci_recheck();
1724 #endif
1725 }
1726 
1727 static void end_local_APIC_setup(void)
1728 {
1729 	lapic_setup_esr();
1730 
1731 #ifdef CONFIG_X86_32
1732 	{
1733 		unsigned int value;
1734 		/* Disable the local apic timer */
1735 		value = apic_read(APIC_LVTT);
1736 		value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1737 		apic_write(APIC_LVTT, value);
1738 	}
1739 #endif
1740 
1741 	apic_pm_activate();
1742 }
1743 
1744 /*
1745  * APIC setup function for application processors. Called from smpboot.c
1746  */
1747 void apic_ap_setup(void)
1748 {
1749 	setup_local_APIC();
1750 	end_local_APIC_setup();
1751 }
1752 
1753 #ifdef CONFIG_X86_X2APIC
1754 int x2apic_mode;
1755 EXPORT_SYMBOL_GPL(x2apic_mode);
1756 
1757 enum {
1758 	X2APIC_OFF,
1759 	X2APIC_ON,
1760 	X2APIC_DISABLED,
1761 };
1762 static int x2apic_state;
1763 
1764 static void __x2apic_disable(void)
1765 {
1766 	u64 msr;
1767 
1768 	if (!boot_cpu_has(X86_FEATURE_APIC))
1769 		return;
1770 
1771 	rdmsrl(MSR_IA32_APICBASE, msr);
1772 	if (!(msr & X2APIC_ENABLE))
1773 		return;
1774 	/* Disable xapic and x2apic first and then reenable xapic mode */
1775 	wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1776 	wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1777 	printk_once(KERN_INFO "x2apic disabled\n");
1778 }
1779 
1780 static void __x2apic_enable(void)
1781 {
1782 	u64 msr;
1783 
1784 	rdmsrl(MSR_IA32_APICBASE, msr);
1785 	if (msr & X2APIC_ENABLE)
1786 		return;
1787 	wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1788 	printk_once(KERN_INFO "x2apic enabled\n");
1789 }
1790 
1791 static int __init setup_nox2apic(char *str)
1792 {
1793 	if (x2apic_enabled()) {
1794 		int apicid = native_apic_msr_read(APIC_ID);
1795 
1796 		if (apicid >= 255) {
1797 			pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1798 				apicid);
1799 			return 0;
1800 		}
1801 		pr_warn("x2apic already enabled.\n");
1802 		__x2apic_disable();
1803 	}
1804 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1805 	x2apic_state = X2APIC_DISABLED;
1806 	x2apic_mode = 0;
1807 	return 0;
1808 }
1809 early_param("nox2apic", setup_nox2apic);
1810 
1811 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1812 void x2apic_setup(void)
1813 {
1814 	/*
1815 	 * If x2apic is not in ON state, disable it if already enabled
1816 	 * from BIOS.
1817 	 */
1818 	if (x2apic_state != X2APIC_ON) {
1819 		__x2apic_disable();
1820 		return;
1821 	}
1822 	__x2apic_enable();
1823 }
1824 
1825 static __init void x2apic_disable(void)
1826 {
1827 	u32 x2apic_id, state = x2apic_state;
1828 
1829 	x2apic_mode = 0;
1830 	x2apic_state = X2APIC_DISABLED;
1831 
1832 	if (state != X2APIC_ON)
1833 		return;
1834 
1835 	x2apic_id = read_apic_id();
1836 	if (x2apic_id >= 255)
1837 		panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1838 
1839 	__x2apic_disable();
1840 	register_lapic_address(mp_lapic_addr);
1841 }
1842 
1843 static __init void x2apic_enable(void)
1844 {
1845 	if (x2apic_state != X2APIC_OFF)
1846 		return;
1847 
1848 	x2apic_mode = 1;
1849 	x2apic_state = X2APIC_ON;
1850 	__x2apic_enable();
1851 }
1852 
1853 static __init void try_to_enable_x2apic(int remap_mode)
1854 {
1855 	if (x2apic_state == X2APIC_DISABLED)
1856 		return;
1857 
1858 	if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1859 		u32 apic_limit = 255;
1860 
1861 		/*
1862 		 * Using X2APIC without IR is not architecturally supported
1863 		 * on bare metal but may be supported in guests.
1864 		 */
1865 		if (!x86_init.hyper.x2apic_available()) {
1866 			pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1867 			x2apic_disable();
1868 			return;
1869 		}
1870 
1871 		/*
1872 		 * If the hypervisor supports extended destination ID in
1873 		 * MSI, that increases the maximum APIC ID that can be
1874 		 * used for non-remapped IRQ domains.
1875 		 */
1876 		if (x86_init.hyper.msi_ext_dest_id()) {
1877 			virt_ext_dest_id = 1;
1878 			apic_limit = 32767;
1879 		}
1880 
1881 		/*
1882 		 * Without IR, all CPUs can be addressed by IOAPIC/MSI only
1883 		 * in physical mode, and CPUs with an APIC ID that cannot
1884 		 * be addressed must not be brought online.
1885 		 */
1886 		x2apic_set_max_apicid(apic_limit);
1887 		x2apic_phys = 1;
1888 	}
1889 	x2apic_enable();
1890 }
1891 
1892 void __init check_x2apic(void)
1893 {
1894 	if (x2apic_enabled()) {
1895 		pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1896 		x2apic_mode = 1;
1897 		x2apic_state = X2APIC_ON;
1898 	} else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1899 		x2apic_state = X2APIC_DISABLED;
1900 	}
1901 }
1902 #else /* CONFIG_X86_X2APIC */
1903 static int __init validate_x2apic(void)
1904 {
1905 	if (!apic_is_x2apic_enabled())
1906 		return 0;
1907 	/*
1908 	 * Checkme: Can we simply turn off x2apic here instead of panic?
1909 	 */
1910 	panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1911 }
1912 early_initcall(validate_x2apic);
1913 
1914 static inline void try_to_enable_x2apic(int remap_mode) { }
1915 static inline void __x2apic_enable(void) { }
1916 #endif /* !CONFIG_X86_X2APIC */
1917 
1918 void __init enable_IR_x2apic(void)
1919 {
1920 	unsigned long flags;
1921 	int ret, ir_stat;
1922 
1923 	if (skip_ioapic_setup) {
1924 		pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1925 		return;
1926 	}
1927 
1928 	ir_stat = irq_remapping_prepare();
1929 	if (ir_stat < 0 && !x2apic_supported())
1930 		return;
1931 
1932 	ret = save_ioapic_entries();
1933 	if (ret) {
1934 		pr_info("Saving IO-APIC state failed: %d\n", ret);
1935 		return;
1936 	}
1937 
1938 	local_irq_save(flags);
1939 	legacy_pic->mask_all();
1940 	mask_ioapic_entries();
1941 
1942 	/* If irq_remapping_prepare() succeeded, try to enable it */
1943 	if (ir_stat >= 0)
1944 		ir_stat = irq_remapping_enable();
1945 	/* ir_stat contains the remap mode or an error code */
1946 	try_to_enable_x2apic(ir_stat);
1947 
1948 	if (ir_stat < 0)
1949 		restore_ioapic_entries();
1950 	legacy_pic->restore_mask();
1951 	local_irq_restore(flags);
1952 }
1953 
1954 #ifdef CONFIG_X86_64
1955 /*
1956  * Detect and enable local APICs on non-SMP boards.
1957  * Original code written by Keir Fraser.
1958  * On AMD64 we trust the BIOS - if it says no APIC it is likely
1959  * not correctly set up (usually the APIC timer won't work etc.)
1960  */
1961 static int __init detect_init_APIC(void)
1962 {
1963 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1964 		pr_info("No local APIC present\n");
1965 		return -1;
1966 	}
1967 
1968 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1969 	return 0;
1970 }
1971 #else
1972 
1973 static int __init apic_verify(void)
1974 {
1975 	u32 features, h, l;
1976 
1977 	/*
1978 	 * The APIC feature bit should now be enabled
1979 	 * in `cpuid'
1980 	 */
1981 	features = cpuid_edx(1);
1982 	if (!(features & (1 << X86_FEATURE_APIC))) {
1983 		pr_warn("Could not enable APIC!\n");
1984 		return -1;
1985 	}
1986 	set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1987 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1988 
1989 	/* The BIOS may have set up the APIC at some other address */
1990 	if (boot_cpu_data.x86 >= 6) {
1991 		rdmsr(MSR_IA32_APICBASE, l, h);
1992 		if (l & MSR_IA32_APICBASE_ENABLE)
1993 			mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1994 	}
1995 
1996 	pr_info("Found and enabled local APIC!\n");
1997 	return 0;
1998 }
1999 
2000 int __init apic_force_enable(unsigned long addr)
2001 {
2002 	u32 h, l;
2003 
2004 	if (disable_apic)
2005 		return -1;
2006 
2007 	/*
2008 	 * Some BIOSes disable the local APIC in the APIC_BASE
2009 	 * MSR. This can only be done in software for Intel P6 or later
2010 	 * and AMD K7 (Model > 1) or later.
2011 	 */
2012 	if (boot_cpu_data.x86 >= 6) {
2013 		rdmsr(MSR_IA32_APICBASE, l, h);
2014 		if (!(l & MSR_IA32_APICBASE_ENABLE)) {
2015 			pr_info("Local APIC disabled by BIOS -- reenabling.\n");
2016 			l &= ~MSR_IA32_APICBASE_BASE;
2017 			l |= MSR_IA32_APICBASE_ENABLE | addr;
2018 			wrmsr(MSR_IA32_APICBASE, l, h);
2019 			enabled_via_apicbase = 1;
2020 		}
2021 	}
2022 	return apic_verify();
2023 }
2024 
2025 /*
2026  * Detect and initialize APIC
2027  */
2028 static int __init detect_init_APIC(void)
2029 {
2030 	/* Disabled by kernel option? */
2031 	if (disable_apic)
2032 		return -1;
2033 
2034 	switch (boot_cpu_data.x86_vendor) {
2035 	case X86_VENDOR_AMD:
2036 		if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2037 		    (boot_cpu_data.x86 >= 15))
2038 			break;
2039 		goto no_apic;
2040 	case X86_VENDOR_HYGON:
2041 		break;
2042 	case X86_VENDOR_INTEL:
2043 		if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
2044 		    (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2045 			break;
2046 		goto no_apic;
2047 	default:
2048 		goto no_apic;
2049 	}
2050 
2051 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
2052 		/*
2053 		 * Over-ride BIOS and try to enable the local APIC only if
2054 		 * "lapic" specified.
2055 		 */
2056 		if (!force_enable_local_apic) {
2057 			pr_info("Local APIC disabled by BIOS -- "
2058 				"you can enable it with \"lapic\"\n");
2059 			return -1;
2060 		}
2061 		if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2062 			return -1;
2063 	} else {
2064 		if (apic_verify())
2065 			return -1;
2066 	}
2067 
2068 	apic_pm_activate();
2069 
2070 	return 0;
2071 
2072 no_apic:
2073 	pr_info("No local APIC present or hardware disabled\n");
2074 	return -1;
2075 }
2076 #endif
2077 
2078 /**
2079  * init_apic_mappings - initialize APIC mappings
2080  */
2081 void __init init_apic_mappings(void)
2082 {
2083 	unsigned int new_apicid;
2084 
2085 	if (apic_validate_deadline_timer())
2086 		pr_info("TSC deadline timer available\n");
2087 
2088 	if (x2apic_mode) {
2089 		boot_cpu_physical_apicid = read_apic_id();
2090 		return;
2091 	}
2092 
2093 	/* If no local APIC can be found return early */
2094 	if (!smp_found_config && detect_init_APIC()) {
2095 		/* lets NOP'ify apic operations */
2096 		pr_info("APIC: disable apic facility\n");
2097 		apic_disable();
2098 	} else {
2099 		apic_phys = mp_lapic_addr;
2100 
2101 		/*
2102 		 * If the system has ACPI MADT tables or MP info, the LAPIC
2103 		 * address is already registered.
2104 		 */
2105 		if (!acpi_lapic && !smp_found_config)
2106 			register_lapic_address(apic_phys);
2107 	}
2108 
2109 	/*
2110 	 * Fetch the APIC ID of the BSP in case we have a
2111 	 * default configuration (or the MP table is broken).
2112 	 */
2113 	new_apicid = read_apic_id();
2114 	if (boot_cpu_physical_apicid != new_apicid) {
2115 		boot_cpu_physical_apicid = new_apicid;
2116 		/*
2117 		 * yeah -- we lie about apic_version
2118 		 * in case if apic was disabled via boot option
2119 		 * but it's not a problem for SMP compiled kernel
2120 		 * since apic_intr_mode_select is prepared for such
2121 		 * a case and disable smp mode
2122 		 */
2123 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2124 	}
2125 }
2126 
2127 void __init register_lapic_address(unsigned long address)
2128 {
2129 	mp_lapic_addr = address;
2130 
2131 	if (!x2apic_mode) {
2132 		set_fixmap_nocache(FIX_APIC_BASE, address);
2133 		apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2134 			    APIC_BASE, address);
2135 	}
2136 	if (boot_cpu_physical_apicid == -1U) {
2137 		boot_cpu_physical_apicid  = read_apic_id();
2138 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2139 	}
2140 }
2141 
2142 /*
2143  * Local APIC interrupts
2144  */
2145 
2146 /*
2147  * Common handling code for spurious_interrupt and spurious_vector entry
2148  * points below. No point in allowing the compiler to inline it twice.
2149  */
2150 static noinline void handle_spurious_interrupt(u8 vector)
2151 {
2152 	u32 v;
2153 
2154 	trace_spurious_apic_entry(vector);
2155 
2156 	inc_irq_stat(irq_spurious_count);
2157 
2158 	/*
2159 	 * If this is a spurious interrupt then do not acknowledge
2160 	 */
2161 	if (vector == SPURIOUS_APIC_VECTOR) {
2162 		/* See SDM vol 3 */
2163 		pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2164 			smp_processor_id());
2165 		goto out;
2166 	}
2167 
2168 	/*
2169 	 * If it is a vectored one, verify it's set in the ISR. If set,
2170 	 * acknowledge it.
2171 	 */
2172 	v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2173 	if (v & (1 << (vector & 0x1f))) {
2174 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2175 			vector, smp_processor_id());
2176 		ack_APIC_irq();
2177 	} else {
2178 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2179 			vector, smp_processor_id());
2180 	}
2181 out:
2182 	trace_spurious_apic_exit(vector);
2183 }
2184 
2185 /**
2186  * spurious_interrupt - Catch all for interrupts raised on unused vectors
2187  * @regs:	Pointer to pt_regs on stack
2188  * @vector:	The vector number
2189  *
2190  * This is invoked from ASM entry code to catch all interrupts which
2191  * trigger on an entry which is routed to the common_spurious idtentry
2192  * point.
2193  */
2194 DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2195 {
2196 	handle_spurious_interrupt(vector);
2197 }
2198 
2199 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2200 {
2201 	handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2202 }
2203 
2204 /*
2205  * This interrupt should never happen with our APIC/SMP architecture
2206  */
2207 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2208 {
2209 	static const char * const error_interrupt_reason[] = {
2210 		"Send CS error",		/* APIC Error Bit 0 */
2211 		"Receive CS error",		/* APIC Error Bit 1 */
2212 		"Send accept error",		/* APIC Error Bit 2 */
2213 		"Receive accept error",		/* APIC Error Bit 3 */
2214 		"Redirectable IPI",		/* APIC Error Bit 4 */
2215 		"Send illegal vector",		/* APIC Error Bit 5 */
2216 		"Received illegal vector",	/* APIC Error Bit 6 */
2217 		"Illegal register address",	/* APIC Error Bit 7 */
2218 	};
2219 	u32 v, i = 0;
2220 
2221 	trace_error_apic_entry(ERROR_APIC_VECTOR);
2222 
2223 	/* First tickle the hardware, only then report what went on. -- REW */
2224 	if (lapic_get_maxlvt() > 3)	/* Due to the Pentium erratum 3AP. */
2225 		apic_write(APIC_ESR, 0);
2226 	v = apic_read(APIC_ESR);
2227 	ack_APIC_irq();
2228 	atomic_inc(&irq_err_count);
2229 
2230 	apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2231 		    smp_processor_id(), v);
2232 
2233 	v &= 0xff;
2234 	while (v) {
2235 		if (v & 0x1)
2236 			apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2237 		i++;
2238 		v >>= 1;
2239 	}
2240 
2241 	apic_printk(APIC_DEBUG, KERN_CONT "\n");
2242 
2243 	trace_error_apic_exit(ERROR_APIC_VECTOR);
2244 }
2245 
2246 /**
2247  * connect_bsp_APIC - attach the APIC to the interrupt system
2248  */
2249 static void __init connect_bsp_APIC(void)
2250 {
2251 #ifdef CONFIG_X86_32
2252 	if (pic_mode) {
2253 		/*
2254 		 * Do not trust the local APIC being empty at bootup.
2255 		 */
2256 		clear_local_APIC();
2257 		/*
2258 		 * PIC mode, enable APIC mode in the IMCR, i.e.  connect BSP's
2259 		 * local APIC to INT and NMI lines.
2260 		 */
2261 		apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2262 				"enabling APIC mode.\n");
2263 		imcr_pic_to_apic();
2264 	}
2265 #endif
2266 }
2267 
2268 /**
2269  * disconnect_bsp_APIC - detach the APIC from the interrupt system
2270  * @virt_wire_setup:	indicates, whether virtual wire mode is selected
2271  *
2272  * Virtual wire mode is necessary to deliver legacy interrupts even when the
2273  * APIC is disabled.
2274  */
2275 void disconnect_bsp_APIC(int virt_wire_setup)
2276 {
2277 	unsigned int value;
2278 
2279 #ifdef CONFIG_X86_32
2280 	if (pic_mode) {
2281 		/*
2282 		 * Put the board back into PIC mode (has an effect only on
2283 		 * certain older boards).  Note that APIC interrupts, including
2284 		 * IPIs, won't work beyond this point!  The only exception are
2285 		 * INIT IPIs.
2286 		 */
2287 		apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2288 				"entering PIC mode.\n");
2289 		imcr_apic_to_pic();
2290 		return;
2291 	}
2292 #endif
2293 
2294 	/* Go back to Virtual Wire compatibility mode */
2295 
2296 	/* For the spurious interrupt use vector F, and enable it */
2297 	value = apic_read(APIC_SPIV);
2298 	value &= ~APIC_VECTOR_MASK;
2299 	value |= APIC_SPIV_APIC_ENABLED;
2300 	value |= 0xf;
2301 	apic_write(APIC_SPIV, value);
2302 
2303 	if (!virt_wire_setup) {
2304 		/*
2305 		 * For LVT0 make it edge triggered, active high,
2306 		 * external and enabled
2307 		 */
2308 		value = apic_read(APIC_LVT0);
2309 		value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2310 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2311 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2312 		value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2313 		value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2314 		apic_write(APIC_LVT0, value);
2315 	} else {
2316 		/* Disable LVT0 */
2317 		apic_write(APIC_LVT0, APIC_LVT_MASKED);
2318 	}
2319 
2320 	/*
2321 	 * For LVT1 make it edge triggered, active high,
2322 	 * nmi and enabled
2323 	 */
2324 	value = apic_read(APIC_LVT1);
2325 	value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2326 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2327 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2328 	value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2329 	value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2330 	apic_write(APIC_LVT1, value);
2331 }
2332 
2333 /*
2334  * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2335  * contiguously, it equals to current allocated max logical CPU ID plus 1.
2336  * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2337  * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2338  *
2339  * NOTE: Reserve 0 for BSP.
2340  */
2341 static int nr_logical_cpuids = 1;
2342 
2343 /*
2344  * Used to store mapping between logical CPU IDs and APIC IDs.
2345  */
2346 static int cpuid_to_apicid[] = {
2347 	[0 ... NR_CPUS - 1] = -1,
2348 };
2349 
2350 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
2351 {
2352 	return phys_id == cpuid_to_apicid[cpu];
2353 }
2354 
2355 #ifdef CONFIG_SMP
2356 /**
2357  * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2358  * @apicid: APIC ID to check
2359  */
2360 bool apic_id_is_primary_thread(unsigned int apicid)
2361 {
2362 	u32 mask;
2363 
2364 	if (smp_num_siblings == 1)
2365 		return true;
2366 	/* Isolate the SMT bit(s) in the APICID and check for 0 */
2367 	mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2368 	return !(apicid & mask);
2369 }
2370 #endif
2371 
2372 /*
2373  * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2374  * and cpuid_to_apicid[] synchronized.
2375  */
2376 static int allocate_logical_cpuid(int apicid)
2377 {
2378 	int i;
2379 
2380 	/*
2381 	 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2382 	 * check if the kernel has allocated a cpuid for it.
2383 	 */
2384 	for (i = 0; i < nr_logical_cpuids; i++) {
2385 		if (cpuid_to_apicid[i] == apicid)
2386 			return i;
2387 	}
2388 
2389 	/* Allocate a new cpuid. */
2390 	if (nr_logical_cpuids >= nr_cpu_ids) {
2391 		WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2392 			     "Processor %d/0x%x and the rest are ignored.\n",
2393 			     nr_cpu_ids, nr_logical_cpuids, apicid);
2394 		return -EINVAL;
2395 	}
2396 
2397 	cpuid_to_apicid[nr_logical_cpuids] = apicid;
2398 	return nr_logical_cpuids++;
2399 }
2400 
2401 int generic_processor_info(int apicid, int version)
2402 {
2403 	int cpu, max = nr_cpu_ids;
2404 	bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2405 				phys_cpu_present_map);
2406 
2407 	/*
2408 	 * boot_cpu_physical_apicid is designed to have the apicid
2409 	 * returned by read_apic_id(), i.e, the apicid of the
2410 	 * currently booting-up processor. However, on some platforms,
2411 	 * it is temporarily modified by the apicid reported as BSP
2412 	 * through MP table. Concretely:
2413 	 *
2414 	 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2415 	 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2416 	 *
2417 	 * This function is executed with the modified
2418 	 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2419 	 * parameter doesn't work to disable APs on kdump 2nd kernel.
2420 	 *
2421 	 * Since fixing handling of boot_cpu_physical_apicid requires
2422 	 * another discussion and tests on each platform, we leave it
2423 	 * for now and here we use read_apic_id() directly in this
2424 	 * function, generic_processor_info().
2425 	 */
2426 	if (disabled_cpu_apicid != BAD_APICID &&
2427 	    disabled_cpu_apicid != read_apic_id() &&
2428 	    disabled_cpu_apicid == apicid) {
2429 		int thiscpu = num_processors + disabled_cpus;
2430 
2431 		pr_warn("APIC: Disabling requested cpu."
2432 			" Processor %d/0x%x ignored.\n", thiscpu, apicid);
2433 
2434 		disabled_cpus++;
2435 		return -ENODEV;
2436 	}
2437 
2438 	/*
2439 	 * If boot cpu has not been detected yet, then only allow upto
2440 	 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2441 	 */
2442 	if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2443 	    apicid != boot_cpu_physical_apicid) {
2444 		int thiscpu = max + disabled_cpus - 1;
2445 
2446 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost"
2447 			" reached. Keeping one slot for boot cpu."
2448 			"  Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2449 
2450 		disabled_cpus++;
2451 		return -ENODEV;
2452 	}
2453 
2454 	if (num_processors >= nr_cpu_ids) {
2455 		int thiscpu = max + disabled_cpus;
2456 
2457 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. "
2458 			"Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2459 
2460 		disabled_cpus++;
2461 		return -EINVAL;
2462 	}
2463 
2464 	if (apicid == boot_cpu_physical_apicid) {
2465 		/*
2466 		 * x86_bios_cpu_apicid is required to have processors listed
2467 		 * in same order as logical cpu numbers. Hence the first
2468 		 * entry is BSP, and so on.
2469 		 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2470 		 * for BSP.
2471 		 */
2472 		cpu = 0;
2473 
2474 		/* Logical cpuid 0 is reserved for BSP. */
2475 		cpuid_to_apicid[0] = apicid;
2476 	} else {
2477 		cpu = allocate_logical_cpuid(apicid);
2478 		if (cpu < 0) {
2479 			disabled_cpus++;
2480 			return -EINVAL;
2481 		}
2482 	}
2483 
2484 	/*
2485 	 * Validate version
2486 	 */
2487 	if (version == 0x0) {
2488 		pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2489 			cpu, apicid);
2490 		version = 0x10;
2491 	}
2492 
2493 	if (version != boot_cpu_apic_version) {
2494 		pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2495 			boot_cpu_apic_version, cpu, version);
2496 	}
2497 
2498 	if (apicid > max_physical_apicid)
2499 		max_physical_apicid = apicid;
2500 
2501 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2502 	early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2503 	early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2504 #endif
2505 #ifdef CONFIG_X86_32
2506 	early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2507 		apic->x86_32_early_logical_apicid(cpu);
2508 #endif
2509 	set_cpu_possible(cpu, true);
2510 	physid_set(apicid, phys_cpu_present_map);
2511 	set_cpu_present(cpu, true);
2512 	num_processors++;
2513 
2514 	return cpu;
2515 }
2516 
2517 int hard_smp_processor_id(void)
2518 {
2519 	return read_apic_id();
2520 }
2521 
2522 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2523 			   bool dmar)
2524 {
2525 	memset(msg, 0, sizeof(*msg));
2526 
2527 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2528 	msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2529 	msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2530 
2531 	msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2532 	msg->arch_data.vector = cfg->vector;
2533 
2534 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2535 	/*
2536 	 * Only the IOMMU itself can use the trick of putting destination
2537 	 * APIC ID into the high bits of the address. Anything else would
2538 	 * just be writing to memory if it tried that, and needs IR to
2539 	 * address APICs which can't be addressed in the normal 32-bit
2540 	 * address range at 0xFFExxxxx. That is typically just 8 bits, but
2541 	 * some hypervisors allow the extended destination ID field in bits
2542 	 * 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2543 	 */
2544 	if (dmar)
2545 		msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2546 	else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2547 		msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2548 	else
2549 		WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2550 }
2551 
2552 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2553 {
2554 	u32 dest = msg->arch_addr_lo.destid_0_7;
2555 
2556 	if (extid)
2557 		dest |= msg->arch_addr_hi.destid_8_31 << 8;
2558 	return dest;
2559 }
2560 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
2561 
2562 #ifdef CONFIG_X86_64
2563 void __init acpi_wake_cpu_handler_update(wakeup_cpu_handler handler)
2564 {
2565 	struct apic **drv;
2566 
2567 	for (drv = __apicdrivers; drv < __apicdrivers_end; drv++)
2568 		(*drv)->wakeup_secondary_cpu_64 = handler;
2569 }
2570 #endif
2571 
2572 /*
2573  * Override the generic EOI implementation with an optimized version.
2574  * Only called during early boot when only one CPU is active and with
2575  * interrupts disabled, so we know this does not race with actual APIC driver
2576  * use.
2577  */
2578 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2579 {
2580 	struct apic **drv;
2581 
2582 	for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2583 		/* Should happen once for each apic */
2584 		WARN_ON((*drv)->eoi_write == eoi_write);
2585 		(*drv)->native_eoi_write = (*drv)->eoi_write;
2586 		(*drv)->eoi_write = eoi_write;
2587 	}
2588 }
2589 
2590 static void __init apic_bsp_up_setup(void)
2591 {
2592 #ifdef CONFIG_X86_64
2593 	apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2594 #else
2595 	/*
2596 	 * Hack: In case of kdump, after a crash, kernel might be booting
2597 	 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2598 	 * might be zero if read from MP tables. Get it from LAPIC.
2599 	 */
2600 # ifdef CONFIG_CRASH_DUMP
2601 	boot_cpu_physical_apicid = read_apic_id();
2602 # endif
2603 #endif
2604 	physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2605 }
2606 
2607 /**
2608  * apic_bsp_setup - Setup function for local apic and io-apic
2609  * @upmode:		Force UP mode (for APIC_init_uniprocessor)
2610  */
2611 static void __init apic_bsp_setup(bool upmode)
2612 {
2613 	connect_bsp_APIC();
2614 	if (upmode)
2615 		apic_bsp_up_setup();
2616 	setup_local_APIC();
2617 
2618 	enable_IO_APIC();
2619 	end_local_APIC_setup();
2620 	irq_remap_enable_fault_handling();
2621 	setup_IO_APIC();
2622 	lapic_update_legacy_vectors();
2623 }
2624 
2625 #ifdef CONFIG_UP_LATE_INIT
2626 void __init up_late_init(void)
2627 {
2628 	if (apic_intr_mode == APIC_PIC)
2629 		return;
2630 
2631 	/* Setup local timer */
2632 	x86_init.timers.setup_percpu_clockev();
2633 }
2634 #endif
2635 
2636 /*
2637  * Power management
2638  */
2639 #ifdef CONFIG_PM
2640 
2641 static struct {
2642 	/*
2643 	 * 'active' is true if the local APIC was enabled by us and
2644 	 * not the BIOS; this signifies that we are also responsible
2645 	 * for disabling it before entering apm/acpi suspend
2646 	 */
2647 	int active;
2648 	/* r/w apic fields */
2649 	unsigned int apic_id;
2650 	unsigned int apic_taskpri;
2651 	unsigned int apic_ldr;
2652 	unsigned int apic_dfr;
2653 	unsigned int apic_spiv;
2654 	unsigned int apic_lvtt;
2655 	unsigned int apic_lvtpc;
2656 	unsigned int apic_lvt0;
2657 	unsigned int apic_lvt1;
2658 	unsigned int apic_lvterr;
2659 	unsigned int apic_tmict;
2660 	unsigned int apic_tdcr;
2661 	unsigned int apic_thmr;
2662 	unsigned int apic_cmci;
2663 } apic_pm_state;
2664 
2665 static int lapic_suspend(void)
2666 {
2667 	unsigned long flags;
2668 	int maxlvt;
2669 
2670 	if (!apic_pm_state.active)
2671 		return 0;
2672 
2673 	maxlvt = lapic_get_maxlvt();
2674 
2675 	apic_pm_state.apic_id = apic_read(APIC_ID);
2676 	apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2677 	apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2678 	apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2679 	apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2680 	apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2681 	if (maxlvt >= 4)
2682 		apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2683 	apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2684 	apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2685 	apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2686 	apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2687 	apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2688 #ifdef CONFIG_X86_THERMAL_VECTOR
2689 	if (maxlvt >= 5)
2690 		apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2691 #endif
2692 #ifdef CONFIG_X86_MCE_INTEL
2693 	if (maxlvt >= 6)
2694 		apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2695 #endif
2696 
2697 	local_irq_save(flags);
2698 
2699 	/*
2700 	 * Mask IOAPIC before disabling the local APIC to prevent stale IRR
2701 	 * entries on some implementations.
2702 	 */
2703 	mask_ioapic_entries();
2704 
2705 	disable_local_APIC();
2706 
2707 	irq_remapping_disable();
2708 
2709 	local_irq_restore(flags);
2710 	return 0;
2711 }
2712 
2713 static void lapic_resume(void)
2714 {
2715 	unsigned int l, h;
2716 	unsigned long flags;
2717 	int maxlvt;
2718 
2719 	if (!apic_pm_state.active)
2720 		return;
2721 
2722 	local_irq_save(flags);
2723 
2724 	/*
2725 	 * IO-APIC and PIC have their own resume routines.
2726 	 * We just mask them here to make sure the interrupt
2727 	 * subsystem is completely quiet while we enable x2apic
2728 	 * and interrupt-remapping.
2729 	 */
2730 	mask_ioapic_entries();
2731 	legacy_pic->mask_all();
2732 
2733 	if (x2apic_mode) {
2734 		__x2apic_enable();
2735 	} else {
2736 		/*
2737 		 * Make sure the APICBASE points to the right address
2738 		 *
2739 		 * FIXME! This will be wrong if we ever support suspend on
2740 		 * SMP! We'll need to do this as part of the CPU restore!
2741 		 */
2742 		if (boot_cpu_data.x86 >= 6) {
2743 			rdmsr(MSR_IA32_APICBASE, l, h);
2744 			l &= ~MSR_IA32_APICBASE_BASE;
2745 			l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2746 			wrmsr(MSR_IA32_APICBASE, l, h);
2747 		}
2748 	}
2749 
2750 	maxlvt = lapic_get_maxlvt();
2751 	apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2752 	apic_write(APIC_ID, apic_pm_state.apic_id);
2753 	apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2754 	apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2755 	apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2756 	apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2757 	apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2758 	apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2759 #ifdef CONFIG_X86_THERMAL_VECTOR
2760 	if (maxlvt >= 5)
2761 		apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2762 #endif
2763 #ifdef CONFIG_X86_MCE_INTEL
2764 	if (maxlvt >= 6)
2765 		apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2766 #endif
2767 	if (maxlvt >= 4)
2768 		apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2769 	apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2770 	apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2771 	apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2772 	apic_write(APIC_ESR, 0);
2773 	apic_read(APIC_ESR);
2774 	apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2775 	apic_write(APIC_ESR, 0);
2776 	apic_read(APIC_ESR);
2777 
2778 	irq_remapping_reenable(x2apic_mode);
2779 
2780 	local_irq_restore(flags);
2781 }
2782 
2783 /*
2784  * This device has no shutdown method - fully functioning local APICs
2785  * are needed on every CPU up until machine_halt/restart/poweroff.
2786  */
2787 
2788 static struct syscore_ops lapic_syscore_ops = {
2789 	.resume		= lapic_resume,
2790 	.suspend	= lapic_suspend,
2791 };
2792 
2793 static void apic_pm_activate(void)
2794 {
2795 	apic_pm_state.active = 1;
2796 }
2797 
2798 static int __init init_lapic_sysfs(void)
2799 {
2800 	/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2801 	if (boot_cpu_has(X86_FEATURE_APIC))
2802 		register_syscore_ops(&lapic_syscore_ops);
2803 
2804 	return 0;
2805 }
2806 
2807 /* local apic needs to resume before other devices access its registers. */
2808 core_initcall(init_lapic_sysfs);
2809 
2810 #else	/* CONFIG_PM */
2811 
2812 static void apic_pm_activate(void) { }
2813 
2814 #endif	/* CONFIG_PM */
2815 
2816 #ifdef CONFIG_X86_64
2817 
2818 static int multi_checked;
2819 static int multi;
2820 
2821 static int set_multi(const struct dmi_system_id *d)
2822 {
2823 	if (multi)
2824 		return 0;
2825 	pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2826 	multi = 1;
2827 	return 0;
2828 }
2829 
2830 static const struct dmi_system_id multi_dmi_table[] = {
2831 	{
2832 		.callback = set_multi,
2833 		.ident = "IBM System Summit2",
2834 		.matches = {
2835 			DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2836 			DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2837 		},
2838 	},
2839 	{}
2840 };
2841 
2842 static void dmi_check_multi(void)
2843 {
2844 	if (multi_checked)
2845 		return;
2846 
2847 	dmi_check_system(multi_dmi_table);
2848 	multi_checked = 1;
2849 }
2850 
2851 /*
2852  * apic_is_clustered_box() -- Check if we can expect good TSC
2853  *
2854  * Thus far, the major user of this is IBM's Summit2 series:
2855  * Clustered boxes may have unsynced TSC problems if they are
2856  * multi-chassis.
2857  * Use DMI to check them
2858  */
2859 int apic_is_clustered_box(void)
2860 {
2861 	dmi_check_multi();
2862 	return multi;
2863 }
2864 #endif
2865 
2866 /*
2867  * APIC command line parameters
2868  */
2869 static int __init setup_disableapic(char *arg)
2870 {
2871 	disable_apic = 1;
2872 	setup_clear_cpu_cap(X86_FEATURE_APIC);
2873 	return 0;
2874 }
2875 early_param("disableapic", setup_disableapic);
2876 
2877 /* same as disableapic, for compatibility */
2878 static int __init setup_nolapic(char *arg)
2879 {
2880 	return setup_disableapic(arg);
2881 }
2882 early_param("nolapic", setup_nolapic);
2883 
2884 static int __init parse_lapic_timer_c2_ok(char *arg)
2885 {
2886 	local_apic_timer_c2_ok = 1;
2887 	return 0;
2888 }
2889 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2890 
2891 static int __init parse_disable_apic_timer(char *arg)
2892 {
2893 	disable_apic_timer = 1;
2894 	return 0;
2895 }
2896 early_param("noapictimer", parse_disable_apic_timer);
2897 
2898 static int __init parse_nolapic_timer(char *arg)
2899 {
2900 	disable_apic_timer = 1;
2901 	return 0;
2902 }
2903 early_param("nolapic_timer", parse_nolapic_timer);
2904 
2905 static int __init apic_set_verbosity(char *arg)
2906 {
2907 	if (!arg)  {
2908 #ifdef CONFIG_X86_64
2909 		skip_ioapic_setup = 0;
2910 		return 0;
2911 #endif
2912 		return -EINVAL;
2913 	}
2914 
2915 	if (strcmp("debug", arg) == 0)
2916 		apic_verbosity = APIC_DEBUG;
2917 	else if (strcmp("verbose", arg) == 0)
2918 		apic_verbosity = APIC_VERBOSE;
2919 #ifdef CONFIG_X86_64
2920 	else {
2921 		pr_warn("APIC Verbosity level %s not recognised"
2922 			" use apic=verbose or apic=debug\n", arg);
2923 		return -EINVAL;
2924 	}
2925 #endif
2926 
2927 	return 0;
2928 }
2929 early_param("apic", apic_set_verbosity);
2930 
2931 static int __init lapic_insert_resource(void)
2932 {
2933 	if (!apic_phys)
2934 		return -1;
2935 
2936 	/* Put local APIC into the resource map. */
2937 	lapic_resource.start = apic_phys;
2938 	lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2939 	insert_resource(&iomem_resource, &lapic_resource);
2940 
2941 	return 0;
2942 }
2943 
2944 /*
2945  * need call insert after e820__reserve_resources()
2946  * that is using request_resource
2947  */
2948 late_initcall(lapic_insert_resource);
2949 
2950 static int __init apic_set_disabled_cpu_apicid(char *arg)
2951 {
2952 	if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2953 		return -EINVAL;
2954 
2955 	return 0;
2956 }
2957 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2958 
2959 static int __init apic_set_extnmi(char *arg)
2960 {
2961 	if (!arg)
2962 		return -EINVAL;
2963 
2964 	if (!strncmp("all", arg, 3))
2965 		apic_extnmi = APIC_EXTNMI_ALL;
2966 	else if (!strncmp("none", arg, 4))
2967 		apic_extnmi = APIC_EXTNMI_NONE;
2968 	else if (!strncmp("bsp", arg, 3))
2969 		apic_extnmi = APIC_EXTNMI_BSP;
2970 	else {
2971 		pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2972 		return -EINVAL;
2973 	}
2974 
2975 	return 0;
2976 }
2977 early_param("apic_extnmi", apic_set_extnmi);
2978