1 /* 2 * Local APIC handling, local APIC timers 3 * 4 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 5 * 6 * Fixes 7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 8 * thanks to Eric Gilmore 9 * and Rolf G. Tews 10 * for testing these extensively. 11 * Maciej W. Rozycki : Various updates and fixes. 12 * Mikael Pettersson : Power Management for UP-APIC. 13 * Pavel Machek and 14 * Mikael Pettersson : PM converted to driver model. 15 */ 16 17 #include <linux/perf_event.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/mc146818rtc.h> 20 #include <linux/acpi_pmtmr.h> 21 #include <linux/clockchips.h> 22 #include <linux/interrupt.h> 23 #include <linux/bootmem.h> 24 #include <linux/ftrace.h> 25 #include <linux/ioport.h> 26 #include <linux/export.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/delay.h> 29 #include <linux/timex.h> 30 #include <linux/i8253.h> 31 #include <linux/dmar.h> 32 #include <linux/init.h> 33 #include <linux/cpu.h> 34 #include <linux/dmi.h> 35 #include <linux/smp.h> 36 #include <linux/mm.h> 37 38 #include <asm/trace/irq_vectors.h> 39 #include <asm/irq_remapping.h> 40 #include <asm/perf_event.h> 41 #include <asm/x86_init.h> 42 #include <asm/pgalloc.h> 43 #include <linux/atomic.h> 44 #include <asm/mpspec.h> 45 #include <asm/i8259.h> 46 #include <asm/proto.h> 47 #include <asm/apic.h> 48 #include <asm/io_apic.h> 49 #include <asm/desc.h> 50 #include <asm/hpet.h> 51 #include <asm/mtrr.h> 52 #include <asm/time.h> 53 #include <asm/smp.h> 54 #include <asm/mce.h> 55 #include <asm/tsc.h> 56 #include <asm/hypervisor.h> 57 #include <asm/cpu_device_id.h> 58 #include <asm/intel-family.h> 59 60 unsigned int num_processors; 61 62 unsigned disabled_cpus; 63 64 /* Processor that is doing the boot up */ 65 unsigned int boot_cpu_physical_apicid = -1U; 66 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); 67 68 u8 boot_cpu_apic_version; 69 70 /* 71 * The highest APIC ID seen during enumeration. 72 */ 73 static unsigned int max_physical_apicid; 74 75 /* 76 * Bitmask of physically existing CPUs: 77 */ 78 physid_mask_t phys_cpu_present_map; 79 80 /* 81 * Processor to be disabled specified by kernel parameter 82 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to 83 * avoid undefined behaviour caused by sending INIT from AP to BSP. 84 */ 85 static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID; 86 87 /* 88 * This variable controls which CPUs receive external NMIs. By default, 89 * external NMIs are delivered only to the BSP. 90 */ 91 static int apic_extnmi = APIC_EXTNMI_BSP; 92 93 /* 94 * Map cpu index to physical APIC ID 95 */ 96 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); 97 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); 98 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); 99 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); 100 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); 101 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); 102 103 #ifdef CONFIG_X86_32 104 105 /* 106 * On x86_32, the mapping between cpu and logical apicid may vary 107 * depending on apic in use. The following early percpu variable is 108 * used for the mapping. This is where the behaviors of x86_64 and 32 109 * actually diverge. Let's keep it ugly for now. 110 */ 111 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); 112 113 /* Local APIC was disabled by the BIOS and enabled by the kernel */ 114 static int enabled_via_apicbase; 115 116 /* 117 * Handle interrupt mode configuration register (IMCR). 118 * This register controls whether the interrupt signals 119 * that reach the BSP come from the master PIC or from the 120 * local APIC. Before entering Symmetric I/O Mode, either 121 * the BIOS or the operating system must switch out of 122 * PIC Mode by changing the IMCR. 123 */ 124 static inline void imcr_pic_to_apic(void) 125 { 126 /* select IMCR register */ 127 outb(0x70, 0x22); 128 /* NMI and 8259 INTR go through APIC */ 129 outb(0x01, 0x23); 130 } 131 132 static inline void imcr_apic_to_pic(void) 133 { 134 /* select IMCR register */ 135 outb(0x70, 0x22); 136 /* NMI and 8259 INTR go directly to BSP */ 137 outb(0x00, 0x23); 138 } 139 #endif 140 141 /* 142 * Knob to control our willingness to enable the local APIC. 143 * 144 * +1=force-enable 145 */ 146 static int force_enable_local_apic __initdata; 147 148 /* 149 * APIC command line parameters 150 */ 151 static int __init parse_lapic(char *arg) 152 { 153 if (IS_ENABLED(CONFIG_X86_32) && !arg) 154 force_enable_local_apic = 1; 155 else if (arg && !strncmp(arg, "notscdeadline", 13)) 156 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 157 return 0; 158 } 159 early_param("lapic", parse_lapic); 160 161 #ifdef CONFIG_X86_64 162 static int apic_calibrate_pmtmr __initdata; 163 static __init int setup_apicpmtimer(char *s) 164 { 165 apic_calibrate_pmtmr = 1; 166 notsc_setup(NULL); 167 return 0; 168 } 169 __setup("apicpmtimer", setup_apicpmtimer); 170 #endif 171 172 unsigned long mp_lapic_addr; 173 int disable_apic; 174 /* Disable local APIC timer from the kernel commandline or via dmi quirk */ 175 static int disable_apic_timer __initdata; 176 /* Local APIC timer works in C2 */ 177 int local_apic_timer_c2_ok; 178 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); 179 180 /* 181 * Debug level, exported for io_apic.c 182 */ 183 unsigned int apic_verbosity; 184 185 int pic_mode; 186 187 /* Have we found an MP table */ 188 int smp_found_config; 189 190 static struct resource lapic_resource = { 191 .name = "Local APIC", 192 .flags = IORESOURCE_MEM | IORESOURCE_BUSY, 193 }; 194 195 unsigned int lapic_timer_frequency = 0; 196 197 static void apic_pm_activate(void); 198 199 static unsigned long apic_phys; 200 201 /* 202 * Get the LAPIC version 203 */ 204 static inline int lapic_get_version(void) 205 { 206 return GET_APIC_VERSION(apic_read(APIC_LVR)); 207 } 208 209 /* 210 * Check, if the APIC is integrated or a separate chip 211 */ 212 static inline int lapic_is_integrated(void) 213 { 214 #ifdef CONFIG_X86_64 215 return 1; 216 #else 217 return APIC_INTEGRATED(lapic_get_version()); 218 #endif 219 } 220 221 /* 222 * Check, whether this is a modern or a first generation APIC 223 */ 224 static int modern_apic(void) 225 { 226 /* AMD systems use old APIC versions, so check the CPU */ 227 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 228 boot_cpu_data.x86 >= 0xf) 229 return 1; 230 return lapic_get_version() >= 0x14; 231 } 232 233 /* 234 * right after this call apic become NOOP driven 235 * so apic->write/read doesn't do anything 236 */ 237 static void __init apic_disable(void) 238 { 239 pr_info("APIC: switched to apic NOOP\n"); 240 apic = &apic_noop; 241 } 242 243 void native_apic_wait_icr_idle(void) 244 { 245 while (apic_read(APIC_ICR) & APIC_ICR_BUSY) 246 cpu_relax(); 247 } 248 249 u32 native_safe_apic_wait_icr_idle(void) 250 { 251 u32 send_status; 252 int timeout; 253 254 timeout = 0; 255 do { 256 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; 257 if (!send_status) 258 break; 259 inc_irq_stat(icr_read_retry_count); 260 udelay(100); 261 } while (timeout++ < 1000); 262 263 return send_status; 264 } 265 266 void native_apic_icr_write(u32 low, u32 id) 267 { 268 unsigned long flags; 269 270 local_irq_save(flags); 271 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); 272 apic_write(APIC_ICR, low); 273 local_irq_restore(flags); 274 } 275 276 u64 native_apic_icr_read(void) 277 { 278 u32 icr1, icr2; 279 280 icr2 = apic_read(APIC_ICR2); 281 icr1 = apic_read(APIC_ICR); 282 283 return icr1 | ((u64)icr2 << 32); 284 } 285 286 #ifdef CONFIG_X86_32 287 /** 288 * get_physical_broadcast - Get number of physical broadcast IDs 289 */ 290 int get_physical_broadcast(void) 291 { 292 return modern_apic() ? 0xff : 0xf; 293 } 294 #endif 295 296 /** 297 * lapic_get_maxlvt - get the maximum number of local vector table entries 298 */ 299 int lapic_get_maxlvt(void) 300 { 301 unsigned int v; 302 303 v = apic_read(APIC_LVR); 304 /* 305 * - we always have APIC integrated on 64bit mode 306 * - 82489DXs do not report # of LVT entries 307 */ 308 return APIC_INTEGRATED(GET_APIC_VERSION(v)) ? GET_APIC_MAXLVT(v) : 2; 309 } 310 311 /* 312 * Local APIC timer 313 */ 314 315 /* Clock divisor */ 316 #define APIC_DIVISOR 16 317 #define TSC_DIVISOR 8 318 319 /* 320 * This function sets up the local APIC timer, with a timeout of 321 * 'clocks' APIC bus clock. During calibration we actually call 322 * this function twice on the boot CPU, once with a bogus timeout 323 * value, second time for real. The other (noncalibrating) CPUs 324 * call this function only once, with the real, calibrated value. 325 * 326 * We do reads before writes even if unnecessary, to get around the 327 * P5 APIC double write bug. 328 */ 329 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) 330 { 331 unsigned int lvtt_value, tmp_value; 332 333 lvtt_value = LOCAL_TIMER_VECTOR; 334 if (!oneshot) 335 lvtt_value |= APIC_LVT_TIMER_PERIODIC; 336 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 337 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; 338 339 if (!lapic_is_integrated()) 340 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); 341 342 if (!irqen) 343 lvtt_value |= APIC_LVT_MASKED; 344 345 apic_write(APIC_LVTT, lvtt_value); 346 347 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { 348 /* 349 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, 350 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. 351 * According to Intel, MFENCE can do the serialization here. 352 */ 353 asm volatile("mfence" : : : "memory"); 354 355 printk_once(KERN_DEBUG "TSC deadline timer enabled\n"); 356 return; 357 } 358 359 /* 360 * Divide PICLK by 16 361 */ 362 tmp_value = apic_read(APIC_TDCR); 363 apic_write(APIC_TDCR, 364 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | 365 APIC_TDR_DIV_16); 366 367 if (!oneshot) 368 apic_write(APIC_TMICT, clocks / APIC_DIVISOR); 369 } 370 371 /* 372 * Setup extended LVT, AMD specific 373 * 374 * Software should use the LVT offsets the BIOS provides. The offsets 375 * are determined by the subsystems using it like those for MCE 376 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts 377 * are supported. Beginning with family 10h at least 4 offsets are 378 * available. 379 * 380 * Since the offsets must be consistent for all cores, we keep track 381 * of the LVT offsets in software and reserve the offset for the same 382 * vector also to be used on other cores. An offset is freed by 383 * setting the entry to APIC_EILVT_MASKED. 384 * 385 * If the BIOS is right, there should be no conflicts. Otherwise a 386 * "[Firmware Bug]: ..." error message is generated. However, if 387 * software does not properly determines the offsets, it is not 388 * necessarily a BIOS bug. 389 */ 390 391 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; 392 393 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) 394 { 395 return (old & APIC_EILVT_MASKED) 396 || (new == APIC_EILVT_MASKED) 397 || ((new & ~APIC_EILVT_MASKED) == old); 398 } 399 400 static unsigned int reserve_eilvt_offset(int offset, unsigned int new) 401 { 402 unsigned int rsvd, vector; 403 404 if (offset >= APIC_EILVT_NR_MAX) 405 return ~0; 406 407 rsvd = atomic_read(&eilvt_offsets[offset]); 408 do { 409 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ 410 if (vector && !eilvt_entry_is_changeable(vector, new)) 411 /* may not change if vectors are different */ 412 return rsvd; 413 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); 414 } while (rsvd != new); 415 416 rsvd &= ~APIC_EILVT_MASKED; 417 if (rsvd && rsvd != vector) 418 pr_info("LVT offset %d assigned for vector 0x%02x\n", 419 offset, rsvd); 420 421 return new; 422 } 423 424 /* 425 * If mask=1, the LVT entry does not generate interrupts while mask=0 426 * enables the vector. See also the BKDGs. Must be called with 427 * preemption disabled. 428 */ 429 430 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) 431 { 432 unsigned long reg = APIC_EILVTn(offset); 433 unsigned int new, old, reserved; 434 435 new = (mask << 16) | (msg_type << 8) | vector; 436 old = apic_read(reg); 437 reserved = reserve_eilvt_offset(offset, new); 438 439 if (reserved != new) { 440 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 441 "vector 0x%x, but the register is already in use for " 442 "vector 0x%x on another cpu\n", 443 smp_processor_id(), reg, offset, new, reserved); 444 return -EINVAL; 445 } 446 447 if (!eilvt_entry_is_changeable(old, new)) { 448 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 449 "vector 0x%x, but the register is already in use for " 450 "vector 0x%x on this cpu\n", 451 smp_processor_id(), reg, offset, new, old); 452 return -EBUSY; 453 } 454 455 apic_write(reg, new); 456 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(setup_APIC_eilvt); 460 461 /* 462 * Program the next event, relative to now 463 */ 464 static int lapic_next_event(unsigned long delta, 465 struct clock_event_device *evt) 466 { 467 apic_write(APIC_TMICT, delta); 468 return 0; 469 } 470 471 static int lapic_next_deadline(unsigned long delta, 472 struct clock_event_device *evt) 473 { 474 u64 tsc; 475 476 tsc = rdtsc(); 477 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); 478 return 0; 479 } 480 481 static int lapic_timer_shutdown(struct clock_event_device *evt) 482 { 483 unsigned int v; 484 485 /* Lapic used as dummy for broadcast ? */ 486 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 487 return 0; 488 489 v = apic_read(APIC_LVTT); 490 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 491 apic_write(APIC_LVTT, v); 492 apic_write(APIC_TMICT, 0); 493 return 0; 494 } 495 496 static inline int 497 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) 498 { 499 /* Lapic used as dummy for broadcast ? */ 500 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 501 return 0; 502 503 __setup_APIC_LVTT(lapic_timer_frequency, oneshot, 1); 504 return 0; 505 } 506 507 static int lapic_timer_set_periodic(struct clock_event_device *evt) 508 { 509 return lapic_timer_set_periodic_oneshot(evt, false); 510 } 511 512 static int lapic_timer_set_oneshot(struct clock_event_device *evt) 513 { 514 return lapic_timer_set_periodic_oneshot(evt, true); 515 } 516 517 /* 518 * Local APIC timer broadcast function 519 */ 520 static void lapic_timer_broadcast(const struct cpumask *mask) 521 { 522 #ifdef CONFIG_SMP 523 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); 524 #endif 525 } 526 527 528 /* 529 * The local apic timer can be used for any function which is CPU local. 530 */ 531 static struct clock_event_device lapic_clockevent = { 532 .name = "lapic", 533 .features = CLOCK_EVT_FEAT_PERIODIC | 534 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP 535 | CLOCK_EVT_FEAT_DUMMY, 536 .shift = 32, 537 .set_state_shutdown = lapic_timer_shutdown, 538 .set_state_periodic = lapic_timer_set_periodic, 539 .set_state_oneshot = lapic_timer_set_oneshot, 540 .set_state_oneshot_stopped = lapic_timer_shutdown, 541 .set_next_event = lapic_next_event, 542 .broadcast = lapic_timer_broadcast, 543 .rating = 100, 544 .irq = -1, 545 }; 546 static DEFINE_PER_CPU(struct clock_event_device, lapic_events); 547 548 #define DEADLINE_MODEL_MATCH_FUNC(model, func) \ 549 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func } 550 551 #define DEADLINE_MODEL_MATCH_REV(model, rev) \ 552 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev } 553 554 static u32 hsx_deadline_rev(void) 555 { 556 switch (boot_cpu_data.x86_mask) { 557 case 0x02: return 0x3a; /* EP */ 558 case 0x04: return 0x0f; /* EX */ 559 } 560 561 return ~0U; 562 } 563 564 static u32 bdx_deadline_rev(void) 565 { 566 switch (boot_cpu_data.x86_mask) { 567 case 0x02: return 0x00000011; 568 case 0x03: return 0x0700000e; 569 case 0x04: return 0x0f00000c; 570 case 0x05: return 0x0e000003; 571 } 572 573 return ~0U; 574 } 575 576 static u32 skx_deadline_rev(void) 577 { 578 switch (boot_cpu_data.x86_mask) { 579 case 0x03: return 0x01000136; 580 case 0x04: return 0x02000014; 581 } 582 583 return ~0U; 584 } 585 586 static const struct x86_cpu_id deadline_match[] = { 587 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev), 588 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020), 589 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_XEON_D, bdx_deadline_rev), 590 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_SKYLAKE_X, skx_deadline_rev), 591 592 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_CORE, 0x22), 593 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_ULT, 0x20), 594 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_GT3E, 0x17), 595 596 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_CORE, 0x25), 597 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_GT3E, 0x17), 598 599 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_MOBILE, 0xb2), 600 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_DESKTOP, 0xb2), 601 602 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_MOBILE, 0x52), 603 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_DESKTOP, 0x52), 604 605 {}, 606 }; 607 608 static void apic_check_deadline_errata(void) 609 { 610 const struct x86_cpu_id *m; 611 u32 rev; 612 613 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER) || 614 boot_cpu_has(X86_FEATURE_HYPERVISOR)) 615 return; 616 617 m = x86_match_cpu(deadline_match); 618 if (!m) 619 return; 620 621 /* 622 * Function pointers will have the MSB set due to address layout, 623 * immediate revisions will not. 624 */ 625 if ((long)m->driver_data < 0) 626 rev = ((u32 (*)(void))(m->driver_data))(); 627 else 628 rev = (u32)m->driver_data; 629 630 if (boot_cpu_data.microcode >= rev) 631 return; 632 633 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 634 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " 635 "please update microcode to version: 0x%x (or later)\n", rev); 636 } 637 638 /* 639 * Setup the local APIC timer for this CPU. Copy the initialized values 640 * of the boot CPU and register the clock event in the framework. 641 */ 642 static void setup_APIC_timer(void) 643 { 644 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 645 646 if (this_cpu_has(X86_FEATURE_ARAT)) { 647 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; 648 /* Make LAPIC timer preferrable over percpu HPET */ 649 lapic_clockevent.rating = 150; 650 } 651 652 memcpy(levt, &lapic_clockevent, sizeof(*levt)); 653 levt->cpumask = cpumask_of(smp_processor_id()); 654 655 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 656 levt->name = "lapic-deadline"; 657 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | 658 CLOCK_EVT_FEAT_DUMMY); 659 levt->set_next_event = lapic_next_deadline; 660 clockevents_config_and_register(levt, 661 tsc_khz * (1000 / TSC_DIVISOR), 662 0xF, ~0UL); 663 } else 664 clockevents_register_device(levt); 665 } 666 667 /* 668 * Install the updated TSC frequency from recalibration at the TSC 669 * deadline clockevent devices. 670 */ 671 static void __lapic_update_tsc_freq(void *info) 672 { 673 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 674 675 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 676 return; 677 678 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); 679 } 680 681 void lapic_update_tsc_freq(void) 682 { 683 /* 684 * The clockevent device's ->mult and ->shift can both be 685 * changed. In order to avoid races, schedule the frequency 686 * update code on each CPU. 687 */ 688 on_each_cpu(__lapic_update_tsc_freq, NULL, 0); 689 } 690 691 /* 692 * In this functions we calibrate APIC bus clocks to the external timer. 693 * 694 * We want to do the calibration only once since we want to have local timer 695 * irqs syncron. CPUs connected by the same APIC bus have the very same bus 696 * frequency. 697 * 698 * This was previously done by reading the PIT/HPET and waiting for a wrap 699 * around to find out, that a tick has elapsed. I have a box, where the PIT 700 * readout is broken, so it never gets out of the wait loop again. This was 701 * also reported by others. 702 * 703 * Monitoring the jiffies value is inaccurate and the clockevents 704 * infrastructure allows us to do a simple substitution of the interrupt 705 * handler. 706 * 707 * The calibration routine also uses the pm_timer when possible, as the PIT 708 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes 709 * back to normal later in the boot process). 710 */ 711 712 #define LAPIC_CAL_LOOPS (HZ/10) 713 714 static __initdata int lapic_cal_loops = -1; 715 static __initdata long lapic_cal_t1, lapic_cal_t2; 716 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; 717 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; 718 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; 719 720 /* 721 * Temporary interrupt handler. 722 */ 723 static void __init lapic_cal_handler(struct clock_event_device *dev) 724 { 725 unsigned long long tsc = 0; 726 long tapic = apic_read(APIC_TMCCT); 727 unsigned long pm = acpi_pm_read_early(); 728 729 if (boot_cpu_has(X86_FEATURE_TSC)) 730 tsc = rdtsc(); 731 732 switch (lapic_cal_loops++) { 733 case 0: 734 lapic_cal_t1 = tapic; 735 lapic_cal_tsc1 = tsc; 736 lapic_cal_pm1 = pm; 737 lapic_cal_j1 = jiffies; 738 break; 739 740 case LAPIC_CAL_LOOPS: 741 lapic_cal_t2 = tapic; 742 lapic_cal_tsc2 = tsc; 743 if (pm < lapic_cal_pm1) 744 pm += ACPI_PM_OVRRUN; 745 lapic_cal_pm2 = pm; 746 lapic_cal_j2 = jiffies; 747 break; 748 } 749 } 750 751 static int __init 752 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) 753 { 754 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; 755 const long pm_thresh = pm_100ms / 100; 756 unsigned long mult; 757 u64 res; 758 759 #ifndef CONFIG_X86_PM_TIMER 760 return -1; 761 #endif 762 763 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); 764 765 /* Check, if the PM timer is available */ 766 if (!deltapm) 767 return -1; 768 769 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); 770 771 if (deltapm > (pm_100ms - pm_thresh) && 772 deltapm < (pm_100ms + pm_thresh)) { 773 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); 774 return 0; 775 } 776 777 res = (((u64)deltapm) * mult) >> 22; 778 do_div(res, 1000000); 779 pr_warning("APIC calibration not consistent " 780 "with PM-Timer: %ldms instead of 100ms\n",(long)res); 781 782 /* Correct the lapic counter value */ 783 res = (((u64)(*delta)) * pm_100ms); 784 do_div(res, deltapm); 785 pr_info("APIC delta adjusted to PM-Timer: " 786 "%lu (%ld)\n", (unsigned long)res, *delta); 787 *delta = (long)res; 788 789 /* Correct the tsc counter value */ 790 if (boot_cpu_has(X86_FEATURE_TSC)) { 791 res = (((u64)(*deltatsc)) * pm_100ms); 792 do_div(res, deltapm); 793 apic_printk(APIC_VERBOSE, "TSC delta adjusted to " 794 "PM-Timer: %lu (%ld)\n", 795 (unsigned long)res, *deltatsc); 796 *deltatsc = (long)res; 797 } 798 799 return 0; 800 } 801 802 static int __init calibrate_APIC_clock(void) 803 { 804 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 805 void (*real_handler)(struct clock_event_device *dev); 806 unsigned long deltaj; 807 long delta, deltatsc; 808 int pm_referenced = 0; 809 810 /** 811 * check if lapic timer has already been calibrated by platform 812 * specific routine, such as tsc calibration code. if so, we just fill 813 * in the clockevent structure and return. 814 */ 815 816 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 817 return 0; 818 } else if (lapic_timer_frequency) { 819 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", 820 lapic_timer_frequency); 821 lapic_clockevent.mult = div_sc(lapic_timer_frequency/APIC_DIVISOR, 822 TICK_NSEC, lapic_clockevent.shift); 823 lapic_clockevent.max_delta_ns = 824 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent); 825 lapic_clockevent.max_delta_ticks = 0x7FFFFF; 826 lapic_clockevent.min_delta_ns = 827 clockevent_delta2ns(0xF, &lapic_clockevent); 828 lapic_clockevent.min_delta_ticks = 0xF; 829 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 830 return 0; 831 } 832 833 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" 834 "calibrating APIC timer ...\n"); 835 836 local_irq_disable(); 837 838 /* Replace the global interrupt handler */ 839 real_handler = global_clock_event->event_handler; 840 global_clock_event->event_handler = lapic_cal_handler; 841 842 /* 843 * Setup the APIC counter to maximum. There is no way the lapic 844 * can underflow in the 100ms detection time frame 845 */ 846 __setup_APIC_LVTT(0xffffffff, 0, 0); 847 848 /* Let the interrupts run */ 849 local_irq_enable(); 850 851 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 852 cpu_relax(); 853 854 local_irq_disable(); 855 856 /* Restore the real event handler */ 857 global_clock_event->event_handler = real_handler; 858 859 /* Build delta t1-t2 as apic timer counts down */ 860 delta = lapic_cal_t1 - lapic_cal_t2; 861 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); 862 863 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); 864 865 /* we trust the PM based calibration if possible */ 866 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, 867 &delta, &deltatsc); 868 869 /* Calculate the scaled math multiplication factor */ 870 lapic_clockevent.mult = div_sc(delta, TICK_NSEC * LAPIC_CAL_LOOPS, 871 lapic_clockevent.shift); 872 lapic_clockevent.max_delta_ns = 873 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); 874 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; 875 lapic_clockevent.min_delta_ns = 876 clockevent_delta2ns(0xF, &lapic_clockevent); 877 lapic_clockevent.min_delta_ticks = 0xF; 878 879 lapic_timer_frequency = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; 880 881 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); 882 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); 883 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", 884 lapic_timer_frequency); 885 886 if (boot_cpu_has(X86_FEATURE_TSC)) { 887 apic_printk(APIC_VERBOSE, "..... CPU clock speed is " 888 "%ld.%04ld MHz.\n", 889 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), 890 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); 891 } 892 893 apic_printk(APIC_VERBOSE, "..... host bus clock speed is " 894 "%u.%04u MHz.\n", 895 lapic_timer_frequency / (1000000 / HZ), 896 lapic_timer_frequency % (1000000 / HZ)); 897 898 /* 899 * Do a sanity check on the APIC calibration result 900 */ 901 if (lapic_timer_frequency < (1000000 / HZ)) { 902 local_irq_enable(); 903 pr_warning("APIC frequency too slow, disabling apic timer\n"); 904 return -1; 905 } 906 907 levt->features &= ~CLOCK_EVT_FEAT_DUMMY; 908 909 /* 910 * PM timer calibration failed or not turned on 911 * so lets try APIC timer based calibration 912 */ 913 if (!pm_referenced) { 914 apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); 915 916 /* 917 * Setup the apic timer manually 918 */ 919 levt->event_handler = lapic_cal_handler; 920 lapic_timer_set_periodic(levt); 921 lapic_cal_loops = -1; 922 923 /* Let the interrupts run */ 924 local_irq_enable(); 925 926 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 927 cpu_relax(); 928 929 /* Stop the lapic timer */ 930 local_irq_disable(); 931 lapic_timer_shutdown(levt); 932 933 /* Jiffies delta */ 934 deltaj = lapic_cal_j2 - lapic_cal_j1; 935 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); 936 937 /* Check, if the jiffies result is consistent */ 938 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) 939 apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); 940 else 941 levt->features |= CLOCK_EVT_FEAT_DUMMY; 942 } 943 local_irq_enable(); 944 945 if (levt->features & CLOCK_EVT_FEAT_DUMMY) { 946 pr_warning("APIC timer disabled due to verification failure\n"); 947 return -1; 948 } 949 950 return 0; 951 } 952 953 /* 954 * Setup the boot APIC 955 * 956 * Calibrate and verify the result. 957 */ 958 void __init setup_boot_APIC_clock(void) 959 { 960 /* 961 * The local apic timer can be disabled via the kernel 962 * commandline or from the CPU detection code. Register the lapic 963 * timer as a dummy clock event source on SMP systems, so the 964 * broadcast mechanism is used. On UP systems simply ignore it. 965 */ 966 if (disable_apic_timer) { 967 pr_info("Disabling APIC timer\n"); 968 /* No broadcast on UP ! */ 969 if (num_possible_cpus() > 1) { 970 lapic_clockevent.mult = 1; 971 setup_APIC_timer(); 972 } 973 return; 974 } 975 976 if (calibrate_APIC_clock()) { 977 /* No broadcast on UP ! */ 978 if (num_possible_cpus() > 1) 979 setup_APIC_timer(); 980 return; 981 } 982 983 /* 984 * If nmi_watchdog is set to IO_APIC, we need the 985 * PIT/HPET going. Otherwise register lapic as a dummy 986 * device. 987 */ 988 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 989 990 /* Setup the lapic or request the broadcast */ 991 setup_APIC_timer(); 992 amd_e400_c1e_apic_setup(); 993 } 994 995 void setup_secondary_APIC_clock(void) 996 { 997 setup_APIC_timer(); 998 amd_e400_c1e_apic_setup(); 999 } 1000 1001 /* 1002 * The guts of the apic timer interrupt 1003 */ 1004 static void local_apic_timer_interrupt(void) 1005 { 1006 struct clock_event_device *evt = this_cpu_ptr(&lapic_events); 1007 1008 /* 1009 * Normally we should not be here till LAPIC has been initialized but 1010 * in some cases like kdump, its possible that there is a pending LAPIC 1011 * timer interrupt from previous kernel's context and is delivered in 1012 * new kernel the moment interrupts are enabled. 1013 * 1014 * Interrupts are enabled early and LAPIC is setup much later, hence 1015 * its possible that when we get here evt->event_handler is NULL. 1016 * Check for event_handler being NULL and discard the interrupt as 1017 * spurious. 1018 */ 1019 if (!evt->event_handler) { 1020 pr_warning("Spurious LAPIC timer interrupt on cpu %d\n", 1021 smp_processor_id()); 1022 /* Switch it off */ 1023 lapic_timer_shutdown(evt); 1024 return; 1025 } 1026 1027 /* 1028 * the NMI deadlock-detector uses this. 1029 */ 1030 inc_irq_stat(apic_timer_irqs); 1031 1032 evt->event_handler(evt); 1033 } 1034 1035 /* 1036 * Local APIC timer interrupt. This is the most natural way for doing 1037 * local interrupts, but local timer interrupts can be emulated by 1038 * broadcast interrupts too. [in case the hw doesn't support APIC timers] 1039 * 1040 * [ if a single-CPU system runs an SMP kernel then we call the local 1041 * interrupt as well. Thus we cannot inline the local irq ... ] 1042 */ 1043 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) 1044 { 1045 struct pt_regs *old_regs = set_irq_regs(regs); 1046 1047 /* 1048 * NOTE! We'd better ACK the irq immediately, 1049 * because timer handling can be slow. 1050 * 1051 * update_process_times() expects us to have done irq_enter(). 1052 * Besides, if we don't timer interrupts ignore the global 1053 * interrupt lock, which is the WrongThing (tm) to do. 1054 */ 1055 entering_ack_irq(); 1056 trace_local_timer_entry(LOCAL_TIMER_VECTOR); 1057 local_apic_timer_interrupt(); 1058 trace_local_timer_exit(LOCAL_TIMER_VECTOR); 1059 exiting_irq(); 1060 1061 set_irq_regs(old_regs); 1062 } 1063 1064 int setup_profiling_timer(unsigned int multiplier) 1065 { 1066 return -EINVAL; 1067 } 1068 1069 /* 1070 * Local APIC start and shutdown 1071 */ 1072 1073 /** 1074 * clear_local_APIC - shutdown the local APIC 1075 * 1076 * This is called, when a CPU is disabled and before rebooting, so the state of 1077 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS 1078 * leftovers during boot. 1079 */ 1080 void clear_local_APIC(void) 1081 { 1082 int maxlvt; 1083 u32 v; 1084 1085 /* APIC hasn't been mapped yet */ 1086 if (!x2apic_mode && !apic_phys) 1087 return; 1088 1089 maxlvt = lapic_get_maxlvt(); 1090 /* 1091 * Masking an LVT entry can trigger a local APIC error 1092 * if the vector is zero. Mask LVTERR first to prevent this. 1093 */ 1094 if (maxlvt >= 3) { 1095 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ 1096 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); 1097 } 1098 /* 1099 * Careful: we have to set masks only first to deassert 1100 * any level-triggered sources. 1101 */ 1102 v = apic_read(APIC_LVTT); 1103 apic_write(APIC_LVTT, v | APIC_LVT_MASKED); 1104 v = apic_read(APIC_LVT0); 1105 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1106 v = apic_read(APIC_LVT1); 1107 apic_write(APIC_LVT1, v | APIC_LVT_MASKED); 1108 if (maxlvt >= 4) { 1109 v = apic_read(APIC_LVTPC); 1110 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); 1111 } 1112 1113 /* lets not touch this if we didn't frob it */ 1114 #ifdef CONFIG_X86_THERMAL_VECTOR 1115 if (maxlvt >= 5) { 1116 v = apic_read(APIC_LVTTHMR); 1117 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); 1118 } 1119 #endif 1120 #ifdef CONFIG_X86_MCE_INTEL 1121 if (maxlvt >= 6) { 1122 v = apic_read(APIC_LVTCMCI); 1123 if (!(v & APIC_LVT_MASKED)) 1124 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); 1125 } 1126 #endif 1127 1128 /* 1129 * Clean APIC state for other OSs: 1130 */ 1131 apic_write(APIC_LVTT, APIC_LVT_MASKED); 1132 apic_write(APIC_LVT0, APIC_LVT_MASKED); 1133 apic_write(APIC_LVT1, APIC_LVT_MASKED); 1134 if (maxlvt >= 3) 1135 apic_write(APIC_LVTERR, APIC_LVT_MASKED); 1136 if (maxlvt >= 4) 1137 apic_write(APIC_LVTPC, APIC_LVT_MASKED); 1138 1139 /* Integrated APIC (!82489DX) ? */ 1140 if (lapic_is_integrated()) { 1141 if (maxlvt > 3) 1142 /* Clear ESR due to Pentium errata 3AP and 11AP */ 1143 apic_write(APIC_ESR, 0); 1144 apic_read(APIC_ESR); 1145 } 1146 } 1147 1148 /** 1149 * disable_local_APIC - clear and disable the local APIC 1150 */ 1151 void disable_local_APIC(void) 1152 { 1153 unsigned int value; 1154 1155 /* APIC hasn't been mapped yet */ 1156 if (!x2apic_mode && !apic_phys) 1157 return; 1158 1159 clear_local_APIC(); 1160 1161 /* 1162 * Disable APIC (implies clearing of registers 1163 * for 82489DX!). 1164 */ 1165 value = apic_read(APIC_SPIV); 1166 value &= ~APIC_SPIV_APIC_ENABLED; 1167 apic_write(APIC_SPIV, value); 1168 1169 #ifdef CONFIG_X86_32 1170 /* 1171 * When LAPIC was disabled by the BIOS and enabled by the kernel, 1172 * restore the disabled state. 1173 */ 1174 if (enabled_via_apicbase) { 1175 unsigned int l, h; 1176 1177 rdmsr(MSR_IA32_APICBASE, l, h); 1178 l &= ~MSR_IA32_APICBASE_ENABLE; 1179 wrmsr(MSR_IA32_APICBASE, l, h); 1180 } 1181 #endif 1182 } 1183 1184 /* 1185 * If Linux enabled the LAPIC against the BIOS default disable it down before 1186 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and 1187 * not power-off. Additionally clear all LVT entries before disable_local_APIC 1188 * for the case where Linux didn't enable the LAPIC. 1189 */ 1190 void lapic_shutdown(void) 1191 { 1192 unsigned long flags; 1193 1194 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1195 return; 1196 1197 local_irq_save(flags); 1198 1199 #ifdef CONFIG_X86_32 1200 if (!enabled_via_apicbase) 1201 clear_local_APIC(); 1202 else 1203 #endif 1204 disable_local_APIC(); 1205 1206 1207 local_irq_restore(flags); 1208 } 1209 1210 /** 1211 * sync_Arb_IDs - synchronize APIC bus arbitration IDs 1212 */ 1213 void __init sync_Arb_IDs(void) 1214 { 1215 /* 1216 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not 1217 * needed on AMD. 1218 */ 1219 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1220 return; 1221 1222 /* 1223 * Wait for idle. 1224 */ 1225 apic_wait_icr_idle(); 1226 1227 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); 1228 apic_write(APIC_ICR, APIC_DEST_ALLINC | 1229 APIC_INT_LEVELTRIG | APIC_DM_INIT); 1230 } 1231 1232 /* 1233 * An initial setup of the virtual wire mode. 1234 */ 1235 void __init init_bsp_APIC(void) 1236 { 1237 unsigned int value; 1238 1239 /* 1240 * Don't do the setup now if we have a SMP BIOS as the 1241 * through-I/O-APIC virtual wire mode might be active. 1242 */ 1243 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) 1244 return; 1245 1246 /* 1247 * Do not trust the local APIC being empty at bootup. 1248 */ 1249 clear_local_APIC(); 1250 1251 /* 1252 * Enable APIC. 1253 */ 1254 value = apic_read(APIC_SPIV); 1255 value &= ~APIC_VECTOR_MASK; 1256 value |= APIC_SPIV_APIC_ENABLED; 1257 1258 #ifdef CONFIG_X86_32 1259 /* This bit is reserved on P4/Xeon and should be cleared */ 1260 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 1261 (boot_cpu_data.x86 == 15)) 1262 value &= ~APIC_SPIV_FOCUS_DISABLED; 1263 else 1264 #endif 1265 value |= APIC_SPIV_FOCUS_DISABLED; 1266 value |= SPURIOUS_APIC_VECTOR; 1267 apic_write(APIC_SPIV, value); 1268 1269 /* 1270 * Set up the virtual wire mode. 1271 */ 1272 apic_write(APIC_LVT0, APIC_DM_EXTINT); 1273 value = APIC_DM_NMI; 1274 if (!lapic_is_integrated()) /* 82489DX */ 1275 value |= APIC_LVT_LEVEL_TRIGGER; 1276 if (apic_extnmi == APIC_EXTNMI_NONE) 1277 value |= APIC_LVT_MASKED; 1278 apic_write(APIC_LVT1, value); 1279 } 1280 1281 static void lapic_setup_esr(void) 1282 { 1283 unsigned int oldvalue, value, maxlvt; 1284 1285 if (!lapic_is_integrated()) { 1286 pr_info("No ESR for 82489DX.\n"); 1287 return; 1288 } 1289 1290 if (apic->disable_esr) { 1291 /* 1292 * Something untraceable is creating bad interrupts on 1293 * secondary quads ... for the moment, just leave the 1294 * ESR disabled - we can't do anything useful with the 1295 * errors anyway - mbligh 1296 */ 1297 pr_info("Leaving ESR disabled.\n"); 1298 return; 1299 } 1300 1301 maxlvt = lapic_get_maxlvt(); 1302 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1303 apic_write(APIC_ESR, 0); 1304 oldvalue = apic_read(APIC_ESR); 1305 1306 /* enables sending errors */ 1307 value = ERROR_APIC_VECTOR; 1308 apic_write(APIC_LVTERR, value); 1309 1310 /* 1311 * spec says clear errors after enabling vector. 1312 */ 1313 if (maxlvt > 3) 1314 apic_write(APIC_ESR, 0); 1315 value = apic_read(APIC_ESR); 1316 if (value != oldvalue) 1317 apic_printk(APIC_VERBOSE, "ESR value before enabling " 1318 "vector: 0x%08x after: 0x%08x\n", 1319 oldvalue, value); 1320 } 1321 1322 /** 1323 * setup_local_APIC - setup the local APIC 1324 * 1325 * Used to setup local APIC while initializing BSP or bringing up APs. 1326 * Always called with preemption disabled. 1327 */ 1328 void setup_local_APIC(void) 1329 { 1330 int cpu = smp_processor_id(); 1331 unsigned int value, queued; 1332 int i, j, acked = 0; 1333 unsigned long long tsc = 0, ntsc; 1334 long long max_loops = cpu_khz ? cpu_khz : 1000000; 1335 1336 if (boot_cpu_has(X86_FEATURE_TSC)) 1337 tsc = rdtsc(); 1338 1339 if (disable_apic) { 1340 disable_ioapic_support(); 1341 return; 1342 } 1343 1344 #ifdef CONFIG_X86_32 1345 /* Pound the ESR really hard over the head with a big hammer - mbligh */ 1346 if (lapic_is_integrated() && apic->disable_esr) { 1347 apic_write(APIC_ESR, 0); 1348 apic_write(APIC_ESR, 0); 1349 apic_write(APIC_ESR, 0); 1350 apic_write(APIC_ESR, 0); 1351 } 1352 #endif 1353 perf_events_lapic_init(); 1354 1355 /* 1356 * Double-check whether this APIC is really registered. 1357 * This is meaningless in clustered apic mode, so we skip it. 1358 */ 1359 BUG_ON(!apic->apic_id_registered()); 1360 1361 /* 1362 * Intel recommends to set DFR, LDR and TPR before enabling 1363 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel 1364 * document number 292116). So here it goes... 1365 */ 1366 apic->init_apic_ldr(); 1367 1368 #ifdef CONFIG_X86_32 1369 /* 1370 * APIC LDR is initialized. If logical_apicid mapping was 1371 * initialized during get_smp_config(), make sure it matches the 1372 * actual value. 1373 */ 1374 i = early_per_cpu(x86_cpu_to_logical_apicid, cpu); 1375 WARN_ON(i != BAD_APICID && i != logical_smp_processor_id()); 1376 /* always use the value from LDR */ 1377 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 1378 logical_smp_processor_id(); 1379 #endif 1380 1381 /* 1382 * Set Task Priority to 'accept all'. We never change this 1383 * later on. 1384 */ 1385 value = apic_read(APIC_TASKPRI); 1386 value &= ~APIC_TPRI_MASK; 1387 apic_write(APIC_TASKPRI, value); 1388 1389 /* 1390 * After a crash, we no longer service the interrupts and a pending 1391 * interrupt from previous kernel might still have ISR bit set. 1392 * 1393 * Most probably by now CPU has serviced that pending interrupt and 1394 * it might not have done the ack_APIC_irq() because it thought, 1395 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it 1396 * does not clear the ISR bit and cpu thinks it has already serivced 1397 * the interrupt. Hence a vector might get locked. It was noticed 1398 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR. 1399 */ 1400 do { 1401 queued = 0; 1402 for (i = APIC_ISR_NR - 1; i >= 0; i--) 1403 queued |= apic_read(APIC_IRR + i*0x10); 1404 1405 for (i = APIC_ISR_NR - 1; i >= 0; i--) { 1406 value = apic_read(APIC_ISR + i*0x10); 1407 for (j = 31; j >= 0; j--) { 1408 if (value & (1<<j)) { 1409 ack_APIC_irq(); 1410 acked++; 1411 } 1412 } 1413 } 1414 if (acked > 256) { 1415 printk(KERN_ERR "LAPIC pending interrupts after %d EOI\n", 1416 acked); 1417 break; 1418 } 1419 if (queued) { 1420 if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) { 1421 ntsc = rdtsc(); 1422 max_loops = (cpu_khz << 10) - (ntsc - tsc); 1423 } else 1424 max_loops--; 1425 } 1426 } while (queued && max_loops > 0); 1427 WARN_ON(max_loops <= 0); 1428 1429 /* 1430 * Now that we are all set up, enable the APIC 1431 */ 1432 value = apic_read(APIC_SPIV); 1433 value &= ~APIC_VECTOR_MASK; 1434 /* 1435 * Enable APIC 1436 */ 1437 value |= APIC_SPIV_APIC_ENABLED; 1438 1439 #ifdef CONFIG_X86_32 1440 /* 1441 * Some unknown Intel IO/APIC (or APIC) errata is biting us with 1442 * certain networking cards. If high frequency interrupts are 1443 * happening on a particular IOAPIC pin, plus the IOAPIC routing 1444 * entry is masked/unmasked at a high rate as well then sooner or 1445 * later IOAPIC line gets 'stuck', no more interrupts are received 1446 * from the device. If focus CPU is disabled then the hang goes 1447 * away, oh well :-( 1448 * 1449 * [ This bug can be reproduced easily with a level-triggered 1450 * PCI Ne2000 networking cards and PII/PIII processors, dual 1451 * BX chipset. ] 1452 */ 1453 /* 1454 * Actually disabling the focus CPU check just makes the hang less 1455 * frequent as it makes the interrupt distributon model be more 1456 * like LRU than MRU (the short-term load is more even across CPUs). 1457 */ 1458 1459 /* 1460 * - enable focus processor (bit==0) 1461 * - 64bit mode always use processor focus 1462 * so no need to set it 1463 */ 1464 value &= ~APIC_SPIV_FOCUS_DISABLED; 1465 #endif 1466 1467 /* 1468 * Set spurious IRQ vector 1469 */ 1470 value |= SPURIOUS_APIC_VECTOR; 1471 apic_write(APIC_SPIV, value); 1472 1473 /* 1474 * Set up LVT0, LVT1: 1475 * 1476 * set up through-local-APIC on the BP's LINT0. This is not 1477 * strictly necessary in pure symmetric-IO mode, but sometimes 1478 * we delegate interrupts to the 8259A. 1479 */ 1480 /* 1481 * TODO: set up through-local-APIC from through-I/O-APIC? --macro 1482 */ 1483 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; 1484 if (!cpu && (pic_mode || !value)) { 1485 value = APIC_DM_EXTINT; 1486 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); 1487 } else { 1488 value = APIC_DM_EXTINT | APIC_LVT_MASKED; 1489 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); 1490 } 1491 apic_write(APIC_LVT0, value); 1492 1493 /* 1494 * Only the BSP sees the LINT1 NMI signal by default. This can be 1495 * modified by apic_extnmi= boot option. 1496 */ 1497 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || 1498 apic_extnmi == APIC_EXTNMI_ALL) 1499 value = APIC_DM_NMI; 1500 else 1501 value = APIC_DM_NMI | APIC_LVT_MASKED; 1502 if (!lapic_is_integrated()) /* 82489DX */ 1503 value |= APIC_LVT_LEVEL_TRIGGER; 1504 apic_write(APIC_LVT1, value); 1505 1506 #ifdef CONFIG_X86_MCE_INTEL 1507 /* Recheck CMCI information after local APIC is up on CPU #0 */ 1508 if (!cpu) 1509 cmci_recheck(); 1510 #endif 1511 } 1512 1513 static void end_local_APIC_setup(void) 1514 { 1515 lapic_setup_esr(); 1516 1517 #ifdef CONFIG_X86_32 1518 { 1519 unsigned int value; 1520 /* Disable the local apic timer */ 1521 value = apic_read(APIC_LVTT); 1522 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 1523 apic_write(APIC_LVTT, value); 1524 } 1525 #endif 1526 1527 apic_pm_activate(); 1528 } 1529 1530 /* 1531 * APIC setup function for application processors. Called from smpboot.c 1532 */ 1533 void apic_ap_setup(void) 1534 { 1535 setup_local_APIC(); 1536 end_local_APIC_setup(); 1537 } 1538 1539 #ifdef CONFIG_X86_X2APIC 1540 int x2apic_mode; 1541 1542 enum { 1543 X2APIC_OFF, 1544 X2APIC_ON, 1545 X2APIC_DISABLED, 1546 }; 1547 static int x2apic_state; 1548 1549 static void __x2apic_disable(void) 1550 { 1551 u64 msr; 1552 1553 if (!boot_cpu_has(X86_FEATURE_APIC)) 1554 return; 1555 1556 rdmsrl(MSR_IA32_APICBASE, msr); 1557 if (!(msr & X2APIC_ENABLE)) 1558 return; 1559 /* Disable xapic and x2apic first and then reenable xapic mode */ 1560 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); 1561 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); 1562 printk_once(KERN_INFO "x2apic disabled\n"); 1563 } 1564 1565 static void __x2apic_enable(void) 1566 { 1567 u64 msr; 1568 1569 rdmsrl(MSR_IA32_APICBASE, msr); 1570 if (msr & X2APIC_ENABLE) 1571 return; 1572 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); 1573 printk_once(KERN_INFO "x2apic enabled\n"); 1574 } 1575 1576 static int __init setup_nox2apic(char *str) 1577 { 1578 if (x2apic_enabled()) { 1579 int apicid = native_apic_msr_read(APIC_ID); 1580 1581 if (apicid >= 255) { 1582 pr_warning("Apicid: %08x, cannot enforce nox2apic\n", 1583 apicid); 1584 return 0; 1585 } 1586 pr_warning("x2apic already enabled.\n"); 1587 __x2apic_disable(); 1588 } 1589 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 1590 x2apic_state = X2APIC_DISABLED; 1591 x2apic_mode = 0; 1592 return 0; 1593 } 1594 early_param("nox2apic", setup_nox2apic); 1595 1596 /* Called from cpu_init() to enable x2apic on (secondary) cpus */ 1597 void x2apic_setup(void) 1598 { 1599 /* 1600 * If x2apic is not in ON state, disable it if already enabled 1601 * from BIOS. 1602 */ 1603 if (x2apic_state != X2APIC_ON) { 1604 __x2apic_disable(); 1605 return; 1606 } 1607 __x2apic_enable(); 1608 } 1609 1610 static __init void x2apic_disable(void) 1611 { 1612 u32 x2apic_id, state = x2apic_state; 1613 1614 x2apic_mode = 0; 1615 x2apic_state = X2APIC_DISABLED; 1616 1617 if (state != X2APIC_ON) 1618 return; 1619 1620 x2apic_id = read_apic_id(); 1621 if (x2apic_id >= 255) 1622 panic("Cannot disable x2apic, id: %08x\n", x2apic_id); 1623 1624 __x2apic_disable(); 1625 register_lapic_address(mp_lapic_addr); 1626 } 1627 1628 static __init void x2apic_enable(void) 1629 { 1630 if (x2apic_state != X2APIC_OFF) 1631 return; 1632 1633 x2apic_mode = 1; 1634 x2apic_state = X2APIC_ON; 1635 __x2apic_enable(); 1636 } 1637 1638 static __init void try_to_enable_x2apic(int remap_mode) 1639 { 1640 if (x2apic_state == X2APIC_DISABLED) 1641 return; 1642 1643 if (remap_mode != IRQ_REMAP_X2APIC_MODE) { 1644 /* IR is required if there is APIC ID > 255 even when running 1645 * under KVM 1646 */ 1647 if (max_physical_apicid > 255 || 1648 !hypervisor_x2apic_available()) { 1649 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); 1650 x2apic_disable(); 1651 return; 1652 } 1653 1654 /* 1655 * without IR all CPUs can be addressed by IOAPIC/MSI 1656 * only in physical mode 1657 */ 1658 x2apic_phys = 1; 1659 } 1660 x2apic_enable(); 1661 } 1662 1663 void __init check_x2apic(void) 1664 { 1665 if (x2apic_enabled()) { 1666 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); 1667 x2apic_mode = 1; 1668 x2apic_state = X2APIC_ON; 1669 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { 1670 x2apic_state = X2APIC_DISABLED; 1671 } 1672 } 1673 #else /* CONFIG_X86_X2APIC */ 1674 static int __init validate_x2apic(void) 1675 { 1676 if (!apic_is_x2apic_enabled()) 1677 return 0; 1678 /* 1679 * Checkme: Can we simply turn off x2apic here instead of panic? 1680 */ 1681 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); 1682 } 1683 early_initcall(validate_x2apic); 1684 1685 static inline void try_to_enable_x2apic(int remap_mode) { } 1686 static inline void __x2apic_enable(void) { } 1687 #endif /* !CONFIG_X86_X2APIC */ 1688 1689 void __init enable_IR_x2apic(void) 1690 { 1691 unsigned long flags; 1692 int ret, ir_stat; 1693 1694 if (skip_ioapic_setup) { 1695 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); 1696 return; 1697 } 1698 1699 ir_stat = irq_remapping_prepare(); 1700 if (ir_stat < 0 && !x2apic_supported()) 1701 return; 1702 1703 ret = save_ioapic_entries(); 1704 if (ret) { 1705 pr_info("Saving IO-APIC state failed: %d\n", ret); 1706 return; 1707 } 1708 1709 local_irq_save(flags); 1710 legacy_pic->mask_all(); 1711 mask_ioapic_entries(); 1712 1713 /* If irq_remapping_prepare() succeeded, try to enable it */ 1714 if (ir_stat >= 0) 1715 ir_stat = irq_remapping_enable(); 1716 /* ir_stat contains the remap mode or an error code */ 1717 try_to_enable_x2apic(ir_stat); 1718 1719 if (ir_stat < 0) 1720 restore_ioapic_entries(); 1721 legacy_pic->restore_mask(); 1722 local_irq_restore(flags); 1723 } 1724 1725 #ifdef CONFIG_X86_64 1726 /* 1727 * Detect and enable local APICs on non-SMP boards. 1728 * Original code written by Keir Fraser. 1729 * On AMD64 we trust the BIOS - if it says no APIC it is likely 1730 * not correctly set up (usually the APIC timer won't work etc.) 1731 */ 1732 static int __init detect_init_APIC(void) 1733 { 1734 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1735 pr_info("No local APIC present\n"); 1736 return -1; 1737 } 1738 1739 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1740 return 0; 1741 } 1742 #else 1743 1744 static int __init apic_verify(void) 1745 { 1746 u32 features, h, l; 1747 1748 /* 1749 * The APIC feature bit should now be enabled 1750 * in `cpuid' 1751 */ 1752 features = cpuid_edx(1); 1753 if (!(features & (1 << X86_FEATURE_APIC))) { 1754 pr_warning("Could not enable APIC!\n"); 1755 return -1; 1756 } 1757 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); 1758 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1759 1760 /* The BIOS may have set up the APIC at some other address */ 1761 if (boot_cpu_data.x86 >= 6) { 1762 rdmsr(MSR_IA32_APICBASE, l, h); 1763 if (l & MSR_IA32_APICBASE_ENABLE) 1764 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; 1765 } 1766 1767 pr_info("Found and enabled local APIC!\n"); 1768 return 0; 1769 } 1770 1771 int __init apic_force_enable(unsigned long addr) 1772 { 1773 u32 h, l; 1774 1775 if (disable_apic) 1776 return -1; 1777 1778 /* 1779 * Some BIOSes disable the local APIC in the APIC_BASE 1780 * MSR. This can only be done in software for Intel P6 or later 1781 * and AMD K7 (Model > 1) or later. 1782 */ 1783 if (boot_cpu_data.x86 >= 6) { 1784 rdmsr(MSR_IA32_APICBASE, l, h); 1785 if (!(l & MSR_IA32_APICBASE_ENABLE)) { 1786 pr_info("Local APIC disabled by BIOS -- reenabling.\n"); 1787 l &= ~MSR_IA32_APICBASE_BASE; 1788 l |= MSR_IA32_APICBASE_ENABLE | addr; 1789 wrmsr(MSR_IA32_APICBASE, l, h); 1790 enabled_via_apicbase = 1; 1791 } 1792 } 1793 return apic_verify(); 1794 } 1795 1796 /* 1797 * Detect and initialize APIC 1798 */ 1799 static int __init detect_init_APIC(void) 1800 { 1801 /* Disabled by kernel option? */ 1802 if (disable_apic) 1803 return -1; 1804 1805 switch (boot_cpu_data.x86_vendor) { 1806 case X86_VENDOR_AMD: 1807 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || 1808 (boot_cpu_data.x86 >= 15)) 1809 break; 1810 goto no_apic; 1811 case X86_VENDOR_INTEL: 1812 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || 1813 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) 1814 break; 1815 goto no_apic; 1816 default: 1817 goto no_apic; 1818 } 1819 1820 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1821 /* 1822 * Over-ride BIOS and try to enable the local APIC only if 1823 * "lapic" specified. 1824 */ 1825 if (!force_enable_local_apic) { 1826 pr_info("Local APIC disabled by BIOS -- " 1827 "you can enable it with \"lapic\"\n"); 1828 return -1; 1829 } 1830 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) 1831 return -1; 1832 } else { 1833 if (apic_verify()) 1834 return -1; 1835 } 1836 1837 apic_pm_activate(); 1838 1839 return 0; 1840 1841 no_apic: 1842 pr_info("No local APIC present or hardware disabled\n"); 1843 return -1; 1844 } 1845 #endif 1846 1847 /** 1848 * init_apic_mappings - initialize APIC mappings 1849 */ 1850 void __init init_apic_mappings(void) 1851 { 1852 unsigned int new_apicid; 1853 1854 apic_check_deadline_errata(); 1855 1856 if (x2apic_mode) { 1857 boot_cpu_physical_apicid = read_apic_id(); 1858 return; 1859 } 1860 1861 /* If no local APIC can be found return early */ 1862 if (!smp_found_config && detect_init_APIC()) { 1863 /* lets NOP'ify apic operations */ 1864 pr_info("APIC: disable apic facility\n"); 1865 apic_disable(); 1866 } else { 1867 apic_phys = mp_lapic_addr; 1868 1869 /* 1870 * If the system has ACPI MADT tables or MP info, the LAPIC 1871 * address is already registered. 1872 */ 1873 if (!acpi_lapic && !smp_found_config) 1874 register_lapic_address(apic_phys); 1875 } 1876 1877 /* 1878 * Fetch the APIC ID of the BSP in case we have a 1879 * default configuration (or the MP table is broken). 1880 */ 1881 new_apicid = read_apic_id(); 1882 if (boot_cpu_physical_apicid != new_apicid) { 1883 boot_cpu_physical_apicid = new_apicid; 1884 /* 1885 * yeah -- we lie about apic_version 1886 * in case if apic was disabled via boot option 1887 * but it's not a problem for SMP compiled kernel 1888 * since smp_sanity_check is prepared for such a case 1889 * and disable smp mode 1890 */ 1891 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 1892 } 1893 } 1894 1895 void __init register_lapic_address(unsigned long address) 1896 { 1897 mp_lapic_addr = address; 1898 1899 if (!x2apic_mode) { 1900 set_fixmap_nocache(FIX_APIC_BASE, address); 1901 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", 1902 APIC_BASE, address); 1903 } 1904 if (boot_cpu_physical_apicid == -1U) { 1905 boot_cpu_physical_apicid = read_apic_id(); 1906 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 1907 } 1908 } 1909 1910 /* 1911 * Local APIC interrupts 1912 */ 1913 1914 /* 1915 * This interrupt should _never_ happen with our APIC/SMP architecture 1916 */ 1917 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs) 1918 { 1919 u8 vector = ~regs->orig_ax; 1920 u32 v; 1921 1922 entering_irq(); 1923 trace_spurious_apic_entry(vector); 1924 1925 /* 1926 * Check if this really is a spurious interrupt and ACK it 1927 * if it is a vectored one. Just in case... 1928 * Spurious interrupts should not be ACKed. 1929 */ 1930 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); 1931 if (v & (1 << (vector & 0x1f))) 1932 ack_APIC_irq(); 1933 1934 inc_irq_stat(irq_spurious_count); 1935 1936 /* see sw-dev-man vol 3, chapter 7.4.13.5 */ 1937 pr_info("spurious APIC interrupt through vector %02x on CPU#%d, " 1938 "should never happen.\n", vector, smp_processor_id()); 1939 1940 trace_spurious_apic_exit(vector); 1941 exiting_irq(); 1942 } 1943 1944 /* 1945 * This interrupt should never happen with our APIC/SMP architecture 1946 */ 1947 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs) 1948 { 1949 static const char * const error_interrupt_reason[] = { 1950 "Send CS error", /* APIC Error Bit 0 */ 1951 "Receive CS error", /* APIC Error Bit 1 */ 1952 "Send accept error", /* APIC Error Bit 2 */ 1953 "Receive accept error", /* APIC Error Bit 3 */ 1954 "Redirectable IPI", /* APIC Error Bit 4 */ 1955 "Send illegal vector", /* APIC Error Bit 5 */ 1956 "Received illegal vector", /* APIC Error Bit 6 */ 1957 "Illegal register address", /* APIC Error Bit 7 */ 1958 }; 1959 u32 v, i = 0; 1960 1961 entering_irq(); 1962 trace_error_apic_entry(ERROR_APIC_VECTOR); 1963 1964 /* First tickle the hardware, only then report what went on. -- REW */ 1965 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ 1966 apic_write(APIC_ESR, 0); 1967 v = apic_read(APIC_ESR); 1968 ack_APIC_irq(); 1969 atomic_inc(&irq_err_count); 1970 1971 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", 1972 smp_processor_id(), v); 1973 1974 v &= 0xff; 1975 while (v) { 1976 if (v & 0x1) 1977 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); 1978 i++; 1979 v >>= 1; 1980 } 1981 1982 apic_printk(APIC_DEBUG, KERN_CONT "\n"); 1983 1984 trace_error_apic_exit(ERROR_APIC_VECTOR); 1985 exiting_irq(); 1986 } 1987 1988 /** 1989 * connect_bsp_APIC - attach the APIC to the interrupt system 1990 */ 1991 static void __init connect_bsp_APIC(void) 1992 { 1993 #ifdef CONFIG_X86_32 1994 if (pic_mode) { 1995 /* 1996 * Do not trust the local APIC being empty at bootup. 1997 */ 1998 clear_local_APIC(); 1999 /* 2000 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's 2001 * local APIC to INT and NMI lines. 2002 */ 2003 apic_printk(APIC_VERBOSE, "leaving PIC mode, " 2004 "enabling APIC mode.\n"); 2005 imcr_pic_to_apic(); 2006 } 2007 #endif 2008 } 2009 2010 /** 2011 * disconnect_bsp_APIC - detach the APIC from the interrupt system 2012 * @virt_wire_setup: indicates, whether virtual wire mode is selected 2013 * 2014 * Virtual wire mode is necessary to deliver legacy interrupts even when the 2015 * APIC is disabled. 2016 */ 2017 void disconnect_bsp_APIC(int virt_wire_setup) 2018 { 2019 unsigned int value; 2020 2021 #ifdef CONFIG_X86_32 2022 if (pic_mode) { 2023 /* 2024 * Put the board back into PIC mode (has an effect only on 2025 * certain older boards). Note that APIC interrupts, including 2026 * IPIs, won't work beyond this point! The only exception are 2027 * INIT IPIs. 2028 */ 2029 apic_printk(APIC_VERBOSE, "disabling APIC mode, " 2030 "entering PIC mode.\n"); 2031 imcr_apic_to_pic(); 2032 return; 2033 } 2034 #endif 2035 2036 /* Go back to Virtual Wire compatibility mode */ 2037 2038 /* For the spurious interrupt use vector F, and enable it */ 2039 value = apic_read(APIC_SPIV); 2040 value &= ~APIC_VECTOR_MASK; 2041 value |= APIC_SPIV_APIC_ENABLED; 2042 value |= 0xf; 2043 apic_write(APIC_SPIV, value); 2044 2045 if (!virt_wire_setup) { 2046 /* 2047 * For LVT0 make it edge triggered, active high, 2048 * external and enabled 2049 */ 2050 value = apic_read(APIC_LVT0); 2051 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2052 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2053 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2054 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2055 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); 2056 apic_write(APIC_LVT0, value); 2057 } else { 2058 /* Disable LVT0 */ 2059 apic_write(APIC_LVT0, APIC_LVT_MASKED); 2060 } 2061 2062 /* 2063 * For LVT1 make it edge triggered, active high, 2064 * nmi and enabled 2065 */ 2066 value = apic_read(APIC_LVT1); 2067 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2068 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2069 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2070 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2071 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); 2072 apic_write(APIC_LVT1, value); 2073 } 2074 2075 /* 2076 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated 2077 * contiguously, it equals to current allocated max logical CPU ID plus 1. 2078 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, 2079 * so the maximum of nr_logical_cpuids is nr_cpu_ids. 2080 * 2081 * NOTE: Reserve 0 for BSP. 2082 */ 2083 static int nr_logical_cpuids = 1; 2084 2085 /* 2086 * Used to store mapping between logical CPU IDs and APIC IDs. 2087 */ 2088 static int cpuid_to_apicid[] = { 2089 [0 ... NR_CPUS - 1] = -1, 2090 }; 2091 2092 /* 2093 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids 2094 * and cpuid_to_apicid[] synchronized. 2095 */ 2096 static int allocate_logical_cpuid(int apicid) 2097 { 2098 int i; 2099 2100 /* 2101 * cpuid <-> apicid mapping is persistent, so when a cpu is up, 2102 * check if the kernel has allocated a cpuid for it. 2103 */ 2104 for (i = 0; i < nr_logical_cpuids; i++) { 2105 if (cpuid_to_apicid[i] == apicid) 2106 return i; 2107 } 2108 2109 /* Allocate a new cpuid. */ 2110 if (nr_logical_cpuids >= nr_cpu_ids) { 2111 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " 2112 "Processor %d/0x%x and the rest are ignored.\n", 2113 nr_cpu_ids, nr_logical_cpuids, apicid); 2114 return -EINVAL; 2115 } 2116 2117 cpuid_to_apicid[nr_logical_cpuids] = apicid; 2118 return nr_logical_cpuids++; 2119 } 2120 2121 int generic_processor_info(int apicid, int version) 2122 { 2123 int cpu, max = nr_cpu_ids; 2124 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, 2125 phys_cpu_present_map); 2126 2127 /* 2128 * boot_cpu_physical_apicid is designed to have the apicid 2129 * returned by read_apic_id(), i.e, the apicid of the 2130 * currently booting-up processor. However, on some platforms, 2131 * it is temporarily modified by the apicid reported as BSP 2132 * through MP table. Concretely: 2133 * 2134 * - arch/x86/kernel/mpparse.c: MP_processor_info() 2135 * - arch/x86/mm/amdtopology.c: amd_numa_init() 2136 * 2137 * This function is executed with the modified 2138 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel 2139 * parameter doesn't work to disable APs on kdump 2nd kernel. 2140 * 2141 * Since fixing handling of boot_cpu_physical_apicid requires 2142 * another discussion and tests on each platform, we leave it 2143 * for now and here we use read_apic_id() directly in this 2144 * function, generic_processor_info(). 2145 */ 2146 if (disabled_cpu_apicid != BAD_APICID && 2147 disabled_cpu_apicid != read_apic_id() && 2148 disabled_cpu_apicid == apicid) { 2149 int thiscpu = num_processors + disabled_cpus; 2150 2151 pr_warning("APIC: Disabling requested cpu." 2152 " Processor %d/0x%x ignored.\n", 2153 thiscpu, apicid); 2154 2155 disabled_cpus++; 2156 return -ENODEV; 2157 } 2158 2159 /* 2160 * If boot cpu has not been detected yet, then only allow upto 2161 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu 2162 */ 2163 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && 2164 apicid != boot_cpu_physical_apicid) { 2165 int thiscpu = max + disabled_cpus - 1; 2166 2167 pr_warning( 2168 "APIC: NR_CPUS/possible_cpus limit of %i almost" 2169 " reached. Keeping one slot for boot cpu." 2170 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2171 2172 disabled_cpus++; 2173 return -ENODEV; 2174 } 2175 2176 if (num_processors >= nr_cpu_ids) { 2177 int thiscpu = max + disabled_cpus; 2178 2179 pr_warning("APIC: NR_CPUS/possible_cpus limit of %i " 2180 "reached. Processor %d/0x%x ignored.\n", 2181 max, thiscpu, apicid); 2182 2183 disabled_cpus++; 2184 return -EINVAL; 2185 } 2186 2187 if (apicid == boot_cpu_physical_apicid) { 2188 /* 2189 * x86_bios_cpu_apicid is required to have processors listed 2190 * in same order as logical cpu numbers. Hence the first 2191 * entry is BSP, and so on. 2192 * boot_cpu_init() already hold bit 0 in cpu_present_mask 2193 * for BSP. 2194 */ 2195 cpu = 0; 2196 2197 /* Logical cpuid 0 is reserved for BSP. */ 2198 cpuid_to_apicid[0] = apicid; 2199 } else { 2200 cpu = allocate_logical_cpuid(apicid); 2201 if (cpu < 0) { 2202 disabled_cpus++; 2203 return -EINVAL; 2204 } 2205 } 2206 2207 /* 2208 * Validate version 2209 */ 2210 if (version == 0x0) { 2211 pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", 2212 cpu, apicid); 2213 version = 0x10; 2214 } 2215 2216 if (version != boot_cpu_apic_version) { 2217 pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", 2218 boot_cpu_apic_version, cpu, version); 2219 } 2220 2221 if (apicid > max_physical_apicid) 2222 max_physical_apicid = apicid; 2223 2224 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) 2225 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; 2226 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; 2227 #endif 2228 #ifdef CONFIG_X86_32 2229 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 2230 apic->x86_32_early_logical_apicid(cpu); 2231 #endif 2232 set_cpu_possible(cpu, true); 2233 physid_set(apicid, phys_cpu_present_map); 2234 set_cpu_present(cpu, true); 2235 num_processors++; 2236 2237 return cpu; 2238 } 2239 2240 int hard_smp_processor_id(void) 2241 { 2242 return read_apic_id(); 2243 } 2244 2245 void default_init_apic_ldr(void) 2246 { 2247 unsigned long val; 2248 2249 apic_write(APIC_DFR, APIC_DFR_VALUE); 2250 val = apic_read(APIC_LDR) & ~APIC_LDR_MASK; 2251 val |= SET_APIC_LOGICAL_ID(1UL << smp_processor_id()); 2252 apic_write(APIC_LDR, val); 2253 } 2254 2255 int default_cpu_mask_to_apicid(const struct cpumask *mask, 2256 struct irq_data *irqdata, 2257 unsigned int *apicid) 2258 { 2259 unsigned int cpu = cpumask_first(mask); 2260 2261 if (cpu >= nr_cpu_ids) 2262 return -EINVAL; 2263 *apicid = per_cpu(x86_cpu_to_apicid, cpu); 2264 irq_data_update_effective_affinity(irqdata, cpumask_of(cpu)); 2265 return 0; 2266 } 2267 2268 int flat_cpu_mask_to_apicid(const struct cpumask *mask, 2269 struct irq_data *irqdata, 2270 unsigned int *apicid) 2271 2272 { 2273 struct cpumask *effmsk = irq_data_get_effective_affinity_mask(irqdata); 2274 unsigned long cpu_mask = cpumask_bits(mask)[0] & APIC_ALL_CPUS; 2275 2276 if (!cpu_mask) 2277 return -EINVAL; 2278 *apicid = (unsigned int)cpu_mask; 2279 cpumask_bits(effmsk)[0] = cpu_mask; 2280 return 0; 2281 } 2282 2283 /* 2284 * Override the generic EOI implementation with an optimized version. 2285 * Only called during early boot when only one CPU is active and with 2286 * interrupts disabled, so we know this does not race with actual APIC driver 2287 * use. 2288 */ 2289 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) 2290 { 2291 struct apic **drv; 2292 2293 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { 2294 /* Should happen once for each apic */ 2295 WARN_ON((*drv)->eoi_write == eoi_write); 2296 (*drv)->native_eoi_write = (*drv)->eoi_write; 2297 (*drv)->eoi_write = eoi_write; 2298 } 2299 } 2300 2301 static void __init apic_bsp_up_setup(void) 2302 { 2303 #ifdef CONFIG_X86_64 2304 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); 2305 #else 2306 /* 2307 * Hack: In case of kdump, after a crash, kernel might be booting 2308 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid 2309 * might be zero if read from MP tables. Get it from LAPIC. 2310 */ 2311 # ifdef CONFIG_CRASH_DUMP 2312 boot_cpu_physical_apicid = read_apic_id(); 2313 # endif 2314 #endif 2315 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 2316 } 2317 2318 /** 2319 * apic_bsp_setup - Setup function for local apic and io-apic 2320 * @upmode: Force UP mode (for APIC_init_uniprocessor) 2321 * 2322 * Returns: 2323 * apic_id of BSP APIC 2324 */ 2325 int __init apic_bsp_setup(bool upmode) 2326 { 2327 int id; 2328 2329 connect_bsp_APIC(); 2330 if (upmode) 2331 apic_bsp_up_setup(); 2332 setup_local_APIC(); 2333 2334 if (x2apic_mode) 2335 id = apic_read(APIC_LDR); 2336 else 2337 id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 2338 2339 enable_IO_APIC(); 2340 end_local_APIC_setup(); 2341 irq_remap_enable_fault_handling(); 2342 setup_IO_APIC(); 2343 /* Setup local timer */ 2344 x86_init.timers.setup_percpu_clockev(); 2345 return id; 2346 } 2347 2348 /* 2349 * This initializes the IO-APIC and APIC hardware if this is 2350 * a UP kernel. 2351 */ 2352 int __init APIC_init_uniprocessor(void) 2353 { 2354 if (disable_apic) { 2355 pr_info("Apic disabled\n"); 2356 return -1; 2357 } 2358 #ifdef CONFIG_X86_64 2359 if (!boot_cpu_has(X86_FEATURE_APIC)) { 2360 disable_apic = 1; 2361 pr_info("Apic disabled by BIOS\n"); 2362 return -1; 2363 } 2364 #else 2365 if (!smp_found_config && !boot_cpu_has(X86_FEATURE_APIC)) 2366 return -1; 2367 2368 /* 2369 * Complain if the BIOS pretends there is one. 2370 */ 2371 if (!boot_cpu_has(X86_FEATURE_APIC) && 2372 APIC_INTEGRATED(boot_cpu_apic_version)) { 2373 pr_err("BIOS bug, local APIC 0x%x not detected!...\n", 2374 boot_cpu_physical_apicid); 2375 return -1; 2376 } 2377 #endif 2378 2379 if (!smp_found_config) 2380 disable_ioapic_support(); 2381 2382 default_setup_apic_routing(); 2383 apic_bsp_setup(true); 2384 return 0; 2385 } 2386 2387 #ifdef CONFIG_UP_LATE_INIT 2388 void __init up_late_init(void) 2389 { 2390 APIC_init_uniprocessor(); 2391 } 2392 #endif 2393 2394 /* 2395 * Power management 2396 */ 2397 #ifdef CONFIG_PM 2398 2399 static struct { 2400 /* 2401 * 'active' is true if the local APIC was enabled by us and 2402 * not the BIOS; this signifies that we are also responsible 2403 * for disabling it before entering apm/acpi suspend 2404 */ 2405 int active; 2406 /* r/w apic fields */ 2407 unsigned int apic_id; 2408 unsigned int apic_taskpri; 2409 unsigned int apic_ldr; 2410 unsigned int apic_dfr; 2411 unsigned int apic_spiv; 2412 unsigned int apic_lvtt; 2413 unsigned int apic_lvtpc; 2414 unsigned int apic_lvt0; 2415 unsigned int apic_lvt1; 2416 unsigned int apic_lvterr; 2417 unsigned int apic_tmict; 2418 unsigned int apic_tdcr; 2419 unsigned int apic_thmr; 2420 unsigned int apic_cmci; 2421 } apic_pm_state; 2422 2423 static int lapic_suspend(void) 2424 { 2425 unsigned long flags; 2426 int maxlvt; 2427 2428 if (!apic_pm_state.active) 2429 return 0; 2430 2431 maxlvt = lapic_get_maxlvt(); 2432 2433 apic_pm_state.apic_id = apic_read(APIC_ID); 2434 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); 2435 apic_pm_state.apic_ldr = apic_read(APIC_LDR); 2436 apic_pm_state.apic_dfr = apic_read(APIC_DFR); 2437 apic_pm_state.apic_spiv = apic_read(APIC_SPIV); 2438 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); 2439 if (maxlvt >= 4) 2440 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); 2441 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); 2442 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); 2443 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); 2444 apic_pm_state.apic_tmict = apic_read(APIC_TMICT); 2445 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); 2446 #ifdef CONFIG_X86_THERMAL_VECTOR 2447 if (maxlvt >= 5) 2448 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); 2449 #endif 2450 #ifdef CONFIG_X86_MCE_INTEL 2451 if (maxlvt >= 6) 2452 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); 2453 #endif 2454 2455 local_irq_save(flags); 2456 disable_local_APIC(); 2457 2458 irq_remapping_disable(); 2459 2460 local_irq_restore(flags); 2461 return 0; 2462 } 2463 2464 static void lapic_resume(void) 2465 { 2466 unsigned int l, h; 2467 unsigned long flags; 2468 int maxlvt; 2469 2470 if (!apic_pm_state.active) 2471 return; 2472 2473 local_irq_save(flags); 2474 2475 /* 2476 * IO-APIC and PIC have their own resume routines. 2477 * We just mask them here to make sure the interrupt 2478 * subsystem is completely quiet while we enable x2apic 2479 * and interrupt-remapping. 2480 */ 2481 mask_ioapic_entries(); 2482 legacy_pic->mask_all(); 2483 2484 if (x2apic_mode) { 2485 __x2apic_enable(); 2486 } else { 2487 /* 2488 * Make sure the APICBASE points to the right address 2489 * 2490 * FIXME! This will be wrong if we ever support suspend on 2491 * SMP! We'll need to do this as part of the CPU restore! 2492 */ 2493 if (boot_cpu_data.x86 >= 6) { 2494 rdmsr(MSR_IA32_APICBASE, l, h); 2495 l &= ~MSR_IA32_APICBASE_BASE; 2496 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; 2497 wrmsr(MSR_IA32_APICBASE, l, h); 2498 } 2499 } 2500 2501 maxlvt = lapic_get_maxlvt(); 2502 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); 2503 apic_write(APIC_ID, apic_pm_state.apic_id); 2504 apic_write(APIC_DFR, apic_pm_state.apic_dfr); 2505 apic_write(APIC_LDR, apic_pm_state.apic_ldr); 2506 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); 2507 apic_write(APIC_SPIV, apic_pm_state.apic_spiv); 2508 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); 2509 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); 2510 #ifdef CONFIG_X86_THERMAL_VECTOR 2511 if (maxlvt >= 5) 2512 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); 2513 #endif 2514 #ifdef CONFIG_X86_MCE_INTEL 2515 if (maxlvt >= 6) 2516 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); 2517 #endif 2518 if (maxlvt >= 4) 2519 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); 2520 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); 2521 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); 2522 apic_write(APIC_TMICT, apic_pm_state.apic_tmict); 2523 apic_write(APIC_ESR, 0); 2524 apic_read(APIC_ESR); 2525 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); 2526 apic_write(APIC_ESR, 0); 2527 apic_read(APIC_ESR); 2528 2529 irq_remapping_reenable(x2apic_mode); 2530 2531 local_irq_restore(flags); 2532 } 2533 2534 /* 2535 * This device has no shutdown method - fully functioning local APICs 2536 * are needed on every CPU up until machine_halt/restart/poweroff. 2537 */ 2538 2539 static struct syscore_ops lapic_syscore_ops = { 2540 .resume = lapic_resume, 2541 .suspend = lapic_suspend, 2542 }; 2543 2544 static void apic_pm_activate(void) 2545 { 2546 apic_pm_state.active = 1; 2547 } 2548 2549 static int __init init_lapic_sysfs(void) 2550 { 2551 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ 2552 if (boot_cpu_has(X86_FEATURE_APIC)) 2553 register_syscore_ops(&lapic_syscore_ops); 2554 2555 return 0; 2556 } 2557 2558 /* local apic needs to resume before other devices access its registers. */ 2559 core_initcall(init_lapic_sysfs); 2560 2561 #else /* CONFIG_PM */ 2562 2563 static void apic_pm_activate(void) { } 2564 2565 #endif /* CONFIG_PM */ 2566 2567 #ifdef CONFIG_X86_64 2568 2569 static int multi_checked; 2570 static int multi; 2571 2572 static int set_multi(const struct dmi_system_id *d) 2573 { 2574 if (multi) 2575 return 0; 2576 pr_info("APIC: %s detected, Multi Chassis\n", d->ident); 2577 multi = 1; 2578 return 0; 2579 } 2580 2581 static const struct dmi_system_id multi_dmi_table[] = { 2582 { 2583 .callback = set_multi, 2584 .ident = "IBM System Summit2", 2585 .matches = { 2586 DMI_MATCH(DMI_SYS_VENDOR, "IBM"), 2587 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), 2588 }, 2589 }, 2590 {} 2591 }; 2592 2593 static void dmi_check_multi(void) 2594 { 2595 if (multi_checked) 2596 return; 2597 2598 dmi_check_system(multi_dmi_table); 2599 multi_checked = 1; 2600 } 2601 2602 /* 2603 * apic_is_clustered_box() -- Check if we can expect good TSC 2604 * 2605 * Thus far, the major user of this is IBM's Summit2 series: 2606 * Clustered boxes may have unsynced TSC problems if they are 2607 * multi-chassis. 2608 * Use DMI to check them 2609 */ 2610 int apic_is_clustered_box(void) 2611 { 2612 dmi_check_multi(); 2613 return multi; 2614 } 2615 #endif 2616 2617 /* 2618 * APIC command line parameters 2619 */ 2620 static int __init setup_disableapic(char *arg) 2621 { 2622 disable_apic = 1; 2623 setup_clear_cpu_cap(X86_FEATURE_APIC); 2624 return 0; 2625 } 2626 early_param("disableapic", setup_disableapic); 2627 2628 /* same as disableapic, for compatibility */ 2629 static int __init setup_nolapic(char *arg) 2630 { 2631 return setup_disableapic(arg); 2632 } 2633 early_param("nolapic", setup_nolapic); 2634 2635 static int __init parse_lapic_timer_c2_ok(char *arg) 2636 { 2637 local_apic_timer_c2_ok = 1; 2638 return 0; 2639 } 2640 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); 2641 2642 static int __init parse_disable_apic_timer(char *arg) 2643 { 2644 disable_apic_timer = 1; 2645 return 0; 2646 } 2647 early_param("noapictimer", parse_disable_apic_timer); 2648 2649 static int __init parse_nolapic_timer(char *arg) 2650 { 2651 disable_apic_timer = 1; 2652 return 0; 2653 } 2654 early_param("nolapic_timer", parse_nolapic_timer); 2655 2656 static int __init apic_set_verbosity(char *arg) 2657 { 2658 if (!arg) { 2659 #ifdef CONFIG_X86_64 2660 skip_ioapic_setup = 0; 2661 return 0; 2662 #endif 2663 return -EINVAL; 2664 } 2665 2666 if (strcmp("debug", arg) == 0) 2667 apic_verbosity = APIC_DEBUG; 2668 else if (strcmp("verbose", arg) == 0) 2669 apic_verbosity = APIC_VERBOSE; 2670 else { 2671 pr_warning("APIC Verbosity level %s not recognised" 2672 " use apic=verbose or apic=debug\n", arg); 2673 return -EINVAL; 2674 } 2675 2676 return 0; 2677 } 2678 early_param("apic", apic_set_verbosity); 2679 2680 static int __init lapic_insert_resource(void) 2681 { 2682 if (!apic_phys) 2683 return -1; 2684 2685 /* Put local APIC into the resource map. */ 2686 lapic_resource.start = apic_phys; 2687 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; 2688 insert_resource(&iomem_resource, &lapic_resource); 2689 2690 return 0; 2691 } 2692 2693 /* 2694 * need call insert after e820__reserve_resources() 2695 * that is using request_resource 2696 */ 2697 late_initcall(lapic_insert_resource); 2698 2699 static int __init apic_set_disabled_cpu_apicid(char *arg) 2700 { 2701 if (!arg || !get_option(&arg, &disabled_cpu_apicid)) 2702 return -EINVAL; 2703 2704 return 0; 2705 } 2706 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); 2707 2708 static int __init apic_set_extnmi(char *arg) 2709 { 2710 if (!arg) 2711 return -EINVAL; 2712 2713 if (!strncmp("all", arg, 3)) 2714 apic_extnmi = APIC_EXTNMI_ALL; 2715 else if (!strncmp("none", arg, 4)) 2716 apic_extnmi = APIC_EXTNMI_NONE; 2717 else if (!strncmp("bsp", arg, 3)) 2718 apic_extnmi = APIC_EXTNMI_BSP; 2719 else { 2720 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); 2721 return -EINVAL; 2722 } 2723 2724 return 0; 2725 } 2726 early_param("apic_extnmi", apic_set_extnmi); 2727