1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC handling, local APIC timers 4 * 5 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * 7 * Fixes 8 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 9 * thanks to Eric Gilmore 10 * and Rolf G. Tews 11 * for testing these extensively. 12 * Maciej W. Rozycki : Various updates and fixes. 13 * Mikael Pettersson : Power Management for UP-APIC. 14 * Pavel Machek and 15 * Mikael Pettersson : PM converted to driver model. 16 */ 17 18 #include <linux/perf_event.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mc146818rtc.h> 21 #include <linux/acpi_pmtmr.h> 22 #include <linux/clockchips.h> 23 #include <linux/interrupt.h> 24 #include <linux/memblock.h> 25 #include <linux/ftrace.h> 26 #include <linux/ioport.h> 27 #include <linux/export.h> 28 #include <linux/syscore_ops.h> 29 #include <linux/delay.h> 30 #include <linux/timex.h> 31 #include <linux/i8253.h> 32 #include <linux/dmar.h> 33 #include <linux/init.h> 34 #include <linux/cpu.h> 35 #include <linux/dmi.h> 36 #include <linux/smp.h> 37 #include <linux/mm.h> 38 39 #include <asm/trace/irq_vectors.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/perf_event.h> 42 #include <asm/x86_init.h> 43 #include <asm/pgalloc.h> 44 #include <linux/atomic.h> 45 #include <asm/mpspec.h> 46 #include <asm/i8259.h> 47 #include <asm/proto.h> 48 #include <asm/traps.h> 49 #include <asm/apic.h> 50 #include <asm/io_apic.h> 51 #include <asm/desc.h> 52 #include <asm/hpet.h> 53 #include <asm/mtrr.h> 54 #include <asm/time.h> 55 #include <asm/smp.h> 56 #include <asm/mce.h> 57 #include <asm/tsc.h> 58 #include <asm/hypervisor.h> 59 #include <asm/cpu_device_id.h> 60 #include <asm/intel-family.h> 61 #include <asm/irq_regs.h> 62 63 unsigned int num_processors; 64 65 unsigned disabled_cpus; 66 67 /* Processor that is doing the boot up */ 68 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U; 69 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); 70 71 u8 boot_cpu_apic_version __ro_after_init; 72 73 /* 74 * The highest APIC ID seen during enumeration. 75 */ 76 static unsigned int max_physical_apicid; 77 78 /* 79 * Bitmask of physically existing CPUs: 80 */ 81 physid_mask_t phys_cpu_present_map; 82 83 /* 84 * Processor to be disabled specified by kernel parameter 85 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to 86 * avoid undefined behaviour caused by sending INIT from AP to BSP. 87 */ 88 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID; 89 90 /* 91 * This variable controls which CPUs receive external NMIs. By default, 92 * external NMIs are delivered only to the BSP. 93 */ 94 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; 95 96 /* 97 * Map cpu index to physical APIC ID 98 */ 99 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); 100 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); 101 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); 102 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); 103 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); 104 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); 105 106 #ifdef CONFIG_X86_32 107 108 /* 109 * On x86_32, the mapping between cpu and logical apicid may vary 110 * depending on apic in use. The following early percpu variable is 111 * used for the mapping. This is where the behaviors of x86_64 and 32 112 * actually diverge. Let's keep it ugly for now. 113 */ 114 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); 115 116 /* Local APIC was disabled by the BIOS and enabled by the kernel */ 117 static int enabled_via_apicbase __ro_after_init; 118 119 /* 120 * Handle interrupt mode configuration register (IMCR). 121 * This register controls whether the interrupt signals 122 * that reach the BSP come from the master PIC or from the 123 * local APIC. Before entering Symmetric I/O Mode, either 124 * the BIOS or the operating system must switch out of 125 * PIC Mode by changing the IMCR. 126 */ 127 static inline void imcr_pic_to_apic(void) 128 { 129 /* select IMCR register */ 130 outb(0x70, 0x22); 131 /* NMI and 8259 INTR go through APIC */ 132 outb(0x01, 0x23); 133 } 134 135 static inline void imcr_apic_to_pic(void) 136 { 137 /* select IMCR register */ 138 outb(0x70, 0x22); 139 /* NMI and 8259 INTR go directly to BSP */ 140 outb(0x00, 0x23); 141 } 142 #endif 143 144 /* 145 * Knob to control our willingness to enable the local APIC. 146 * 147 * +1=force-enable 148 */ 149 static int force_enable_local_apic __initdata; 150 151 /* 152 * APIC command line parameters 153 */ 154 static int __init parse_lapic(char *arg) 155 { 156 if (IS_ENABLED(CONFIG_X86_32) && !arg) 157 force_enable_local_apic = 1; 158 else if (arg && !strncmp(arg, "notscdeadline", 13)) 159 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 160 return 0; 161 } 162 early_param("lapic", parse_lapic); 163 164 #ifdef CONFIG_X86_64 165 static int apic_calibrate_pmtmr __initdata; 166 static __init int setup_apicpmtimer(char *s) 167 { 168 apic_calibrate_pmtmr = 1; 169 notsc_setup(NULL); 170 return 0; 171 } 172 __setup("apicpmtimer", setup_apicpmtimer); 173 #endif 174 175 unsigned long mp_lapic_addr __ro_after_init; 176 int disable_apic __ro_after_init; 177 /* Disable local APIC timer from the kernel commandline or via dmi quirk */ 178 static int disable_apic_timer __initdata; 179 /* Local APIC timer works in C2 */ 180 int local_apic_timer_c2_ok __ro_after_init; 181 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); 182 183 /* 184 * Debug level, exported for io_apic.c 185 */ 186 int apic_verbosity __ro_after_init; 187 188 int pic_mode __ro_after_init; 189 190 /* Have we found an MP table */ 191 int smp_found_config __ro_after_init; 192 193 static struct resource lapic_resource = { 194 .name = "Local APIC", 195 .flags = IORESOURCE_MEM | IORESOURCE_BUSY, 196 }; 197 198 unsigned int lapic_timer_period = 0; 199 200 static void apic_pm_activate(void); 201 202 static unsigned long apic_phys __ro_after_init; 203 204 /* 205 * Get the LAPIC version 206 */ 207 static inline int lapic_get_version(void) 208 { 209 return GET_APIC_VERSION(apic_read(APIC_LVR)); 210 } 211 212 /* 213 * Check, if the APIC is integrated or a separate chip 214 */ 215 static inline int lapic_is_integrated(void) 216 { 217 return APIC_INTEGRATED(lapic_get_version()); 218 } 219 220 /* 221 * Check, whether this is a modern or a first generation APIC 222 */ 223 static int modern_apic(void) 224 { 225 /* AMD systems use old APIC versions, so check the CPU */ 226 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 227 boot_cpu_data.x86 >= 0xf) 228 return 1; 229 230 /* Hygon systems use modern APIC */ 231 if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 232 return 1; 233 234 return lapic_get_version() >= 0x14; 235 } 236 237 /* 238 * right after this call apic become NOOP driven 239 * so apic->write/read doesn't do anything 240 */ 241 static void __init apic_disable(void) 242 { 243 pr_info("APIC: switched to apic NOOP\n"); 244 apic = &apic_noop; 245 } 246 247 void native_apic_wait_icr_idle(void) 248 { 249 while (apic_read(APIC_ICR) & APIC_ICR_BUSY) 250 cpu_relax(); 251 } 252 253 u32 native_safe_apic_wait_icr_idle(void) 254 { 255 u32 send_status; 256 int timeout; 257 258 timeout = 0; 259 do { 260 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; 261 if (!send_status) 262 break; 263 inc_irq_stat(icr_read_retry_count); 264 udelay(100); 265 } while (timeout++ < 1000); 266 267 return send_status; 268 } 269 270 void native_apic_icr_write(u32 low, u32 id) 271 { 272 unsigned long flags; 273 274 local_irq_save(flags); 275 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); 276 apic_write(APIC_ICR, low); 277 local_irq_restore(flags); 278 } 279 280 u64 native_apic_icr_read(void) 281 { 282 u32 icr1, icr2; 283 284 icr2 = apic_read(APIC_ICR2); 285 icr1 = apic_read(APIC_ICR); 286 287 return icr1 | ((u64)icr2 << 32); 288 } 289 290 #ifdef CONFIG_X86_32 291 /** 292 * get_physical_broadcast - Get number of physical broadcast IDs 293 */ 294 int get_physical_broadcast(void) 295 { 296 return modern_apic() ? 0xff : 0xf; 297 } 298 #endif 299 300 /** 301 * lapic_get_maxlvt - get the maximum number of local vector table entries 302 */ 303 int lapic_get_maxlvt(void) 304 { 305 /* 306 * - we always have APIC integrated on 64bit mode 307 * - 82489DXs do not report # of LVT entries 308 */ 309 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; 310 } 311 312 /* 313 * Local APIC timer 314 */ 315 316 /* Clock divisor */ 317 #define APIC_DIVISOR 16 318 #define TSC_DIVISOR 8 319 320 /* 321 * This function sets up the local APIC timer, with a timeout of 322 * 'clocks' APIC bus clock. During calibration we actually call 323 * this function twice on the boot CPU, once with a bogus timeout 324 * value, second time for real. The other (noncalibrating) CPUs 325 * call this function only once, with the real, calibrated value. 326 * 327 * We do reads before writes even if unnecessary, to get around the 328 * P5 APIC double write bug. 329 */ 330 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) 331 { 332 unsigned int lvtt_value, tmp_value; 333 334 lvtt_value = LOCAL_TIMER_VECTOR; 335 if (!oneshot) 336 lvtt_value |= APIC_LVT_TIMER_PERIODIC; 337 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 338 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; 339 340 if (!lapic_is_integrated()) 341 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); 342 343 if (!irqen) 344 lvtt_value |= APIC_LVT_MASKED; 345 346 apic_write(APIC_LVTT, lvtt_value); 347 348 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { 349 /* 350 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, 351 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. 352 * According to Intel, MFENCE can do the serialization here. 353 */ 354 asm volatile("mfence" : : : "memory"); 355 356 printk_once(KERN_DEBUG "TSC deadline timer enabled\n"); 357 return; 358 } 359 360 /* 361 * Divide PICLK by 16 362 */ 363 tmp_value = apic_read(APIC_TDCR); 364 apic_write(APIC_TDCR, 365 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | 366 APIC_TDR_DIV_16); 367 368 if (!oneshot) 369 apic_write(APIC_TMICT, clocks / APIC_DIVISOR); 370 } 371 372 /* 373 * Setup extended LVT, AMD specific 374 * 375 * Software should use the LVT offsets the BIOS provides. The offsets 376 * are determined by the subsystems using it like those for MCE 377 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts 378 * are supported. Beginning with family 10h at least 4 offsets are 379 * available. 380 * 381 * Since the offsets must be consistent for all cores, we keep track 382 * of the LVT offsets in software and reserve the offset for the same 383 * vector also to be used on other cores. An offset is freed by 384 * setting the entry to APIC_EILVT_MASKED. 385 * 386 * If the BIOS is right, there should be no conflicts. Otherwise a 387 * "[Firmware Bug]: ..." error message is generated. However, if 388 * software does not properly determines the offsets, it is not 389 * necessarily a BIOS bug. 390 */ 391 392 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; 393 394 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) 395 { 396 return (old & APIC_EILVT_MASKED) 397 || (new == APIC_EILVT_MASKED) 398 || ((new & ~APIC_EILVT_MASKED) == old); 399 } 400 401 static unsigned int reserve_eilvt_offset(int offset, unsigned int new) 402 { 403 unsigned int rsvd, vector; 404 405 if (offset >= APIC_EILVT_NR_MAX) 406 return ~0; 407 408 rsvd = atomic_read(&eilvt_offsets[offset]); 409 do { 410 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ 411 if (vector && !eilvt_entry_is_changeable(vector, new)) 412 /* may not change if vectors are different */ 413 return rsvd; 414 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); 415 } while (rsvd != new); 416 417 rsvd &= ~APIC_EILVT_MASKED; 418 if (rsvd && rsvd != vector) 419 pr_info("LVT offset %d assigned for vector 0x%02x\n", 420 offset, rsvd); 421 422 return new; 423 } 424 425 /* 426 * If mask=1, the LVT entry does not generate interrupts while mask=0 427 * enables the vector. See also the BKDGs. Must be called with 428 * preemption disabled. 429 */ 430 431 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) 432 { 433 unsigned long reg = APIC_EILVTn(offset); 434 unsigned int new, old, reserved; 435 436 new = (mask << 16) | (msg_type << 8) | vector; 437 old = apic_read(reg); 438 reserved = reserve_eilvt_offset(offset, new); 439 440 if (reserved != new) { 441 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 442 "vector 0x%x, but the register is already in use for " 443 "vector 0x%x on another cpu\n", 444 smp_processor_id(), reg, offset, new, reserved); 445 return -EINVAL; 446 } 447 448 if (!eilvt_entry_is_changeable(old, new)) { 449 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 450 "vector 0x%x, but the register is already in use for " 451 "vector 0x%x on this cpu\n", 452 smp_processor_id(), reg, offset, new, old); 453 return -EBUSY; 454 } 455 456 apic_write(reg, new); 457 458 return 0; 459 } 460 EXPORT_SYMBOL_GPL(setup_APIC_eilvt); 461 462 /* 463 * Program the next event, relative to now 464 */ 465 static int lapic_next_event(unsigned long delta, 466 struct clock_event_device *evt) 467 { 468 apic_write(APIC_TMICT, delta); 469 return 0; 470 } 471 472 static int lapic_next_deadline(unsigned long delta, 473 struct clock_event_device *evt) 474 { 475 u64 tsc; 476 477 tsc = rdtsc(); 478 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); 479 return 0; 480 } 481 482 static int lapic_timer_shutdown(struct clock_event_device *evt) 483 { 484 unsigned int v; 485 486 /* Lapic used as dummy for broadcast ? */ 487 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 488 return 0; 489 490 v = apic_read(APIC_LVTT); 491 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 492 apic_write(APIC_LVTT, v); 493 apic_write(APIC_TMICT, 0); 494 return 0; 495 } 496 497 static inline int 498 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) 499 { 500 /* Lapic used as dummy for broadcast ? */ 501 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 502 return 0; 503 504 __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); 505 return 0; 506 } 507 508 static int lapic_timer_set_periodic(struct clock_event_device *evt) 509 { 510 return lapic_timer_set_periodic_oneshot(evt, false); 511 } 512 513 static int lapic_timer_set_oneshot(struct clock_event_device *evt) 514 { 515 return lapic_timer_set_periodic_oneshot(evt, true); 516 } 517 518 /* 519 * Local APIC timer broadcast function 520 */ 521 static void lapic_timer_broadcast(const struct cpumask *mask) 522 { 523 #ifdef CONFIG_SMP 524 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); 525 #endif 526 } 527 528 529 /* 530 * The local apic timer can be used for any function which is CPU local. 531 */ 532 static struct clock_event_device lapic_clockevent = { 533 .name = "lapic", 534 .features = CLOCK_EVT_FEAT_PERIODIC | 535 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP 536 | CLOCK_EVT_FEAT_DUMMY, 537 .shift = 32, 538 .set_state_shutdown = lapic_timer_shutdown, 539 .set_state_periodic = lapic_timer_set_periodic, 540 .set_state_oneshot = lapic_timer_set_oneshot, 541 .set_state_oneshot_stopped = lapic_timer_shutdown, 542 .set_next_event = lapic_next_event, 543 .broadcast = lapic_timer_broadcast, 544 .rating = 100, 545 .irq = -1, 546 }; 547 static DEFINE_PER_CPU(struct clock_event_device, lapic_events); 548 549 #define DEADLINE_MODEL_MATCH_FUNC(model, func) \ 550 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func } 551 552 #define DEADLINE_MODEL_MATCH_REV(model, rev) \ 553 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev } 554 555 static u32 hsx_deadline_rev(void) 556 { 557 switch (boot_cpu_data.x86_stepping) { 558 case 0x02: return 0x3a; /* EP */ 559 case 0x04: return 0x0f; /* EX */ 560 } 561 562 return ~0U; 563 } 564 565 static u32 bdx_deadline_rev(void) 566 { 567 switch (boot_cpu_data.x86_stepping) { 568 case 0x02: return 0x00000011; 569 case 0x03: return 0x0700000e; 570 case 0x04: return 0x0f00000c; 571 case 0x05: return 0x0e000003; 572 } 573 574 return ~0U; 575 } 576 577 static u32 skx_deadline_rev(void) 578 { 579 switch (boot_cpu_data.x86_stepping) { 580 case 0x03: return 0x01000136; 581 case 0x04: return 0x02000014; 582 } 583 584 if (boot_cpu_data.x86_stepping > 4) 585 return 0; 586 587 return ~0U; 588 } 589 590 static const struct x86_cpu_id deadline_match[] = { 591 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev), 592 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020), 593 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_D, bdx_deadline_rev), 594 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_SKYLAKE_X, skx_deadline_rev), 595 596 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL, 0x22), 597 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_L, 0x20), 598 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_G, 0x17), 599 600 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL, 0x25), 601 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_G, 0x17), 602 603 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_L, 0xb2), 604 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE, 0xb2), 605 606 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_L, 0x52), 607 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE, 0x52), 608 609 {}, 610 }; 611 612 static void apic_check_deadline_errata(void) 613 { 614 const struct x86_cpu_id *m; 615 u32 rev; 616 617 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER) || 618 boot_cpu_has(X86_FEATURE_HYPERVISOR)) 619 return; 620 621 m = x86_match_cpu(deadline_match); 622 if (!m) 623 return; 624 625 /* 626 * Function pointers will have the MSB set due to address layout, 627 * immediate revisions will not. 628 */ 629 if ((long)m->driver_data < 0) 630 rev = ((u32 (*)(void))(m->driver_data))(); 631 else 632 rev = (u32)m->driver_data; 633 634 if (boot_cpu_data.microcode >= rev) 635 return; 636 637 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 638 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " 639 "please update microcode to version: 0x%x (or later)\n", rev); 640 } 641 642 /* 643 * Setup the local APIC timer for this CPU. Copy the initialized values 644 * of the boot CPU and register the clock event in the framework. 645 */ 646 static void setup_APIC_timer(void) 647 { 648 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 649 650 if (this_cpu_has(X86_FEATURE_ARAT)) { 651 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; 652 /* Make LAPIC timer preferrable over percpu HPET */ 653 lapic_clockevent.rating = 150; 654 } 655 656 memcpy(levt, &lapic_clockevent, sizeof(*levt)); 657 levt->cpumask = cpumask_of(smp_processor_id()); 658 659 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 660 levt->name = "lapic-deadline"; 661 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | 662 CLOCK_EVT_FEAT_DUMMY); 663 levt->set_next_event = lapic_next_deadline; 664 clockevents_config_and_register(levt, 665 tsc_khz * (1000 / TSC_DIVISOR), 666 0xF, ~0UL); 667 } else 668 clockevents_register_device(levt); 669 } 670 671 /* 672 * Install the updated TSC frequency from recalibration at the TSC 673 * deadline clockevent devices. 674 */ 675 static void __lapic_update_tsc_freq(void *info) 676 { 677 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 678 679 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 680 return; 681 682 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); 683 } 684 685 void lapic_update_tsc_freq(void) 686 { 687 /* 688 * The clockevent device's ->mult and ->shift can both be 689 * changed. In order to avoid races, schedule the frequency 690 * update code on each CPU. 691 */ 692 on_each_cpu(__lapic_update_tsc_freq, NULL, 0); 693 } 694 695 /* 696 * In this functions we calibrate APIC bus clocks to the external timer. 697 * 698 * We want to do the calibration only once since we want to have local timer 699 * irqs syncron. CPUs connected by the same APIC bus have the very same bus 700 * frequency. 701 * 702 * This was previously done by reading the PIT/HPET and waiting for a wrap 703 * around to find out, that a tick has elapsed. I have a box, where the PIT 704 * readout is broken, so it never gets out of the wait loop again. This was 705 * also reported by others. 706 * 707 * Monitoring the jiffies value is inaccurate and the clockevents 708 * infrastructure allows us to do a simple substitution of the interrupt 709 * handler. 710 * 711 * The calibration routine also uses the pm_timer when possible, as the PIT 712 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes 713 * back to normal later in the boot process). 714 */ 715 716 #define LAPIC_CAL_LOOPS (HZ/10) 717 718 static __initdata int lapic_cal_loops = -1; 719 static __initdata long lapic_cal_t1, lapic_cal_t2; 720 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; 721 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; 722 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; 723 724 /* 725 * Temporary interrupt handler and polled calibration function. 726 */ 727 static void __init lapic_cal_handler(struct clock_event_device *dev) 728 { 729 unsigned long long tsc = 0; 730 long tapic = apic_read(APIC_TMCCT); 731 unsigned long pm = acpi_pm_read_early(); 732 733 if (boot_cpu_has(X86_FEATURE_TSC)) 734 tsc = rdtsc(); 735 736 switch (lapic_cal_loops++) { 737 case 0: 738 lapic_cal_t1 = tapic; 739 lapic_cal_tsc1 = tsc; 740 lapic_cal_pm1 = pm; 741 lapic_cal_j1 = jiffies; 742 break; 743 744 case LAPIC_CAL_LOOPS: 745 lapic_cal_t2 = tapic; 746 lapic_cal_tsc2 = tsc; 747 if (pm < lapic_cal_pm1) 748 pm += ACPI_PM_OVRRUN; 749 lapic_cal_pm2 = pm; 750 lapic_cal_j2 = jiffies; 751 break; 752 } 753 } 754 755 static int __init 756 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) 757 { 758 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; 759 const long pm_thresh = pm_100ms / 100; 760 unsigned long mult; 761 u64 res; 762 763 #ifndef CONFIG_X86_PM_TIMER 764 return -1; 765 #endif 766 767 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); 768 769 /* Check, if the PM timer is available */ 770 if (!deltapm) 771 return -1; 772 773 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); 774 775 if (deltapm > (pm_100ms - pm_thresh) && 776 deltapm < (pm_100ms + pm_thresh)) { 777 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); 778 return 0; 779 } 780 781 res = (((u64)deltapm) * mult) >> 22; 782 do_div(res, 1000000); 783 pr_warn("APIC calibration not consistent " 784 "with PM-Timer: %ldms instead of 100ms\n", (long)res); 785 786 /* Correct the lapic counter value */ 787 res = (((u64)(*delta)) * pm_100ms); 788 do_div(res, deltapm); 789 pr_info("APIC delta adjusted to PM-Timer: " 790 "%lu (%ld)\n", (unsigned long)res, *delta); 791 *delta = (long)res; 792 793 /* Correct the tsc counter value */ 794 if (boot_cpu_has(X86_FEATURE_TSC)) { 795 res = (((u64)(*deltatsc)) * pm_100ms); 796 do_div(res, deltapm); 797 apic_printk(APIC_VERBOSE, "TSC delta adjusted to " 798 "PM-Timer: %lu (%ld)\n", 799 (unsigned long)res, *deltatsc); 800 *deltatsc = (long)res; 801 } 802 803 return 0; 804 } 805 806 static int __init lapic_init_clockevent(void) 807 { 808 if (!lapic_timer_period) 809 return -1; 810 811 /* Calculate the scaled math multiplication factor */ 812 lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, 813 TICK_NSEC, lapic_clockevent.shift); 814 lapic_clockevent.max_delta_ns = 815 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); 816 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; 817 lapic_clockevent.min_delta_ns = 818 clockevent_delta2ns(0xF, &lapic_clockevent); 819 lapic_clockevent.min_delta_ticks = 0xF; 820 821 return 0; 822 } 823 824 bool __init apic_needs_pit(void) 825 { 826 /* 827 * If the frequencies are not known, PIT is required for both TSC 828 * and apic timer calibration. 829 */ 830 if (!tsc_khz || !cpu_khz) 831 return true; 832 833 /* Is there an APIC at all? */ 834 if (!boot_cpu_has(X86_FEATURE_APIC)) 835 return true; 836 837 /* Virt guests may lack ARAT, but still have DEADLINE */ 838 if (!boot_cpu_has(X86_FEATURE_ARAT)) 839 return true; 840 841 /* Deadline timer is based on TSC so no further PIT action required */ 842 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 843 return false; 844 845 /* APIC timer disabled? */ 846 if (disable_apic_timer) 847 return true; 848 /* 849 * The APIC timer frequency is known already, no PIT calibration 850 * required. If unknown, let the PIT be initialized. 851 */ 852 return lapic_timer_period == 0; 853 } 854 855 static int __init calibrate_APIC_clock(void) 856 { 857 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 858 u64 tsc_perj = 0, tsc_start = 0; 859 unsigned long jif_start; 860 unsigned long deltaj; 861 long delta, deltatsc; 862 int pm_referenced = 0; 863 864 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 865 return 0; 866 867 /* 868 * Check if lapic timer has already been calibrated by platform 869 * specific routine, such as tsc calibration code. If so just fill 870 * in the clockevent structure and return. 871 */ 872 if (!lapic_init_clockevent()) { 873 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", 874 lapic_timer_period); 875 /* 876 * Direct calibration methods must have an always running 877 * local APIC timer, no need for broadcast timer. 878 */ 879 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 880 return 0; 881 } 882 883 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" 884 "calibrating APIC timer ...\n"); 885 886 /* 887 * There are platforms w/o global clockevent devices. Instead of 888 * making the calibration conditional on that, use a polling based 889 * approach everywhere. 890 */ 891 local_irq_disable(); 892 893 /* 894 * Setup the APIC counter to maximum. There is no way the lapic 895 * can underflow in the 100ms detection time frame 896 */ 897 __setup_APIC_LVTT(0xffffffff, 0, 0); 898 899 /* 900 * Methods to terminate the calibration loop: 901 * 1) Global clockevent if available (jiffies) 902 * 2) TSC if available and frequency is known 903 */ 904 jif_start = READ_ONCE(jiffies); 905 906 if (tsc_khz) { 907 tsc_start = rdtsc(); 908 tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); 909 } 910 911 /* 912 * Enable interrupts so the tick can fire, if a global 913 * clockevent device is available 914 */ 915 local_irq_enable(); 916 917 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { 918 /* Wait for a tick to elapse */ 919 while (1) { 920 if (tsc_khz) { 921 u64 tsc_now = rdtsc(); 922 if ((tsc_now - tsc_start) >= tsc_perj) { 923 tsc_start += tsc_perj; 924 break; 925 } 926 } else { 927 unsigned long jif_now = READ_ONCE(jiffies); 928 929 if (time_after(jif_now, jif_start)) { 930 jif_start = jif_now; 931 break; 932 } 933 } 934 cpu_relax(); 935 } 936 937 /* Invoke the calibration routine */ 938 local_irq_disable(); 939 lapic_cal_handler(NULL); 940 local_irq_enable(); 941 } 942 943 local_irq_disable(); 944 945 /* Build delta t1-t2 as apic timer counts down */ 946 delta = lapic_cal_t1 - lapic_cal_t2; 947 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); 948 949 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); 950 951 /* we trust the PM based calibration if possible */ 952 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, 953 &delta, &deltatsc); 954 955 lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; 956 lapic_init_clockevent(); 957 958 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); 959 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); 960 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", 961 lapic_timer_period); 962 963 if (boot_cpu_has(X86_FEATURE_TSC)) { 964 apic_printk(APIC_VERBOSE, "..... CPU clock speed is " 965 "%ld.%04ld MHz.\n", 966 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), 967 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); 968 } 969 970 apic_printk(APIC_VERBOSE, "..... host bus clock speed is " 971 "%u.%04u MHz.\n", 972 lapic_timer_period / (1000000 / HZ), 973 lapic_timer_period % (1000000 / HZ)); 974 975 /* 976 * Do a sanity check on the APIC calibration result 977 */ 978 if (lapic_timer_period < (1000000 / HZ)) { 979 local_irq_enable(); 980 pr_warn("APIC frequency too slow, disabling apic timer\n"); 981 return -1; 982 } 983 984 levt->features &= ~CLOCK_EVT_FEAT_DUMMY; 985 986 /* 987 * PM timer calibration failed or not turned on so lets try APIC 988 * timer based calibration, if a global clockevent device is 989 * available. 990 */ 991 if (!pm_referenced && global_clock_event) { 992 apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); 993 994 /* 995 * Setup the apic timer manually 996 */ 997 levt->event_handler = lapic_cal_handler; 998 lapic_timer_set_periodic(levt); 999 lapic_cal_loops = -1; 1000 1001 /* Let the interrupts run */ 1002 local_irq_enable(); 1003 1004 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 1005 cpu_relax(); 1006 1007 /* Stop the lapic timer */ 1008 local_irq_disable(); 1009 lapic_timer_shutdown(levt); 1010 1011 /* Jiffies delta */ 1012 deltaj = lapic_cal_j2 - lapic_cal_j1; 1013 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); 1014 1015 /* Check, if the jiffies result is consistent */ 1016 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) 1017 apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); 1018 else 1019 levt->features |= CLOCK_EVT_FEAT_DUMMY; 1020 } 1021 local_irq_enable(); 1022 1023 if (levt->features & CLOCK_EVT_FEAT_DUMMY) { 1024 pr_warn("APIC timer disabled due to verification failure\n"); 1025 return -1; 1026 } 1027 1028 return 0; 1029 } 1030 1031 /* 1032 * Setup the boot APIC 1033 * 1034 * Calibrate and verify the result. 1035 */ 1036 void __init setup_boot_APIC_clock(void) 1037 { 1038 /* 1039 * The local apic timer can be disabled via the kernel 1040 * commandline or from the CPU detection code. Register the lapic 1041 * timer as a dummy clock event source on SMP systems, so the 1042 * broadcast mechanism is used. On UP systems simply ignore it. 1043 */ 1044 if (disable_apic_timer) { 1045 pr_info("Disabling APIC timer\n"); 1046 /* No broadcast on UP ! */ 1047 if (num_possible_cpus() > 1) { 1048 lapic_clockevent.mult = 1; 1049 setup_APIC_timer(); 1050 } 1051 return; 1052 } 1053 1054 if (calibrate_APIC_clock()) { 1055 /* No broadcast on UP ! */ 1056 if (num_possible_cpus() > 1) 1057 setup_APIC_timer(); 1058 return; 1059 } 1060 1061 /* 1062 * If nmi_watchdog is set to IO_APIC, we need the 1063 * PIT/HPET going. Otherwise register lapic as a dummy 1064 * device. 1065 */ 1066 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 1067 1068 /* Setup the lapic or request the broadcast */ 1069 setup_APIC_timer(); 1070 amd_e400_c1e_apic_setup(); 1071 } 1072 1073 void setup_secondary_APIC_clock(void) 1074 { 1075 setup_APIC_timer(); 1076 amd_e400_c1e_apic_setup(); 1077 } 1078 1079 /* 1080 * The guts of the apic timer interrupt 1081 */ 1082 static void local_apic_timer_interrupt(void) 1083 { 1084 struct clock_event_device *evt = this_cpu_ptr(&lapic_events); 1085 1086 /* 1087 * Normally we should not be here till LAPIC has been initialized but 1088 * in some cases like kdump, its possible that there is a pending LAPIC 1089 * timer interrupt from previous kernel's context and is delivered in 1090 * new kernel the moment interrupts are enabled. 1091 * 1092 * Interrupts are enabled early and LAPIC is setup much later, hence 1093 * its possible that when we get here evt->event_handler is NULL. 1094 * Check for event_handler being NULL and discard the interrupt as 1095 * spurious. 1096 */ 1097 if (!evt->event_handler) { 1098 pr_warn("Spurious LAPIC timer interrupt on cpu %d\n", 1099 smp_processor_id()); 1100 /* Switch it off */ 1101 lapic_timer_shutdown(evt); 1102 return; 1103 } 1104 1105 /* 1106 * the NMI deadlock-detector uses this. 1107 */ 1108 inc_irq_stat(apic_timer_irqs); 1109 1110 evt->event_handler(evt); 1111 } 1112 1113 /* 1114 * Local APIC timer interrupt. This is the most natural way for doing 1115 * local interrupts, but local timer interrupts can be emulated by 1116 * broadcast interrupts too. [in case the hw doesn't support APIC timers] 1117 * 1118 * [ if a single-CPU system runs an SMP kernel then we call the local 1119 * interrupt as well. Thus we cannot inline the local irq ... ] 1120 */ 1121 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) 1122 { 1123 struct pt_regs *old_regs = set_irq_regs(regs); 1124 1125 /* 1126 * NOTE! We'd better ACK the irq immediately, 1127 * because timer handling can be slow. 1128 * 1129 * update_process_times() expects us to have done irq_enter(). 1130 * Besides, if we don't timer interrupts ignore the global 1131 * interrupt lock, which is the WrongThing (tm) to do. 1132 */ 1133 entering_ack_irq(); 1134 trace_local_timer_entry(LOCAL_TIMER_VECTOR); 1135 local_apic_timer_interrupt(); 1136 trace_local_timer_exit(LOCAL_TIMER_VECTOR); 1137 exiting_irq(); 1138 1139 set_irq_regs(old_regs); 1140 } 1141 1142 int setup_profiling_timer(unsigned int multiplier) 1143 { 1144 return -EINVAL; 1145 } 1146 1147 /* 1148 * Local APIC start and shutdown 1149 */ 1150 1151 /** 1152 * clear_local_APIC - shutdown the local APIC 1153 * 1154 * This is called, when a CPU is disabled and before rebooting, so the state of 1155 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS 1156 * leftovers during boot. 1157 */ 1158 void clear_local_APIC(void) 1159 { 1160 int maxlvt; 1161 u32 v; 1162 1163 /* APIC hasn't been mapped yet */ 1164 if (!x2apic_mode && !apic_phys) 1165 return; 1166 1167 maxlvt = lapic_get_maxlvt(); 1168 /* 1169 * Masking an LVT entry can trigger a local APIC error 1170 * if the vector is zero. Mask LVTERR first to prevent this. 1171 */ 1172 if (maxlvt >= 3) { 1173 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ 1174 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); 1175 } 1176 /* 1177 * Careful: we have to set masks only first to deassert 1178 * any level-triggered sources. 1179 */ 1180 v = apic_read(APIC_LVTT); 1181 apic_write(APIC_LVTT, v | APIC_LVT_MASKED); 1182 v = apic_read(APIC_LVT0); 1183 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1184 v = apic_read(APIC_LVT1); 1185 apic_write(APIC_LVT1, v | APIC_LVT_MASKED); 1186 if (maxlvt >= 4) { 1187 v = apic_read(APIC_LVTPC); 1188 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); 1189 } 1190 1191 /* lets not touch this if we didn't frob it */ 1192 #ifdef CONFIG_X86_THERMAL_VECTOR 1193 if (maxlvt >= 5) { 1194 v = apic_read(APIC_LVTTHMR); 1195 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); 1196 } 1197 #endif 1198 #ifdef CONFIG_X86_MCE_INTEL 1199 if (maxlvt >= 6) { 1200 v = apic_read(APIC_LVTCMCI); 1201 if (!(v & APIC_LVT_MASKED)) 1202 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); 1203 } 1204 #endif 1205 1206 /* 1207 * Clean APIC state for other OSs: 1208 */ 1209 apic_write(APIC_LVTT, APIC_LVT_MASKED); 1210 apic_write(APIC_LVT0, APIC_LVT_MASKED); 1211 apic_write(APIC_LVT1, APIC_LVT_MASKED); 1212 if (maxlvt >= 3) 1213 apic_write(APIC_LVTERR, APIC_LVT_MASKED); 1214 if (maxlvt >= 4) 1215 apic_write(APIC_LVTPC, APIC_LVT_MASKED); 1216 1217 /* Integrated APIC (!82489DX) ? */ 1218 if (lapic_is_integrated()) { 1219 if (maxlvt > 3) 1220 /* Clear ESR due to Pentium errata 3AP and 11AP */ 1221 apic_write(APIC_ESR, 0); 1222 apic_read(APIC_ESR); 1223 } 1224 } 1225 1226 /** 1227 * apic_soft_disable - Clears and software disables the local APIC on hotplug 1228 * 1229 * Contrary to disable_local_APIC() this does not touch the enable bit in 1230 * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC 1231 * bus would require a hardware reset as the APIC would lose track of bus 1232 * arbitration. On systems with FSB delivery APICBASE could be disabled, 1233 * but it has to be guaranteed that no interrupt is sent to the APIC while 1234 * in that state and it's not clear from the SDM whether it still responds 1235 * to INIT/SIPI messages. Stay on the safe side and use software disable. 1236 */ 1237 void apic_soft_disable(void) 1238 { 1239 u32 value; 1240 1241 clear_local_APIC(); 1242 1243 /* Soft disable APIC (implies clearing of registers for 82489DX!). */ 1244 value = apic_read(APIC_SPIV); 1245 value &= ~APIC_SPIV_APIC_ENABLED; 1246 apic_write(APIC_SPIV, value); 1247 } 1248 1249 /** 1250 * disable_local_APIC - clear and disable the local APIC 1251 */ 1252 void disable_local_APIC(void) 1253 { 1254 /* APIC hasn't been mapped yet */ 1255 if (!x2apic_mode && !apic_phys) 1256 return; 1257 1258 apic_soft_disable(); 1259 1260 #ifdef CONFIG_X86_32 1261 /* 1262 * When LAPIC was disabled by the BIOS and enabled by the kernel, 1263 * restore the disabled state. 1264 */ 1265 if (enabled_via_apicbase) { 1266 unsigned int l, h; 1267 1268 rdmsr(MSR_IA32_APICBASE, l, h); 1269 l &= ~MSR_IA32_APICBASE_ENABLE; 1270 wrmsr(MSR_IA32_APICBASE, l, h); 1271 } 1272 #endif 1273 } 1274 1275 /* 1276 * If Linux enabled the LAPIC against the BIOS default disable it down before 1277 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and 1278 * not power-off. Additionally clear all LVT entries before disable_local_APIC 1279 * for the case where Linux didn't enable the LAPIC. 1280 */ 1281 void lapic_shutdown(void) 1282 { 1283 unsigned long flags; 1284 1285 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1286 return; 1287 1288 local_irq_save(flags); 1289 1290 #ifdef CONFIG_X86_32 1291 if (!enabled_via_apicbase) 1292 clear_local_APIC(); 1293 else 1294 #endif 1295 disable_local_APIC(); 1296 1297 1298 local_irq_restore(flags); 1299 } 1300 1301 /** 1302 * sync_Arb_IDs - synchronize APIC bus arbitration IDs 1303 */ 1304 void __init sync_Arb_IDs(void) 1305 { 1306 /* 1307 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not 1308 * needed on AMD. 1309 */ 1310 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1311 return; 1312 1313 /* 1314 * Wait for idle. 1315 */ 1316 apic_wait_icr_idle(); 1317 1318 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); 1319 apic_write(APIC_ICR, APIC_DEST_ALLINC | 1320 APIC_INT_LEVELTRIG | APIC_DM_INIT); 1321 } 1322 1323 enum apic_intr_mode_id apic_intr_mode __ro_after_init; 1324 1325 static int __init apic_intr_mode_select(void) 1326 { 1327 /* Check kernel option */ 1328 if (disable_apic) { 1329 pr_info("APIC disabled via kernel command line\n"); 1330 return APIC_PIC; 1331 } 1332 1333 /* Check BIOS */ 1334 #ifdef CONFIG_X86_64 1335 /* On 64-bit, the APIC must be integrated, Check local APIC only */ 1336 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1337 disable_apic = 1; 1338 pr_info("APIC disabled by BIOS\n"); 1339 return APIC_PIC; 1340 } 1341 #else 1342 /* On 32-bit, the APIC may be integrated APIC or 82489DX */ 1343 1344 /* Neither 82489DX nor integrated APIC ? */ 1345 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { 1346 disable_apic = 1; 1347 return APIC_PIC; 1348 } 1349 1350 /* If the BIOS pretends there is an integrated APIC ? */ 1351 if (!boot_cpu_has(X86_FEATURE_APIC) && 1352 APIC_INTEGRATED(boot_cpu_apic_version)) { 1353 disable_apic = 1; 1354 pr_err(FW_BUG "Local APIC %d not detected, force emulation\n", 1355 boot_cpu_physical_apicid); 1356 return APIC_PIC; 1357 } 1358 #endif 1359 1360 /* Check MP table or ACPI MADT configuration */ 1361 if (!smp_found_config) { 1362 disable_ioapic_support(); 1363 if (!acpi_lapic) { 1364 pr_info("APIC: ACPI MADT or MP tables are not detected\n"); 1365 return APIC_VIRTUAL_WIRE_NO_CONFIG; 1366 } 1367 return APIC_VIRTUAL_WIRE; 1368 } 1369 1370 #ifdef CONFIG_SMP 1371 /* If SMP should be disabled, then really disable it! */ 1372 if (!setup_max_cpus) { 1373 pr_info("APIC: SMP mode deactivated\n"); 1374 return APIC_SYMMETRIC_IO_NO_ROUTING; 1375 } 1376 1377 if (read_apic_id() != boot_cpu_physical_apicid) { 1378 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1379 read_apic_id(), boot_cpu_physical_apicid); 1380 /* Or can we switch back to PIC here? */ 1381 } 1382 #endif 1383 1384 return APIC_SYMMETRIC_IO; 1385 } 1386 1387 /* 1388 * An initial setup of the virtual wire mode. 1389 */ 1390 void __init init_bsp_APIC(void) 1391 { 1392 unsigned int value; 1393 1394 /* 1395 * Don't do the setup now if we have a SMP BIOS as the 1396 * through-I/O-APIC virtual wire mode might be active. 1397 */ 1398 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) 1399 return; 1400 1401 /* 1402 * Do not trust the local APIC being empty at bootup. 1403 */ 1404 clear_local_APIC(); 1405 1406 /* 1407 * Enable APIC. 1408 */ 1409 value = apic_read(APIC_SPIV); 1410 value &= ~APIC_VECTOR_MASK; 1411 value |= APIC_SPIV_APIC_ENABLED; 1412 1413 #ifdef CONFIG_X86_32 1414 /* This bit is reserved on P4/Xeon and should be cleared */ 1415 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 1416 (boot_cpu_data.x86 == 15)) 1417 value &= ~APIC_SPIV_FOCUS_DISABLED; 1418 else 1419 #endif 1420 value |= APIC_SPIV_FOCUS_DISABLED; 1421 value |= SPURIOUS_APIC_VECTOR; 1422 apic_write(APIC_SPIV, value); 1423 1424 /* 1425 * Set up the virtual wire mode. 1426 */ 1427 apic_write(APIC_LVT0, APIC_DM_EXTINT); 1428 value = APIC_DM_NMI; 1429 if (!lapic_is_integrated()) /* 82489DX */ 1430 value |= APIC_LVT_LEVEL_TRIGGER; 1431 if (apic_extnmi == APIC_EXTNMI_NONE) 1432 value |= APIC_LVT_MASKED; 1433 apic_write(APIC_LVT1, value); 1434 } 1435 1436 static void __init apic_bsp_setup(bool upmode); 1437 1438 /* Init the interrupt delivery mode for the BSP */ 1439 void __init apic_intr_mode_init(void) 1440 { 1441 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); 1442 1443 apic_intr_mode = apic_intr_mode_select(); 1444 1445 switch (apic_intr_mode) { 1446 case APIC_PIC: 1447 pr_info("APIC: Keep in PIC mode(8259)\n"); 1448 return; 1449 case APIC_VIRTUAL_WIRE: 1450 pr_info("APIC: Switch to virtual wire mode setup\n"); 1451 default_setup_apic_routing(); 1452 break; 1453 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1454 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); 1455 upmode = true; 1456 default_setup_apic_routing(); 1457 break; 1458 case APIC_SYMMETRIC_IO: 1459 pr_info("APIC: Switch to symmetric I/O mode setup\n"); 1460 default_setup_apic_routing(); 1461 break; 1462 case APIC_SYMMETRIC_IO_NO_ROUTING: 1463 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); 1464 break; 1465 } 1466 1467 apic_bsp_setup(upmode); 1468 } 1469 1470 static void lapic_setup_esr(void) 1471 { 1472 unsigned int oldvalue, value, maxlvt; 1473 1474 if (!lapic_is_integrated()) { 1475 pr_info("No ESR for 82489DX.\n"); 1476 return; 1477 } 1478 1479 if (apic->disable_esr) { 1480 /* 1481 * Something untraceable is creating bad interrupts on 1482 * secondary quads ... for the moment, just leave the 1483 * ESR disabled - we can't do anything useful with the 1484 * errors anyway - mbligh 1485 */ 1486 pr_info("Leaving ESR disabled.\n"); 1487 return; 1488 } 1489 1490 maxlvt = lapic_get_maxlvt(); 1491 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1492 apic_write(APIC_ESR, 0); 1493 oldvalue = apic_read(APIC_ESR); 1494 1495 /* enables sending errors */ 1496 value = ERROR_APIC_VECTOR; 1497 apic_write(APIC_LVTERR, value); 1498 1499 /* 1500 * spec says clear errors after enabling vector. 1501 */ 1502 if (maxlvt > 3) 1503 apic_write(APIC_ESR, 0); 1504 value = apic_read(APIC_ESR); 1505 if (value != oldvalue) 1506 apic_printk(APIC_VERBOSE, "ESR value before enabling " 1507 "vector: 0x%08x after: 0x%08x\n", 1508 oldvalue, value); 1509 } 1510 1511 #define APIC_IR_REGS APIC_ISR_NR 1512 #define APIC_IR_BITS (APIC_IR_REGS * 32) 1513 #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) 1514 1515 union apic_ir { 1516 unsigned long map[APIC_IR_MAPSIZE]; 1517 u32 regs[APIC_IR_REGS]; 1518 }; 1519 1520 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) 1521 { 1522 int i, bit; 1523 1524 /* Read the IRRs */ 1525 for (i = 0; i < APIC_IR_REGS; i++) 1526 irr->regs[i] = apic_read(APIC_IRR + i * 0x10); 1527 1528 /* Read the ISRs */ 1529 for (i = 0; i < APIC_IR_REGS; i++) 1530 isr->regs[i] = apic_read(APIC_ISR + i * 0x10); 1531 1532 /* 1533 * If the ISR map is not empty. ACK the APIC and run another round 1534 * to verify whether a pending IRR has been unblocked and turned 1535 * into a ISR. 1536 */ 1537 if (!bitmap_empty(isr->map, APIC_IR_BITS)) { 1538 /* 1539 * There can be multiple ISR bits set when a high priority 1540 * interrupt preempted a lower priority one. Issue an ACK 1541 * per set bit. 1542 */ 1543 for_each_set_bit(bit, isr->map, APIC_IR_BITS) 1544 ack_APIC_irq(); 1545 return true; 1546 } 1547 1548 return !bitmap_empty(irr->map, APIC_IR_BITS); 1549 } 1550 1551 /* 1552 * After a crash, we no longer service the interrupts and a pending 1553 * interrupt from previous kernel might still have ISR bit set. 1554 * 1555 * Most probably by now the CPU has serviced that pending interrupt and it 1556 * might not have done the ack_APIC_irq() because it thought, interrupt 1557 * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear 1558 * the ISR bit and cpu thinks it has already serivced the interrupt. Hence 1559 * a vector might get locked. It was noticed for timer irq (vector 1560 * 0x31). Issue an extra EOI to clear ISR. 1561 * 1562 * If there are pending IRR bits they turn into ISR bits after a higher 1563 * priority ISR bit has been acked. 1564 */ 1565 static void apic_pending_intr_clear(void) 1566 { 1567 union apic_ir irr, isr; 1568 unsigned int i; 1569 1570 /* 512 loops are way oversized and give the APIC a chance to obey. */ 1571 for (i = 0; i < 512; i++) { 1572 if (!apic_check_and_ack(&irr, &isr)) 1573 return; 1574 } 1575 /* Dump the IRR/ISR content if that failed */ 1576 pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); 1577 } 1578 1579 /** 1580 * setup_local_APIC - setup the local APIC 1581 * 1582 * Used to setup local APIC while initializing BSP or bringing up APs. 1583 * Always called with preemption disabled. 1584 */ 1585 static void setup_local_APIC(void) 1586 { 1587 int cpu = smp_processor_id(); 1588 unsigned int value; 1589 1590 if (disable_apic) { 1591 disable_ioapic_support(); 1592 return; 1593 } 1594 1595 /* 1596 * If this comes from kexec/kcrash the APIC might be enabled in 1597 * SPIV. Soft disable it before doing further initialization. 1598 */ 1599 value = apic_read(APIC_SPIV); 1600 value &= ~APIC_SPIV_APIC_ENABLED; 1601 apic_write(APIC_SPIV, value); 1602 1603 #ifdef CONFIG_X86_32 1604 /* Pound the ESR really hard over the head with a big hammer - mbligh */ 1605 if (lapic_is_integrated() && apic->disable_esr) { 1606 apic_write(APIC_ESR, 0); 1607 apic_write(APIC_ESR, 0); 1608 apic_write(APIC_ESR, 0); 1609 apic_write(APIC_ESR, 0); 1610 } 1611 #endif 1612 /* 1613 * Double-check whether this APIC is really registered. 1614 * This is meaningless in clustered apic mode, so we skip it. 1615 */ 1616 BUG_ON(!apic->apic_id_registered()); 1617 1618 /* 1619 * Intel recommends to set DFR, LDR and TPR before enabling 1620 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel 1621 * document number 292116). So here it goes... 1622 */ 1623 apic->init_apic_ldr(); 1624 1625 #ifdef CONFIG_X86_32 1626 if (apic->dest_logical) { 1627 int logical_apicid, ldr_apicid; 1628 1629 /* 1630 * APIC LDR is initialized. If logical_apicid mapping was 1631 * initialized during get_smp_config(), make sure it matches 1632 * the actual value. 1633 */ 1634 logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu); 1635 ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 1636 if (logical_apicid != BAD_APICID) 1637 WARN_ON(logical_apicid != ldr_apicid); 1638 /* Always use the value from LDR. */ 1639 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid; 1640 } 1641 #endif 1642 1643 /* 1644 * Set Task Priority to 'accept all except vectors 0-31'. An APIC 1645 * vector in the 16-31 range could be delivered if TPR == 0, but we 1646 * would think it's an exception and terrible things will happen. We 1647 * never change this later on. 1648 */ 1649 value = apic_read(APIC_TASKPRI); 1650 value &= ~APIC_TPRI_MASK; 1651 value |= 0x10; 1652 apic_write(APIC_TASKPRI, value); 1653 1654 /* Clear eventually stale ISR/IRR bits */ 1655 apic_pending_intr_clear(); 1656 1657 /* 1658 * Now that we are all set up, enable the APIC 1659 */ 1660 value = apic_read(APIC_SPIV); 1661 value &= ~APIC_VECTOR_MASK; 1662 /* 1663 * Enable APIC 1664 */ 1665 value |= APIC_SPIV_APIC_ENABLED; 1666 1667 #ifdef CONFIG_X86_32 1668 /* 1669 * Some unknown Intel IO/APIC (or APIC) errata is biting us with 1670 * certain networking cards. If high frequency interrupts are 1671 * happening on a particular IOAPIC pin, plus the IOAPIC routing 1672 * entry is masked/unmasked at a high rate as well then sooner or 1673 * later IOAPIC line gets 'stuck', no more interrupts are received 1674 * from the device. If focus CPU is disabled then the hang goes 1675 * away, oh well :-( 1676 * 1677 * [ This bug can be reproduced easily with a level-triggered 1678 * PCI Ne2000 networking cards and PII/PIII processors, dual 1679 * BX chipset. ] 1680 */ 1681 /* 1682 * Actually disabling the focus CPU check just makes the hang less 1683 * frequent as it makes the interrupt distributon model be more 1684 * like LRU than MRU (the short-term load is more even across CPUs). 1685 */ 1686 1687 /* 1688 * - enable focus processor (bit==0) 1689 * - 64bit mode always use processor focus 1690 * so no need to set it 1691 */ 1692 value &= ~APIC_SPIV_FOCUS_DISABLED; 1693 #endif 1694 1695 /* 1696 * Set spurious IRQ vector 1697 */ 1698 value |= SPURIOUS_APIC_VECTOR; 1699 apic_write(APIC_SPIV, value); 1700 1701 perf_events_lapic_init(); 1702 1703 /* 1704 * Set up LVT0, LVT1: 1705 * 1706 * set up through-local-APIC on the boot CPU's LINT0. This is not 1707 * strictly necessary in pure symmetric-IO mode, but sometimes 1708 * we delegate interrupts to the 8259A. 1709 */ 1710 /* 1711 * TODO: set up through-local-APIC from through-I/O-APIC? --macro 1712 */ 1713 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; 1714 if (!cpu && (pic_mode || !value || skip_ioapic_setup)) { 1715 value = APIC_DM_EXTINT; 1716 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); 1717 } else { 1718 value = APIC_DM_EXTINT | APIC_LVT_MASKED; 1719 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); 1720 } 1721 apic_write(APIC_LVT0, value); 1722 1723 /* 1724 * Only the BSP sees the LINT1 NMI signal by default. This can be 1725 * modified by apic_extnmi= boot option. 1726 */ 1727 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || 1728 apic_extnmi == APIC_EXTNMI_ALL) 1729 value = APIC_DM_NMI; 1730 else 1731 value = APIC_DM_NMI | APIC_LVT_MASKED; 1732 1733 /* Is 82489DX ? */ 1734 if (!lapic_is_integrated()) 1735 value |= APIC_LVT_LEVEL_TRIGGER; 1736 apic_write(APIC_LVT1, value); 1737 1738 #ifdef CONFIG_X86_MCE_INTEL 1739 /* Recheck CMCI information after local APIC is up on CPU #0 */ 1740 if (!cpu) 1741 cmci_recheck(); 1742 #endif 1743 } 1744 1745 static void end_local_APIC_setup(void) 1746 { 1747 lapic_setup_esr(); 1748 1749 #ifdef CONFIG_X86_32 1750 { 1751 unsigned int value; 1752 /* Disable the local apic timer */ 1753 value = apic_read(APIC_LVTT); 1754 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 1755 apic_write(APIC_LVTT, value); 1756 } 1757 #endif 1758 1759 apic_pm_activate(); 1760 } 1761 1762 /* 1763 * APIC setup function for application processors. Called from smpboot.c 1764 */ 1765 void apic_ap_setup(void) 1766 { 1767 setup_local_APIC(); 1768 end_local_APIC_setup(); 1769 } 1770 1771 #ifdef CONFIG_X86_X2APIC 1772 int x2apic_mode; 1773 1774 enum { 1775 X2APIC_OFF, 1776 X2APIC_ON, 1777 X2APIC_DISABLED, 1778 }; 1779 static int x2apic_state; 1780 1781 static void __x2apic_disable(void) 1782 { 1783 u64 msr; 1784 1785 if (!boot_cpu_has(X86_FEATURE_APIC)) 1786 return; 1787 1788 rdmsrl(MSR_IA32_APICBASE, msr); 1789 if (!(msr & X2APIC_ENABLE)) 1790 return; 1791 /* Disable xapic and x2apic first and then reenable xapic mode */ 1792 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); 1793 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); 1794 printk_once(KERN_INFO "x2apic disabled\n"); 1795 } 1796 1797 static void __x2apic_enable(void) 1798 { 1799 u64 msr; 1800 1801 rdmsrl(MSR_IA32_APICBASE, msr); 1802 if (msr & X2APIC_ENABLE) 1803 return; 1804 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); 1805 printk_once(KERN_INFO "x2apic enabled\n"); 1806 } 1807 1808 static int __init setup_nox2apic(char *str) 1809 { 1810 if (x2apic_enabled()) { 1811 int apicid = native_apic_msr_read(APIC_ID); 1812 1813 if (apicid >= 255) { 1814 pr_warn("Apicid: %08x, cannot enforce nox2apic\n", 1815 apicid); 1816 return 0; 1817 } 1818 pr_warn("x2apic already enabled.\n"); 1819 __x2apic_disable(); 1820 } 1821 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 1822 x2apic_state = X2APIC_DISABLED; 1823 x2apic_mode = 0; 1824 return 0; 1825 } 1826 early_param("nox2apic", setup_nox2apic); 1827 1828 /* Called from cpu_init() to enable x2apic on (secondary) cpus */ 1829 void x2apic_setup(void) 1830 { 1831 /* 1832 * If x2apic is not in ON state, disable it if already enabled 1833 * from BIOS. 1834 */ 1835 if (x2apic_state != X2APIC_ON) { 1836 __x2apic_disable(); 1837 return; 1838 } 1839 __x2apic_enable(); 1840 } 1841 1842 static __init void x2apic_disable(void) 1843 { 1844 u32 x2apic_id, state = x2apic_state; 1845 1846 x2apic_mode = 0; 1847 x2apic_state = X2APIC_DISABLED; 1848 1849 if (state != X2APIC_ON) 1850 return; 1851 1852 x2apic_id = read_apic_id(); 1853 if (x2apic_id >= 255) 1854 panic("Cannot disable x2apic, id: %08x\n", x2apic_id); 1855 1856 __x2apic_disable(); 1857 register_lapic_address(mp_lapic_addr); 1858 } 1859 1860 static __init void x2apic_enable(void) 1861 { 1862 if (x2apic_state != X2APIC_OFF) 1863 return; 1864 1865 x2apic_mode = 1; 1866 x2apic_state = X2APIC_ON; 1867 __x2apic_enable(); 1868 } 1869 1870 static __init void try_to_enable_x2apic(int remap_mode) 1871 { 1872 if (x2apic_state == X2APIC_DISABLED) 1873 return; 1874 1875 if (remap_mode != IRQ_REMAP_X2APIC_MODE) { 1876 /* IR is required if there is APIC ID > 255 even when running 1877 * under KVM 1878 */ 1879 if (max_physical_apicid > 255 || 1880 !x86_init.hyper.x2apic_available()) { 1881 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); 1882 x2apic_disable(); 1883 return; 1884 } 1885 1886 /* 1887 * without IR all CPUs can be addressed by IOAPIC/MSI 1888 * only in physical mode 1889 */ 1890 x2apic_phys = 1; 1891 } 1892 x2apic_enable(); 1893 } 1894 1895 void __init check_x2apic(void) 1896 { 1897 if (x2apic_enabled()) { 1898 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); 1899 x2apic_mode = 1; 1900 x2apic_state = X2APIC_ON; 1901 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { 1902 x2apic_state = X2APIC_DISABLED; 1903 } 1904 } 1905 #else /* CONFIG_X86_X2APIC */ 1906 static int __init validate_x2apic(void) 1907 { 1908 if (!apic_is_x2apic_enabled()) 1909 return 0; 1910 /* 1911 * Checkme: Can we simply turn off x2apic here instead of panic? 1912 */ 1913 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); 1914 } 1915 early_initcall(validate_x2apic); 1916 1917 static inline void try_to_enable_x2apic(int remap_mode) { } 1918 static inline void __x2apic_enable(void) { } 1919 #endif /* !CONFIG_X86_X2APIC */ 1920 1921 void __init enable_IR_x2apic(void) 1922 { 1923 unsigned long flags; 1924 int ret, ir_stat; 1925 1926 if (skip_ioapic_setup) { 1927 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); 1928 return; 1929 } 1930 1931 ir_stat = irq_remapping_prepare(); 1932 if (ir_stat < 0 && !x2apic_supported()) 1933 return; 1934 1935 ret = save_ioapic_entries(); 1936 if (ret) { 1937 pr_info("Saving IO-APIC state failed: %d\n", ret); 1938 return; 1939 } 1940 1941 local_irq_save(flags); 1942 legacy_pic->mask_all(); 1943 mask_ioapic_entries(); 1944 1945 /* If irq_remapping_prepare() succeeded, try to enable it */ 1946 if (ir_stat >= 0) 1947 ir_stat = irq_remapping_enable(); 1948 /* ir_stat contains the remap mode or an error code */ 1949 try_to_enable_x2apic(ir_stat); 1950 1951 if (ir_stat < 0) 1952 restore_ioapic_entries(); 1953 legacy_pic->restore_mask(); 1954 local_irq_restore(flags); 1955 } 1956 1957 #ifdef CONFIG_X86_64 1958 /* 1959 * Detect and enable local APICs on non-SMP boards. 1960 * Original code written by Keir Fraser. 1961 * On AMD64 we trust the BIOS - if it says no APIC it is likely 1962 * not correctly set up (usually the APIC timer won't work etc.) 1963 */ 1964 static int __init detect_init_APIC(void) 1965 { 1966 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1967 pr_info("No local APIC present\n"); 1968 return -1; 1969 } 1970 1971 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1972 return 0; 1973 } 1974 #else 1975 1976 static int __init apic_verify(void) 1977 { 1978 u32 features, h, l; 1979 1980 /* 1981 * The APIC feature bit should now be enabled 1982 * in `cpuid' 1983 */ 1984 features = cpuid_edx(1); 1985 if (!(features & (1 << X86_FEATURE_APIC))) { 1986 pr_warn("Could not enable APIC!\n"); 1987 return -1; 1988 } 1989 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); 1990 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1991 1992 /* The BIOS may have set up the APIC at some other address */ 1993 if (boot_cpu_data.x86 >= 6) { 1994 rdmsr(MSR_IA32_APICBASE, l, h); 1995 if (l & MSR_IA32_APICBASE_ENABLE) 1996 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; 1997 } 1998 1999 pr_info("Found and enabled local APIC!\n"); 2000 return 0; 2001 } 2002 2003 int __init apic_force_enable(unsigned long addr) 2004 { 2005 u32 h, l; 2006 2007 if (disable_apic) 2008 return -1; 2009 2010 /* 2011 * Some BIOSes disable the local APIC in the APIC_BASE 2012 * MSR. This can only be done in software for Intel P6 or later 2013 * and AMD K7 (Model > 1) or later. 2014 */ 2015 if (boot_cpu_data.x86 >= 6) { 2016 rdmsr(MSR_IA32_APICBASE, l, h); 2017 if (!(l & MSR_IA32_APICBASE_ENABLE)) { 2018 pr_info("Local APIC disabled by BIOS -- reenabling.\n"); 2019 l &= ~MSR_IA32_APICBASE_BASE; 2020 l |= MSR_IA32_APICBASE_ENABLE | addr; 2021 wrmsr(MSR_IA32_APICBASE, l, h); 2022 enabled_via_apicbase = 1; 2023 } 2024 } 2025 return apic_verify(); 2026 } 2027 2028 /* 2029 * Detect and initialize APIC 2030 */ 2031 static int __init detect_init_APIC(void) 2032 { 2033 /* Disabled by kernel option? */ 2034 if (disable_apic) 2035 return -1; 2036 2037 switch (boot_cpu_data.x86_vendor) { 2038 case X86_VENDOR_AMD: 2039 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || 2040 (boot_cpu_data.x86 >= 15)) 2041 break; 2042 goto no_apic; 2043 case X86_VENDOR_HYGON: 2044 break; 2045 case X86_VENDOR_INTEL: 2046 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || 2047 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) 2048 break; 2049 goto no_apic; 2050 default: 2051 goto no_apic; 2052 } 2053 2054 if (!boot_cpu_has(X86_FEATURE_APIC)) { 2055 /* 2056 * Over-ride BIOS and try to enable the local APIC only if 2057 * "lapic" specified. 2058 */ 2059 if (!force_enable_local_apic) { 2060 pr_info("Local APIC disabled by BIOS -- " 2061 "you can enable it with \"lapic\"\n"); 2062 return -1; 2063 } 2064 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) 2065 return -1; 2066 } else { 2067 if (apic_verify()) 2068 return -1; 2069 } 2070 2071 apic_pm_activate(); 2072 2073 return 0; 2074 2075 no_apic: 2076 pr_info("No local APIC present or hardware disabled\n"); 2077 return -1; 2078 } 2079 #endif 2080 2081 /** 2082 * init_apic_mappings - initialize APIC mappings 2083 */ 2084 void __init init_apic_mappings(void) 2085 { 2086 unsigned int new_apicid; 2087 2088 apic_check_deadline_errata(); 2089 2090 if (x2apic_mode) { 2091 boot_cpu_physical_apicid = read_apic_id(); 2092 return; 2093 } 2094 2095 /* If no local APIC can be found return early */ 2096 if (!smp_found_config && detect_init_APIC()) { 2097 /* lets NOP'ify apic operations */ 2098 pr_info("APIC: disable apic facility\n"); 2099 apic_disable(); 2100 } else { 2101 apic_phys = mp_lapic_addr; 2102 2103 /* 2104 * If the system has ACPI MADT tables or MP info, the LAPIC 2105 * address is already registered. 2106 */ 2107 if (!acpi_lapic && !smp_found_config) 2108 register_lapic_address(apic_phys); 2109 } 2110 2111 /* 2112 * Fetch the APIC ID of the BSP in case we have a 2113 * default configuration (or the MP table is broken). 2114 */ 2115 new_apicid = read_apic_id(); 2116 if (boot_cpu_physical_apicid != new_apicid) { 2117 boot_cpu_physical_apicid = new_apicid; 2118 /* 2119 * yeah -- we lie about apic_version 2120 * in case if apic was disabled via boot option 2121 * but it's not a problem for SMP compiled kernel 2122 * since apic_intr_mode_select is prepared for such 2123 * a case and disable smp mode 2124 */ 2125 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 2126 } 2127 } 2128 2129 void __init register_lapic_address(unsigned long address) 2130 { 2131 mp_lapic_addr = address; 2132 2133 if (!x2apic_mode) { 2134 set_fixmap_nocache(FIX_APIC_BASE, address); 2135 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", 2136 APIC_BASE, address); 2137 } 2138 if (boot_cpu_physical_apicid == -1U) { 2139 boot_cpu_physical_apicid = read_apic_id(); 2140 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 2141 } 2142 } 2143 2144 /* 2145 * Local APIC interrupts 2146 */ 2147 2148 /* 2149 * This interrupt should _never_ happen with our APIC/SMP architecture 2150 */ 2151 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs) 2152 { 2153 u8 vector = ~regs->orig_ax; 2154 u32 v; 2155 2156 entering_irq(); 2157 trace_spurious_apic_entry(vector); 2158 2159 inc_irq_stat(irq_spurious_count); 2160 2161 /* 2162 * If this is a spurious interrupt then do not acknowledge 2163 */ 2164 if (vector == SPURIOUS_APIC_VECTOR) { 2165 /* See SDM vol 3 */ 2166 pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", 2167 smp_processor_id()); 2168 goto out; 2169 } 2170 2171 /* 2172 * If it is a vectored one, verify it's set in the ISR. If set, 2173 * acknowledge it. 2174 */ 2175 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); 2176 if (v & (1 << (vector & 0x1f))) { 2177 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", 2178 vector, smp_processor_id()); 2179 ack_APIC_irq(); 2180 } else { 2181 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", 2182 vector, smp_processor_id()); 2183 } 2184 out: 2185 trace_spurious_apic_exit(vector); 2186 exiting_irq(); 2187 } 2188 2189 /* 2190 * This interrupt should never happen with our APIC/SMP architecture 2191 */ 2192 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs) 2193 { 2194 static const char * const error_interrupt_reason[] = { 2195 "Send CS error", /* APIC Error Bit 0 */ 2196 "Receive CS error", /* APIC Error Bit 1 */ 2197 "Send accept error", /* APIC Error Bit 2 */ 2198 "Receive accept error", /* APIC Error Bit 3 */ 2199 "Redirectable IPI", /* APIC Error Bit 4 */ 2200 "Send illegal vector", /* APIC Error Bit 5 */ 2201 "Received illegal vector", /* APIC Error Bit 6 */ 2202 "Illegal register address", /* APIC Error Bit 7 */ 2203 }; 2204 u32 v, i = 0; 2205 2206 entering_irq(); 2207 trace_error_apic_entry(ERROR_APIC_VECTOR); 2208 2209 /* First tickle the hardware, only then report what went on. -- REW */ 2210 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ 2211 apic_write(APIC_ESR, 0); 2212 v = apic_read(APIC_ESR); 2213 ack_APIC_irq(); 2214 atomic_inc(&irq_err_count); 2215 2216 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", 2217 smp_processor_id(), v); 2218 2219 v &= 0xff; 2220 while (v) { 2221 if (v & 0x1) 2222 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); 2223 i++; 2224 v >>= 1; 2225 } 2226 2227 apic_printk(APIC_DEBUG, KERN_CONT "\n"); 2228 2229 trace_error_apic_exit(ERROR_APIC_VECTOR); 2230 exiting_irq(); 2231 } 2232 2233 /** 2234 * connect_bsp_APIC - attach the APIC to the interrupt system 2235 */ 2236 static void __init connect_bsp_APIC(void) 2237 { 2238 #ifdef CONFIG_X86_32 2239 if (pic_mode) { 2240 /* 2241 * Do not trust the local APIC being empty at bootup. 2242 */ 2243 clear_local_APIC(); 2244 /* 2245 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's 2246 * local APIC to INT and NMI lines. 2247 */ 2248 apic_printk(APIC_VERBOSE, "leaving PIC mode, " 2249 "enabling APIC mode.\n"); 2250 imcr_pic_to_apic(); 2251 } 2252 #endif 2253 } 2254 2255 /** 2256 * disconnect_bsp_APIC - detach the APIC from the interrupt system 2257 * @virt_wire_setup: indicates, whether virtual wire mode is selected 2258 * 2259 * Virtual wire mode is necessary to deliver legacy interrupts even when the 2260 * APIC is disabled. 2261 */ 2262 void disconnect_bsp_APIC(int virt_wire_setup) 2263 { 2264 unsigned int value; 2265 2266 #ifdef CONFIG_X86_32 2267 if (pic_mode) { 2268 /* 2269 * Put the board back into PIC mode (has an effect only on 2270 * certain older boards). Note that APIC interrupts, including 2271 * IPIs, won't work beyond this point! The only exception are 2272 * INIT IPIs. 2273 */ 2274 apic_printk(APIC_VERBOSE, "disabling APIC mode, " 2275 "entering PIC mode.\n"); 2276 imcr_apic_to_pic(); 2277 return; 2278 } 2279 #endif 2280 2281 /* Go back to Virtual Wire compatibility mode */ 2282 2283 /* For the spurious interrupt use vector F, and enable it */ 2284 value = apic_read(APIC_SPIV); 2285 value &= ~APIC_VECTOR_MASK; 2286 value |= APIC_SPIV_APIC_ENABLED; 2287 value |= 0xf; 2288 apic_write(APIC_SPIV, value); 2289 2290 if (!virt_wire_setup) { 2291 /* 2292 * For LVT0 make it edge triggered, active high, 2293 * external and enabled 2294 */ 2295 value = apic_read(APIC_LVT0); 2296 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2297 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2298 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2299 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2300 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); 2301 apic_write(APIC_LVT0, value); 2302 } else { 2303 /* Disable LVT0 */ 2304 apic_write(APIC_LVT0, APIC_LVT_MASKED); 2305 } 2306 2307 /* 2308 * For LVT1 make it edge triggered, active high, 2309 * nmi and enabled 2310 */ 2311 value = apic_read(APIC_LVT1); 2312 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2313 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2314 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2315 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2316 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); 2317 apic_write(APIC_LVT1, value); 2318 } 2319 2320 /* 2321 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated 2322 * contiguously, it equals to current allocated max logical CPU ID plus 1. 2323 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, 2324 * so the maximum of nr_logical_cpuids is nr_cpu_ids. 2325 * 2326 * NOTE: Reserve 0 for BSP. 2327 */ 2328 static int nr_logical_cpuids = 1; 2329 2330 /* 2331 * Used to store mapping between logical CPU IDs and APIC IDs. 2332 */ 2333 static int cpuid_to_apicid[] = { 2334 [0 ... NR_CPUS - 1] = -1, 2335 }; 2336 2337 #ifdef CONFIG_SMP 2338 /** 2339 * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread 2340 * @apicid: APIC ID to check 2341 */ 2342 bool apic_id_is_primary_thread(unsigned int apicid) 2343 { 2344 u32 mask; 2345 2346 if (smp_num_siblings == 1) 2347 return true; 2348 /* Isolate the SMT bit(s) in the APICID and check for 0 */ 2349 mask = (1U << (fls(smp_num_siblings) - 1)) - 1; 2350 return !(apicid & mask); 2351 } 2352 #endif 2353 2354 /* 2355 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids 2356 * and cpuid_to_apicid[] synchronized. 2357 */ 2358 static int allocate_logical_cpuid(int apicid) 2359 { 2360 int i; 2361 2362 /* 2363 * cpuid <-> apicid mapping is persistent, so when a cpu is up, 2364 * check if the kernel has allocated a cpuid for it. 2365 */ 2366 for (i = 0; i < nr_logical_cpuids; i++) { 2367 if (cpuid_to_apicid[i] == apicid) 2368 return i; 2369 } 2370 2371 /* Allocate a new cpuid. */ 2372 if (nr_logical_cpuids >= nr_cpu_ids) { 2373 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " 2374 "Processor %d/0x%x and the rest are ignored.\n", 2375 nr_cpu_ids, nr_logical_cpuids, apicid); 2376 return -EINVAL; 2377 } 2378 2379 cpuid_to_apicid[nr_logical_cpuids] = apicid; 2380 return nr_logical_cpuids++; 2381 } 2382 2383 int generic_processor_info(int apicid, int version) 2384 { 2385 int cpu, max = nr_cpu_ids; 2386 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, 2387 phys_cpu_present_map); 2388 2389 /* 2390 * boot_cpu_physical_apicid is designed to have the apicid 2391 * returned by read_apic_id(), i.e, the apicid of the 2392 * currently booting-up processor. However, on some platforms, 2393 * it is temporarily modified by the apicid reported as BSP 2394 * through MP table. Concretely: 2395 * 2396 * - arch/x86/kernel/mpparse.c: MP_processor_info() 2397 * - arch/x86/mm/amdtopology.c: amd_numa_init() 2398 * 2399 * This function is executed with the modified 2400 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel 2401 * parameter doesn't work to disable APs on kdump 2nd kernel. 2402 * 2403 * Since fixing handling of boot_cpu_physical_apicid requires 2404 * another discussion and tests on each platform, we leave it 2405 * for now and here we use read_apic_id() directly in this 2406 * function, generic_processor_info(). 2407 */ 2408 if (disabled_cpu_apicid != BAD_APICID && 2409 disabled_cpu_apicid != read_apic_id() && 2410 disabled_cpu_apicid == apicid) { 2411 int thiscpu = num_processors + disabled_cpus; 2412 2413 pr_warn("APIC: Disabling requested cpu." 2414 " Processor %d/0x%x ignored.\n", thiscpu, apicid); 2415 2416 disabled_cpus++; 2417 return -ENODEV; 2418 } 2419 2420 /* 2421 * If boot cpu has not been detected yet, then only allow upto 2422 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu 2423 */ 2424 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && 2425 apicid != boot_cpu_physical_apicid) { 2426 int thiscpu = max + disabled_cpus - 1; 2427 2428 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost" 2429 " reached. Keeping one slot for boot cpu." 2430 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2431 2432 disabled_cpus++; 2433 return -ENODEV; 2434 } 2435 2436 if (num_processors >= nr_cpu_ids) { 2437 int thiscpu = max + disabled_cpus; 2438 2439 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. " 2440 "Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2441 2442 disabled_cpus++; 2443 return -EINVAL; 2444 } 2445 2446 if (apicid == boot_cpu_physical_apicid) { 2447 /* 2448 * x86_bios_cpu_apicid is required to have processors listed 2449 * in same order as logical cpu numbers. Hence the first 2450 * entry is BSP, and so on. 2451 * boot_cpu_init() already hold bit 0 in cpu_present_mask 2452 * for BSP. 2453 */ 2454 cpu = 0; 2455 2456 /* Logical cpuid 0 is reserved for BSP. */ 2457 cpuid_to_apicid[0] = apicid; 2458 } else { 2459 cpu = allocate_logical_cpuid(apicid); 2460 if (cpu < 0) { 2461 disabled_cpus++; 2462 return -EINVAL; 2463 } 2464 } 2465 2466 /* 2467 * Validate version 2468 */ 2469 if (version == 0x0) { 2470 pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", 2471 cpu, apicid); 2472 version = 0x10; 2473 } 2474 2475 if (version != boot_cpu_apic_version) { 2476 pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", 2477 boot_cpu_apic_version, cpu, version); 2478 } 2479 2480 if (apicid > max_physical_apicid) 2481 max_physical_apicid = apicid; 2482 2483 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) 2484 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; 2485 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; 2486 #endif 2487 #ifdef CONFIG_X86_32 2488 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 2489 apic->x86_32_early_logical_apicid(cpu); 2490 #endif 2491 set_cpu_possible(cpu, true); 2492 physid_set(apicid, phys_cpu_present_map); 2493 set_cpu_present(cpu, true); 2494 num_processors++; 2495 2496 return cpu; 2497 } 2498 2499 int hard_smp_processor_id(void) 2500 { 2501 return read_apic_id(); 2502 } 2503 2504 /* 2505 * Override the generic EOI implementation with an optimized version. 2506 * Only called during early boot when only one CPU is active and with 2507 * interrupts disabled, so we know this does not race with actual APIC driver 2508 * use. 2509 */ 2510 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) 2511 { 2512 struct apic **drv; 2513 2514 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { 2515 /* Should happen once for each apic */ 2516 WARN_ON((*drv)->eoi_write == eoi_write); 2517 (*drv)->native_eoi_write = (*drv)->eoi_write; 2518 (*drv)->eoi_write = eoi_write; 2519 } 2520 } 2521 2522 static void __init apic_bsp_up_setup(void) 2523 { 2524 #ifdef CONFIG_X86_64 2525 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); 2526 #else 2527 /* 2528 * Hack: In case of kdump, after a crash, kernel might be booting 2529 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid 2530 * might be zero if read from MP tables. Get it from LAPIC. 2531 */ 2532 # ifdef CONFIG_CRASH_DUMP 2533 boot_cpu_physical_apicid = read_apic_id(); 2534 # endif 2535 #endif 2536 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 2537 } 2538 2539 /** 2540 * apic_bsp_setup - Setup function for local apic and io-apic 2541 * @upmode: Force UP mode (for APIC_init_uniprocessor) 2542 */ 2543 static void __init apic_bsp_setup(bool upmode) 2544 { 2545 connect_bsp_APIC(); 2546 if (upmode) 2547 apic_bsp_up_setup(); 2548 setup_local_APIC(); 2549 2550 enable_IO_APIC(); 2551 end_local_APIC_setup(); 2552 irq_remap_enable_fault_handling(); 2553 setup_IO_APIC(); 2554 } 2555 2556 #ifdef CONFIG_UP_LATE_INIT 2557 void __init up_late_init(void) 2558 { 2559 if (apic_intr_mode == APIC_PIC) 2560 return; 2561 2562 /* Setup local timer */ 2563 x86_init.timers.setup_percpu_clockev(); 2564 } 2565 #endif 2566 2567 /* 2568 * Power management 2569 */ 2570 #ifdef CONFIG_PM 2571 2572 static struct { 2573 /* 2574 * 'active' is true if the local APIC was enabled by us and 2575 * not the BIOS; this signifies that we are also responsible 2576 * for disabling it before entering apm/acpi suspend 2577 */ 2578 int active; 2579 /* r/w apic fields */ 2580 unsigned int apic_id; 2581 unsigned int apic_taskpri; 2582 unsigned int apic_ldr; 2583 unsigned int apic_dfr; 2584 unsigned int apic_spiv; 2585 unsigned int apic_lvtt; 2586 unsigned int apic_lvtpc; 2587 unsigned int apic_lvt0; 2588 unsigned int apic_lvt1; 2589 unsigned int apic_lvterr; 2590 unsigned int apic_tmict; 2591 unsigned int apic_tdcr; 2592 unsigned int apic_thmr; 2593 unsigned int apic_cmci; 2594 } apic_pm_state; 2595 2596 static int lapic_suspend(void) 2597 { 2598 unsigned long flags; 2599 int maxlvt; 2600 2601 if (!apic_pm_state.active) 2602 return 0; 2603 2604 maxlvt = lapic_get_maxlvt(); 2605 2606 apic_pm_state.apic_id = apic_read(APIC_ID); 2607 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); 2608 apic_pm_state.apic_ldr = apic_read(APIC_LDR); 2609 apic_pm_state.apic_dfr = apic_read(APIC_DFR); 2610 apic_pm_state.apic_spiv = apic_read(APIC_SPIV); 2611 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); 2612 if (maxlvt >= 4) 2613 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); 2614 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); 2615 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); 2616 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); 2617 apic_pm_state.apic_tmict = apic_read(APIC_TMICT); 2618 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); 2619 #ifdef CONFIG_X86_THERMAL_VECTOR 2620 if (maxlvt >= 5) 2621 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); 2622 #endif 2623 #ifdef CONFIG_X86_MCE_INTEL 2624 if (maxlvt >= 6) 2625 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); 2626 #endif 2627 2628 local_irq_save(flags); 2629 disable_local_APIC(); 2630 2631 irq_remapping_disable(); 2632 2633 local_irq_restore(flags); 2634 return 0; 2635 } 2636 2637 static void lapic_resume(void) 2638 { 2639 unsigned int l, h; 2640 unsigned long flags; 2641 int maxlvt; 2642 2643 if (!apic_pm_state.active) 2644 return; 2645 2646 local_irq_save(flags); 2647 2648 /* 2649 * IO-APIC and PIC have their own resume routines. 2650 * We just mask them here to make sure the interrupt 2651 * subsystem is completely quiet while we enable x2apic 2652 * and interrupt-remapping. 2653 */ 2654 mask_ioapic_entries(); 2655 legacy_pic->mask_all(); 2656 2657 if (x2apic_mode) { 2658 __x2apic_enable(); 2659 } else { 2660 /* 2661 * Make sure the APICBASE points to the right address 2662 * 2663 * FIXME! This will be wrong if we ever support suspend on 2664 * SMP! We'll need to do this as part of the CPU restore! 2665 */ 2666 if (boot_cpu_data.x86 >= 6) { 2667 rdmsr(MSR_IA32_APICBASE, l, h); 2668 l &= ~MSR_IA32_APICBASE_BASE; 2669 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; 2670 wrmsr(MSR_IA32_APICBASE, l, h); 2671 } 2672 } 2673 2674 maxlvt = lapic_get_maxlvt(); 2675 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); 2676 apic_write(APIC_ID, apic_pm_state.apic_id); 2677 apic_write(APIC_DFR, apic_pm_state.apic_dfr); 2678 apic_write(APIC_LDR, apic_pm_state.apic_ldr); 2679 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); 2680 apic_write(APIC_SPIV, apic_pm_state.apic_spiv); 2681 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); 2682 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); 2683 #ifdef CONFIG_X86_THERMAL_VECTOR 2684 if (maxlvt >= 5) 2685 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); 2686 #endif 2687 #ifdef CONFIG_X86_MCE_INTEL 2688 if (maxlvt >= 6) 2689 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); 2690 #endif 2691 if (maxlvt >= 4) 2692 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); 2693 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); 2694 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); 2695 apic_write(APIC_TMICT, apic_pm_state.apic_tmict); 2696 apic_write(APIC_ESR, 0); 2697 apic_read(APIC_ESR); 2698 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); 2699 apic_write(APIC_ESR, 0); 2700 apic_read(APIC_ESR); 2701 2702 irq_remapping_reenable(x2apic_mode); 2703 2704 local_irq_restore(flags); 2705 } 2706 2707 /* 2708 * This device has no shutdown method - fully functioning local APICs 2709 * are needed on every CPU up until machine_halt/restart/poweroff. 2710 */ 2711 2712 static struct syscore_ops lapic_syscore_ops = { 2713 .resume = lapic_resume, 2714 .suspend = lapic_suspend, 2715 }; 2716 2717 static void apic_pm_activate(void) 2718 { 2719 apic_pm_state.active = 1; 2720 } 2721 2722 static int __init init_lapic_sysfs(void) 2723 { 2724 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ 2725 if (boot_cpu_has(X86_FEATURE_APIC)) 2726 register_syscore_ops(&lapic_syscore_ops); 2727 2728 return 0; 2729 } 2730 2731 /* local apic needs to resume before other devices access its registers. */ 2732 core_initcall(init_lapic_sysfs); 2733 2734 #else /* CONFIG_PM */ 2735 2736 static void apic_pm_activate(void) { } 2737 2738 #endif /* CONFIG_PM */ 2739 2740 #ifdef CONFIG_X86_64 2741 2742 static int multi_checked; 2743 static int multi; 2744 2745 static int set_multi(const struct dmi_system_id *d) 2746 { 2747 if (multi) 2748 return 0; 2749 pr_info("APIC: %s detected, Multi Chassis\n", d->ident); 2750 multi = 1; 2751 return 0; 2752 } 2753 2754 static const struct dmi_system_id multi_dmi_table[] = { 2755 { 2756 .callback = set_multi, 2757 .ident = "IBM System Summit2", 2758 .matches = { 2759 DMI_MATCH(DMI_SYS_VENDOR, "IBM"), 2760 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), 2761 }, 2762 }, 2763 {} 2764 }; 2765 2766 static void dmi_check_multi(void) 2767 { 2768 if (multi_checked) 2769 return; 2770 2771 dmi_check_system(multi_dmi_table); 2772 multi_checked = 1; 2773 } 2774 2775 /* 2776 * apic_is_clustered_box() -- Check if we can expect good TSC 2777 * 2778 * Thus far, the major user of this is IBM's Summit2 series: 2779 * Clustered boxes may have unsynced TSC problems if they are 2780 * multi-chassis. 2781 * Use DMI to check them 2782 */ 2783 int apic_is_clustered_box(void) 2784 { 2785 dmi_check_multi(); 2786 return multi; 2787 } 2788 #endif 2789 2790 /* 2791 * APIC command line parameters 2792 */ 2793 static int __init setup_disableapic(char *arg) 2794 { 2795 disable_apic = 1; 2796 setup_clear_cpu_cap(X86_FEATURE_APIC); 2797 return 0; 2798 } 2799 early_param("disableapic", setup_disableapic); 2800 2801 /* same as disableapic, for compatibility */ 2802 static int __init setup_nolapic(char *arg) 2803 { 2804 return setup_disableapic(arg); 2805 } 2806 early_param("nolapic", setup_nolapic); 2807 2808 static int __init parse_lapic_timer_c2_ok(char *arg) 2809 { 2810 local_apic_timer_c2_ok = 1; 2811 return 0; 2812 } 2813 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); 2814 2815 static int __init parse_disable_apic_timer(char *arg) 2816 { 2817 disable_apic_timer = 1; 2818 return 0; 2819 } 2820 early_param("noapictimer", parse_disable_apic_timer); 2821 2822 static int __init parse_nolapic_timer(char *arg) 2823 { 2824 disable_apic_timer = 1; 2825 return 0; 2826 } 2827 early_param("nolapic_timer", parse_nolapic_timer); 2828 2829 static int __init apic_set_verbosity(char *arg) 2830 { 2831 if (!arg) { 2832 #ifdef CONFIG_X86_64 2833 skip_ioapic_setup = 0; 2834 return 0; 2835 #endif 2836 return -EINVAL; 2837 } 2838 2839 if (strcmp("debug", arg) == 0) 2840 apic_verbosity = APIC_DEBUG; 2841 else if (strcmp("verbose", arg) == 0) 2842 apic_verbosity = APIC_VERBOSE; 2843 #ifdef CONFIG_X86_64 2844 else { 2845 pr_warn("APIC Verbosity level %s not recognised" 2846 " use apic=verbose or apic=debug\n", arg); 2847 return -EINVAL; 2848 } 2849 #endif 2850 2851 return 0; 2852 } 2853 early_param("apic", apic_set_verbosity); 2854 2855 static int __init lapic_insert_resource(void) 2856 { 2857 if (!apic_phys) 2858 return -1; 2859 2860 /* Put local APIC into the resource map. */ 2861 lapic_resource.start = apic_phys; 2862 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; 2863 insert_resource(&iomem_resource, &lapic_resource); 2864 2865 return 0; 2866 } 2867 2868 /* 2869 * need call insert after e820__reserve_resources() 2870 * that is using request_resource 2871 */ 2872 late_initcall(lapic_insert_resource); 2873 2874 static int __init apic_set_disabled_cpu_apicid(char *arg) 2875 { 2876 if (!arg || !get_option(&arg, &disabled_cpu_apicid)) 2877 return -EINVAL; 2878 2879 return 0; 2880 } 2881 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); 2882 2883 static int __init apic_set_extnmi(char *arg) 2884 { 2885 if (!arg) 2886 return -EINVAL; 2887 2888 if (!strncmp("all", arg, 3)) 2889 apic_extnmi = APIC_EXTNMI_ALL; 2890 else if (!strncmp("none", arg, 4)) 2891 apic_extnmi = APIC_EXTNMI_NONE; 2892 else if (!strncmp("bsp", arg, 3)) 2893 apic_extnmi = APIC_EXTNMI_BSP; 2894 else { 2895 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); 2896 return -EINVAL; 2897 } 2898 2899 return 0; 2900 } 2901 early_param("apic_extnmi", apic_set_extnmi); 2902