xref: /openbmc/linux/arch/x86/kernel/apic/apic.c (revision 75020f2d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	Local APIC handling, local APIC timers
4  *
5  *	(c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *
7  *	Fixes
8  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
9  *					thanks to Eric Gilmore
10  *					and Rolf G. Tews
11  *					for testing these extensively.
12  *	Maciej W. Rozycki	:	Various updates and fixes.
13  *	Mikael Pettersson	:	Power Management for UP-APIC.
14  *	Pavel Machek and
15  *	Mikael Pettersson	:	PM converted to driver model.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/acpi_pmtmr.h>
22 #include <linux/clockchips.h>
23 #include <linux/interrupt.h>
24 #include <linux/memblock.h>
25 #include <linux/ftrace.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/delay.h>
30 #include <linux/timex.h>
31 #include <linux/i8253.h>
32 #include <linux/dmar.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/dmi.h>
36 #include <linux/smp.h>
37 #include <linux/mm.h>
38 
39 #include <asm/trace/irq_vectors.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/perf_event.h>
42 #include <asm/x86_init.h>
43 #include <linux/atomic.h>
44 #include <asm/barrier.h>
45 #include <asm/mpspec.h>
46 #include <asm/i8259.h>
47 #include <asm/proto.h>
48 #include <asm/traps.h>
49 #include <asm/apic.h>
50 #include <asm/acpi.h>
51 #include <asm/io_apic.h>
52 #include <asm/desc.h>
53 #include <asm/hpet.h>
54 #include <asm/mtrr.h>
55 #include <asm/time.h>
56 #include <asm/smp.h>
57 #include <asm/mce.h>
58 #include <asm/tsc.h>
59 #include <asm/hypervisor.h>
60 #include <asm/cpu_device_id.h>
61 #include <asm/intel-family.h>
62 #include <asm/irq_regs.h>
63 
64 unsigned int num_processors;
65 
66 unsigned disabled_cpus;
67 
68 /* Processor that is doing the boot up */
69 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U;
70 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
71 
72 u8 boot_cpu_apic_version __ro_after_init;
73 
74 /*
75  * The highest APIC ID seen during enumeration.
76  */
77 static unsigned int max_physical_apicid;
78 
79 /*
80  * Bitmask of physically existing CPUs:
81  */
82 physid_mask_t phys_cpu_present_map;
83 
84 /*
85  * Processor to be disabled specified by kernel parameter
86  * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
87  * avoid undefined behaviour caused by sending INIT from AP to BSP.
88  */
89 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID;
90 
91 /*
92  * This variable controls which CPUs receive external NMIs.  By default,
93  * external NMIs are delivered only to the BSP.
94  */
95 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
96 
97 /*
98  * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
99  */
100 static bool virt_ext_dest_id __ro_after_init;
101 
102 /*
103  * Map cpu index to physical APIC ID
104  */
105 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
106 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
107 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
108 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
109 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
110 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
111 
112 #ifdef CONFIG_X86_32
113 
114 /*
115  * On x86_32, the mapping between cpu and logical apicid may vary
116  * depending on apic in use.  The following early percpu variable is
117  * used for the mapping.  This is where the behaviors of x86_64 and 32
118  * actually diverge.  Let's keep it ugly for now.
119  */
120 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
121 
122 /* Local APIC was disabled by the BIOS and enabled by the kernel */
123 static int enabled_via_apicbase __ro_after_init;
124 
125 /*
126  * Handle interrupt mode configuration register (IMCR).
127  * This register controls whether the interrupt signals
128  * that reach the BSP come from the master PIC or from the
129  * local APIC. Before entering Symmetric I/O Mode, either
130  * the BIOS or the operating system must switch out of
131  * PIC Mode by changing the IMCR.
132  */
133 static inline void imcr_pic_to_apic(void)
134 {
135 	/* select IMCR register */
136 	outb(0x70, 0x22);
137 	/* NMI and 8259 INTR go through APIC */
138 	outb(0x01, 0x23);
139 }
140 
141 static inline void imcr_apic_to_pic(void)
142 {
143 	/* select IMCR register */
144 	outb(0x70, 0x22);
145 	/* NMI and 8259 INTR go directly to BSP */
146 	outb(0x00, 0x23);
147 }
148 #endif
149 
150 /*
151  * Knob to control our willingness to enable the local APIC.
152  *
153  * +1=force-enable
154  */
155 static int force_enable_local_apic __initdata;
156 
157 /*
158  * APIC command line parameters
159  */
160 static int __init parse_lapic(char *arg)
161 {
162 	if (IS_ENABLED(CONFIG_X86_32) && !arg)
163 		force_enable_local_apic = 1;
164 	else if (arg && !strncmp(arg, "notscdeadline", 13))
165 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
166 	return 0;
167 }
168 early_param("lapic", parse_lapic);
169 
170 #ifdef CONFIG_X86_64
171 static int apic_calibrate_pmtmr __initdata;
172 static __init int setup_apicpmtimer(char *s)
173 {
174 	apic_calibrate_pmtmr = 1;
175 	notsc_setup(NULL);
176 	return 0;
177 }
178 __setup("apicpmtimer", setup_apicpmtimer);
179 #endif
180 
181 unsigned long mp_lapic_addr __ro_after_init;
182 int disable_apic __ro_after_init;
183 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
184 static int disable_apic_timer __initdata;
185 /* Local APIC timer works in C2 */
186 int local_apic_timer_c2_ok __ro_after_init;
187 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
188 
189 /*
190  * Debug level, exported for io_apic.c
191  */
192 int apic_verbosity __ro_after_init;
193 
194 int pic_mode __ro_after_init;
195 
196 /* Have we found an MP table */
197 int smp_found_config __ro_after_init;
198 
199 static struct resource lapic_resource = {
200 	.name = "Local APIC",
201 	.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
202 };
203 
204 unsigned int lapic_timer_period = 0;
205 
206 static void apic_pm_activate(void);
207 
208 static unsigned long apic_phys __ro_after_init;
209 
210 /*
211  * Get the LAPIC version
212  */
213 static inline int lapic_get_version(void)
214 {
215 	return GET_APIC_VERSION(apic_read(APIC_LVR));
216 }
217 
218 /*
219  * Check, if the APIC is integrated or a separate chip
220  */
221 static inline int lapic_is_integrated(void)
222 {
223 	return APIC_INTEGRATED(lapic_get_version());
224 }
225 
226 /*
227  * Check, whether this is a modern or a first generation APIC
228  */
229 static int modern_apic(void)
230 {
231 	/* AMD systems use old APIC versions, so check the CPU */
232 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
233 	    boot_cpu_data.x86 >= 0xf)
234 		return 1;
235 
236 	/* Hygon systems use modern APIC */
237 	if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
238 		return 1;
239 
240 	return lapic_get_version() >= 0x14;
241 }
242 
243 /*
244  * right after this call apic become NOOP driven
245  * so apic->write/read doesn't do anything
246  */
247 static void __init apic_disable(void)
248 {
249 	pr_info("APIC: switched to apic NOOP\n");
250 	apic = &apic_noop;
251 }
252 
253 void native_apic_wait_icr_idle(void)
254 {
255 	while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
256 		cpu_relax();
257 }
258 
259 u32 native_safe_apic_wait_icr_idle(void)
260 {
261 	u32 send_status;
262 	int timeout;
263 
264 	timeout = 0;
265 	do {
266 		send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
267 		if (!send_status)
268 			break;
269 		inc_irq_stat(icr_read_retry_count);
270 		udelay(100);
271 	} while (timeout++ < 1000);
272 
273 	return send_status;
274 }
275 
276 void native_apic_icr_write(u32 low, u32 id)
277 {
278 	unsigned long flags;
279 
280 	local_irq_save(flags);
281 	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
282 	apic_write(APIC_ICR, low);
283 	local_irq_restore(flags);
284 }
285 
286 u64 native_apic_icr_read(void)
287 {
288 	u32 icr1, icr2;
289 
290 	icr2 = apic_read(APIC_ICR2);
291 	icr1 = apic_read(APIC_ICR);
292 
293 	return icr1 | ((u64)icr2 << 32);
294 }
295 
296 #ifdef CONFIG_X86_32
297 /**
298  * get_physical_broadcast - Get number of physical broadcast IDs
299  */
300 int get_physical_broadcast(void)
301 {
302 	return modern_apic() ? 0xff : 0xf;
303 }
304 #endif
305 
306 /**
307  * lapic_get_maxlvt - get the maximum number of local vector table entries
308  */
309 int lapic_get_maxlvt(void)
310 {
311 	/*
312 	 * - we always have APIC integrated on 64bit mode
313 	 * - 82489DXs do not report # of LVT entries
314 	 */
315 	return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
316 }
317 
318 /*
319  * Local APIC timer
320  */
321 
322 /* Clock divisor */
323 #define APIC_DIVISOR 16
324 #define TSC_DIVISOR  8
325 
326 /*
327  * This function sets up the local APIC timer, with a timeout of
328  * 'clocks' APIC bus clock. During calibration we actually call
329  * this function twice on the boot CPU, once with a bogus timeout
330  * value, second time for real. The other (noncalibrating) CPUs
331  * call this function only once, with the real, calibrated value.
332  *
333  * We do reads before writes even if unnecessary, to get around the
334  * P5 APIC double write bug.
335  */
336 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
337 {
338 	unsigned int lvtt_value, tmp_value;
339 
340 	lvtt_value = LOCAL_TIMER_VECTOR;
341 	if (!oneshot)
342 		lvtt_value |= APIC_LVT_TIMER_PERIODIC;
343 	else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
344 		lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
345 
346 	if (!lapic_is_integrated())
347 		lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
348 
349 	if (!irqen)
350 		lvtt_value |= APIC_LVT_MASKED;
351 
352 	apic_write(APIC_LVTT, lvtt_value);
353 
354 	if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
355 		/*
356 		 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
357 		 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
358 		 * According to Intel, MFENCE can do the serialization here.
359 		 */
360 		asm volatile("mfence" : : : "memory");
361 		return;
362 	}
363 
364 	/*
365 	 * Divide PICLK by 16
366 	 */
367 	tmp_value = apic_read(APIC_TDCR);
368 	apic_write(APIC_TDCR,
369 		(tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
370 		APIC_TDR_DIV_16);
371 
372 	if (!oneshot)
373 		apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
374 }
375 
376 /*
377  * Setup extended LVT, AMD specific
378  *
379  * Software should use the LVT offsets the BIOS provides.  The offsets
380  * are determined by the subsystems using it like those for MCE
381  * threshold or IBS.  On K8 only offset 0 (APIC500) and MCE interrupts
382  * are supported. Beginning with family 10h at least 4 offsets are
383  * available.
384  *
385  * Since the offsets must be consistent for all cores, we keep track
386  * of the LVT offsets in software and reserve the offset for the same
387  * vector also to be used on other cores. An offset is freed by
388  * setting the entry to APIC_EILVT_MASKED.
389  *
390  * If the BIOS is right, there should be no conflicts. Otherwise a
391  * "[Firmware Bug]: ..." error message is generated. However, if
392  * software does not properly determines the offsets, it is not
393  * necessarily a BIOS bug.
394  */
395 
396 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
397 
398 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
399 {
400 	return (old & APIC_EILVT_MASKED)
401 		|| (new == APIC_EILVT_MASKED)
402 		|| ((new & ~APIC_EILVT_MASKED) == old);
403 }
404 
405 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
406 {
407 	unsigned int rsvd, vector;
408 
409 	if (offset >= APIC_EILVT_NR_MAX)
410 		return ~0;
411 
412 	rsvd = atomic_read(&eilvt_offsets[offset]);
413 	do {
414 		vector = rsvd & ~APIC_EILVT_MASKED;	/* 0: unassigned */
415 		if (vector && !eilvt_entry_is_changeable(vector, new))
416 			/* may not change if vectors are different */
417 			return rsvd;
418 		rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
419 	} while (rsvd != new);
420 
421 	rsvd &= ~APIC_EILVT_MASKED;
422 	if (rsvd && rsvd != vector)
423 		pr_info("LVT offset %d assigned for vector 0x%02x\n",
424 			offset, rsvd);
425 
426 	return new;
427 }
428 
429 /*
430  * If mask=1, the LVT entry does not generate interrupts while mask=0
431  * enables the vector. See also the BKDGs. Must be called with
432  * preemption disabled.
433  */
434 
435 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
436 {
437 	unsigned long reg = APIC_EILVTn(offset);
438 	unsigned int new, old, reserved;
439 
440 	new = (mask << 16) | (msg_type << 8) | vector;
441 	old = apic_read(reg);
442 	reserved = reserve_eilvt_offset(offset, new);
443 
444 	if (reserved != new) {
445 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
446 		       "vector 0x%x, but the register is already in use for "
447 		       "vector 0x%x on another cpu\n",
448 		       smp_processor_id(), reg, offset, new, reserved);
449 		return -EINVAL;
450 	}
451 
452 	if (!eilvt_entry_is_changeable(old, new)) {
453 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
454 		       "vector 0x%x, but the register is already in use for "
455 		       "vector 0x%x on this cpu\n",
456 		       smp_processor_id(), reg, offset, new, old);
457 		return -EBUSY;
458 	}
459 
460 	apic_write(reg, new);
461 
462 	return 0;
463 }
464 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
465 
466 /*
467  * Program the next event, relative to now
468  */
469 static int lapic_next_event(unsigned long delta,
470 			    struct clock_event_device *evt)
471 {
472 	apic_write(APIC_TMICT, delta);
473 	return 0;
474 }
475 
476 static int lapic_next_deadline(unsigned long delta,
477 			       struct clock_event_device *evt)
478 {
479 	u64 tsc;
480 
481 	/* This MSR is special and need a special fence: */
482 	weak_wrmsr_fence();
483 
484 	tsc = rdtsc();
485 	wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
486 	return 0;
487 }
488 
489 static int lapic_timer_shutdown(struct clock_event_device *evt)
490 {
491 	unsigned int v;
492 
493 	/* Lapic used as dummy for broadcast ? */
494 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
495 		return 0;
496 
497 	v = apic_read(APIC_LVTT);
498 	v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
499 	apic_write(APIC_LVTT, v);
500 	apic_write(APIC_TMICT, 0);
501 	return 0;
502 }
503 
504 static inline int
505 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
506 {
507 	/* Lapic used as dummy for broadcast ? */
508 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
509 		return 0;
510 
511 	__setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
512 	return 0;
513 }
514 
515 static int lapic_timer_set_periodic(struct clock_event_device *evt)
516 {
517 	return lapic_timer_set_periodic_oneshot(evt, false);
518 }
519 
520 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
521 {
522 	return lapic_timer_set_periodic_oneshot(evt, true);
523 }
524 
525 /*
526  * Local APIC timer broadcast function
527  */
528 static void lapic_timer_broadcast(const struct cpumask *mask)
529 {
530 #ifdef CONFIG_SMP
531 	apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
532 #endif
533 }
534 
535 
536 /*
537  * The local apic timer can be used for any function which is CPU local.
538  */
539 static struct clock_event_device lapic_clockevent = {
540 	.name				= "lapic",
541 	.features			= CLOCK_EVT_FEAT_PERIODIC |
542 					  CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
543 					  | CLOCK_EVT_FEAT_DUMMY,
544 	.shift				= 32,
545 	.set_state_shutdown		= lapic_timer_shutdown,
546 	.set_state_periodic		= lapic_timer_set_periodic,
547 	.set_state_oneshot		= lapic_timer_set_oneshot,
548 	.set_state_oneshot_stopped	= lapic_timer_shutdown,
549 	.set_next_event			= lapic_next_event,
550 	.broadcast			= lapic_timer_broadcast,
551 	.rating				= 100,
552 	.irq				= -1,
553 };
554 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
555 
556 static const struct x86_cpu_id deadline_match[] __initconst = {
557 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
558 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
559 
560 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X,	0x0b000020),
561 
562 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
563 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
564 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
565 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
566 
567 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
568 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
569 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
570 
571 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL,		0x22),
572 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L,		0x20),
573 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G,		0x17),
574 
575 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL,		0x25),
576 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G,	0x17),
577 
578 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L,		0xb2),
579 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE,		0xb2),
580 
581 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L,		0x52),
582 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE,		0x52),
583 
584 	{},
585 };
586 
587 static __init bool apic_validate_deadline_timer(void)
588 {
589 	const struct x86_cpu_id *m;
590 	u32 rev;
591 
592 	if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
593 		return false;
594 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
595 		return true;
596 
597 	m = x86_match_cpu(deadline_match);
598 	if (!m)
599 		return true;
600 
601 	rev = (u32)m->driver_data;
602 
603 	if (boot_cpu_data.microcode >= rev)
604 		return true;
605 
606 	setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
607 	pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
608 	       "please update microcode to version: 0x%x (or later)\n", rev);
609 	return false;
610 }
611 
612 /*
613  * Setup the local APIC timer for this CPU. Copy the initialized values
614  * of the boot CPU and register the clock event in the framework.
615  */
616 static void setup_APIC_timer(void)
617 {
618 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
619 
620 	if (this_cpu_has(X86_FEATURE_ARAT)) {
621 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
622 		/* Make LAPIC timer preferable over percpu HPET */
623 		lapic_clockevent.rating = 150;
624 	}
625 
626 	memcpy(levt, &lapic_clockevent, sizeof(*levt));
627 	levt->cpumask = cpumask_of(smp_processor_id());
628 
629 	if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
630 		levt->name = "lapic-deadline";
631 		levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
632 				    CLOCK_EVT_FEAT_DUMMY);
633 		levt->set_next_event = lapic_next_deadline;
634 		clockevents_config_and_register(levt,
635 						tsc_khz * (1000 / TSC_DIVISOR),
636 						0xF, ~0UL);
637 	} else
638 		clockevents_register_device(levt);
639 }
640 
641 /*
642  * Install the updated TSC frequency from recalibration at the TSC
643  * deadline clockevent devices.
644  */
645 static void __lapic_update_tsc_freq(void *info)
646 {
647 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
648 
649 	if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
650 		return;
651 
652 	clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
653 }
654 
655 void lapic_update_tsc_freq(void)
656 {
657 	/*
658 	 * The clockevent device's ->mult and ->shift can both be
659 	 * changed. In order to avoid races, schedule the frequency
660 	 * update code on each CPU.
661 	 */
662 	on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
663 }
664 
665 /*
666  * In this functions we calibrate APIC bus clocks to the external timer.
667  *
668  * We want to do the calibration only once since we want to have local timer
669  * irqs synchronous. CPUs connected by the same APIC bus have the very same bus
670  * frequency.
671  *
672  * This was previously done by reading the PIT/HPET and waiting for a wrap
673  * around to find out, that a tick has elapsed. I have a box, where the PIT
674  * readout is broken, so it never gets out of the wait loop again. This was
675  * also reported by others.
676  *
677  * Monitoring the jiffies value is inaccurate and the clockevents
678  * infrastructure allows us to do a simple substitution of the interrupt
679  * handler.
680  *
681  * The calibration routine also uses the pm_timer when possible, as the PIT
682  * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
683  * back to normal later in the boot process).
684  */
685 
686 #define LAPIC_CAL_LOOPS		(HZ/10)
687 
688 static __initdata int lapic_cal_loops = -1;
689 static __initdata long lapic_cal_t1, lapic_cal_t2;
690 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
691 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
692 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
693 
694 /*
695  * Temporary interrupt handler and polled calibration function.
696  */
697 static void __init lapic_cal_handler(struct clock_event_device *dev)
698 {
699 	unsigned long long tsc = 0;
700 	long tapic = apic_read(APIC_TMCCT);
701 	unsigned long pm = acpi_pm_read_early();
702 
703 	if (boot_cpu_has(X86_FEATURE_TSC))
704 		tsc = rdtsc();
705 
706 	switch (lapic_cal_loops++) {
707 	case 0:
708 		lapic_cal_t1 = tapic;
709 		lapic_cal_tsc1 = tsc;
710 		lapic_cal_pm1 = pm;
711 		lapic_cal_j1 = jiffies;
712 		break;
713 
714 	case LAPIC_CAL_LOOPS:
715 		lapic_cal_t2 = tapic;
716 		lapic_cal_tsc2 = tsc;
717 		if (pm < lapic_cal_pm1)
718 			pm += ACPI_PM_OVRRUN;
719 		lapic_cal_pm2 = pm;
720 		lapic_cal_j2 = jiffies;
721 		break;
722 	}
723 }
724 
725 static int __init
726 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
727 {
728 	const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
729 	const long pm_thresh = pm_100ms / 100;
730 	unsigned long mult;
731 	u64 res;
732 
733 #ifndef CONFIG_X86_PM_TIMER
734 	return -1;
735 #endif
736 
737 	apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
738 
739 	/* Check, if the PM timer is available */
740 	if (!deltapm)
741 		return -1;
742 
743 	mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
744 
745 	if (deltapm > (pm_100ms - pm_thresh) &&
746 	    deltapm < (pm_100ms + pm_thresh)) {
747 		apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
748 		return 0;
749 	}
750 
751 	res = (((u64)deltapm) *  mult) >> 22;
752 	do_div(res, 1000000);
753 	pr_warn("APIC calibration not consistent "
754 		"with PM-Timer: %ldms instead of 100ms\n", (long)res);
755 
756 	/* Correct the lapic counter value */
757 	res = (((u64)(*delta)) * pm_100ms);
758 	do_div(res, deltapm);
759 	pr_info("APIC delta adjusted to PM-Timer: "
760 		"%lu (%ld)\n", (unsigned long)res, *delta);
761 	*delta = (long)res;
762 
763 	/* Correct the tsc counter value */
764 	if (boot_cpu_has(X86_FEATURE_TSC)) {
765 		res = (((u64)(*deltatsc)) * pm_100ms);
766 		do_div(res, deltapm);
767 		apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
768 					  "PM-Timer: %lu (%ld)\n",
769 					(unsigned long)res, *deltatsc);
770 		*deltatsc = (long)res;
771 	}
772 
773 	return 0;
774 }
775 
776 static int __init lapic_init_clockevent(void)
777 {
778 	if (!lapic_timer_period)
779 		return -1;
780 
781 	/* Calculate the scaled math multiplication factor */
782 	lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
783 					TICK_NSEC, lapic_clockevent.shift);
784 	lapic_clockevent.max_delta_ns =
785 		clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
786 	lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
787 	lapic_clockevent.min_delta_ns =
788 		clockevent_delta2ns(0xF, &lapic_clockevent);
789 	lapic_clockevent.min_delta_ticks = 0xF;
790 
791 	return 0;
792 }
793 
794 bool __init apic_needs_pit(void)
795 {
796 	/*
797 	 * If the frequencies are not known, PIT is required for both TSC
798 	 * and apic timer calibration.
799 	 */
800 	if (!tsc_khz || !cpu_khz)
801 		return true;
802 
803 	/* Is there an APIC at all or is it disabled? */
804 	if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic)
805 		return true;
806 
807 	/*
808 	 * If interrupt delivery mode is legacy PIC or virtual wire without
809 	 * configuration, the local APIC timer wont be set up. Make sure
810 	 * that the PIT is initialized.
811 	 */
812 	if (apic_intr_mode == APIC_PIC ||
813 	    apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
814 		return true;
815 
816 	/* Virt guests may lack ARAT, but still have DEADLINE */
817 	if (!boot_cpu_has(X86_FEATURE_ARAT))
818 		return true;
819 
820 	/* Deadline timer is based on TSC so no further PIT action required */
821 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
822 		return false;
823 
824 	/* APIC timer disabled? */
825 	if (disable_apic_timer)
826 		return true;
827 	/*
828 	 * The APIC timer frequency is known already, no PIT calibration
829 	 * required. If unknown, let the PIT be initialized.
830 	 */
831 	return lapic_timer_period == 0;
832 }
833 
834 static int __init calibrate_APIC_clock(void)
835 {
836 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
837 	u64 tsc_perj = 0, tsc_start = 0;
838 	unsigned long jif_start;
839 	unsigned long deltaj;
840 	long delta, deltatsc;
841 	int pm_referenced = 0;
842 
843 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
844 		return 0;
845 
846 	/*
847 	 * Check if lapic timer has already been calibrated by platform
848 	 * specific routine, such as tsc calibration code. If so just fill
849 	 * in the clockevent structure and return.
850 	 */
851 	if (!lapic_init_clockevent()) {
852 		apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
853 			    lapic_timer_period);
854 		/*
855 		 * Direct calibration methods must have an always running
856 		 * local APIC timer, no need for broadcast timer.
857 		 */
858 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
859 		return 0;
860 	}
861 
862 	apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
863 		    "calibrating APIC timer ...\n");
864 
865 	/*
866 	 * There are platforms w/o global clockevent devices. Instead of
867 	 * making the calibration conditional on that, use a polling based
868 	 * approach everywhere.
869 	 */
870 	local_irq_disable();
871 
872 	/*
873 	 * Setup the APIC counter to maximum. There is no way the lapic
874 	 * can underflow in the 100ms detection time frame
875 	 */
876 	__setup_APIC_LVTT(0xffffffff, 0, 0);
877 
878 	/*
879 	 * Methods to terminate the calibration loop:
880 	 *  1) Global clockevent if available (jiffies)
881 	 *  2) TSC if available and frequency is known
882 	 */
883 	jif_start = READ_ONCE(jiffies);
884 
885 	if (tsc_khz) {
886 		tsc_start = rdtsc();
887 		tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
888 	}
889 
890 	/*
891 	 * Enable interrupts so the tick can fire, if a global
892 	 * clockevent device is available
893 	 */
894 	local_irq_enable();
895 
896 	while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
897 		/* Wait for a tick to elapse */
898 		while (1) {
899 			if (tsc_khz) {
900 				u64 tsc_now = rdtsc();
901 				if ((tsc_now - tsc_start) >= tsc_perj) {
902 					tsc_start += tsc_perj;
903 					break;
904 				}
905 			} else {
906 				unsigned long jif_now = READ_ONCE(jiffies);
907 
908 				if (time_after(jif_now, jif_start)) {
909 					jif_start = jif_now;
910 					break;
911 				}
912 			}
913 			cpu_relax();
914 		}
915 
916 		/* Invoke the calibration routine */
917 		local_irq_disable();
918 		lapic_cal_handler(NULL);
919 		local_irq_enable();
920 	}
921 
922 	local_irq_disable();
923 
924 	/* Build delta t1-t2 as apic timer counts down */
925 	delta = lapic_cal_t1 - lapic_cal_t2;
926 	apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
927 
928 	deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
929 
930 	/* we trust the PM based calibration if possible */
931 	pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
932 					&delta, &deltatsc);
933 
934 	lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
935 	lapic_init_clockevent();
936 
937 	apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
938 	apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
939 	apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
940 		    lapic_timer_period);
941 
942 	if (boot_cpu_has(X86_FEATURE_TSC)) {
943 		apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
944 			    "%ld.%04ld MHz.\n",
945 			    (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
946 			    (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
947 	}
948 
949 	apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
950 		    "%u.%04u MHz.\n",
951 		    lapic_timer_period / (1000000 / HZ),
952 		    lapic_timer_period % (1000000 / HZ));
953 
954 	/*
955 	 * Do a sanity check on the APIC calibration result
956 	 */
957 	if (lapic_timer_period < (1000000 / HZ)) {
958 		local_irq_enable();
959 		pr_warn("APIC frequency too slow, disabling apic timer\n");
960 		return -1;
961 	}
962 
963 	levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
964 
965 	/*
966 	 * PM timer calibration failed or not turned on so lets try APIC
967 	 * timer based calibration, if a global clockevent device is
968 	 * available.
969 	 */
970 	if (!pm_referenced && global_clock_event) {
971 		apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
972 
973 		/*
974 		 * Setup the apic timer manually
975 		 */
976 		levt->event_handler = lapic_cal_handler;
977 		lapic_timer_set_periodic(levt);
978 		lapic_cal_loops = -1;
979 
980 		/* Let the interrupts run */
981 		local_irq_enable();
982 
983 		while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
984 			cpu_relax();
985 
986 		/* Stop the lapic timer */
987 		local_irq_disable();
988 		lapic_timer_shutdown(levt);
989 
990 		/* Jiffies delta */
991 		deltaj = lapic_cal_j2 - lapic_cal_j1;
992 		apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
993 
994 		/* Check, if the jiffies result is consistent */
995 		if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
996 			apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
997 		else
998 			levt->features |= CLOCK_EVT_FEAT_DUMMY;
999 	}
1000 	local_irq_enable();
1001 
1002 	if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1003 		pr_warn("APIC timer disabled due to verification failure\n");
1004 		return -1;
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * Setup the boot APIC
1012  *
1013  * Calibrate and verify the result.
1014  */
1015 void __init setup_boot_APIC_clock(void)
1016 {
1017 	/*
1018 	 * The local apic timer can be disabled via the kernel
1019 	 * commandline or from the CPU detection code. Register the lapic
1020 	 * timer as a dummy clock event source on SMP systems, so the
1021 	 * broadcast mechanism is used. On UP systems simply ignore it.
1022 	 */
1023 	if (disable_apic_timer) {
1024 		pr_info("Disabling APIC timer\n");
1025 		/* No broadcast on UP ! */
1026 		if (num_possible_cpus() > 1) {
1027 			lapic_clockevent.mult = 1;
1028 			setup_APIC_timer();
1029 		}
1030 		return;
1031 	}
1032 
1033 	if (calibrate_APIC_clock()) {
1034 		/* No broadcast on UP ! */
1035 		if (num_possible_cpus() > 1)
1036 			setup_APIC_timer();
1037 		return;
1038 	}
1039 
1040 	/*
1041 	 * If nmi_watchdog is set to IO_APIC, we need the
1042 	 * PIT/HPET going.  Otherwise register lapic as a dummy
1043 	 * device.
1044 	 */
1045 	lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1046 
1047 	/* Setup the lapic or request the broadcast */
1048 	setup_APIC_timer();
1049 	amd_e400_c1e_apic_setup();
1050 }
1051 
1052 void setup_secondary_APIC_clock(void)
1053 {
1054 	setup_APIC_timer();
1055 	amd_e400_c1e_apic_setup();
1056 }
1057 
1058 /*
1059  * The guts of the apic timer interrupt
1060  */
1061 static void local_apic_timer_interrupt(void)
1062 {
1063 	struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1064 
1065 	/*
1066 	 * Normally we should not be here till LAPIC has been initialized but
1067 	 * in some cases like kdump, its possible that there is a pending LAPIC
1068 	 * timer interrupt from previous kernel's context and is delivered in
1069 	 * new kernel the moment interrupts are enabled.
1070 	 *
1071 	 * Interrupts are enabled early and LAPIC is setup much later, hence
1072 	 * its possible that when we get here evt->event_handler is NULL.
1073 	 * Check for event_handler being NULL and discard the interrupt as
1074 	 * spurious.
1075 	 */
1076 	if (!evt->event_handler) {
1077 		pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1078 			smp_processor_id());
1079 		/* Switch it off */
1080 		lapic_timer_shutdown(evt);
1081 		return;
1082 	}
1083 
1084 	/*
1085 	 * the NMI deadlock-detector uses this.
1086 	 */
1087 	inc_irq_stat(apic_timer_irqs);
1088 
1089 	evt->event_handler(evt);
1090 }
1091 
1092 /*
1093  * Local APIC timer interrupt. This is the most natural way for doing
1094  * local interrupts, but local timer interrupts can be emulated by
1095  * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1096  *
1097  * [ if a single-CPU system runs an SMP kernel then we call the local
1098  *   interrupt as well. Thus we cannot inline the local irq ... ]
1099  */
1100 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1101 {
1102 	struct pt_regs *old_regs = set_irq_regs(regs);
1103 
1104 	ack_APIC_irq();
1105 	trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1106 	local_apic_timer_interrupt();
1107 	trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1108 
1109 	set_irq_regs(old_regs);
1110 }
1111 
1112 int setup_profiling_timer(unsigned int multiplier)
1113 {
1114 	return -EINVAL;
1115 }
1116 
1117 /*
1118  * Local APIC start and shutdown
1119  */
1120 
1121 /**
1122  * clear_local_APIC - shutdown the local APIC
1123  *
1124  * This is called, when a CPU is disabled and before rebooting, so the state of
1125  * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1126  * leftovers during boot.
1127  */
1128 void clear_local_APIC(void)
1129 {
1130 	int maxlvt;
1131 	u32 v;
1132 
1133 	/* APIC hasn't been mapped yet */
1134 	if (!x2apic_mode && !apic_phys)
1135 		return;
1136 
1137 	maxlvt = lapic_get_maxlvt();
1138 	/*
1139 	 * Masking an LVT entry can trigger a local APIC error
1140 	 * if the vector is zero. Mask LVTERR first to prevent this.
1141 	 */
1142 	if (maxlvt >= 3) {
1143 		v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1144 		apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1145 	}
1146 	/*
1147 	 * Careful: we have to set masks only first to deassert
1148 	 * any level-triggered sources.
1149 	 */
1150 	v = apic_read(APIC_LVTT);
1151 	apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1152 	v = apic_read(APIC_LVT0);
1153 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1154 	v = apic_read(APIC_LVT1);
1155 	apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1156 	if (maxlvt >= 4) {
1157 		v = apic_read(APIC_LVTPC);
1158 		apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1159 	}
1160 
1161 	/* lets not touch this if we didn't frob it */
1162 #ifdef CONFIG_X86_THERMAL_VECTOR
1163 	if (maxlvt >= 5) {
1164 		v = apic_read(APIC_LVTTHMR);
1165 		apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1166 	}
1167 #endif
1168 #ifdef CONFIG_X86_MCE_INTEL
1169 	if (maxlvt >= 6) {
1170 		v = apic_read(APIC_LVTCMCI);
1171 		if (!(v & APIC_LVT_MASKED))
1172 			apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1173 	}
1174 #endif
1175 
1176 	/*
1177 	 * Clean APIC state for other OSs:
1178 	 */
1179 	apic_write(APIC_LVTT, APIC_LVT_MASKED);
1180 	apic_write(APIC_LVT0, APIC_LVT_MASKED);
1181 	apic_write(APIC_LVT1, APIC_LVT_MASKED);
1182 	if (maxlvt >= 3)
1183 		apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1184 	if (maxlvt >= 4)
1185 		apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1186 
1187 	/* Integrated APIC (!82489DX) ? */
1188 	if (lapic_is_integrated()) {
1189 		if (maxlvt > 3)
1190 			/* Clear ESR due to Pentium errata 3AP and 11AP */
1191 			apic_write(APIC_ESR, 0);
1192 		apic_read(APIC_ESR);
1193 	}
1194 }
1195 
1196 /**
1197  * apic_soft_disable - Clears and software disables the local APIC on hotplug
1198  *
1199  * Contrary to disable_local_APIC() this does not touch the enable bit in
1200  * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1201  * bus would require a hardware reset as the APIC would lose track of bus
1202  * arbitration. On systems with FSB delivery APICBASE could be disabled,
1203  * but it has to be guaranteed that no interrupt is sent to the APIC while
1204  * in that state and it's not clear from the SDM whether it still responds
1205  * to INIT/SIPI messages. Stay on the safe side and use software disable.
1206  */
1207 void apic_soft_disable(void)
1208 {
1209 	u32 value;
1210 
1211 	clear_local_APIC();
1212 
1213 	/* Soft disable APIC (implies clearing of registers for 82489DX!). */
1214 	value = apic_read(APIC_SPIV);
1215 	value &= ~APIC_SPIV_APIC_ENABLED;
1216 	apic_write(APIC_SPIV, value);
1217 }
1218 
1219 /**
1220  * disable_local_APIC - clear and disable the local APIC
1221  */
1222 void disable_local_APIC(void)
1223 {
1224 	/* APIC hasn't been mapped yet */
1225 	if (!x2apic_mode && !apic_phys)
1226 		return;
1227 
1228 	apic_soft_disable();
1229 
1230 #ifdef CONFIG_X86_32
1231 	/*
1232 	 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1233 	 * restore the disabled state.
1234 	 */
1235 	if (enabled_via_apicbase) {
1236 		unsigned int l, h;
1237 
1238 		rdmsr(MSR_IA32_APICBASE, l, h);
1239 		l &= ~MSR_IA32_APICBASE_ENABLE;
1240 		wrmsr(MSR_IA32_APICBASE, l, h);
1241 	}
1242 #endif
1243 }
1244 
1245 /*
1246  * If Linux enabled the LAPIC against the BIOS default disable it down before
1247  * re-entering the BIOS on shutdown.  Otherwise the BIOS may get confused and
1248  * not power-off.  Additionally clear all LVT entries before disable_local_APIC
1249  * for the case where Linux didn't enable the LAPIC.
1250  */
1251 void lapic_shutdown(void)
1252 {
1253 	unsigned long flags;
1254 
1255 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1256 		return;
1257 
1258 	local_irq_save(flags);
1259 
1260 #ifdef CONFIG_X86_32
1261 	if (!enabled_via_apicbase)
1262 		clear_local_APIC();
1263 	else
1264 #endif
1265 		disable_local_APIC();
1266 
1267 
1268 	local_irq_restore(flags);
1269 }
1270 
1271 /**
1272  * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1273  */
1274 void __init sync_Arb_IDs(void)
1275 {
1276 	/*
1277 	 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1278 	 * needed on AMD.
1279 	 */
1280 	if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1281 		return;
1282 
1283 	/*
1284 	 * Wait for idle.
1285 	 */
1286 	apic_wait_icr_idle();
1287 
1288 	apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1289 	apic_write(APIC_ICR, APIC_DEST_ALLINC |
1290 			APIC_INT_LEVELTRIG | APIC_DM_INIT);
1291 }
1292 
1293 enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1294 
1295 static int __init __apic_intr_mode_select(void)
1296 {
1297 	/* Check kernel option */
1298 	if (disable_apic) {
1299 		pr_info("APIC disabled via kernel command line\n");
1300 		return APIC_PIC;
1301 	}
1302 
1303 	/* Check BIOS */
1304 #ifdef CONFIG_X86_64
1305 	/* On 64-bit, the APIC must be integrated, Check local APIC only */
1306 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1307 		disable_apic = 1;
1308 		pr_info("APIC disabled by BIOS\n");
1309 		return APIC_PIC;
1310 	}
1311 #else
1312 	/* On 32-bit, the APIC may be integrated APIC or 82489DX */
1313 
1314 	/* Neither 82489DX nor integrated APIC ? */
1315 	if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1316 		disable_apic = 1;
1317 		return APIC_PIC;
1318 	}
1319 
1320 	/* If the BIOS pretends there is an integrated APIC ? */
1321 	if (!boot_cpu_has(X86_FEATURE_APIC) &&
1322 		APIC_INTEGRATED(boot_cpu_apic_version)) {
1323 		disable_apic = 1;
1324 		pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1325 				       boot_cpu_physical_apicid);
1326 		return APIC_PIC;
1327 	}
1328 #endif
1329 
1330 	/* Check MP table or ACPI MADT configuration */
1331 	if (!smp_found_config) {
1332 		disable_ioapic_support();
1333 		if (!acpi_lapic) {
1334 			pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1335 			return APIC_VIRTUAL_WIRE_NO_CONFIG;
1336 		}
1337 		return APIC_VIRTUAL_WIRE;
1338 	}
1339 
1340 #ifdef CONFIG_SMP
1341 	/* If SMP should be disabled, then really disable it! */
1342 	if (!setup_max_cpus) {
1343 		pr_info("APIC: SMP mode deactivated\n");
1344 		return APIC_SYMMETRIC_IO_NO_ROUTING;
1345 	}
1346 
1347 	if (read_apic_id() != boot_cpu_physical_apicid) {
1348 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1349 		     read_apic_id(), boot_cpu_physical_apicid);
1350 		/* Or can we switch back to PIC here? */
1351 	}
1352 #endif
1353 
1354 	return APIC_SYMMETRIC_IO;
1355 }
1356 
1357 /* Select the interrupt delivery mode for the BSP */
1358 void __init apic_intr_mode_select(void)
1359 {
1360 	apic_intr_mode = __apic_intr_mode_select();
1361 }
1362 
1363 /*
1364  * An initial setup of the virtual wire mode.
1365  */
1366 void __init init_bsp_APIC(void)
1367 {
1368 	unsigned int value;
1369 
1370 	/*
1371 	 * Don't do the setup now if we have a SMP BIOS as the
1372 	 * through-I/O-APIC virtual wire mode might be active.
1373 	 */
1374 	if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1375 		return;
1376 
1377 	/*
1378 	 * Do not trust the local APIC being empty at bootup.
1379 	 */
1380 	clear_local_APIC();
1381 
1382 	/*
1383 	 * Enable APIC.
1384 	 */
1385 	value = apic_read(APIC_SPIV);
1386 	value &= ~APIC_VECTOR_MASK;
1387 	value |= APIC_SPIV_APIC_ENABLED;
1388 
1389 #ifdef CONFIG_X86_32
1390 	/* This bit is reserved on P4/Xeon and should be cleared */
1391 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1392 	    (boot_cpu_data.x86 == 15))
1393 		value &= ~APIC_SPIV_FOCUS_DISABLED;
1394 	else
1395 #endif
1396 		value |= APIC_SPIV_FOCUS_DISABLED;
1397 	value |= SPURIOUS_APIC_VECTOR;
1398 	apic_write(APIC_SPIV, value);
1399 
1400 	/*
1401 	 * Set up the virtual wire mode.
1402 	 */
1403 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
1404 	value = APIC_DM_NMI;
1405 	if (!lapic_is_integrated())		/* 82489DX */
1406 		value |= APIC_LVT_LEVEL_TRIGGER;
1407 	if (apic_extnmi == APIC_EXTNMI_NONE)
1408 		value |= APIC_LVT_MASKED;
1409 	apic_write(APIC_LVT1, value);
1410 }
1411 
1412 static void __init apic_bsp_setup(bool upmode);
1413 
1414 /* Init the interrupt delivery mode for the BSP */
1415 void __init apic_intr_mode_init(void)
1416 {
1417 	bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1418 
1419 	switch (apic_intr_mode) {
1420 	case APIC_PIC:
1421 		pr_info("APIC: Keep in PIC mode(8259)\n");
1422 		return;
1423 	case APIC_VIRTUAL_WIRE:
1424 		pr_info("APIC: Switch to virtual wire mode setup\n");
1425 		default_setup_apic_routing();
1426 		break;
1427 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1428 		pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1429 		upmode = true;
1430 		default_setup_apic_routing();
1431 		break;
1432 	case APIC_SYMMETRIC_IO:
1433 		pr_info("APIC: Switch to symmetric I/O mode setup\n");
1434 		default_setup_apic_routing();
1435 		break;
1436 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1437 		pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1438 		break;
1439 	}
1440 
1441 	if (x86_platform.apic_post_init)
1442 		x86_platform.apic_post_init();
1443 
1444 	apic_bsp_setup(upmode);
1445 }
1446 
1447 static void lapic_setup_esr(void)
1448 {
1449 	unsigned int oldvalue, value, maxlvt;
1450 
1451 	if (!lapic_is_integrated()) {
1452 		pr_info("No ESR for 82489DX.\n");
1453 		return;
1454 	}
1455 
1456 	if (apic->disable_esr) {
1457 		/*
1458 		 * Something untraceable is creating bad interrupts on
1459 		 * secondary quads ... for the moment, just leave the
1460 		 * ESR disabled - we can't do anything useful with the
1461 		 * errors anyway - mbligh
1462 		 */
1463 		pr_info("Leaving ESR disabled.\n");
1464 		return;
1465 	}
1466 
1467 	maxlvt = lapic_get_maxlvt();
1468 	if (maxlvt > 3)		/* Due to the Pentium erratum 3AP. */
1469 		apic_write(APIC_ESR, 0);
1470 	oldvalue = apic_read(APIC_ESR);
1471 
1472 	/* enables sending errors */
1473 	value = ERROR_APIC_VECTOR;
1474 	apic_write(APIC_LVTERR, value);
1475 
1476 	/*
1477 	 * spec says clear errors after enabling vector.
1478 	 */
1479 	if (maxlvt > 3)
1480 		apic_write(APIC_ESR, 0);
1481 	value = apic_read(APIC_ESR);
1482 	if (value != oldvalue)
1483 		apic_printk(APIC_VERBOSE, "ESR value before enabling "
1484 			"vector: 0x%08x  after: 0x%08x\n",
1485 			oldvalue, value);
1486 }
1487 
1488 #define APIC_IR_REGS		APIC_ISR_NR
1489 #define APIC_IR_BITS		(APIC_IR_REGS * 32)
1490 #define APIC_IR_MAPSIZE		(APIC_IR_BITS / BITS_PER_LONG)
1491 
1492 union apic_ir {
1493 	unsigned long	map[APIC_IR_MAPSIZE];
1494 	u32		regs[APIC_IR_REGS];
1495 };
1496 
1497 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
1498 {
1499 	int i, bit;
1500 
1501 	/* Read the IRRs */
1502 	for (i = 0; i < APIC_IR_REGS; i++)
1503 		irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
1504 
1505 	/* Read the ISRs */
1506 	for (i = 0; i < APIC_IR_REGS; i++)
1507 		isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1508 
1509 	/*
1510 	 * If the ISR map is not empty. ACK the APIC and run another round
1511 	 * to verify whether a pending IRR has been unblocked and turned
1512 	 * into a ISR.
1513 	 */
1514 	if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
1515 		/*
1516 		 * There can be multiple ISR bits set when a high priority
1517 		 * interrupt preempted a lower priority one. Issue an ACK
1518 		 * per set bit.
1519 		 */
1520 		for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1521 			ack_APIC_irq();
1522 		return true;
1523 	}
1524 
1525 	return !bitmap_empty(irr->map, APIC_IR_BITS);
1526 }
1527 
1528 /*
1529  * After a crash, we no longer service the interrupts and a pending
1530  * interrupt from previous kernel might still have ISR bit set.
1531  *
1532  * Most probably by now the CPU has serviced that pending interrupt and it
1533  * might not have done the ack_APIC_irq() because it thought, interrupt
1534  * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
1535  * the ISR bit and cpu thinks it has already serviced the interrupt. Hence
1536  * a vector might get locked. It was noticed for timer irq (vector
1537  * 0x31). Issue an extra EOI to clear ISR.
1538  *
1539  * If there are pending IRR bits they turn into ISR bits after a higher
1540  * priority ISR bit has been acked.
1541  */
1542 static void apic_pending_intr_clear(void)
1543 {
1544 	union apic_ir irr, isr;
1545 	unsigned int i;
1546 
1547 	/* 512 loops are way oversized and give the APIC a chance to obey. */
1548 	for (i = 0; i < 512; i++) {
1549 		if (!apic_check_and_ack(&irr, &isr))
1550 			return;
1551 	}
1552 	/* Dump the IRR/ISR content if that failed */
1553 	pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
1554 }
1555 
1556 /**
1557  * setup_local_APIC - setup the local APIC
1558  *
1559  * Used to setup local APIC while initializing BSP or bringing up APs.
1560  * Always called with preemption disabled.
1561  */
1562 static void setup_local_APIC(void)
1563 {
1564 	int cpu = smp_processor_id();
1565 	unsigned int value;
1566 
1567 	if (disable_apic) {
1568 		disable_ioapic_support();
1569 		return;
1570 	}
1571 
1572 	/*
1573 	 * If this comes from kexec/kcrash the APIC might be enabled in
1574 	 * SPIV. Soft disable it before doing further initialization.
1575 	 */
1576 	value = apic_read(APIC_SPIV);
1577 	value &= ~APIC_SPIV_APIC_ENABLED;
1578 	apic_write(APIC_SPIV, value);
1579 
1580 #ifdef CONFIG_X86_32
1581 	/* Pound the ESR really hard over the head with a big hammer - mbligh */
1582 	if (lapic_is_integrated() && apic->disable_esr) {
1583 		apic_write(APIC_ESR, 0);
1584 		apic_write(APIC_ESR, 0);
1585 		apic_write(APIC_ESR, 0);
1586 		apic_write(APIC_ESR, 0);
1587 	}
1588 #endif
1589 	/*
1590 	 * Double-check whether this APIC is really registered.
1591 	 * This is meaningless in clustered apic mode, so we skip it.
1592 	 */
1593 	BUG_ON(!apic->apic_id_registered());
1594 
1595 	/*
1596 	 * Intel recommends to set DFR, LDR and TPR before enabling
1597 	 * an APIC.  See e.g. "AP-388 82489DX User's Manual" (Intel
1598 	 * document number 292116).  So here it goes...
1599 	 */
1600 	apic->init_apic_ldr();
1601 
1602 #ifdef CONFIG_X86_32
1603 	if (apic->dest_mode_logical) {
1604 		int logical_apicid, ldr_apicid;
1605 
1606 		/*
1607 		 * APIC LDR is initialized.  If logical_apicid mapping was
1608 		 * initialized during get_smp_config(), make sure it matches
1609 		 * the actual value.
1610 		 */
1611 		logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1612 		ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1613 		if (logical_apicid != BAD_APICID)
1614 			WARN_ON(logical_apicid != ldr_apicid);
1615 		/* Always use the value from LDR. */
1616 		early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1617 	}
1618 #endif
1619 
1620 	/*
1621 	 * Set Task Priority to 'accept all except vectors 0-31'.  An APIC
1622 	 * vector in the 16-31 range could be delivered if TPR == 0, but we
1623 	 * would think it's an exception and terrible things will happen.  We
1624 	 * never change this later on.
1625 	 */
1626 	value = apic_read(APIC_TASKPRI);
1627 	value &= ~APIC_TPRI_MASK;
1628 	value |= 0x10;
1629 	apic_write(APIC_TASKPRI, value);
1630 
1631 	/* Clear eventually stale ISR/IRR bits */
1632 	apic_pending_intr_clear();
1633 
1634 	/*
1635 	 * Now that we are all set up, enable the APIC
1636 	 */
1637 	value = apic_read(APIC_SPIV);
1638 	value &= ~APIC_VECTOR_MASK;
1639 	/*
1640 	 * Enable APIC
1641 	 */
1642 	value |= APIC_SPIV_APIC_ENABLED;
1643 
1644 #ifdef CONFIG_X86_32
1645 	/*
1646 	 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1647 	 * certain networking cards. If high frequency interrupts are
1648 	 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1649 	 * entry is masked/unmasked at a high rate as well then sooner or
1650 	 * later IOAPIC line gets 'stuck', no more interrupts are received
1651 	 * from the device. If focus CPU is disabled then the hang goes
1652 	 * away, oh well :-(
1653 	 *
1654 	 * [ This bug can be reproduced easily with a level-triggered
1655 	 *   PCI Ne2000 networking cards and PII/PIII processors, dual
1656 	 *   BX chipset. ]
1657 	 */
1658 	/*
1659 	 * Actually disabling the focus CPU check just makes the hang less
1660 	 * frequent as it makes the interrupt distribution model be more
1661 	 * like LRU than MRU (the short-term load is more even across CPUs).
1662 	 */
1663 
1664 	/*
1665 	 * - enable focus processor (bit==0)
1666 	 * - 64bit mode always use processor focus
1667 	 *   so no need to set it
1668 	 */
1669 	value &= ~APIC_SPIV_FOCUS_DISABLED;
1670 #endif
1671 
1672 	/*
1673 	 * Set spurious IRQ vector
1674 	 */
1675 	value |= SPURIOUS_APIC_VECTOR;
1676 	apic_write(APIC_SPIV, value);
1677 
1678 	perf_events_lapic_init();
1679 
1680 	/*
1681 	 * Set up LVT0, LVT1:
1682 	 *
1683 	 * set up through-local-APIC on the boot CPU's LINT0. This is not
1684 	 * strictly necessary in pure symmetric-IO mode, but sometimes
1685 	 * we delegate interrupts to the 8259A.
1686 	 */
1687 	/*
1688 	 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1689 	 */
1690 	value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1691 	if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1692 		value = APIC_DM_EXTINT;
1693 		apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1694 	} else {
1695 		value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1696 		apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1697 	}
1698 	apic_write(APIC_LVT0, value);
1699 
1700 	/*
1701 	 * Only the BSP sees the LINT1 NMI signal by default. This can be
1702 	 * modified by apic_extnmi= boot option.
1703 	 */
1704 	if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1705 	    apic_extnmi == APIC_EXTNMI_ALL)
1706 		value = APIC_DM_NMI;
1707 	else
1708 		value = APIC_DM_NMI | APIC_LVT_MASKED;
1709 
1710 	/* Is 82489DX ? */
1711 	if (!lapic_is_integrated())
1712 		value |= APIC_LVT_LEVEL_TRIGGER;
1713 	apic_write(APIC_LVT1, value);
1714 
1715 #ifdef CONFIG_X86_MCE_INTEL
1716 	/* Recheck CMCI information after local APIC is up on CPU #0 */
1717 	if (!cpu)
1718 		cmci_recheck();
1719 #endif
1720 }
1721 
1722 static void end_local_APIC_setup(void)
1723 {
1724 	lapic_setup_esr();
1725 
1726 #ifdef CONFIG_X86_32
1727 	{
1728 		unsigned int value;
1729 		/* Disable the local apic timer */
1730 		value = apic_read(APIC_LVTT);
1731 		value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1732 		apic_write(APIC_LVTT, value);
1733 	}
1734 #endif
1735 
1736 	apic_pm_activate();
1737 }
1738 
1739 /*
1740  * APIC setup function for application processors. Called from smpboot.c
1741  */
1742 void apic_ap_setup(void)
1743 {
1744 	setup_local_APIC();
1745 	end_local_APIC_setup();
1746 }
1747 
1748 #ifdef CONFIG_X86_X2APIC
1749 int x2apic_mode;
1750 EXPORT_SYMBOL_GPL(x2apic_mode);
1751 
1752 enum {
1753 	X2APIC_OFF,
1754 	X2APIC_ON,
1755 	X2APIC_DISABLED,
1756 };
1757 static int x2apic_state;
1758 
1759 static void __x2apic_disable(void)
1760 {
1761 	u64 msr;
1762 
1763 	if (!boot_cpu_has(X86_FEATURE_APIC))
1764 		return;
1765 
1766 	rdmsrl(MSR_IA32_APICBASE, msr);
1767 	if (!(msr & X2APIC_ENABLE))
1768 		return;
1769 	/* Disable xapic and x2apic first and then reenable xapic mode */
1770 	wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1771 	wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1772 	printk_once(KERN_INFO "x2apic disabled\n");
1773 }
1774 
1775 static void __x2apic_enable(void)
1776 {
1777 	u64 msr;
1778 
1779 	rdmsrl(MSR_IA32_APICBASE, msr);
1780 	if (msr & X2APIC_ENABLE)
1781 		return;
1782 	wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1783 	printk_once(KERN_INFO "x2apic enabled\n");
1784 }
1785 
1786 static int __init setup_nox2apic(char *str)
1787 {
1788 	if (x2apic_enabled()) {
1789 		int apicid = native_apic_msr_read(APIC_ID);
1790 
1791 		if (apicid >= 255) {
1792 			pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1793 				apicid);
1794 			return 0;
1795 		}
1796 		pr_warn("x2apic already enabled.\n");
1797 		__x2apic_disable();
1798 	}
1799 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1800 	x2apic_state = X2APIC_DISABLED;
1801 	x2apic_mode = 0;
1802 	return 0;
1803 }
1804 early_param("nox2apic", setup_nox2apic);
1805 
1806 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1807 void x2apic_setup(void)
1808 {
1809 	/*
1810 	 * If x2apic is not in ON state, disable it if already enabled
1811 	 * from BIOS.
1812 	 */
1813 	if (x2apic_state != X2APIC_ON) {
1814 		__x2apic_disable();
1815 		return;
1816 	}
1817 	__x2apic_enable();
1818 }
1819 
1820 static __init void x2apic_disable(void)
1821 {
1822 	u32 x2apic_id, state = x2apic_state;
1823 
1824 	x2apic_mode = 0;
1825 	x2apic_state = X2APIC_DISABLED;
1826 
1827 	if (state != X2APIC_ON)
1828 		return;
1829 
1830 	x2apic_id = read_apic_id();
1831 	if (x2apic_id >= 255)
1832 		panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1833 
1834 	__x2apic_disable();
1835 	register_lapic_address(mp_lapic_addr);
1836 }
1837 
1838 static __init void x2apic_enable(void)
1839 {
1840 	if (x2apic_state != X2APIC_OFF)
1841 		return;
1842 
1843 	x2apic_mode = 1;
1844 	x2apic_state = X2APIC_ON;
1845 	__x2apic_enable();
1846 }
1847 
1848 static __init void try_to_enable_x2apic(int remap_mode)
1849 {
1850 	if (x2apic_state == X2APIC_DISABLED)
1851 		return;
1852 
1853 	if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1854 		u32 apic_limit = 255;
1855 
1856 		/*
1857 		 * Using X2APIC without IR is not architecturally supported
1858 		 * on bare metal but may be supported in guests.
1859 		 */
1860 		if (!x86_init.hyper.x2apic_available()) {
1861 			pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1862 			x2apic_disable();
1863 			return;
1864 		}
1865 
1866 		/*
1867 		 * If the hypervisor supports extended destination ID in
1868 		 * MSI, that increases the maximum APIC ID that can be
1869 		 * used for non-remapped IRQ domains.
1870 		 */
1871 		if (x86_init.hyper.msi_ext_dest_id()) {
1872 			virt_ext_dest_id = 1;
1873 			apic_limit = 32767;
1874 		}
1875 
1876 		/*
1877 		 * Without IR, all CPUs can be addressed by IOAPIC/MSI only
1878 		 * in physical mode, and CPUs with an APIC ID that cannot
1879 		 * be addressed must not be brought online.
1880 		 */
1881 		x2apic_set_max_apicid(apic_limit);
1882 		x2apic_phys = 1;
1883 	}
1884 	x2apic_enable();
1885 }
1886 
1887 void __init check_x2apic(void)
1888 {
1889 	if (x2apic_enabled()) {
1890 		pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1891 		x2apic_mode = 1;
1892 		x2apic_state = X2APIC_ON;
1893 	} else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1894 		x2apic_state = X2APIC_DISABLED;
1895 	}
1896 }
1897 #else /* CONFIG_X86_X2APIC */
1898 static int __init validate_x2apic(void)
1899 {
1900 	if (!apic_is_x2apic_enabled())
1901 		return 0;
1902 	/*
1903 	 * Checkme: Can we simply turn off x2apic here instead of panic?
1904 	 */
1905 	panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1906 }
1907 early_initcall(validate_x2apic);
1908 
1909 static inline void try_to_enable_x2apic(int remap_mode) { }
1910 static inline void __x2apic_enable(void) { }
1911 #endif /* !CONFIG_X86_X2APIC */
1912 
1913 void __init enable_IR_x2apic(void)
1914 {
1915 	unsigned long flags;
1916 	int ret, ir_stat;
1917 
1918 	if (skip_ioapic_setup) {
1919 		pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1920 		return;
1921 	}
1922 
1923 	ir_stat = irq_remapping_prepare();
1924 	if (ir_stat < 0 && !x2apic_supported())
1925 		return;
1926 
1927 	ret = save_ioapic_entries();
1928 	if (ret) {
1929 		pr_info("Saving IO-APIC state failed: %d\n", ret);
1930 		return;
1931 	}
1932 
1933 	local_irq_save(flags);
1934 	legacy_pic->mask_all();
1935 	mask_ioapic_entries();
1936 
1937 	/* If irq_remapping_prepare() succeeded, try to enable it */
1938 	if (ir_stat >= 0)
1939 		ir_stat = irq_remapping_enable();
1940 	/* ir_stat contains the remap mode or an error code */
1941 	try_to_enable_x2apic(ir_stat);
1942 
1943 	if (ir_stat < 0)
1944 		restore_ioapic_entries();
1945 	legacy_pic->restore_mask();
1946 	local_irq_restore(flags);
1947 }
1948 
1949 #ifdef CONFIG_X86_64
1950 /*
1951  * Detect and enable local APICs on non-SMP boards.
1952  * Original code written by Keir Fraser.
1953  * On AMD64 we trust the BIOS - if it says no APIC it is likely
1954  * not correctly set up (usually the APIC timer won't work etc.)
1955  */
1956 static int __init detect_init_APIC(void)
1957 {
1958 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1959 		pr_info("No local APIC present\n");
1960 		return -1;
1961 	}
1962 
1963 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1964 	return 0;
1965 }
1966 #else
1967 
1968 static int __init apic_verify(void)
1969 {
1970 	u32 features, h, l;
1971 
1972 	/*
1973 	 * The APIC feature bit should now be enabled
1974 	 * in `cpuid'
1975 	 */
1976 	features = cpuid_edx(1);
1977 	if (!(features & (1 << X86_FEATURE_APIC))) {
1978 		pr_warn("Could not enable APIC!\n");
1979 		return -1;
1980 	}
1981 	set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1982 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1983 
1984 	/* The BIOS may have set up the APIC at some other address */
1985 	if (boot_cpu_data.x86 >= 6) {
1986 		rdmsr(MSR_IA32_APICBASE, l, h);
1987 		if (l & MSR_IA32_APICBASE_ENABLE)
1988 			mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1989 	}
1990 
1991 	pr_info("Found and enabled local APIC!\n");
1992 	return 0;
1993 }
1994 
1995 int __init apic_force_enable(unsigned long addr)
1996 {
1997 	u32 h, l;
1998 
1999 	if (disable_apic)
2000 		return -1;
2001 
2002 	/*
2003 	 * Some BIOSes disable the local APIC in the APIC_BASE
2004 	 * MSR. This can only be done in software for Intel P6 or later
2005 	 * and AMD K7 (Model > 1) or later.
2006 	 */
2007 	if (boot_cpu_data.x86 >= 6) {
2008 		rdmsr(MSR_IA32_APICBASE, l, h);
2009 		if (!(l & MSR_IA32_APICBASE_ENABLE)) {
2010 			pr_info("Local APIC disabled by BIOS -- reenabling.\n");
2011 			l &= ~MSR_IA32_APICBASE_BASE;
2012 			l |= MSR_IA32_APICBASE_ENABLE | addr;
2013 			wrmsr(MSR_IA32_APICBASE, l, h);
2014 			enabled_via_apicbase = 1;
2015 		}
2016 	}
2017 	return apic_verify();
2018 }
2019 
2020 /*
2021  * Detect and initialize APIC
2022  */
2023 static int __init detect_init_APIC(void)
2024 {
2025 	/* Disabled by kernel option? */
2026 	if (disable_apic)
2027 		return -1;
2028 
2029 	switch (boot_cpu_data.x86_vendor) {
2030 	case X86_VENDOR_AMD:
2031 		if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2032 		    (boot_cpu_data.x86 >= 15))
2033 			break;
2034 		goto no_apic;
2035 	case X86_VENDOR_HYGON:
2036 		break;
2037 	case X86_VENDOR_INTEL:
2038 		if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
2039 		    (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2040 			break;
2041 		goto no_apic;
2042 	default:
2043 		goto no_apic;
2044 	}
2045 
2046 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
2047 		/*
2048 		 * Over-ride BIOS and try to enable the local APIC only if
2049 		 * "lapic" specified.
2050 		 */
2051 		if (!force_enable_local_apic) {
2052 			pr_info("Local APIC disabled by BIOS -- "
2053 				"you can enable it with \"lapic\"\n");
2054 			return -1;
2055 		}
2056 		if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2057 			return -1;
2058 	} else {
2059 		if (apic_verify())
2060 			return -1;
2061 	}
2062 
2063 	apic_pm_activate();
2064 
2065 	return 0;
2066 
2067 no_apic:
2068 	pr_info("No local APIC present or hardware disabled\n");
2069 	return -1;
2070 }
2071 #endif
2072 
2073 /**
2074  * init_apic_mappings - initialize APIC mappings
2075  */
2076 void __init init_apic_mappings(void)
2077 {
2078 	unsigned int new_apicid;
2079 
2080 	if (apic_validate_deadline_timer())
2081 		pr_info("TSC deadline timer available\n");
2082 
2083 	if (x2apic_mode) {
2084 		boot_cpu_physical_apicid = read_apic_id();
2085 		return;
2086 	}
2087 
2088 	/* If no local APIC can be found return early */
2089 	if (!smp_found_config && detect_init_APIC()) {
2090 		/* lets NOP'ify apic operations */
2091 		pr_info("APIC: disable apic facility\n");
2092 		apic_disable();
2093 	} else {
2094 		apic_phys = mp_lapic_addr;
2095 
2096 		/*
2097 		 * If the system has ACPI MADT tables or MP info, the LAPIC
2098 		 * address is already registered.
2099 		 */
2100 		if (!acpi_lapic && !smp_found_config)
2101 			register_lapic_address(apic_phys);
2102 	}
2103 
2104 	/*
2105 	 * Fetch the APIC ID of the BSP in case we have a
2106 	 * default configuration (or the MP table is broken).
2107 	 */
2108 	new_apicid = read_apic_id();
2109 	if (boot_cpu_physical_apicid != new_apicid) {
2110 		boot_cpu_physical_apicid = new_apicid;
2111 		/*
2112 		 * yeah -- we lie about apic_version
2113 		 * in case if apic was disabled via boot option
2114 		 * but it's not a problem for SMP compiled kernel
2115 		 * since apic_intr_mode_select is prepared for such
2116 		 * a case and disable smp mode
2117 		 */
2118 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2119 	}
2120 }
2121 
2122 void __init register_lapic_address(unsigned long address)
2123 {
2124 	mp_lapic_addr = address;
2125 
2126 	if (!x2apic_mode) {
2127 		set_fixmap_nocache(FIX_APIC_BASE, address);
2128 		apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2129 			    APIC_BASE, address);
2130 	}
2131 	if (boot_cpu_physical_apicid == -1U) {
2132 		boot_cpu_physical_apicid  = read_apic_id();
2133 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2134 	}
2135 }
2136 
2137 /*
2138  * Local APIC interrupts
2139  */
2140 
2141 /*
2142  * Common handling code for spurious_interrupt and spurious_vector entry
2143  * points below. No point in allowing the compiler to inline it twice.
2144  */
2145 static noinline void handle_spurious_interrupt(u8 vector)
2146 {
2147 	u32 v;
2148 
2149 	trace_spurious_apic_entry(vector);
2150 
2151 	inc_irq_stat(irq_spurious_count);
2152 
2153 	/*
2154 	 * If this is a spurious interrupt then do not acknowledge
2155 	 */
2156 	if (vector == SPURIOUS_APIC_VECTOR) {
2157 		/* See SDM vol 3 */
2158 		pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2159 			smp_processor_id());
2160 		goto out;
2161 	}
2162 
2163 	/*
2164 	 * If it is a vectored one, verify it's set in the ISR. If set,
2165 	 * acknowledge it.
2166 	 */
2167 	v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2168 	if (v & (1 << (vector & 0x1f))) {
2169 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2170 			vector, smp_processor_id());
2171 		ack_APIC_irq();
2172 	} else {
2173 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2174 			vector, smp_processor_id());
2175 	}
2176 out:
2177 	trace_spurious_apic_exit(vector);
2178 }
2179 
2180 /**
2181  * spurious_interrupt - Catch all for interrupts raised on unused vectors
2182  * @regs:	Pointer to pt_regs on stack
2183  * @vector:	The vector number
2184  *
2185  * This is invoked from ASM entry code to catch all interrupts which
2186  * trigger on an entry which is routed to the common_spurious idtentry
2187  * point.
2188  */
2189 DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2190 {
2191 	handle_spurious_interrupt(vector);
2192 }
2193 
2194 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2195 {
2196 	handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2197 }
2198 
2199 /*
2200  * This interrupt should never happen with our APIC/SMP architecture
2201  */
2202 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2203 {
2204 	static const char * const error_interrupt_reason[] = {
2205 		"Send CS error",		/* APIC Error Bit 0 */
2206 		"Receive CS error",		/* APIC Error Bit 1 */
2207 		"Send accept error",		/* APIC Error Bit 2 */
2208 		"Receive accept error",		/* APIC Error Bit 3 */
2209 		"Redirectable IPI",		/* APIC Error Bit 4 */
2210 		"Send illegal vector",		/* APIC Error Bit 5 */
2211 		"Received illegal vector",	/* APIC Error Bit 6 */
2212 		"Illegal register address",	/* APIC Error Bit 7 */
2213 	};
2214 	u32 v, i = 0;
2215 
2216 	trace_error_apic_entry(ERROR_APIC_VECTOR);
2217 
2218 	/* First tickle the hardware, only then report what went on. -- REW */
2219 	if (lapic_get_maxlvt() > 3)	/* Due to the Pentium erratum 3AP. */
2220 		apic_write(APIC_ESR, 0);
2221 	v = apic_read(APIC_ESR);
2222 	ack_APIC_irq();
2223 	atomic_inc(&irq_err_count);
2224 
2225 	apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2226 		    smp_processor_id(), v);
2227 
2228 	v &= 0xff;
2229 	while (v) {
2230 		if (v & 0x1)
2231 			apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2232 		i++;
2233 		v >>= 1;
2234 	}
2235 
2236 	apic_printk(APIC_DEBUG, KERN_CONT "\n");
2237 
2238 	trace_error_apic_exit(ERROR_APIC_VECTOR);
2239 }
2240 
2241 /**
2242  * connect_bsp_APIC - attach the APIC to the interrupt system
2243  */
2244 static void __init connect_bsp_APIC(void)
2245 {
2246 #ifdef CONFIG_X86_32
2247 	if (pic_mode) {
2248 		/*
2249 		 * Do not trust the local APIC being empty at bootup.
2250 		 */
2251 		clear_local_APIC();
2252 		/*
2253 		 * PIC mode, enable APIC mode in the IMCR, i.e.  connect BSP's
2254 		 * local APIC to INT and NMI lines.
2255 		 */
2256 		apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2257 				"enabling APIC mode.\n");
2258 		imcr_pic_to_apic();
2259 	}
2260 #endif
2261 }
2262 
2263 /**
2264  * disconnect_bsp_APIC - detach the APIC from the interrupt system
2265  * @virt_wire_setup:	indicates, whether virtual wire mode is selected
2266  *
2267  * Virtual wire mode is necessary to deliver legacy interrupts even when the
2268  * APIC is disabled.
2269  */
2270 void disconnect_bsp_APIC(int virt_wire_setup)
2271 {
2272 	unsigned int value;
2273 
2274 #ifdef CONFIG_X86_32
2275 	if (pic_mode) {
2276 		/*
2277 		 * Put the board back into PIC mode (has an effect only on
2278 		 * certain older boards).  Note that APIC interrupts, including
2279 		 * IPIs, won't work beyond this point!  The only exception are
2280 		 * INIT IPIs.
2281 		 */
2282 		apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2283 				"entering PIC mode.\n");
2284 		imcr_apic_to_pic();
2285 		return;
2286 	}
2287 #endif
2288 
2289 	/* Go back to Virtual Wire compatibility mode */
2290 
2291 	/* For the spurious interrupt use vector F, and enable it */
2292 	value = apic_read(APIC_SPIV);
2293 	value &= ~APIC_VECTOR_MASK;
2294 	value |= APIC_SPIV_APIC_ENABLED;
2295 	value |= 0xf;
2296 	apic_write(APIC_SPIV, value);
2297 
2298 	if (!virt_wire_setup) {
2299 		/*
2300 		 * For LVT0 make it edge triggered, active high,
2301 		 * external and enabled
2302 		 */
2303 		value = apic_read(APIC_LVT0);
2304 		value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2305 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2306 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2307 		value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2308 		value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2309 		apic_write(APIC_LVT0, value);
2310 	} else {
2311 		/* Disable LVT0 */
2312 		apic_write(APIC_LVT0, APIC_LVT_MASKED);
2313 	}
2314 
2315 	/*
2316 	 * For LVT1 make it edge triggered, active high,
2317 	 * nmi and enabled
2318 	 */
2319 	value = apic_read(APIC_LVT1);
2320 	value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2321 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2322 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2323 	value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2324 	value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2325 	apic_write(APIC_LVT1, value);
2326 }
2327 
2328 /*
2329  * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2330  * contiguously, it equals to current allocated max logical CPU ID plus 1.
2331  * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2332  * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2333  *
2334  * NOTE: Reserve 0 for BSP.
2335  */
2336 static int nr_logical_cpuids = 1;
2337 
2338 /*
2339  * Used to store mapping between logical CPU IDs and APIC IDs.
2340  */
2341 static int cpuid_to_apicid[] = {
2342 	[0 ... NR_CPUS - 1] = -1,
2343 };
2344 
2345 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
2346 {
2347 	return phys_id == cpuid_to_apicid[cpu];
2348 }
2349 
2350 #ifdef CONFIG_SMP
2351 /**
2352  * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2353  * @apicid: APIC ID to check
2354  */
2355 bool apic_id_is_primary_thread(unsigned int apicid)
2356 {
2357 	u32 mask;
2358 
2359 	if (smp_num_siblings == 1)
2360 		return true;
2361 	/* Isolate the SMT bit(s) in the APICID and check for 0 */
2362 	mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2363 	return !(apicid & mask);
2364 }
2365 #endif
2366 
2367 /*
2368  * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2369  * and cpuid_to_apicid[] synchronized.
2370  */
2371 static int allocate_logical_cpuid(int apicid)
2372 {
2373 	int i;
2374 
2375 	/*
2376 	 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2377 	 * check if the kernel has allocated a cpuid for it.
2378 	 */
2379 	for (i = 0; i < nr_logical_cpuids; i++) {
2380 		if (cpuid_to_apicid[i] == apicid)
2381 			return i;
2382 	}
2383 
2384 	/* Allocate a new cpuid. */
2385 	if (nr_logical_cpuids >= nr_cpu_ids) {
2386 		WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2387 			     "Processor %d/0x%x and the rest are ignored.\n",
2388 			     nr_cpu_ids, nr_logical_cpuids, apicid);
2389 		return -EINVAL;
2390 	}
2391 
2392 	cpuid_to_apicid[nr_logical_cpuids] = apicid;
2393 	return nr_logical_cpuids++;
2394 }
2395 
2396 int generic_processor_info(int apicid, int version)
2397 {
2398 	int cpu, max = nr_cpu_ids;
2399 	bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2400 				phys_cpu_present_map);
2401 
2402 	/*
2403 	 * boot_cpu_physical_apicid is designed to have the apicid
2404 	 * returned by read_apic_id(), i.e, the apicid of the
2405 	 * currently booting-up processor. However, on some platforms,
2406 	 * it is temporarily modified by the apicid reported as BSP
2407 	 * through MP table. Concretely:
2408 	 *
2409 	 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2410 	 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2411 	 *
2412 	 * This function is executed with the modified
2413 	 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2414 	 * parameter doesn't work to disable APs on kdump 2nd kernel.
2415 	 *
2416 	 * Since fixing handling of boot_cpu_physical_apicid requires
2417 	 * another discussion and tests on each platform, we leave it
2418 	 * for now and here we use read_apic_id() directly in this
2419 	 * function, generic_processor_info().
2420 	 */
2421 	if (disabled_cpu_apicid != BAD_APICID &&
2422 	    disabled_cpu_apicid != read_apic_id() &&
2423 	    disabled_cpu_apicid == apicid) {
2424 		int thiscpu = num_processors + disabled_cpus;
2425 
2426 		pr_warn("APIC: Disabling requested cpu."
2427 			" Processor %d/0x%x ignored.\n", thiscpu, apicid);
2428 
2429 		disabled_cpus++;
2430 		return -ENODEV;
2431 	}
2432 
2433 	/*
2434 	 * If boot cpu has not been detected yet, then only allow upto
2435 	 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2436 	 */
2437 	if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2438 	    apicid != boot_cpu_physical_apicid) {
2439 		int thiscpu = max + disabled_cpus - 1;
2440 
2441 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost"
2442 			" reached. Keeping one slot for boot cpu."
2443 			"  Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2444 
2445 		disabled_cpus++;
2446 		return -ENODEV;
2447 	}
2448 
2449 	if (num_processors >= nr_cpu_ids) {
2450 		int thiscpu = max + disabled_cpus;
2451 
2452 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. "
2453 			"Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2454 
2455 		disabled_cpus++;
2456 		return -EINVAL;
2457 	}
2458 
2459 	if (apicid == boot_cpu_physical_apicid) {
2460 		/*
2461 		 * x86_bios_cpu_apicid is required to have processors listed
2462 		 * in same order as logical cpu numbers. Hence the first
2463 		 * entry is BSP, and so on.
2464 		 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2465 		 * for BSP.
2466 		 */
2467 		cpu = 0;
2468 
2469 		/* Logical cpuid 0 is reserved for BSP. */
2470 		cpuid_to_apicid[0] = apicid;
2471 	} else {
2472 		cpu = allocate_logical_cpuid(apicid);
2473 		if (cpu < 0) {
2474 			disabled_cpus++;
2475 			return -EINVAL;
2476 		}
2477 	}
2478 
2479 	/*
2480 	 * Validate version
2481 	 */
2482 	if (version == 0x0) {
2483 		pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2484 			cpu, apicid);
2485 		version = 0x10;
2486 	}
2487 
2488 	if (version != boot_cpu_apic_version) {
2489 		pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2490 			boot_cpu_apic_version, cpu, version);
2491 	}
2492 
2493 	if (apicid > max_physical_apicid)
2494 		max_physical_apicid = apicid;
2495 
2496 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2497 	early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2498 	early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2499 #endif
2500 #ifdef CONFIG_X86_32
2501 	early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2502 		apic->x86_32_early_logical_apicid(cpu);
2503 #endif
2504 	set_cpu_possible(cpu, true);
2505 	physid_set(apicid, phys_cpu_present_map);
2506 	set_cpu_present(cpu, true);
2507 	num_processors++;
2508 
2509 	return cpu;
2510 }
2511 
2512 int hard_smp_processor_id(void)
2513 {
2514 	return read_apic_id();
2515 }
2516 
2517 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2518 			   bool dmar)
2519 {
2520 	memset(msg, 0, sizeof(*msg));
2521 
2522 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2523 	msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2524 	msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2525 
2526 	msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2527 	msg->arch_data.vector = cfg->vector;
2528 
2529 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2530 	/*
2531 	 * Only the IOMMU itself can use the trick of putting destination
2532 	 * APIC ID into the high bits of the address. Anything else would
2533 	 * just be writing to memory if it tried that, and needs IR to
2534 	 * address APICs which can't be addressed in the normal 32-bit
2535 	 * address range at 0xFFExxxxx. That is typically just 8 bits, but
2536 	 * some hypervisors allow the extended destination ID field in bits
2537 	 * 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2538 	 */
2539 	if (dmar)
2540 		msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2541 	else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2542 		msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2543 	else
2544 		WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2545 }
2546 
2547 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2548 {
2549 	u32 dest = msg->arch_addr_lo.destid_0_7;
2550 
2551 	if (extid)
2552 		dest |= msg->arch_addr_hi.destid_8_31 << 8;
2553 	return dest;
2554 }
2555 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
2556 
2557 /*
2558  * Override the generic EOI implementation with an optimized version.
2559  * Only called during early boot when only one CPU is active and with
2560  * interrupts disabled, so we know this does not race with actual APIC driver
2561  * use.
2562  */
2563 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2564 {
2565 	struct apic **drv;
2566 
2567 	for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2568 		/* Should happen once for each apic */
2569 		WARN_ON((*drv)->eoi_write == eoi_write);
2570 		(*drv)->native_eoi_write = (*drv)->eoi_write;
2571 		(*drv)->eoi_write = eoi_write;
2572 	}
2573 }
2574 
2575 static void __init apic_bsp_up_setup(void)
2576 {
2577 #ifdef CONFIG_X86_64
2578 	apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2579 #else
2580 	/*
2581 	 * Hack: In case of kdump, after a crash, kernel might be booting
2582 	 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2583 	 * might be zero if read from MP tables. Get it from LAPIC.
2584 	 */
2585 # ifdef CONFIG_CRASH_DUMP
2586 	boot_cpu_physical_apicid = read_apic_id();
2587 # endif
2588 #endif
2589 	physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2590 }
2591 
2592 /**
2593  * apic_bsp_setup - Setup function for local apic and io-apic
2594  * @upmode:		Force UP mode (for APIC_init_uniprocessor)
2595  */
2596 static void __init apic_bsp_setup(bool upmode)
2597 {
2598 	connect_bsp_APIC();
2599 	if (upmode)
2600 		apic_bsp_up_setup();
2601 	setup_local_APIC();
2602 
2603 	enable_IO_APIC();
2604 	end_local_APIC_setup();
2605 	irq_remap_enable_fault_handling();
2606 	setup_IO_APIC();
2607 	lapic_update_legacy_vectors();
2608 }
2609 
2610 #ifdef CONFIG_UP_LATE_INIT
2611 void __init up_late_init(void)
2612 {
2613 	if (apic_intr_mode == APIC_PIC)
2614 		return;
2615 
2616 	/* Setup local timer */
2617 	x86_init.timers.setup_percpu_clockev();
2618 }
2619 #endif
2620 
2621 /*
2622  * Power management
2623  */
2624 #ifdef CONFIG_PM
2625 
2626 static struct {
2627 	/*
2628 	 * 'active' is true if the local APIC was enabled by us and
2629 	 * not the BIOS; this signifies that we are also responsible
2630 	 * for disabling it before entering apm/acpi suspend
2631 	 */
2632 	int active;
2633 	/* r/w apic fields */
2634 	unsigned int apic_id;
2635 	unsigned int apic_taskpri;
2636 	unsigned int apic_ldr;
2637 	unsigned int apic_dfr;
2638 	unsigned int apic_spiv;
2639 	unsigned int apic_lvtt;
2640 	unsigned int apic_lvtpc;
2641 	unsigned int apic_lvt0;
2642 	unsigned int apic_lvt1;
2643 	unsigned int apic_lvterr;
2644 	unsigned int apic_tmict;
2645 	unsigned int apic_tdcr;
2646 	unsigned int apic_thmr;
2647 	unsigned int apic_cmci;
2648 } apic_pm_state;
2649 
2650 static int lapic_suspend(void)
2651 {
2652 	unsigned long flags;
2653 	int maxlvt;
2654 
2655 	if (!apic_pm_state.active)
2656 		return 0;
2657 
2658 	maxlvt = lapic_get_maxlvt();
2659 
2660 	apic_pm_state.apic_id = apic_read(APIC_ID);
2661 	apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2662 	apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2663 	apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2664 	apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2665 	apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2666 	if (maxlvt >= 4)
2667 		apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2668 	apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2669 	apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2670 	apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2671 	apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2672 	apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2673 #ifdef CONFIG_X86_THERMAL_VECTOR
2674 	if (maxlvt >= 5)
2675 		apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2676 #endif
2677 #ifdef CONFIG_X86_MCE_INTEL
2678 	if (maxlvt >= 6)
2679 		apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2680 #endif
2681 
2682 	local_irq_save(flags);
2683 
2684 	/*
2685 	 * Mask IOAPIC before disabling the local APIC to prevent stale IRR
2686 	 * entries on some implementations.
2687 	 */
2688 	mask_ioapic_entries();
2689 
2690 	disable_local_APIC();
2691 
2692 	irq_remapping_disable();
2693 
2694 	local_irq_restore(flags);
2695 	return 0;
2696 }
2697 
2698 static void lapic_resume(void)
2699 {
2700 	unsigned int l, h;
2701 	unsigned long flags;
2702 	int maxlvt;
2703 
2704 	if (!apic_pm_state.active)
2705 		return;
2706 
2707 	local_irq_save(flags);
2708 
2709 	/*
2710 	 * IO-APIC and PIC have their own resume routines.
2711 	 * We just mask them here to make sure the interrupt
2712 	 * subsystem is completely quiet while we enable x2apic
2713 	 * and interrupt-remapping.
2714 	 */
2715 	mask_ioapic_entries();
2716 	legacy_pic->mask_all();
2717 
2718 	if (x2apic_mode) {
2719 		__x2apic_enable();
2720 	} else {
2721 		/*
2722 		 * Make sure the APICBASE points to the right address
2723 		 *
2724 		 * FIXME! This will be wrong if we ever support suspend on
2725 		 * SMP! We'll need to do this as part of the CPU restore!
2726 		 */
2727 		if (boot_cpu_data.x86 >= 6) {
2728 			rdmsr(MSR_IA32_APICBASE, l, h);
2729 			l &= ~MSR_IA32_APICBASE_BASE;
2730 			l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2731 			wrmsr(MSR_IA32_APICBASE, l, h);
2732 		}
2733 	}
2734 
2735 	maxlvt = lapic_get_maxlvt();
2736 	apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2737 	apic_write(APIC_ID, apic_pm_state.apic_id);
2738 	apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2739 	apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2740 	apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2741 	apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2742 	apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2743 	apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2744 #ifdef CONFIG_X86_THERMAL_VECTOR
2745 	if (maxlvt >= 5)
2746 		apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2747 #endif
2748 #ifdef CONFIG_X86_MCE_INTEL
2749 	if (maxlvt >= 6)
2750 		apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2751 #endif
2752 	if (maxlvt >= 4)
2753 		apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2754 	apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2755 	apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2756 	apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2757 	apic_write(APIC_ESR, 0);
2758 	apic_read(APIC_ESR);
2759 	apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2760 	apic_write(APIC_ESR, 0);
2761 	apic_read(APIC_ESR);
2762 
2763 	irq_remapping_reenable(x2apic_mode);
2764 
2765 	local_irq_restore(flags);
2766 }
2767 
2768 /*
2769  * This device has no shutdown method - fully functioning local APICs
2770  * are needed on every CPU up until machine_halt/restart/poweroff.
2771  */
2772 
2773 static struct syscore_ops lapic_syscore_ops = {
2774 	.resume		= lapic_resume,
2775 	.suspend	= lapic_suspend,
2776 };
2777 
2778 static void apic_pm_activate(void)
2779 {
2780 	apic_pm_state.active = 1;
2781 }
2782 
2783 static int __init init_lapic_sysfs(void)
2784 {
2785 	/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2786 	if (boot_cpu_has(X86_FEATURE_APIC))
2787 		register_syscore_ops(&lapic_syscore_ops);
2788 
2789 	return 0;
2790 }
2791 
2792 /* local apic needs to resume before other devices access its registers. */
2793 core_initcall(init_lapic_sysfs);
2794 
2795 #else	/* CONFIG_PM */
2796 
2797 static void apic_pm_activate(void) { }
2798 
2799 #endif	/* CONFIG_PM */
2800 
2801 #ifdef CONFIG_X86_64
2802 
2803 static int multi_checked;
2804 static int multi;
2805 
2806 static int set_multi(const struct dmi_system_id *d)
2807 {
2808 	if (multi)
2809 		return 0;
2810 	pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2811 	multi = 1;
2812 	return 0;
2813 }
2814 
2815 static const struct dmi_system_id multi_dmi_table[] = {
2816 	{
2817 		.callback = set_multi,
2818 		.ident = "IBM System Summit2",
2819 		.matches = {
2820 			DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2821 			DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2822 		},
2823 	},
2824 	{}
2825 };
2826 
2827 static void dmi_check_multi(void)
2828 {
2829 	if (multi_checked)
2830 		return;
2831 
2832 	dmi_check_system(multi_dmi_table);
2833 	multi_checked = 1;
2834 }
2835 
2836 /*
2837  * apic_is_clustered_box() -- Check if we can expect good TSC
2838  *
2839  * Thus far, the major user of this is IBM's Summit2 series:
2840  * Clustered boxes may have unsynced TSC problems if they are
2841  * multi-chassis.
2842  * Use DMI to check them
2843  */
2844 int apic_is_clustered_box(void)
2845 {
2846 	dmi_check_multi();
2847 	return multi;
2848 }
2849 #endif
2850 
2851 /*
2852  * APIC command line parameters
2853  */
2854 static int __init setup_disableapic(char *arg)
2855 {
2856 	disable_apic = 1;
2857 	setup_clear_cpu_cap(X86_FEATURE_APIC);
2858 	return 0;
2859 }
2860 early_param("disableapic", setup_disableapic);
2861 
2862 /* same as disableapic, for compatibility */
2863 static int __init setup_nolapic(char *arg)
2864 {
2865 	return setup_disableapic(arg);
2866 }
2867 early_param("nolapic", setup_nolapic);
2868 
2869 static int __init parse_lapic_timer_c2_ok(char *arg)
2870 {
2871 	local_apic_timer_c2_ok = 1;
2872 	return 0;
2873 }
2874 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2875 
2876 static int __init parse_disable_apic_timer(char *arg)
2877 {
2878 	disable_apic_timer = 1;
2879 	return 0;
2880 }
2881 early_param("noapictimer", parse_disable_apic_timer);
2882 
2883 static int __init parse_nolapic_timer(char *arg)
2884 {
2885 	disable_apic_timer = 1;
2886 	return 0;
2887 }
2888 early_param("nolapic_timer", parse_nolapic_timer);
2889 
2890 static int __init apic_set_verbosity(char *arg)
2891 {
2892 	if (!arg)  {
2893 #ifdef CONFIG_X86_64
2894 		skip_ioapic_setup = 0;
2895 		return 0;
2896 #endif
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (strcmp("debug", arg) == 0)
2901 		apic_verbosity = APIC_DEBUG;
2902 	else if (strcmp("verbose", arg) == 0)
2903 		apic_verbosity = APIC_VERBOSE;
2904 #ifdef CONFIG_X86_64
2905 	else {
2906 		pr_warn("APIC Verbosity level %s not recognised"
2907 			" use apic=verbose or apic=debug\n", arg);
2908 		return -EINVAL;
2909 	}
2910 #endif
2911 
2912 	return 0;
2913 }
2914 early_param("apic", apic_set_verbosity);
2915 
2916 static int __init lapic_insert_resource(void)
2917 {
2918 	if (!apic_phys)
2919 		return -1;
2920 
2921 	/* Put local APIC into the resource map. */
2922 	lapic_resource.start = apic_phys;
2923 	lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2924 	insert_resource(&iomem_resource, &lapic_resource);
2925 
2926 	return 0;
2927 }
2928 
2929 /*
2930  * need call insert after e820__reserve_resources()
2931  * that is using request_resource
2932  */
2933 late_initcall(lapic_insert_resource);
2934 
2935 static int __init apic_set_disabled_cpu_apicid(char *arg)
2936 {
2937 	if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2938 		return -EINVAL;
2939 
2940 	return 0;
2941 }
2942 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2943 
2944 static int __init apic_set_extnmi(char *arg)
2945 {
2946 	if (!arg)
2947 		return -EINVAL;
2948 
2949 	if (!strncmp("all", arg, 3))
2950 		apic_extnmi = APIC_EXTNMI_ALL;
2951 	else if (!strncmp("none", arg, 4))
2952 		apic_extnmi = APIC_EXTNMI_NONE;
2953 	else if (!strncmp("bsp", arg, 3))
2954 		apic_extnmi = APIC_EXTNMI_BSP;
2955 	else {
2956 		pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2957 		return -EINVAL;
2958 	}
2959 
2960 	return 0;
2961 }
2962 early_param("apic_extnmi", apic_set_extnmi);
2963