1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC handling, local APIC timers 4 * 5 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * 7 * Fixes 8 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 9 * thanks to Eric Gilmore 10 * and Rolf G. Tews 11 * for testing these extensively. 12 * Maciej W. Rozycki : Various updates and fixes. 13 * Mikael Pettersson : Power Management for UP-APIC. 14 * Pavel Machek and 15 * Mikael Pettersson : PM converted to driver model. 16 */ 17 18 #include <linux/perf_event.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mc146818rtc.h> 21 #include <linux/acpi_pmtmr.h> 22 #include <linux/clockchips.h> 23 #include <linux/interrupt.h> 24 #include <linux/memblock.h> 25 #include <linux/ftrace.h> 26 #include <linux/ioport.h> 27 #include <linux/export.h> 28 #include <linux/syscore_ops.h> 29 #include <linux/delay.h> 30 #include <linux/timex.h> 31 #include <linux/i8253.h> 32 #include <linux/dmar.h> 33 #include <linux/init.h> 34 #include <linux/cpu.h> 35 #include <linux/dmi.h> 36 #include <linux/smp.h> 37 #include <linux/mm.h> 38 39 #include <asm/trace/irq_vectors.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/perf_event.h> 42 #include <asm/x86_init.h> 43 #include <linux/atomic.h> 44 #include <asm/mpspec.h> 45 #include <asm/i8259.h> 46 #include <asm/proto.h> 47 #include <asm/traps.h> 48 #include <asm/apic.h> 49 #include <asm/acpi.h> 50 #include <asm/io_apic.h> 51 #include <asm/desc.h> 52 #include <asm/hpet.h> 53 #include <asm/mtrr.h> 54 #include <asm/time.h> 55 #include <asm/smp.h> 56 #include <asm/mce.h> 57 #include <asm/tsc.h> 58 #include <asm/hypervisor.h> 59 #include <asm/cpu_device_id.h> 60 #include <asm/intel-family.h> 61 #include <asm/irq_regs.h> 62 63 unsigned int num_processors; 64 65 unsigned disabled_cpus; 66 67 /* Processor that is doing the boot up */ 68 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U; 69 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); 70 71 u8 boot_cpu_apic_version __ro_after_init; 72 73 /* 74 * The highest APIC ID seen during enumeration. 75 */ 76 static unsigned int max_physical_apicid; 77 78 /* 79 * Bitmask of physically existing CPUs: 80 */ 81 physid_mask_t phys_cpu_present_map; 82 83 /* 84 * Processor to be disabled specified by kernel parameter 85 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to 86 * avoid undefined behaviour caused by sending INIT from AP to BSP. 87 */ 88 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID; 89 90 /* 91 * This variable controls which CPUs receive external NMIs. By default, 92 * external NMIs are delivered only to the BSP. 93 */ 94 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; 95 96 /* 97 * Map cpu index to physical APIC ID 98 */ 99 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); 100 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); 101 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); 102 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); 103 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); 104 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); 105 106 #ifdef CONFIG_X86_32 107 108 /* 109 * On x86_32, the mapping between cpu and logical apicid may vary 110 * depending on apic in use. The following early percpu variable is 111 * used for the mapping. This is where the behaviors of x86_64 and 32 112 * actually diverge. Let's keep it ugly for now. 113 */ 114 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); 115 116 /* Local APIC was disabled by the BIOS and enabled by the kernel */ 117 static int enabled_via_apicbase __ro_after_init; 118 119 /* 120 * Handle interrupt mode configuration register (IMCR). 121 * This register controls whether the interrupt signals 122 * that reach the BSP come from the master PIC or from the 123 * local APIC. Before entering Symmetric I/O Mode, either 124 * the BIOS or the operating system must switch out of 125 * PIC Mode by changing the IMCR. 126 */ 127 static inline void imcr_pic_to_apic(void) 128 { 129 /* select IMCR register */ 130 outb(0x70, 0x22); 131 /* NMI and 8259 INTR go through APIC */ 132 outb(0x01, 0x23); 133 } 134 135 static inline void imcr_apic_to_pic(void) 136 { 137 /* select IMCR register */ 138 outb(0x70, 0x22); 139 /* NMI and 8259 INTR go directly to BSP */ 140 outb(0x00, 0x23); 141 } 142 #endif 143 144 /* 145 * Knob to control our willingness to enable the local APIC. 146 * 147 * +1=force-enable 148 */ 149 static int force_enable_local_apic __initdata; 150 151 /* 152 * APIC command line parameters 153 */ 154 static int __init parse_lapic(char *arg) 155 { 156 if (IS_ENABLED(CONFIG_X86_32) && !arg) 157 force_enable_local_apic = 1; 158 else if (arg && !strncmp(arg, "notscdeadline", 13)) 159 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 160 return 0; 161 } 162 early_param("lapic", parse_lapic); 163 164 #ifdef CONFIG_X86_64 165 static int apic_calibrate_pmtmr __initdata; 166 static __init int setup_apicpmtimer(char *s) 167 { 168 apic_calibrate_pmtmr = 1; 169 notsc_setup(NULL); 170 return 0; 171 } 172 __setup("apicpmtimer", setup_apicpmtimer); 173 #endif 174 175 unsigned long mp_lapic_addr __ro_after_init; 176 int disable_apic __ro_after_init; 177 /* Disable local APIC timer from the kernel commandline or via dmi quirk */ 178 static int disable_apic_timer __initdata; 179 /* Local APIC timer works in C2 */ 180 int local_apic_timer_c2_ok __ro_after_init; 181 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); 182 183 /* 184 * Debug level, exported for io_apic.c 185 */ 186 int apic_verbosity __ro_after_init; 187 188 int pic_mode __ro_after_init; 189 190 /* Have we found an MP table */ 191 int smp_found_config __ro_after_init; 192 193 static struct resource lapic_resource = { 194 .name = "Local APIC", 195 .flags = IORESOURCE_MEM | IORESOURCE_BUSY, 196 }; 197 198 unsigned int lapic_timer_period = 0; 199 200 static void apic_pm_activate(void); 201 202 static unsigned long apic_phys __ro_after_init; 203 204 /* 205 * Get the LAPIC version 206 */ 207 static inline int lapic_get_version(void) 208 { 209 return GET_APIC_VERSION(apic_read(APIC_LVR)); 210 } 211 212 /* 213 * Check, if the APIC is integrated or a separate chip 214 */ 215 static inline int lapic_is_integrated(void) 216 { 217 return APIC_INTEGRATED(lapic_get_version()); 218 } 219 220 /* 221 * Check, whether this is a modern or a first generation APIC 222 */ 223 static int modern_apic(void) 224 { 225 /* AMD systems use old APIC versions, so check the CPU */ 226 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 227 boot_cpu_data.x86 >= 0xf) 228 return 1; 229 230 /* Hygon systems use modern APIC */ 231 if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 232 return 1; 233 234 return lapic_get_version() >= 0x14; 235 } 236 237 /* 238 * right after this call apic become NOOP driven 239 * so apic->write/read doesn't do anything 240 */ 241 static void __init apic_disable(void) 242 { 243 pr_info("APIC: switched to apic NOOP\n"); 244 apic = &apic_noop; 245 } 246 247 void native_apic_wait_icr_idle(void) 248 { 249 while (apic_read(APIC_ICR) & APIC_ICR_BUSY) 250 cpu_relax(); 251 } 252 253 u32 native_safe_apic_wait_icr_idle(void) 254 { 255 u32 send_status; 256 int timeout; 257 258 timeout = 0; 259 do { 260 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; 261 if (!send_status) 262 break; 263 inc_irq_stat(icr_read_retry_count); 264 udelay(100); 265 } while (timeout++ < 1000); 266 267 return send_status; 268 } 269 270 void native_apic_icr_write(u32 low, u32 id) 271 { 272 unsigned long flags; 273 274 local_irq_save(flags); 275 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); 276 apic_write(APIC_ICR, low); 277 local_irq_restore(flags); 278 } 279 280 u64 native_apic_icr_read(void) 281 { 282 u32 icr1, icr2; 283 284 icr2 = apic_read(APIC_ICR2); 285 icr1 = apic_read(APIC_ICR); 286 287 return icr1 | ((u64)icr2 << 32); 288 } 289 290 #ifdef CONFIG_X86_32 291 /** 292 * get_physical_broadcast - Get number of physical broadcast IDs 293 */ 294 int get_physical_broadcast(void) 295 { 296 return modern_apic() ? 0xff : 0xf; 297 } 298 #endif 299 300 /** 301 * lapic_get_maxlvt - get the maximum number of local vector table entries 302 */ 303 int lapic_get_maxlvt(void) 304 { 305 /* 306 * - we always have APIC integrated on 64bit mode 307 * - 82489DXs do not report # of LVT entries 308 */ 309 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; 310 } 311 312 /* 313 * Local APIC timer 314 */ 315 316 /* Clock divisor */ 317 #define APIC_DIVISOR 16 318 #define TSC_DIVISOR 8 319 320 /* 321 * This function sets up the local APIC timer, with a timeout of 322 * 'clocks' APIC bus clock. During calibration we actually call 323 * this function twice on the boot CPU, once with a bogus timeout 324 * value, second time for real. The other (noncalibrating) CPUs 325 * call this function only once, with the real, calibrated value. 326 * 327 * We do reads before writes even if unnecessary, to get around the 328 * P5 APIC double write bug. 329 */ 330 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) 331 { 332 unsigned int lvtt_value, tmp_value; 333 334 lvtt_value = LOCAL_TIMER_VECTOR; 335 if (!oneshot) 336 lvtt_value |= APIC_LVT_TIMER_PERIODIC; 337 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 338 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; 339 340 if (!lapic_is_integrated()) 341 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); 342 343 if (!irqen) 344 lvtt_value |= APIC_LVT_MASKED; 345 346 apic_write(APIC_LVTT, lvtt_value); 347 348 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { 349 /* 350 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, 351 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. 352 * According to Intel, MFENCE can do the serialization here. 353 */ 354 asm volatile("mfence" : : : "memory"); 355 return; 356 } 357 358 /* 359 * Divide PICLK by 16 360 */ 361 tmp_value = apic_read(APIC_TDCR); 362 apic_write(APIC_TDCR, 363 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | 364 APIC_TDR_DIV_16); 365 366 if (!oneshot) 367 apic_write(APIC_TMICT, clocks / APIC_DIVISOR); 368 } 369 370 /* 371 * Setup extended LVT, AMD specific 372 * 373 * Software should use the LVT offsets the BIOS provides. The offsets 374 * are determined by the subsystems using it like those for MCE 375 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts 376 * are supported. Beginning with family 10h at least 4 offsets are 377 * available. 378 * 379 * Since the offsets must be consistent for all cores, we keep track 380 * of the LVT offsets in software and reserve the offset for the same 381 * vector also to be used on other cores. An offset is freed by 382 * setting the entry to APIC_EILVT_MASKED. 383 * 384 * If the BIOS is right, there should be no conflicts. Otherwise a 385 * "[Firmware Bug]: ..." error message is generated. However, if 386 * software does not properly determines the offsets, it is not 387 * necessarily a BIOS bug. 388 */ 389 390 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; 391 392 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) 393 { 394 return (old & APIC_EILVT_MASKED) 395 || (new == APIC_EILVT_MASKED) 396 || ((new & ~APIC_EILVT_MASKED) == old); 397 } 398 399 static unsigned int reserve_eilvt_offset(int offset, unsigned int new) 400 { 401 unsigned int rsvd, vector; 402 403 if (offset >= APIC_EILVT_NR_MAX) 404 return ~0; 405 406 rsvd = atomic_read(&eilvt_offsets[offset]); 407 do { 408 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ 409 if (vector && !eilvt_entry_is_changeable(vector, new)) 410 /* may not change if vectors are different */ 411 return rsvd; 412 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); 413 } while (rsvd != new); 414 415 rsvd &= ~APIC_EILVT_MASKED; 416 if (rsvd && rsvd != vector) 417 pr_info("LVT offset %d assigned for vector 0x%02x\n", 418 offset, rsvd); 419 420 return new; 421 } 422 423 /* 424 * If mask=1, the LVT entry does not generate interrupts while mask=0 425 * enables the vector. See also the BKDGs. Must be called with 426 * preemption disabled. 427 */ 428 429 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) 430 { 431 unsigned long reg = APIC_EILVTn(offset); 432 unsigned int new, old, reserved; 433 434 new = (mask << 16) | (msg_type << 8) | vector; 435 old = apic_read(reg); 436 reserved = reserve_eilvt_offset(offset, new); 437 438 if (reserved != new) { 439 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 440 "vector 0x%x, but the register is already in use for " 441 "vector 0x%x on another cpu\n", 442 smp_processor_id(), reg, offset, new, reserved); 443 return -EINVAL; 444 } 445 446 if (!eilvt_entry_is_changeable(old, new)) { 447 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 448 "vector 0x%x, but the register is already in use for " 449 "vector 0x%x on this cpu\n", 450 smp_processor_id(), reg, offset, new, old); 451 return -EBUSY; 452 } 453 454 apic_write(reg, new); 455 456 return 0; 457 } 458 EXPORT_SYMBOL_GPL(setup_APIC_eilvt); 459 460 /* 461 * Program the next event, relative to now 462 */ 463 static int lapic_next_event(unsigned long delta, 464 struct clock_event_device *evt) 465 { 466 apic_write(APIC_TMICT, delta); 467 return 0; 468 } 469 470 static int lapic_next_deadline(unsigned long delta, 471 struct clock_event_device *evt) 472 { 473 u64 tsc; 474 475 tsc = rdtsc(); 476 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); 477 return 0; 478 } 479 480 static int lapic_timer_shutdown(struct clock_event_device *evt) 481 { 482 unsigned int v; 483 484 /* Lapic used as dummy for broadcast ? */ 485 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 486 return 0; 487 488 v = apic_read(APIC_LVTT); 489 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 490 apic_write(APIC_LVTT, v); 491 apic_write(APIC_TMICT, 0); 492 return 0; 493 } 494 495 static inline int 496 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) 497 { 498 /* Lapic used as dummy for broadcast ? */ 499 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 500 return 0; 501 502 __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); 503 return 0; 504 } 505 506 static int lapic_timer_set_periodic(struct clock_event_device *evt) 507 { 508 return lapic_timer_set_periodic_oneshot(evt, false); 509 } 510 511 static int lapic_timer_set_oneshot(struct clock_event_device *evt) 512 { 513 return lapic_timer_set_periodic_oneshot(evt, true); 514 } 515 516 /* 517 * Local APIC timer broadcast function 518 */ 519 static void lapic_timer_broadcast(const struct cpumask *mask) 520 { 521 #ifdef CONFIG_SMP 522 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); 523 #endif 524 } 525 526 527 /* 528 * The local apic timer can be used for any function which is CPU local. 529 */ 530 static struct clock_event_device lapic_clockevent = { 531 .name = "lapic", 532 .features = CLOCK_EVT_FEAT_PERIODIC | 533 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP 534 | CLOCK_EVT_FEAT_DUMMY, 535 .shift = 32, 536 .set_state_shutdown = lapic_timer_shutdown, 537 .set_state_periodic = lapic_timer_set_periodic, 538 .set_state_oneshot = lapic_timer_set_oneshot, 539 .set_state_oneshot_stopped = lapic_timer_shutdown, 540 .set_next_event = lapic_next_event, 541 .broadcast = lapic_timer_broadcast, 542 .rating = 100, 543 .irq = -1, 544 }; 545 static DEFINE_PER_CPU(struct clock_event_device, lapic_events); 546 547 static const struct x86_cpu_id deadline_match[] __initconst = { 548 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */ 549 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */ 550 551 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X, 0x0b000020), 552 553 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011), 554 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e), 555 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c), 556 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003), 557 558 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136), 559 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014), 560 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0), 561 562 X86_MATCH_INTEL_FAM6_MODEL( HASWELL, 0x22), 563 X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L, 0x20), 564 X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G, 0x17), 565 566 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL, 0x25), 567 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G, 0x17), 568 569 X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L, 0xb2), 570 X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE, 0xb2), 571 572 X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L, 0x52), 573 X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE, 0x52), 574 575 {}, 576 }; 577 578 static __init bool apic_validate_deadline_timer(void) 579 { 580 const struct x86_cpu_id *m; 581 u32 rev; 582 583 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 584 return false; 585 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 586 return true; 587 588 m = x86_match_cpu(deadline_match); 589 if (!m) 590 return true; 591 592 rev = (u32)m->driver_data; 593 594 if (boot_cpu_data.microcode >= rev) 595 return true; 596 597 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 598 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " 599 "please update microcode to version: 0x%x (or later)\n", rev); 600 return false; 601 } 602 603 /* 604 * Setup the local APIC timer for this CPU. Copy the initialized values 605 * of the boot CPU and register the clock event in the framework. 606 */ 607 static void setup_APIC_timer(void) 608 { 609 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 610 611 if (this_cpu_has(X86_FEATURE_ARAT)) { 612 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; 613 /* Make LAPIC timer preferrable over percpu HPET */ 614 lapic_clockevent.rating = 150; 615 } 616 617 memcpy(levt, &lapic_clockevent, sizeof(*levt)); 618 levt->cpumask = cpumask_of(smp_processor_id()); 619 620 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 621 levt->name = "lapic-deadline"; 622 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | 623 CLOCK_EVT_FEAT_DUMMY); 624 levt->set_next_event = lapic_next_deadline; 625 clockevents_config_and_register(levt, 626 tsc_khz * (1000 / TSC_DIVISOR), 627 0xF, ~0UL); 628 } else 629 clockevents_register_device(levt); 630 } 631 632 /* 633 * Install the updated TSC frequency from recalibration at the TSC 634 * deadline clockevent devices. 635 */ 636 static void __lapic_update_tsc_freq(void *info) 637 { 638 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 639 640 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 641 return; 642 643 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); 644 } 645 646 void lapic_update_tsc_freq(void) 647 { 648 /* 649 * The clockevent device's ->mult and ->shift can both be 650 * changed. In order to avoid races, schedule the frequency 651 * update code on each CPU. 652 */ 653 on_each_cpu(__lapic_update_tsc_freq, NULL, 0); 654 } 655 656 /* 657 * In this functions we calibrate APIC bus clocks to the external timer. 658 * 659 * We want to do the calibration only once since we want to have local timer 660 * irqs syncron. CPUs connected by the same APIC bus have the very same bus 661 * frequency. 662 * 663 * This was previously done by reading the PIT/HPET and waiting for a wrap 664 * around to find out, that a tick has elapsed. I have a box, where the PIT 665 * readout is broken, so it never gets out of the wait loop again. This was 666 * also reported by others. 667 * 668 * Monitoring the jiffies value is inaccurate and the clockevents 669 * infrastructure allows us to do a simple substitution of the interrupt 670 * handler. 671 * 672 * The calibration routine also uses the pm_timer when possible, as the PIT 673 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes 674 * back to normal later in the boot process). 675 */ 676 677 #define LAPIC_CAL_LOOPS (HZ/10) 678 679 static __initdata int lapic_cal_loops = -1; 680 static __initdata long lapic_cal_t1, lapic_cal_t2; 681 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; 682 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; 683 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; 684 685 /* 686 * Temporary interrupt handler and polled calibration function. 687 */ 688 static void __init lapic_cal_handler(struct clock_event_device *dev) 689 { 690 unsigned long long tsc = 0; 691 long tapic = apic_read(APIC_TMCCT); 692 unsigned long pm = acpi_pm_read_early(); 693 694 if (boot_cpu_has(X86_FEATURE_TSC)) 695 tsc = rdtsc(); 696 697 switch (lapic_cal_loops++) { 698 case 0: 699 lapic_cal_t1 = tapic; 700 lapic_cal_tsc1 = tsc; 701 lapic_cal_pm1 = pm; 702 lapic_cal_j1 = jiffies; 703 break; 704 705 case LAPIC_CAL_LOOPS: 706 lapic_cal_t2 = tapic; 707 lapic_cal_tsc2 = tsc; 708 if (pm < lapic_cal_pm1) 709 pm += ACPI_PM_OVRRUN; 710 lapic_cal_pm2 = pm; 711 lapic_cal_j2 = jiffies; 712 break; 713 } 714 } 715 716 static int __init 717 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) 718 { 719 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; 720 const long pm_thresh = pm_100ms / 100; 721 unsigned long mult; 722 u64 res; 723 724 #ifndef CONFIG_X86_PM_TIMER 725 return -1; 726 #endif 727 728 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); 729 730 /* Check, if the PM timer is available */ 731 if (!deltapm) 732 return -1; 733 734 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); 735 736 if (deltapm > (pm_100ms - pm_thresh) && 737 deltapm < (pm_100ms + pm_thresh)) { 738 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); 739 return 0; 740 } 741 742 res = (((u64)deltapm) * mult) >> 22; 743 do_div(res, 1000000); 744 pr_warn("APIC calibration not consistent " 745 "with PM-Timer: %ldms instead of 100ms\n", (long)res); 746 747 /* Correct the lapic counter value */ 748 res = (((u64)(*delta)) * pm_100ms); 749 do_div(res, deltapm); 750 pr_info("APIC delta adjusted to PM-Timer: " 751 "%lu (%ld)\n", (unsigned long)res, *delta); 752 *delta = (long)res; 753 754 /* Correct the tsc counter value */ 755 if (boot_cpu_has(X86_FEATURE_TSC)) { 756 res = (((u64)(*deltatsc)) * pm_100ms); 757 do_div(res, deltapm); 758 apic_printk(APIC_VERBOSE, "TSC delta adjusted to " 759 "PM-Timer: %lu (%ld)\n", 760 (unsigned long)res, *deltatsc); 761 *deltatsc = (long)res; 762 } 763 764 return 0; 765 } 766 767 static int __init lapic_init_clockevent(void) 768 { 769 if (!lapic_timer_period) 770 return -1; 771 772 /* Calculate the scaled math multiplication factor */ 773 lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, 774 TICK_NSEC, lapic_clockevent.shift); 775 lapic_clockevent.max_delta_ns = 776 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); 777 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; 778 lapic_clockevent.min_delta_ns = 779 clockevent_delta2ns(0xF, &lapic_clockevent); 780 lapic_clockevent.min_delta_ticks = 0xF; 781 782 return 0; 783 } 784 785 bool __init apic_needs_pit(void) 786 { 787 /* 788 * If the frequencies are not known, PIT is required for both TSC 789 * and apic timer calibration. 790 */ 791 if (!tsc_khz || !cpu_khz) 792 return true; 793 794 /* Is there an APIC at all or is it disabled? */ 795 if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic) 796 return true; 797 798 /* 799 * If interrupt delivery mode is legacy PIC or virtual wire without 800 * configuration, the local APIC timer wont be set up. Make sure 801 * that the PIT is initialized. 802 */ 803 if (apic_intr_mode == APIC_PIC || 804 apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG) 805 return true; 806 807 /* Virt guests may lack ARAT, but still have DEADLINE */ 808 if (!boot_cpu_has(X86_FEATURE_ARAT)) 809 return true; 810 811 /* Deadline timer is based on TSC so no further PIT action required */ 812 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 813 return false; 814 815 /* APIC timer disabled? */ 816 if (disable_apic_timer) 817 return true; 818 /* 819 * The APIC timer frequency is known already, no PIT calibration 820 * required. If unknown, let the PIT be initialized. 821 */ 822 return lapic_timer_period == 0; 823 } 824 825 static int __init calibrate_APIC_clock(void) 826 { 827 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 828 u64 tsc_perj = 0, tsc_start = 0; 829 unsigned long jif_start; 830 unsigned long deltaj; 831 long delta, deltatsc; 832 int pm_referenced = 0; 833 834 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 835 return 0; 836 837 /* 838 * Check if lapic timer has already been calibrated by platform 839 * specific routine, such as tsc calibration code. If so just fill 840 * in the clockevent structure and return. 841 */ 842 if (!lapic_init_clockevent()) { 843 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", 844 lapic_timer_period); 845 /* 846 * Direct calibration methods must have an always running 847 * local APIC timer, no need for broadcast timer. 848 */ 849 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 850 return 0; 851 } 852 853 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" 854 "calibrating APIC timer ...\n"); 855 856 /* 857 * There are platforms w/o global clockevent devices. Instead of 858 * making the calibration conditional on that, use a polling based 859 * approach everywhere. 860 */ 861 local_irq_disable(); 862 863 /* 864 * Setup the APIC counter to maximum. There is no way the lapic 865 * can underflow in the 100ms detection time frame 866 */ 867 __setup_APIC_LVTT(0xffffffff, 0, 0); 868 869 /* 870 * Methods to terminate the calibration loop: 871 * 1) Global clockevent if available (jiffies) 872 * 2) TSC if available and frequency is known 873 */ 874 jif_start = READ_ONCE(jiffies); 875 876 if (tsc_khz) { 877 tsc_start = rdtsc(); 878 tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); 879 } 880 881 /* 882 * Enable interrupts so the tick can fire, if a global 883 * clockevent device is available 884 */ 885 local_irq_enable(); 886 887 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { 888 /* Wait for a tick to elapse */ 889 while (1) { 890 if (tsc_khz) { 891 u64 tsc_now = rdtsc(); 892 if ((tsc_now - tsc_start) >= tsc_perj) { 893 tsc_start += tsc_perj; 894 break; 895 } 896 } else { 897 unsigned long jif_now = READ_ONCE(jiffies); 898 899 if (time_after(jif_now, jif_start)) { 900 jif_start = jif_now; 901 break; 902 } 903 } 904 cpu_relax(); 905 } 906 907 /* Invoke the calibration routine */ 908 local_irq_disable(); 909 lapic_cal_handler(NULL); 910 local_irq_enable(); 911 } 912 913 local_irq_disable(); 914 915 /* Build delta t1-t2 as apic timer counts down */ 916 delta = lapic_cal_t1 - lapic_cal_t2; 917 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); 918 919 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); 920 921 /* we trust the PM based calibration if possible */ 922 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, 923 &delta, &deltatsc); 924 925 lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; 926 lapic_init_clockevent(); 927 928 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); 929 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); 930 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", 931 lapic_timer_period); 932 933 if (boot_cpu_has(X86_FEATURE_TSC)) { 934 apic_printk(APIC_VERBOSE, "..... CPU clock speed is " 935 "%ld.%04ld MHz.\n", 936 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), 937 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); 938 } 939 940 apic_printk(APIC_VERBOSE, "..... host bus clock speed is " 941 "%u.%04u MHz.\n", 942 lapic_timer_period / (1000000 / HZ), 943 lapic_timer_period % (1000000 / HZ)); 944 945 /* 946 * Do a sanity check on the APIC calibration result 947 */ 948 if (lapic_timer_period < (1000000 / HZ)) { 949 local_irq_enable(); 950 pr_warn("APIC frequency too slow, disabling apic timer\n"); 951 return -1; 952 } 953 954 levt->features &= ~CLOCK_EVT_FEAT_DUMMY; 955 956 /* 957 * PM timer calibration failed or not turned on so lets try APIC 958 * timer based calibration, if a global clockevent device is 959 * available. 960 */ 961 if (!pm_referenced && global_clock_event) { 962 apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); 963 964 /* 965 * Setup the apic timer manually 966 */ 967 levt->event_handler = lapic_cal_handler; 968 lapic_timer_set_periodic(levt); 969 lapic_cal_loops = -1; 970 971 /* Let the interrupts run */ 972 local_irq_enable(); 973 974 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 975 cpu_relax(); 976 977 /* Stop the lapic timer */ 978 local_irq_disable(); 979 lapic_timer_shutdown(levt); 980 981 /* Jiffies delta */ 982 deltaj = lapic_cal_j2 - lapic_cal_j1; 983 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); 984 985 /* Check, if the jiffies result is consistent */ 986 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) 987 apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); 988 else 989 levt->features |= CLOCK_EVT_FEAT_DUMMY; 990 } 991 local_irq_enable(); 992 993 if (levt->features & CLOCK_EVT_FEAT_DUMMY) { 994 pr_warn("APIC timer disabled due to verification failure\n"); 995 return -1; 996 } 997 998 return 0; 999 } 1000 1001 /* 1002 * Setup the boot APIC 1003 * 1004 * Calibrate and verify the result. 1005 */ 1006 void __init setup_boot_APIC_clock(void) 1007 { 1008 /* 1009 * The local apic timer can be disabled via the kernel 1010 * commandline or from the CPU detection code. Register the lapic 1011 * timer as a dummy clock event source on SMP systems, so the 1012 * broadcast mechanism is used. On UP systems simply ignore it. 1013 */ 1014 if (disable_apic_timer) { 1015 pr_info("Disabling APIC timer\n"); 1016 /* No broadcast on UP ! */ 1017 if (num_possible_cpus() > 1) { 1018 lapic_clockevent.mult = 1; 1019 setup_APIC_timer(); 1020 } 1021 return; 1022 } 1023 1024 if (calibrate_APIC_clock()) { 1025 /* No broadcast on UP ! */ 1026 if (num_possible_cpus() > 1) 1027 setup_APIC_timer(); 1028 return; 1029 } 1030 1031 /* 1032 * If nmi_watchdog is set to IO_APIC, we need the 1033 * PIT/HPET going. Otherwise register lapic as a dummy 1034 * device. 1035 */ 1036 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 1037 1038 /* Setup the lapic or request the broadcast */ 1039 setup_APIC_timer(); 1040 amd_e400_c1e_apic_setup(); 1041 } 1042 1043 void setup_secondary_APIC_clock(void) 1044 { 1045 setup_APIC_timer(); 1046 amd_e400_c1e_apic_setup(); 1047 } 1048 1049 /* 1050 * The guts of the apic timer interrupt 1051 */ 1052 static void local_apic_timer_interrupt(void) 1053 { 1054 struct clock_event_device *evt = this_cpu_ptr(&lapic_events); 1055 1056 /* 1057 * Normally we should not be here till LAPIC has been initialized but 1058 * in some cases like kdump, its possible that there is a pending LAPIC 1059 * timer interrupt from previous kernel's context and is delivered in 1060 * new kernel the moment interrupts are enabled. 1061 * 1062 * Interrupts are enabled early and LAPIC is setup much later, hence 1063 * its possible that when we get here evt->event_handler is NULL. 1064 * Check for event_handler being NULL and discard the interrupt as 1065 * spurious. 1066 */ 1067 if (!evt->event_handler) { 1068 pr_warn("Spurious LAPIC timer interrupt on cpu %d\n", 1069 smp_processor_id()); 1070 /* Switch it off */ 1071 lapic_timer_shutdown(evt); 1072 return; 1073 } 1074 1075 /* 1076 * the NMI deadlock-detector uses this. 1077 */ 1078 inc_irq_stat(apic_timer_irqs); 1079 1080 evt->event_handler(evt); 1081 } 1082 1083 /* 1084 * Local APIC timer interrupt. This is the most natural way for doing 1085 * local interrupts, but local timer interrupts can be emulated by 1086 * broadcast interrupts too. [in case the hw doesn't support APIC timers] 1087 * 1088 * [ if a single-CPU system runs an SMP kernel then we call the local 1089 * interrupt as well. Thus we cannot inline the local irq ... ] 1090 */ 1091 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt) 1092 { 1093 struct pt_regs *old_regs = set_irq_regs(regs); 1094 1095 ack_APIC_irq(); 1096 trace_local_timer_entry(LOCAL_TIMER_VECTOR); 1097 local_apic_timer_interrupt(); 1098 trace_local_timer_exit(LOCAL_TIMER_VECTOR); 1099 1100 set_irq_regs(old_regs); 1101 } 1102 1103 int setup_profiling_timer(unsigned int multiplier) 1104 { 1105 return -EINVAL; 1106 } 1107 1108 /* 1109 * Local APIC start and shutdown 1110 */ 1111 1112 /** 1113 * clear_local_APIC - shutdown the local APIC 1114 * 1115 * This is called, when a CPU is disabled and before rebooting, so the state of 1116 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS 1117 * leftovers during boot. 1118 */ 1119 void clear_local_APIC(void) 1120 { 1121 int maxlvt; 1122 u32 v; 1123 1124 /* APIC hasn't been mapped yet */ 1125 if (!x2apic_mode && !apic_phys) 1126 return; 1127 1128 maxlvt = lapic_get_maxlvt(); 1129 /* 1130 * Masking an LVT entry can trigger a local APIC error 1131 * if the vector is zero. Mask LVTERR first to prevent this. 1132 */ 1133 if (maxlvt >= 3) { 1134 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ 1135 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); 1136 } 1137 /* 1138 * Careful: we have to set masks only first to deassert 1139 * any level-triggered sources. 1140 */ 1141 v = apic_read(APIC_LVTT); 1142 apic_write(APIC_LVTT, v | APIC_LVT_MASKED); 1143 v = apic_read(APIC_LVT0); 1144 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1145 v = apic_read(APIC_LVT1); 1146 apic_write(APIC_LVT1, v | APIC_LVT_MASKED); 1147 if (maxlvt >= 4) { 1148 v = apic_read(APIC_LVTPC); 1149 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); 1150 } 1151 1152 /* lets not touch this if we didn't frob it */ 1153 #ifdef CONFIG_X86_THERMAL_VECTOR 1154 if (maxlvt >= 5) { 1155 v = apic_read(APIC_LVTTHMR); 1156 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); 1157 } 1158 #endif 1159 #ifdef CONFIG_X86_MCE_INTEL 1160 if (maxlvt >= 6) { 1161 v = apic_read(APIC_LVTCMCI); 1162 if (!(v & APIC_LVT_MASKED)) 1163 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); 1164 } 1165 #endif 1166 1167 /* 1168 * Clean APIC state for other OSs: 1169 */ 1170 apic_write(APIC_LVTT, APIC_LVT_MASKED); 1171 apic_write(APIC_LVT0, APIC_LVT_MASKED); 1172 apic_write(APIC_LVT1, APIC_LVT_MASKED); 1173 if (maxlvt >= 3) 1174 apic_write(APIC_LVTERR, APIC_LVT_MASKED); 1175 if (maxlvt >= 4) 1176 apic_write(APIC_LVTPC, APIC_LVT_MASKED); 1177 1178 /* Integrated APIC (!82489DX) ? */ 1179 if (lapic_is_integrated()) { 1180 if (maxlvt > 3) 1181 /* Clear ESR due to Pentium errata 3AP and 11AP */ 1182 apic_write(APIC_ESR, 0); 1183 apic_read(APIC_ESR); 1184 } 1185 } 1186 1187 /** 1188 * apic_soft_disable - Clears and software disables the local APIC on hotplug 1189 * 1190 * Contrary to disable_local_APIC() this does not touch the enable bit in 1191 * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC 1192 * bus would require a hardware reset as the APIC would lose track of bus 1193 * arbitration. On systems with FSB delivery APICBASE could be disabled, 1194 * but it has to be guaranteed that no interrupt is sent to the APIC while 1195 * in that state and it's not clear from the SDM whether it still responds 1196 * to INIT/SIPI messages. Stay on the safe side and use software disable. 1197 */ 1198 void apic_soft_disable(void) 1199 { 1200 u32 value; 1201 1202 clear_local_APIC(); 1203 1204 /* Soft disable APIC (implies clearing of registers for 82489DX!). */ 1205 value = apic_read(APIC_SPIV); 1206 value &= ~APIC_SPIV_APIC_ENABLED; 1207 apic_write(APIC_SPIV, value); 1208 } 1209 1210 /** 1211 * disable_local_APIC - clear and disable the local APIC 1212 */ 1213 void disable_local_APIC(void) 1214 { 1215 /* APIC hasn't been mapped yet */ 1216 if (!x2apic_mode && !apic_phys) 1217 return; 1218 1219 apic_soft_disable(); 1220 1221 #ifdef CONFIG_X86_32 1222 /* 1223 * When LAPIC was disabled by the BIOS and enabled by the kernel, 1224 * restore the disabled state. 1225 */ 1226 if (enabled_via_apicbase) { 1227 unsigned int l, h; 1228 1229 rdmsr(MSR_IA32_APICBASE, l, h); 1230 l &= ~MSR_IA32_APICBASE_ENABLE; 1231 wrmsr(MSR_IA32_APICBASE, l, h); 1232 } 1233 #endif 1234 } 1235 1236 /* 1237 * If Linux enabled the LAPIC against the BIOS default disable it down before 1238 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and 1239 * not power-off. Additionally clear all LVT entries before disable_local_APIC 1240 * for the case where Linux didn't enable the LAPIC. 1241 */ 1242 void lapic_shutdown(void) 1243 { 1244 unsigned long flags; 1245 1246 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1247 return; 1248 1249 local_irq_save(flags); 1250 1251 #ifdef CONFIG_X86_32 1252 if (!enabled_via_apicbase) 1253 clear_local_APIC(); 1254 else 1255 #endif 1256 disable_local_APIC(); 1257 1258 1259 local_irq_restore(flags); 1260 } 1261 1262 /** 1263 * sync_Arb_IDs - synchronize APIC bus arbitration IDs 1264 */ 1265 void __init sync_Arb_IDs(void) 1266 { 1267 /* 1268 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not 1269 * needed on AMD. 1270 */ 1271 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1272 return; 1273 1274 /* 1275 * Wait for idle. 1276 */ 1277 apic_wait_icr_idle(); 1278 1279 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); 1280 apic_write(APIC_ICR, APIC_DEST_ALLINC | 1281 APIC_INT_LEVELTRIG | APIC_DM_INIT); 1282 } 1283 1284 enum apic_intr_mode_id apic_intr_mode __ro_after_init; 1285 1286 static int __init __apic_intr_mode_select(void) 1287 { 1288 /* Check kernel option */ 1289 if (disable_apic) { 1290 pr_info("APIC disabled via kernel command line\n"); 1291 return APIC_PIC; 1292 } 1293 1294 /* Check BIOS */ 1295 #ifdef CONFIG_X86_64 1296 /* On 64-bit, the APIC must be integrated, Check local APIC only */ 1297 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1298 disable_apic = 1; 1299 pr_info("APIC disabled by BIOS\n"); 1300 return APIC_PIC; 1301 } 1302 #else 1303 /* On 32-bit, the APIC may be integrated APIC or 82489DX */ 1304 1305 /* Neither 82489DX nor integrated APIC ? */ 1306 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { 1307 disable_apic = 1; 1308 return APIC_PIC; 1309 } 1310 1311 /* If the BIOS pretends there is an integrated APIC ? */ 1312 if (!boot_cpu_has(X86_FEATURE_APIC) && 1313 APIC_INTEGRATED(boot_cpu_apic_version)) { 1314 disable_apic = 1; 1315 pr_err(FW_BUG "Local APIC %d not detected, force emulation\n", 1316 boot_cpu_physical_apicid); 1317 return APIC_PIC; 1318 } 1319 #endif 1320 1321 /* Check MP table or ACPI MADT configuration */ 1322 if (!smp_found_config) { 1323 disable_ioapic_support(); 1324 if (!acpi_lapic) { 1325 pr_info("APIC: ACPI MADT or MP tables are not detected\n"); 1326 return APIC_VIRTUAL_WIRE_NO_CONFIG; 1327 } 1328 return APIC_VIRTUAL_WIRE; 1329 } 1330 1331 #ifdef CONFIG_SMP 1332 /* If SMP should be disabled, then really disable it! */ 1333 if (!setup_max_cpus) { 1334 pr_info("APIC: SMP mode deactivated\n"); 1335 return APIC_SYMMETRIC_IO_NO_ROUTING; 1336 } 1337 1338 if (read_apic_id() != boot_cpu_physical_apicid) { 1339 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1340 read_apic_id(), boot_cpu_physical_apicid); 1341 /* Or can we switch back to PIC here? */ 1342 } 1343 #endif 1344 1345 return APIC_SYMMETRIC_IO; 1346 } 1347 1348 /* Select the interrupt delivery mode for the BSP */ 1349 void __init apic_intr_mode_select(void) 1350 { 1351 apic_intr_mode = __apic_intr_mode_select(); 1352 } 1353 1354 /* 1355 * An initial setup of the virtual wire mode. 1356 */ 1357 void __init init_bsp_APIC(void) 1358 { 1359 unsigned int value; 1360 1361 /* 1362 * Don't do the setup now if we have a SMP BIOS as the 1363 * through-I/O-APIC virtual wire mode might be active. 1364 */ 1365 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) 1366 return; 1367 1368 /* 1369 * Do not trust the local APIC being empty at bootup. 1370 */ 1371 clear_local_APIC(); 1372 1373 /* 1374 * Enable APIC. 1375 */ 1376 value = apic_read(APIC_SPIV); 1377 value &= ~APIC_VECTOR_MASK; 1378 value |= APIC_SPIV_APIC_ENABLED; 1379 1380 #ifdef CONFIG_X86_32 1381 /* This bit is reserved on P4/Xeon and should be cleared */ 1382 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 1383 (boot_cpu_data.x86 == 15)) 1384 value &= ~APIC_SPIV_FOCUS_DISABLED; 1385 else 1386 #endif 1387 value |= APIC_SPIV_FOCUS_DISABLED; 1388 value |= SPURIOUS_APIC_VECTOR; 1389 apic_write(APIC_SPIV, value); 1390 1391 /* 1392 * Set up the virtual wire mode. 1393 */ 1394 apic_write(APIC_LVT0, APIC_DM_EXTINT); 1395 value = APIC_DM_NMI; 1396 if (!lapic_is_integrated()) /* 82489DX */ 1397 value |= APIC_LVT_LEVEL_TRIGGER; 1398 if (apic_extnmi == APIC_EXTNMI_NONE) 1399 value |= APIC_LVT_MASKED; 1400 apic_write(APIC_LVT1, value); 1401 } 1402 1403 static void __init apic_bsp_setup(bool upmode); 1404 1405 /* Init the interrupt delivery mode for the BSP */ 1406 void __init apic_intr_mode_init(void) 1407 { 1408 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); 1409 1410 switch (apic_intr_mode) { 1411 case APIC_PIC: 1412 pr_info("APIC: Keep in PIC mode(8259)\n"); 1413 return; 1414 case APIC_VIRTUAL_WIRE: 1415 pr_info("APIC: Switch to virtual wire mode setup\n"); 1416 default_setup_apic_routing(); 1417 break; 1418 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1419 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); 1420 upmode = true; 1421 default_setup_apic_routing(); 1422 break; 1423 case APIC_SYMMETRIC_IO: 1424 pr_info("APIC: Switch to symmetric I/O mode setup\n"); 1425 default_setup_apic_routing(); 1426 break; 1427 case APIC_SYMMETRIC_IO_NO_ROUTING: 1428 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); 1429 break; 1430 } 1431 1432 if (x86_platform.apic_post_init) 1433 x86_platform.apic_post_init(); 1434 1435 apic_bsp_setup(upmode); 1436 } 1437 1438 static void lapic_setup_esr(void) 1439 { 1440 unsigned int oldvalue, value, maxlvt; 1441 1442 if (!lapic_is_integrated()) { 1443 pr_info("No ESR for 82489DX.\n"); 1444 return; 1445 } 1446 1447 if (apic->disable_esr) { 1448 /* 1449 * Something untraceable is creating bad interrupts on 1450 * secondary quads ... for the moment, just leave the 1451 * ESR disabled - we can't do anything useful with the 1452 * errors anyway - mbligh 1453 */ 1454 pr_info("Leaving ESR disabled.\n"); 1455 return; 1456 } 1457 1458 maxlvt = lapic_get_maxlvt(); 1459 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1460 apic_write(APIC_ESR, 0); 1461 oldvalue = apic_read(APIC_ESR); 1462 1463 /* enables sending errors */ 1464 value = ERROR_APIC_VECTOR; 1465 apic_write(APIC_LVTERR, value); 1466 1467 /* 1468 * spec says clear errors after enabling vector. 1469 */ 1470 if (maxlvt > 3) 1471 apic_write(APIC_ESR, 0); 1472 value = apic_read(APIC_ESR); 1473 if (value != oldvalue) 1474 apic_printk(APIC_VERBOSE, "ESR value before enabling " 1475 "vector: 0x%08x after: 0x%08x\n", 1476 oldvalue, value); 1477 } 1478 1479 #define APIC_IR_REGS APIC_ISR_NR 1480 #define APIC_IR_BITS (APIC_IR_REGS * 32) 1481 #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) 1482 1483 union apic_ir { 1484 unsigned long map[APIC_IR_MAPSIZE]; 1485 u32 regs[APIC_IR_REGS]; 1486 }; 1487 1488 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) 1489 { 1490 int i, bit; 1491 1492 /* Read the IRRs */ 1493 for (i = 0; i < APIC_IR_REGS; i++) 1494 irr->regs[i] = apic_read(APIC_IRR + i * 0x10); 1495 1496 /* Read the ISRs */ 1497 for (i = 0; i < APIC_IR_REGS; i++) 1498 isr->regs[i] = apic_read(APIC_ISR + i * 0x10); 1499 1500 /* 1501 * If the ISR map is not empty. ACK the APIC and run another round 1502 * to verify whether a pending IRR has been unblocked and turned 1503 * into a ISR. 1504 */ 1505 if (!bitmap_empty(isr->map, APIC_IR_BITS)) { 1506 /* 1507 * There can be multiple ISR bits set when a high priority 1508 * interrupt preempted a lower priority one. Issue an ACK 1509 * per set bit. 1510 */ 1511 for_each_set_bit(bit, isr->map, APIC_IR_BITS) 1512 ack_APIC_irq(); 1513 return true; 1514 } 1515 1516 return !bitmap_empty(irr->map, APIC_IR_BITS); 1517 } 1518 1519 /* 1520 * After a crash, we no longer service the interrupts and a pending 1521 * interrupt from previous kernel might still have ISR bit set. 1522 * 1523 * Most probably by now the CPU has serviced that pending interrupt and it 1524 * might not have done the ack_APIC_irq() because it thought, interrupt 1525 * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear 1526 * the ISR bit and cpu thinks it has already serivced the interrupt. Hence 1527 * a vector might get locked. It was noticed for timer irq (vector 1528 * 0x31). Issue an extra EOI to clear ISR. 1529 * 1530 * If there are pending IRR bits they turn into ISR bits after a higher 1531 * priority ISR bit has been acked. 1532 */ 1533 static void apic_pending_intr_clear(void) 1534 { 1535 union apic_ir irr, isr; 1536 unsigned int i; 1537 1538 /* 512 loops are way oversized and give the APIC a chance to obey. */ 1539 for (i = 0; i < 512; i++) { 1540 if (!apic_check_and_ack(&irr, &isr)) 1541 return; 1542 } 1543 /* Dump the IRR/ISR content if that failed */ 1544 pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); 1545 } 1546 1547 /** 1548 * setup_local_APIC - setup the local APIC 1549 * 1550 * Used to setup local APIC while initializing BSP or bringing up APs. 1551 * Always called with preemption disabled. 1552 */ 1553 static void setup_local_APIC(void) 1554 { 1555 int cpu = smp_processor_id(); 1556 unsigned int value; 1557 1558 if (disable_apic) { 1559 disable_ioapic_support(); 1560 return; 1561 } 1562 1563 /* 1564 * If this comes from kexec/kcrash the APIC might be enabled in 1565 * SPIV. Soft disable it before doing further initialization. 1566 */ 1567 value = apic_read(APIC_SPIV); 1568 value &= ~APIC_SPIV_APIC_ENABLED; 1569 apic_write(APIC_SPIV, value); 1570 1571 #ifdef CONFIG_X86_32 1572 /* Pound the ESR really hard over the head with a big hammer - mbligh */ 1573 if (lapic_is_integrated() && apic->disable_esr) { 1574 apic_write(APIC_ESR, 0); 1575 apic_write(APIC_ESR, 0); 1576 apic_write(APIC_ESR, 0); 1577 apic_write(APIC_ESR, 0); 1578 } 1579 #endif 1580 /* 1581 * Double-check whether this APIC is really registered. 1582 * This is meaningless in clustered apic mode, so we skip it. 1583 */ 1584 BUG_ON(!apic->apic_id_registered()); 1585 1586 /* 1587 * Intel recommends to set DFR, LDR and TPR before enabling 1588 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel 1589 * document number 292116). So here it goes... 1590 */ 1591 apic->init_apic_ldr(); 1592 1593 #ifdef CONFIG_X86_32 1594 if (apic->dest_logical) { 1595 int logical_apicid, ldr_apicid; 1596 1597 /* 1598 * APIC LDR is initialized. If logical_apicid mapping was 1599 * initialized during get_smp_config(), make sure it matches 1600 * the actual value. 1601 */ 1602 logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu); 1603 ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 1604 if (logical_apicid != BAD_APICID) 1605 WARN_ON(logical_apicid != ldr_apicid); 1606 /* Always use the value from LDR. */ 1607 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid; 1608 } 1609 #endif 1610 1611 /* 1612 * Set Task Priority to 'accept all except vectors 0-31'. An APIC 1613 * vector in the 16-31 range could be delivered if TPR == 0, but we 1614 * would think it's an exception and terrible things will happen. We 1615 * never change this later on. 1616 */ 1617 value = apic_read(APIC_TASKPRI); 1618 value &= ~APIC_TPRI_MASK; 1619 value |= 0x10; 1620 apic_write(APIC_TASKPRI, value); 1621 1622 /* Clear eventually stale ISR/IRR bits */ 1623 apic_pending_intr_clear(); 1624 1625 /* 1626 * Now that we are all set up, enable the APIC 1627 */ 1628 value = apic_read(APIC_SPIV); 1629 value &= ~APIC_VECTOR_MASK; 1630 /* 1631 * Enable APIC 1632 */ 1633 value |= APIC_SPIV_APIC_ENABLED; 1634 1635 #ifdef CONFIG_X86_32 1636 /* 1637 * Some unknown Intel IO/APIC (or APIC) errata is biting us with 1638 * certain networking cards. If high frequency interrupts are 1639 * happening on a particular IOAPIC pin, plus the IOAPIC routing 1640 * entry is masked/unmasked at a high rate as well then sooner or 1641 * later IOAPIC line gets 'stuck', no more interrupts are received 1642 * from the device. If focus CPU is disabled then the hang goes 1643 * away, oh well :-( 1644 * 1645 * [ This bug can be reproduced easily with a level-triggered 1646 * PCI Ne2000 networking cards and PII/PIII processors, dual 1647 * BX chipset. ] 1648 */ 1649 /* 1650 * Actually disabling the focus CPU check just makes the hang less 1651 * frequent as it makes the interrupt distributon model be more 1652 * like LRU than MRU (the short-term load is more even across CPUs). 1653 */ 1654 1655 /* 1656 * - enable focus processor (bit==0) 1657 * - 64bit mode always use processor focus 1658 * so no need to set it 1659 */ 1660 value &= ~APIC_SPIV_FOCUS_DISABLED; 1661 #endif 1662 1663 /* 1664 * Set spurious IRQ vector 1665 */ 1666 value |= SPURIOUS_APIC_VECTOR; 1667 apic_write(APIC_SPIV, value); 1668 1669 perf_events_lapic_init(); 1670 1671 /* 1672 * Set up LVT0, LVT1: 1673 * 1674 * set up through-local-APIC on the boot CPU's LINT0. This is not 1675 * strictly necessary in pure symmetric-IO mode, but sometimes 1676 * we delegate interrupts to the 8259A. 1677 */ 1678 /* 1679 * TODO: set up through-local-APIC from through-I/O-APIC? --macro 1680 */ 1681 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; 1682 if (!cpu && (pic_mode || !value || skip_ioapic_setup)) { 1683 value = APIC_DM_EXTINT; 1684 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); 1685 } else { 1686 value = APIC_DM_EXTINT | APIC_LVT_MASKED; 1687 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); 1688 } 1689 apic_write(APIC_LVT0, value); 1690 1691 /* 1692 * Only the BSP sees the LINT1 NMI signal by default. This can be 1693 * modified by apic_extnmi= boot option. 1694 */ 1695 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || 1696 apic_extnmi == APIC_EXTNMI_ALL) 1697 value = APIC_DM_NMI; 1698 else 1699 value = APIC_DM_NMI | APIC_LVT_MASKED; 1700 1701 /* Is 82489DX ? */ 1702 if (!lapic_is_integrated()) 1703 value |= APIC_LVT_LEVEL_TRIGGER; 1704 apic_write(APIC_LVT1, value); 1705 1706 #ifdef CONFIG_X86_MCE_INTEL 1707 /* Recheck CMCI information after local APIC is up on CPU #0 */ 1708 if (!cpu) 1709 cmci_recheck(); 1710 #endif 1711 } 1712 1713 static void end_local_APIC_setup(void) 1714 { 1715 lapic_setup_esr(); 1716 1717 #ifdef CONFIG_X86_32 1718 { 1719 unsigned int value; 1720 /* Disable the local apic timer */ 1721 value = apic_read(APIC_LVTT); 1722 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 1723 apic_write(APIC_LVTT, value); 1724 } 1725 #endif 1726 1727 apic_pm_activate(); 1728 } 1729 1730 /* 1731 * APIC setup function for application processors. Called from smpboot.c 1732 */ 1733 void apic_ap_setup(void) 1734 { 1735 setup_local_APIC(); 1736 end_local_APIC_setup(); 1737 } 1738 1739 #ifdef CONFIG_X86_X2APIC 1740 int x2apic_mode; 1741 1742 enum { 1743 X2APIC_OFF, 1744 X2APIC_ON, 1745 X2APIC_DISABLED, 1746 }; 1747 static int x2apic_state; 1748 1749 static void __x2apic_disable(void) 1750 { 1751 u64 msr; 1752 1753 if (!boot_cpu_has(X86_FEATURE_APIC)) 1754 return; 1755 1756 rdmsrl(MSR_IA32_APICBASE, msr); 1757 if (!(msr & X2APIC_ENABLE)) 1758 return; 1759 /* Disable xapic and x2apic first and then reenable xapic mode */ 1760 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); 1761 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); 1762 printk_once(KERN_INFO "x2apic disabled\n"); 1763 } 1764 1765 static void __x2apic_enable(void) 1766 { 1767 u64 msr; 1768 1769 rdmsrl(MSR_IA32_APICBASE, msr); 1770 if (msr & X2APIC_ENABLE) 1771 return; 1772 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); 1773 printk_once(KERN_INFO "x2apic enabled\n"); 1774 } 1775 1776 static int __init setup_nox2apic(char *str) 1777 { 1778 if (x2apic_enabled()) { 1779 int apicid = native_apic_msr_read(APIC_ID); 1780 1781 if (apicid >= 255) { 1782 pr_warn("Apicid: %08x, cannot enforce nox2apic\n", 1783 apicid); 1784 return 0; 1785 } 1786 pr_warn("x2apic already enabled.\n"); 1787 __x2apic_disable(); 1788 } 1789 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 1790 x2apic_state = X2APIC_DISABLED; 1791 x2apic_mode = 0; 1792 return 0; 1793 } 1794 early_param("nox2apic", setup_nox2apic); 1795 1796 /* Called from cpu_init() to enable x2apic on (secondary) cpus */ 1797 void x2apic_setup(void) 1798 { 1799 /* 1800 * If x2apic is not in ON state, disable it if already enabled 1801 * from BIOS. 1802 */ 1803 if (x2apic_state != X2APIC_ON) { 1804 __x2apic_disable(); 1805 return; 1806 } 1807 __x2apic_enable(); 1808 } 1809 1810 static __init void x2apic_disable(void) 1811 { 1812 u32 x2apic_id, state = x2apic_state; 1813 1814 x2apic_mode = 0; 1815 x2apic_state = X2APIC_DISABLED; 1816 1817 if (state != X2APIC_ON) 1818 return; 1819 1820 x2apic_id = read_apic_id(); 1821 if (x2apic_id >= 255) 1822 panic("Cannot disable x2apic, id: %08x\n", x2apic_id); 1823 1824 __x2apic_disable(); 1825 register_lapic_address(mp_lapic_addr); 1826 } 1827 1828 static __init void x2apic_enable(void) 1829 { 1830 if (x2apic_state != X2APIC_OFF) 1831 return; 1832 1833 x2apic_mode = 1; 1834 x2apic_state = X2APIC_ON; 1835 __x2apic_enable(); 1836 } 1837 1838 static __init void try_to_enable_x2apic(int remap_mode) 1839 { 1840 if (x2apic_state == X2APIC_DISABLED) 1841 return; 1842 1843 if (remap_mode != IRQ_REMAP_X2APIC_MODE) { 1844 /* IR is required if there is APIC ID > 255 even when running 1845 * under KVM 1846 */ 1847 if (max_physical_apicid > 255 || 1848 !x86_init.hyper.x2apic_available()) { 1849 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); 1850 x2apic_disable(); 1851 return; 1852 } 1853 1854 /* 1855 * without IR all CPUs can be addressed by IOAPIC/MSI 1856 * only in physical mode 1857 */ 1858 x2apic_phys = 1; 1859 } 1860 x2apic_enable(); 1861 } 1862 1863 void __init check_x2apic(void) 1864 { 1865 if (x2apic_enabled()) { 1866 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); 1867 x2apic_mode = 1; 1868 x2apic_state = X2APIC_ON; 1869 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { 1870 x2apic_state = X2APIC_DISABLED; 1871 } 1872 } 1873 #else /* CONFIG_X86_X2APIC */ 1874 static int __init validate_x2apic(void) 1875 { 1876 if (!apic_is_x2apic_enabled()) 1877 return 0; 1878 /* 1879 * Checkme: Can we simply turn off x2apic here instead of panic? 1880 */ 1881 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); 1882 } 1883 early_initcall(validate_x2apic); 1884 1885 static inline void try_to_enable_x2apic(int remap_mode) { } 1886 static inline void __x2apic_enable(void) { } 1887 #endif /* !CONFIG_X86_X2APIC */ 1888 1889 void __init enable_IR_x2apic(void) 1890 { 1891 unsigned long flags; 1892 int ret, ir_stat; 1893 1894 if (skip_ioapic_setup) { 1895 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); 1896 return; 1897 } 1898 1899 ir_stat = irq_remapping_prepare(); 1900 if (ir_stat < 0 && !x2apic_supported()) 1901 return; 1902 1903 ret = save_ioapic_entries(); 1904 if (ret) { 1905 pr_info("Saving IO-APIC state failed: %d\n", ret); 1906 return; 1907 } 1908 1909 local_irq_save(flags); 1910 legacy_pic->mask_all(); 1911 mask_ioapic_entries(); 1912 1913 /* If irq_remapping_prepare() succeeded, try to enable it */ 1914 if (ir_stat >= 0) 1915 ir_stat = irq_remapping_enable(); 1916 /* ir_stat contains the remap mode or an error code */ 1917 try_to_enable_x2apic(ir_stat); 1918 1919 if (ir_stat < 0) 1920 restore_ioapic_entries(); 1921 legacy_pic->restore_mask(); 1922 local_irq_restore(flags); 1923 } 1924 1925 #ifdef CONFIG_X86_64 1926 /* 1927 * Detect and enable local APICs on non-SMP boards. 1928 * Original code written by Keir Fraser. 1929 * On AMD64 we trust the BIOS - if it says no APIC it is likely 1930 * not correctly set up (usually the APIC timer won't work etc.) 1931 */ 1932 static int __init detect_init_APIC(void) 1933 { 1934 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1935 pr_info("No local APIC present\n"); 1936 return -1; 1937 } 1938 1939 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1940 return 0; 1941 } 1942 #else 1943 1944 static int __init apic_verify(void) 1945 { 1946 u32 features, h, l; 1947 1948 /* 1949 * The APIC feature bit should now be enabled 1950 * in `cpuid' 1951 */ 1952 features = cpuid_edx(1); 1953 if (!(features & (1 << X86_FEATURE_APIC))) { 1954 pr_warn("Could not enable APIC!\n"); 1955 return -1; 1956 } 1957 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); 1958 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1959 1960 /* The BIOS may have set up the APIC at some other address */ 1961 if (boot_cpu_data.x86 >= 6) { 1962 rdmsr(MSR_IA32_APICBASE, l, h); 1963 if (l & MSR_IA32_APICBASE_ENABLE) 1964 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; 1965 } 1966 1967 pr_info("Found and enabled local APIC!\n"); 1968 return 0; 1969 } 1970 1971 int __init apic_force_enable(unsigned long addr) 1972 { 1973 u32 h, l; 1974 1975 if (disable_apic) 1976 return -1; 1977 1978 /* 1979 * Some BIOSes disable the local APIC in the APIC_BASE 1980 * MSR. This can only be done in software for Intel P6 or later 1981 * and AMD K7 (Model > 1) or later. 1982 */ 1983 if (boot_cpu_data.x86 >= 6) { 1984 rdmsr(MSR_IA32_APICBASE, l, h); 1985 if (!(l & MSR_IA32_APICBASE_ENABLE)) { 1986 pr_info("Local APIC disabled by BIOS -- reenabling.\n"); 1987 l &= ~MSR_IA32_APICBASE_BASE; 1988 l |= MSR_IA32_APICBASE_ENABLE | addr; 1989 wrmsr(MSR_IA32_APICBASE, l, h); 1990 enabled_via_apicbase = 1; 1991 } 1992 } 1993 return apic_verify(); 1994 } 1995 1996 /* 1997 * Detect and initialize APIC 1998 */ 1999 static int __init detect_init_APIC(void) 2000 { 2001 /* Disabled by kernel option? */ 2002 if (disable_apic) 2003 return -1; 2004 2005 switch (boot_cpu_data.x86_vendor) { 2006 case X86_VENDOR_AMD: 2007 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || 2008 (boot_cpu_data.x86 >= 15)) 2009 break; 2010 goto no_apic; 2011 case X86_VENDOR_HYGON: 2012 break; 2013 case X86_VENDOR_INTEL: 2014 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || 2015 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) 2016 break; 2017 goto no_apic; 2018 default: 2019 goto no_apic; 2020 } 2021 2022 if (!boot_cpu_has(X86_FEATURE_APIC)) { 2023 /* 2024 * Over-ride BIOS and try to enable the local APIC only if 2025 * "lapic" specified. 2026 */ 2027 if (!force_enable_local_apic) { 2028 pr_info("Local APIC disabled by BIOS -- " 2029 "you can enable it with \"lapic\"\n"); 2030 return -1; 2031 } 2032 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) 2033 return -1; 2034 } else { 2035 if (apic_verify()) 2036 return -1; 2037 } 2038 2039 apic_pm_activate(); 2040 2041 return 0; 2042 2043 no_apic: 2044 pr_info("No local APIC present or hardware disabled\n"); 2045 return -1; 2046 } 2047 #endif 2048 2049 /** 2050 * init_apic_mappings - initialize APIC mappings 2051 */ 2052 void __init init_apic_mappings(void) 2053 { 2054 unsigned int new_apicid; 2055 2056 if (apic_validate_deadline_timer()) 2057 pr_info("TSC deadline timer available\n"); 2058 2059 if (x2apic_mode) { 2060 boot_cpu_physical_apicid = read_apic_id(); 2061 return; 2062 } 2063 2064 /* If no local APIC can be found return early */ 2065 if (!smp_found_config && detect_init_APIC()) { 2066 /* lets NOP'ify apic operations */ 2067 pr_info("APIC: disable apic facility\n"); 2068 apic_disable(); 2069 } else { 2070 apic_phys = mp_lapic_addr; 2071 2072 /* 2073 * If the system has ACPI MADT tables or MP info, the LAPIC 2074 * address is already registered. 2075 */ 2076 if (!acpi_lapic && !smp_found_config) 2077 register_lapic_address(apic_phys); 2078 } 2079 2080 /* 2081 * Fetch the APIC ID of the BSP in case we have a 2082 * default configuration (or the MP table is broken). 2083 */ 2084 new_apicid = read_apic_id(); 2085 if (boot_cpu_physical_apicid != new_apicid) { 2086 boot_cpu_physical_apicid = new_apicid; 2087 /* 2088 * yeah -- we lie about apic_version 2089 * in case if apic was disabled via boot option 2090 * but it's not a problem for SMP compiled kernel 2091 * since apic_intr_mode_select is prepared for such 2092 * a case and disable smp mode 2093 */ 2094 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 2095 } 2096 } 2097 2098 void __init register_lapic_address(unsigned long address) 2099 { 2100 mp_lapic_addr = address; 2101 2102 if (!x2apic_mode) { 2103 set_fixmap_nocache(FIX_APIC_BASE, address); 2104 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", 2105 APIC_BASE, address); 2106 } 2107 if (boot_cpu_physical_apicid == -1U) { 2108 boot_cpu_physical_apicid = read_apic_id(); 2109 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 2110 } 2111 } 2112 2113 /* 2114 * Local APIC interrupts 2115 */ 2116 2117 /** 2118 * spurious_interrupt - Catch all for interrupts raised on unused vectors 2119 * @regs: Pointer to pt_regs on stack 2120 * @vector: The vector number 2121 * 2122 * This is invoked from ASM entry code to catch all interrupts which 2123 * trigger on an entry which is routed to the common_spurious idtentry 2124 * point. 2125 * 2126 * Also called from sysvec_spurious_apic_interrupt(). 2127 */ 2128 DEFINE_IDTENTRY_IRQ(spurious_interrupt) 2129 { 2130 u32 v; 2131 2132 trace_spurious_apic_entry(vector); 2133 2134 inc_irq_stat(irq_spurious_count); 2135 2136 /* 2137 * If this is a spurious interrupt then do not acknowledge 2138 */ 2139 if (vector == SPURIOUS_APIC_VECTOR) { 2140 /* See SDM vol 3 */ 2141 pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", 2142 smp_processor_id()); 2143 goto out; 2144 } 2145 2146 /* 2147 * If it is a vectored one, verify it's set in the ISR. If set, 2148 * acknowledge it. 2149 */ 2150 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); 2151 if (v & (1 << (vector & 0x1f))) { 2152 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", 2153 vector, smp_processor_id()); 2154 ack_APIC_irq(); 2155 } else { 2156 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", 2157 vector, smp_processor_id()); 2158 } 2159 out: 2160 trace_spurious_apic_exit(vector); 2161 } 2162 2163 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt) 2164 { 2165 __spurious_interrupt(regs, SPURIOUS_APIC_VECTOR); 2166 } 2167 2168 /* 2169 * This interrupt should never happen with our APIC/SMP architecture 2170 */ 2171 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt) 2172 { 2173 static const char * const error_interrupt_reason[] = { 2174 "Send CS error", /* APIC Error Bit 0 */ 2175 "Receive CS error", /* APIC Error Bit 1 */ 2176 "Send accept error", /* APIC Error Bit 2 */ 2177 "Receive accept error", /* APIC Error Bit 3 */ 2178 "Redirectable IPI", /* APIC Error Bit 4 */ 2179 "Send illegal vector", /* APIC Error Bit 5 */ 2180 "Received illegal vector", /* APIC Error Bit 6 */ 2181 "Illegal register address", /* APIC Error Bit 7 */ 2182 }; 2183 u32 v, i = 0; 2184 2185 trace_error_apic_entry(ERROR_APIC_VECTOR); 2186 2187 /* First tickle the hardware, only then report what went on. -- REW */ 2188 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ 2189 apic_write(APIC_ESR, 0); 2190 v = apic_read(APIC_ESR); 2191 ack_APIC_irq(); 2192 atomic_inc(&irq_err_count); 2193 2194 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", 2195 smp_processor_id(), v); 2196 2197 v &= 0xff; 2198 while (v) { 2199 if (v & 0x1) 2200 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); 2201 i++; 2202 v >>= 1; 2203 } 2204 2205 apic_printk(APIC_DEBUG, KERN_CONT "\n"); 2206 2207 trace_error_apic_exit(ERROR_APIC_VECTOR); 2208 } 2209 2210 /** 2211 * connect_bsp_APIC - attach the APIC to the interrupt system 2212 */ 2213 static void __init connect_bsp_APIC(void) 2214 { 2215 #ifdef CONFIG_X86_32 2216 if (pic_mode) { 2217 /* 2218 * Do not trust the local APIC being empty at bootup. 2219 */ 2220 clear_local_APIC(); 2221 /* 2222 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's 2223 * local APIC to INT and NMI lines. 2224 */ 2225 apic_printk(APIC_VERBOSE, "leaving PIC mode, " 2226 "enabling APIC mode.\n"); 2227 imcr_pic_to_apic(); 2228 } 2229 #endif 2230 } 2231 2232 /** 2233 * disconnect_bsp_APIC - detach the APIC from the interrupt system 2234 * @virt_wire_setup: indicates, whether virtual wire mode is selected 2235 * 2236 * Virtual wire mode is necessary to deliver legacy interrupts even when the 2237 * APIC is disabled. 2238 */ 2239 void disconnect_bsp_APIC(int virt_wire_setup) 2240 { 2241 unsigned int value; 2242 2243 #ifdef CONFIG_X86_32 2244 if (pic_mode) { 2245 /* 2246 * Put the board back into PIC mode (has an effect only on 2247 * certain older boards). Note that APIC interrupts, including 2248 * IPIs, won't work beyond this point! The only exception are 2249 * INIT IPIs. 2250 */ 2251 apic_printk(APIC_VERBOSE, "disabling APIC mode, " 2252 "entering PIC mode.\n"); 2253 imcr_apic_to_pic(); 2254 return; 2255 } 2256 #endif 2257 2258 /* Go back to Virtual Wire compatibility mode */ 2259 2260 /* For the spurious interrupt use vector F, and enable it */ 2261 value = apic_read(APIC_SPIV); 2262 value &= ~APIC_VECTOR_MASK; 2263 value |= APIC_SPIV_APIC_ENABLED; 2264 value |= 0xf; 2265 apic_write(APIC_SPIV, value); 2266 2267 if (!virt_wire_setup) { 2268 /* 2269 * For LVT0 make it edge triggered, active high, 2270 * external and enabled 2271 */ 2272 value = apic_read(APIC_LVT0); 2273 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2274 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2275 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2276 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2277 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); 2278 apic_write(APIC_LVT0, value); 2279 } else { 2280 /* Disable LVT0 */ 2281 apic_write(APIC_LVT0, APIC_LVT_MASKED); 2282 } 2283 2284 /* 2285 * For LVT1 make it edge triggered, active high, 2286 * nmi and enabled 2287 */ 2288 value = apic_read(APIC_LVT1); 2289 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2290 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2291 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2292 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2293 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); 2294 apic_write(APIC_LVT1, value); 2295 } 2296 2297 /* 2298 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated 2299 * contiguously, it equals to current allocated max logical CPU ID plus 1. 2300 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, 2301 * so the maximum of nr_logical_cpuids is nr_cpu_ids. 2302 * 2303 * NOTE: Reserve 0 for BSP. 2304 */ 2305 static int nr_logical_cpuids = 1; 2306 2307 /* 2308 * Used to store mapping between logical CPU IDs and APIC IDs. 2309 */ 2310 static int cpuid_to_apicid[] = { 2311 [0 ... NR_CPUS - 1] = -1, 2312 }; 2313 2314 #ifdef CONFIG_SMP 2315 /** 2316 * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread 2317 * @apicid: APIC ID to check 2318 */ 2319 bool apic_id_is_primary_thread(unsigned int apicid) 2320 { 2321 u32 mask; 2322 2323 if (smp_num_siblings == 1) 2324 return true; 2325 /* Isolate the SMT bit(s) in the APICID and check for 0 */ 2326 mask = (1U << (fls(smp_num_siblings) - 1)) - 1; 2327 return !(apicid & mask); 2328 } 2329 #endif 2330 2331 /* 2332 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids 2333 * and cpuid_to_apicid[] synchronized. 2334 */ 2335 static int allocate_logical_cpuid(int apicid) 2336 { 2337 int i; 2338 2339 /* 2340 * cpuid <-> apicid mapping is persistent, so when a cpu is up, 2341 * check if the kernel has allocated a cpuid for it. 2342 */ 2343 for (i = 0; i < nr_logical_cpuids; i++) { 2344 if (cpuid_to_apicid[i] == apicid) 2345 return i; 2346 } 2347 2348 /* Allocate a new cpuid. */ 2349 if (nr_logical_cpuids >= nr_cpu_ids) { 2350 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " 2351 "Processor %d/0x%x and the rest are ignored.\n", 2352 nr_cpu_ids, nr_logical_cpuids, apicid); 2353 return -EINVAL; 2354 } 2355 2356 cpuid_to_apicid[nr_logical_cpuids] = apicid; 2357 return nr_logical_cpuids++; 2358 } 2359 2360 int generic_processor_info(int apicid, int version) 2361 { 2362 int cpu, max = nr_cpu_ids; 2363 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, 2364 phys_cpu_present_map); 2365 2366 /* 2367 * boot_cpu_physical_apicid is designed to have the apicid 2368 * returned by read_apic_id(), i.e, the apicid of the 2369 * currently booting-up processor. However, on some platforms, 2370 * it is temporarily modified by the apicid reported as BSP 2371 * through MP table. Concretely: 2372 * 2373 * - arch/x86/kernel/mpparse.c: MP_processor_info() 2374 * - arch/x86/mm/amdtopology.c: amd_numa_init() 2375 * 2376 * This function is executed with the modified 2377 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel 2378 * parameter doesn't work to disable APs on kdump 2nd kernel. 2379 * 2380 * Since fixing handling of boot_cpu_physical_apicid requires 2381 * another discussion and tests on each platform, we leave it 2382 * for now and here we use read_apic_id() directly in this 2383 * function, generic_processor_info(). 2384 */ 2385 if (disabled_cpu_apicid != BAD_APICID && 2386 disabled_cpu_apicid != read_apic_id() && 2387 disabled_cpu_apicid == apicid) { 2388 int thiscpu = num_processors + disabled_cpus; 2389 2390 pr_warn("APIC: Disabling requested cpu." 2391 " Processor %d/0x%x ignored.\n", thiscpu, apicid); 2392 2393 disabled_cpus++; 2394 return -ENODEV; 2395 } 2396 2397 /* 2398 * If boot cpu has not been detected yet, then only allow upto 2399 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu 2400 */ 2401 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && 2402 apicid != boot_cpu_physical_apicid) { 2403 int thiscpu = max + disabled_cpus - 1; 2404 2405 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost" 2406 " reached. Keeping one slot for boot cpu." 2407 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2408 2409 disabled_cpus++; 2410 return -ENODEV; 2411 } 2412 2413 if (num_processors >= nr_cpu_ids) { 2414 int thiscpu = max + disabled_cpus; 2415 2416 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. " 2417 "Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2418 2419 disabled_cpus++; 2420 return -EINVAL; 2421 } 2422 2423 if (apicid == boot_cpu_physical_apicid) { 2424 /* 2425 * x86_bios_cpu_apicid is required to have processors listed 2426 * in same order as logical cpu numbers. Hence the first 2427 * entry is BSP, and so on. 2428 * boot_cpu_init() already hold bit 0 in cpu_present_mask 2429 * for BSP. 2430 */ 2431 cpu = 0; 2432 2433 /* Logical cpuid 0 is reserved for BSP. */ 2434 cpuid_to_apicid[0] = apicid; 2435 } else { 2436 cpu = allocate_logical_cpuid(apicid); 2437 if (cpu < 0) { 2438 disabled_cpus++; 2439 return -EINVAL; 2440 } 2441 } 2442 2443 /* 2444 * Validate version 2445 */ 2446 if (version == 0x0) { 2447 pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", 2448 cpu, apicid); 2449 version = 0x10; 2450 } 2451 2452 if (version != boot_cpu_apic_version) { 2453 pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", 2454 boot_cpu_apic_version, cpu, version); 2455 } 2456 2457 if (apicid > max_physical_apicid) 2458 max_physical_apicid = apicid; 2459 2460 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) 2461 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; 2462 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; 2463 #endif 2464 #ifdef CONFIG_X86_32 2465 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 2466 apic->x86_32_early_logical_apicid(cpu); 2467 #endif 2468 set_cpu_possible(cpu, true); 2469 physid_set(apicid, phys_cpu_present_map); 2470 set_cpu_present(cpu, true); 2471 num_processors++; 2472 2473 return cpu; 2474 } 2475 2476 int hard_smp_processor_id(void) 2477 { 2478 return read_apic_id(); 2479 } 2480 2481 /* 2482 * Override the generic EOI implementation with an optimized version. 2483 * Only called during early boot when only one CPU is active and with 2484 * interrupts disabled, so we know this does not race with actual APIC driver 2485 * use. 2486 */ 2487 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) 2488 { 2489 struct apic **drv; 2490 2491 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { 2492 /* Should happen once for each apic */ 2493 WARN_ON((*drv)->eoi_write == eoi_write); 2494 (*drv)->native_eoi_write = (*drv)->eoi_write; 2495 (*drv)->eoi_write = eoi_write; 2496 } 2497 } 2498 2499 static void __init apic_bsp_up_setup(void) 2500 { 2501 #ifdef CONFIG_X86_64 2502 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); 2503 #else 2504 /* 2505 * Hack: In case of kdump, after a crash, kernel might be booting 2506 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid 2507 * might be zero if read from MP tables. Get it from LAPIC. 2508 */ 2509 # ifdef CONFIG_CRASH_DUMP 2510 boot_cpu_physical_apicid = read_apic_id(); 2511 # endif 2512 #endif 2513 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 2514 } 2515 2516 /** 2517 * apic_bsp_setup - Setup function for local apic and io-apic 2518 * @upmode: Force UP mode (for APIC_init_uniprocessor) 2519 */ 2520 static void __init apic_bsp_setup(bool upmode) 2521 { 2522 connect_bsp_APIC(); 2523 if (upmode) 2524 apic_bsp_up_setup(); 2525 setup_local_APIC(); 2526 2527 enable_IO_APIC(); 2528 end_local_APIC_setup(); 2529 irq_remap_enable_fault_handling(); 2530 setup_IO_APIC(); 2531 } 2532 2533 #ifdef CONFIG_UP_LATE_INIT 2534 void __init up_late_init(void) 2535 { 2536 if (apic_intr_mode == APIC_PIC) 2537 return; 2538 2539 /* Setup local timer */ 2540 x86_init.timers.setup_percpu_clockev(); 2541 } 2542 #endif 2543 2544 /* 2545 * Power management 2546 */ 2547 #ifdef CONFIG_PM 2548 2549 static struct { 2550 /* 2551 * 'active' is true if the local APIC was enabled by us and 2552 * not the BIOS; this signifies that we are also responsible 2553 * for disabling it before entering apm/acpi suspend 2554 */ 2555 int active; 2556 /* r/w apic fields */ 2557 unsigned int apic_id; 2558 unsigned int apic_taskpri; 2559 unsigned int apic_ldr; 2560 unsigned int apic_dfr; 2561 unsigned int apic_spiv; 2562 unsigned int apic_lvtt; 2563 unsigned int apic_lvtpc; 2564 unsigned int apic_lvt0; 2565 unsigned int apic_lvt1; 2566 unsigned int apic_lvterr; 2567 unsigned int apic_tmict; 2568 unsigned int apic_tdcr; 2569 unsigned int apic_thmr; 2570 unsigned int apic_cmci; 2571 } apic_pm_state; 2572 2573 static int lapic_suspend(void) 2574 { 2575 unsigned long flags; 2576 int maxlvt; 2577 2578 if (!apic_pm_state.active) 2579 return 0; 2580 2581 maxlvt = lapic_get_maxlvt(); 2582 2583 apic_pm_state.apic_id = apic_read(APIC_ID); 2584 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); 2585 apic_pm_state.apic_ldr = apic_read(APIC_LDR); 2586 apic_pm_state.apic_dfr = apic_read(APIC_DFR); 2587 apic_pm_state.apic_spiv = apic_read(APIC_SPIV); 2588 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); 2589 if (maxlvt >= 4) 2590 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); 2591 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); 2592 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); 2593 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); 2594 apic_pm_state.apic_tmict = apic_read(APIC_TMICT); 2595 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); 2596 #ifdef CONFIG_X86_THERMAL_VECTOR 2597 if (maxlvt >= 5) 2598 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); 2599 #endif 2600 #ifdef CONFIG_X86_MCE_INTEL 2601 if (maxlvt >= 6) 2602 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); 2603 #endif 2604 2605 local_irq_save(flags); 2606 2607 /* 2608 * Mask IOAPIC before disabling the local APIC to prevent stale IRR 2609 * entries on some implementations. 2610 */ 2611 mask_ioapic_entries(); 2612 2613 disable_local_APIC(); 2614 2615 irq_remapping_disable(); 2616 2617 local_irq_restore(flags); 2618 return 0; 2619 } 2620 2621 static void lapic_resume(void) 2622 { 2623 unsigned int l, h; 2624 unsigned long flags; 2625 int maxlvt; 2626 2627 if (!apic_pm_state.active) 2628 return; 2629 2630 local_irq_save(flags); 2631 2632 /* 2633 * IO-APIC and PIC have their own resume routines. 2634 * We just mask them here to make sure the interrupt 2635 * subsystem is completely quiet while we enable x2apic 2636 * and interrupt-remapping. 2637 */ 2638 mask_ioapic_entries(); 2639 legacy_pic->mask_all(); 2640 2641 if (x2apic_mode) { 2642 __x2apic_enable(); 2643 } else { 2644 /* 2645 * Make sure the APICBASE points to the right address 2646 * 2647 * FIXME! This will be wrong if we ever support suspend on 2648 * SMP! We'll need to do this as part of the CPU restore! 2649 */ 2650 if (boot_cpu_data.x86 >= 6) { 2651 rdmsr(MSR_IA32_APICBASE, l, h); 2652 l &= ~MSR_IA32_APICBASE_BASE; 2653 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; 2654 wrmsr(MSR_IA32_APICBASE, l, h); 2655 } 2656 } 2657 2658 maxlvt = lapic_get_maxlvt(); 2659 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); 2660 apic_write(APIC_ID, apic_pm_state.apic_id); 2661 apic_write(APIC_DFR, apic_pm_state.apic_dfr); 2662 apic_write(APIC_LDR, apic_pm_state.apic_ldr); 2663 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); 2664 apic_write(APIC_SPIV, apic_pm_state.apic_spiv); 2665 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); 2666 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); 2667 #ifdef CONFIG_X86_THERMAL_VECTOR 2668 if (maxlvt >= 5) 2669 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); 2670 #endif 2671 #ifdef CONFIG_X86_MCE_INTEL 2672 if (maxlvt >= 6) 2673 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); 2674 #endif 2675 if (maxlvt >= 4) 2676 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); 2677 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); 2678 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); 2679 apic_write(APIC_TMICT, apic_pm_state.apic_tmict); 2680 apic_write(APIC_ESR, 0); 2681 apic_read(APIC_ESR); 2682 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); 2683 apic_write(APIC_ESR, 0); 2684 apic_read(APIC_ESR); 2685 2686 irq_remapping_reenable(x2apic_mode); 2687 2688 local_irq_restore(flags); 2689 } 2690 2691 /* 2692 * This device has no shutdown method - fully functioning local APICs 2693 * are needed on every CPU up until machine_halt/restart/poweroff. 2694 */ 2695 2696 static struct syscore_ops lapic_syscore_ops = { 2697 .resume = lapic_resume, 2698 .suspend = lapic_suspend, 2699 }; 2700 2701 static void apic_pm_activate(void) 2702 { 2703 apic_pm_state.active = 1; 2704 } 2705 2706 static int __init init_lapic_sysfs(void) 2707 { 2708 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ 2709 if (boot_cpu_has(X86_FEATURE_APIC)) 2710 register_syscore_ops(&lapic_syscore_ops); 2711 2712 return 0; 2713 } 2714 2715 /* local apic needs to resume before other devices access its registers. */ 2716 core_initcall(init_lapic_sysfs); 2717 2718 #else /* CONFIG_PM */ 2719 2720 static void apic_pm_activate(void) { } 2721 2722 #endif /* CONFIG_PM */ 2723 2724 #ifdef CONFIG_X86_64 2725 2726 static int multi_checked; 2727 static int multi; 2728 2729 static int set_multi(const struct dmi_system_id *d) 2730 { 2731 if (multi) 2732 return 0; 2733 pr_info("APIC: %s detected, Multi Chassis\n", d->ident); 2734 multi = 1; 2735 return 0; 2736 } 2737 2738 static const struct dmi_system_id multi_dmi_table[] = { 2739 { 2740 .callback = set_multi, 2741 .ident = "IBM System Summit2", 2742 .matches = { 2743 DMI_MATCH(DMI_SYS_VENDOR, "IBM"), 2744 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), 2745 }, 2746 }, 2747 {} 2748 }; 2749 2750 static void dmi_check_multi(void) 2751 { 2752 if (multi_checked) 2753 return; 2754 2755 dmi_check_system(multi_dmi_table); 2756 multi_checked = 1; 2757 } 2758 2759 /* 2760 * apic_is_clustered_box() -- Check if we can expect good TSC 2761 * 2762 * Thus far, the major user of this is IBM's Summit2 series: 2763 * Clustered boxes may have unsynced TSC problems if they are 2764 * multi-chassis. 2765 * Use DMI to check them 2766 */ 2767 int apic_is_clustered_box(void) 2768 { 2769 dmi_check_multi(); 2770 return multi; 2771 } 2772 #endif 2773 2774 /* 2775 * APIC command line parameters 2776 */ 2777 static int __init setup_disableapic(char *arg) 2778 { 2779 disable_apic = 1; 2780 setup_clear_cpu_cap(X86_FEATURE_APIC); 2781 return 0; 2782 } 2783 early_param("disableapic", setup_disableapic); 2784 2785 /* same as disableapic, for compatibility */ 2786 static int __init setup_nolapic(char *arg) 2787 { 2788 return setup_disableapic(arg); 2789 } 2790 early_param("nolapic", setup_nolapic); 2791 2792 static int __init parse_lapic_timer_c2_ok(char *arg) 2793 { 2794 local_apic_timer_c2_ok = 1; 2795 return 0; 2796 } 2797 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); 2798 2799 static int __init parse_disable_apic_timer(char *arg) 2800 { 2801 disable_apic_timer = 1; 2802 return 0; 2803 } 2804 early_param("noapictimer", parse_disable_apic_timer); 2805 2806 static int __init parse_nolapic_timer(char *arg) 2807 { 2808 disable_apic_timer = 1; 2809 return 0; 2810 } 2811 early_param("nolapic_timer", parse_nolapic_timer); 2812 2813 static int __init apic_set_verbosity(char *arg) 2814 { 2815 if (!arg) { 2816 #ifdef CONFIG_X86_64 2817 skip_ioapic_setup = 0; 2818 return 0; 2819 #endif 2820 return -EINVAL; 2821 } 2822 2823 if (strcmp("debug", arg) == 0) 2824 apic_verbosity = APIC_DEBUG; 2825 else if (strcmp("verbose", arg) == 0) 2826 apic_verbosity = APIC_VERBOSE; 2827 #ifdef CONFIG_X86_64 2828 else { 2829 pr_warn("APIC Verbosity level %s not recognised" 2830 " use apic=verbose or apic=debug\n", arg); 2831 return -EINVAL; 2832 } 2833 #endif 2834 2835 return 0; 2836 } 2837 early_param("apic", apic_set_verbosity); 2838 2839 static int __init lapic_insert_resource(void) 2840 { 2841 if (!apic_phys) 2842 return -1; 2843 2844 /* Put local APIC into the resource map. */ 2845 lapic_resource.start = apic_phys; 2846 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; 2847 insert_resource(&iomem_resource, &lapic_resource); 2848 2849 return 0; 2850 } 2851 2852 /* 2853 * need call insert after e820__reserve_resources() 2854 * that is using request_resource 2855 */ 2856 late_initcall(lapic_insert_resource); 2857 2858 static int __init apic_set_disabled_cpu_apicid(char *arg) 2859 { 2860 if (!arg || !get_option(&arg, &disabled_cpu_apicid)) 2861 return -EINVAL; 2862 2863 return 0; 2864 } 2865 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); 2866 2867 static int __init apic_set_extnmi(char *arg) 2868 { 2869 if (!arg) 2870 return -EINVAL; 2871 2872 if (!strncmp("all", arg, 3)) 2873 apic_extnmi = APIC_EXTNMI_ALL; 2874 else if (!strncmp("none", arg, 4)) 2875 apic_extnmi = APIC_EXTNMI_NONE; 2876 else if (!strncmp("bsp", arg, 3)) 2877 apic_extnmi = APIC_EXTNMI_BSP; 2878 else { 2879 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); 2880 return -EINVAL; 2881 } 2882 2883 return 0; 2884 } 2885 early_param("apic_extnmi", apic_set_extnmi); 2886