xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/list.h>
8 #include <linux/stringify.h>
9 #include <linux/mm.h>
10 #include <linux/vmalloc.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <linux/slab.h>
14 #include <linux/kdebug.h>
15 #include <linux/kprobes.h>
16 #include <linux/mmu_context.h>
17 #include <linux/bsearch.h>
18 #include <asm/text-patching.h>
19 #include <asm/alternative.h>
20 #include <asm/sections.h>
21 #include <asm/pgtable.h>
22 #include <asm/mce.h>
23 #include <asm/nmi.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/insn.h>
27 #include <asm/io.h>
28 #include <asm/fixmap.h>
29 
30 int __read_mostly alternatives_patched;
31 
32 EXPORT_SYMBOL_GPL(alternatives_patched);
33 
34 #define MAX_PATCH_LEN (255-1)
35 
36 static int __initdata_or_module debug_alternative;
37 
38 static int __init debug_alt(char *str)
39 {
40 	debug_alternative = 1;
41 	return 1;
42 }
43 __setup("debug-alternative", debug_alt);
44 
45 static int noreplace_smp;
46 
47 static int __init setup_noreplace_smp(char *str)
48 {
49 	noreplace_smp = 1;
50 	return 1;
51 }
52 __setup("noreplace-smp", setup_noreplace_smp);
53 
54 #define DPRINTK(fmt, args...)						\
55 do {									\
56 	if (debug_alternative)						\
57 		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
58 } while (0)
59 
60 #define DUMP_BYTES(buf, len, fmt, args...)				\
61 do {									\
62 	if (unlikely(debug_alternative)) {				\
63 		int j;							\
64 									\
65 		if (!(len))						\
66 			break;						\
67 									\
68 		printk(KERN_DEBUG fmt, ##args);				\
69 		for (j = 0; j < (len) - 1; j++)				\
70 			printk(KERN_CONT "%02hhx ", buf[j]);		\
71 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
72 	}								\
73 } while (0)
74 
75 /*
76  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
77  * that correspond to that nop. Getting from one nop to the next, we
78  * add to the array the offset that is equal to the sum of all sizes of
79  * nops preceding the one we are after.
80  *
81  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
82  * nice symmetry of sizes of the previous nops.
83  */
84 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
85 static const unsigned char intelnops[] =
86 {
87 	GENERIC_NOP1,
88 	GENERIC_NOP2,
89 	GENERIC_NOP3,
90 	GENERIC_NOP4,
91 	GENERIC_NOP5,
92 	GENERIC_NOP6,
93 	GENERIC_NOP7,
94 	GENERIC_NOP8,
95 	GENERIC_NOP5_ATOMIC
96 };
97 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
98 {
99 	NULL,
100 	intelnops,
101 	intelnops + 1,
102 	intelnops + 1 + 2,
103 	intelnops + 1 + 2 + 3,
104 	intelnops + 1 + 2 + 3 + 4,
105 	intelnops + 1 + 2 + 3 + 4 + 5,
106 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
107 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
108 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
109 };
110 #endif
111 
112 #ifdef K8_NOP1
113 static const unsigned char k8nops[] =
114 {
115 	K8_NOP1,
116 	K8_NOP2,
117 	K8_NOP3,
118 	K8_NOP4,
119 	K8_NOP5,
120 	K8_NOP6,
121 	K8_NOP7,
122 	K8_NOP8,
123 	K8_NOP5_ATOMIC
124 };
125 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
126 {
127 	NULL,
128 	k8nops,
129 	k8nops + 1,
130 	k8nops + 1 + 2,
131 	k8nops + 1 + 2 + 3,
132 	k8nops + 1 + 2 + 3 + 4,
133 	k8nops + 1 + 2 + 3 + 4 + 5,
134 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
135 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
136 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
137 };
138 #endif
139 
140 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
141 static const unsigned char k7nops[] =
142 {
143 	K7_NOP1,
144 	K7_NOP2,
145 	K7_NOP3,
146 	K7_NOP4,
147 	K7_NOP5,
148 	K7_NOP6,
149 	K7_NOP7,
150 	K7_NOP8,
151 	K7_NOP5_ATOMIC
152 };
153 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
154 {
155 	NULL,
156 	k7nops,
157 	k7nops + 1,
158 	k7nops + 1 + 2,
159 	k7nops + 1 + 2 + 3,
160 	k7nops + 1 + 2 + 3 + 4,
161 	k7nops + 1 + 2 + 3 + 4 + 5,
162 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
163 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
164 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
165 };
166 #endif
167 
168 #ifdef P6_NOP1
169 static const unsigned char p6nops[] =
170 {
171 	P6_NOP1,
172 	P6_NOP2,
173 	P6_NOP3,
174 	P6_NOP4,
175 	P6_NOP5,
176 	P6_NOP6,
177 	P6_NOP7,
178 	P6_NOP8,
179 	P6_NOP5_ATOMIC
180 };
181 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
182 {
183 	NULL,
184 	p6nops,
185 	p6nops + 1,
186 	p6nops + 1 + 2,
187 	p6nops + 1 + 2 + 3,
188 	p6nops + 1 + 2 + 3 + 4,
189 	p6nops + 1 + 2 + 3 + 4 + 5,
190 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
191 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
192 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
193 };
194 #endif
195 
196 /* Initialize these to a safe default */
197 #ifdef CONFIG_X86_64
198 const unsigned char * const *ideal_nops = p6_nops;
199 #else
200 const unsigned char * const *ideal_nops = intel_nops;
201 #endif
202 
203 void __init arch_init_ideal_nops(void)
204 {
205 	switch (boot_cpu_data.x86_vendor) {
206 	case X86_VENDOR_INTEL:
207 		/*
208 		 * Due to a decoder implementation quirk, some
209 		 * specific Intel CPUs actually perform better with
210 		 * the "k8_nops" than with the SDM-recommended NOPs.
211 		 */
212 		if (boot_cpu_data.x86 == 6 &&
213 		    boot_cpu_data.x86_model >= 0x0f &&
214 		    boot_cpu_data.x86_model != 0x1c &&
215 		    boot_cpu_data.x86_model != 0x26 &&
216 		    boot_cpu_data.x86_model != 0x27 &&
217 		    boot_cpu_data.x86_model < 0x30) {
218 			ideal_nops = k8_nops;
219 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
220 			   ideal_nops = p6_nops;
221 		} else {
222 #ifdef CONFIG_X86_64
223 			ideal_nops = k8_nops;
224 #else
225 			ideal_nops = intel_nops;
226 #endif
227 		}
228 		break;
229 
230 	case X86_VENDOR_HYGON:
231 		ideal_nops = p6_nops;
232 		return;
233 
234 	case X86_VENDOR_AMD:
235 		if (boot_cpu_data.x86 > 0xf) {
236 			ideal_nops = p6_nops;
237 			return;
238 		}
239 
240 		/* fall through */
241 
242 	default:
243 #ifdef CONFIG_X86_64
244 		ideal_nops = k8_nops;
245 #else
246 		if (boot_cpu_has(X86_FEATURE_K8))
247 			ideal_nops = k8_nops;
248 		else if (boot_cpu_has(X86_FEATURE_K7))
249 			ideal_nops = k7_nops;
250 		else
251 			ideal_nops = intel_nops;
252 #endif
253 	}
254 }
255 
256 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
257 static void __init_or_module add_nops(void *insns, unsigned int len)
258 {
259 	while (len > 0) {
260 		unsigned int noplen = len;
261 		if (noplen > ASM_NOP_MAX)
262 			noplen = ASM_NOP_MAX;
263 		memcpy(insns, ideal_nops[noplen], noplen);
264 		insns += noplen;
265 		len -= noplen;
266 	}
267 }
268 
269 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
270 extern s32 __smp_locks[], __smp_locks_end[];
271 void text_poke_early(void *addr, const void *opcode, size_t len);
272 
273 /*
274  * Are we looking at a near JMP with a 1 or 4-byte displacement.
275  */
276 static inline bool is_jmp(const u8 opcode)
277 {
278 	return opcode == 0xeb || opcode == 0xe9;
279 }
280 
281 static void __init_or_module
282 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
283 {
284 	u8 *next_rip, *tgt_rip;
285 	s32 n_dspl, o_dspl;
286 	int repl_len;
287 
288 	if (a->replacementlen != 5)
289 		return;
290 
291 	o_dspl = *(s32 *)(insn_buff + 1);
292 
293 	/* next_rip of the replacement JMP */
294 	next_rip = repl_insn + a->replacementlen;
295 	/* target rip of the replacement JMP */
296 	tgt_rip  = next_rip + o_dspl;
297 	n_dspl = tgt_rip - orig_insn;
298 
299 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
300 
301 	if (tgt_rip - orig_insn >= 0) {
302 		if (n_dspl - 2 <= 127)
303 			goto two_byte_jmp;
304 		else
305 			goto five_byte_jmp;
306 	/* negative offset */
307 	} else {
308 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
309 			goto two_byte_jmp;
310 		else
311 			goto five_byte_jmp;
312 	}
313 
314 two_byte_jmp:
315 	n_dspl -= 2;
316 
317 	insn_buff[0] = 0xeb;
318 	insn_buff[1] = (s8)n_dspl;
319 	add_nops(insn_buff + 2, 3);
320 
321 	repl_len = 2;
322 	goto done;
323 
324 five_byte_jmp:
325 	n_dspl -= 5;
326 
327 	insn_buff[0] = 0xe9;
328 	*(s32 *)&insn_buff[1] = n_dspl;
329 
330 	repl_len = 5;
331 
332 done:
333 
334 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
335 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
336 }
337 
338 /*
339  * "noinline" to cause control flow change and thus invalidate I$ and
340  * cause refetch after modification.
341  */
342 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
343 {
344 	unsigned long flags;
345 	int i;
346 
347 	for (i = 0; i < a->padlen; i++) {
348 		if (instr[i] != 0x90)
349 			return;
350 	}
351 
352 	local_irq_save(flags);
353 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
354 	local_irq_restore(flags);
355 
356 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
357 		   instr, a->instrlen - a->padlen, a->padlen);
358 }
359 
360 /*
361  * Replace instructions with better alternatives for this CPU type. This runs
362  * before SMP is initialized to avoid SMP problems with self modifying code.
363  * This implies that asymmetric systems where APs have less capabilities than
364  * the boot processor are not handled. Tough. Make sure you disable such
365  * features by hand.
366  *
367  * Marked "noinline" to cause control flow change and thus insn cache
368  * to refetch changed I$ lines.
369  */
370 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
371 						  struct alt_instr *end)
372 {
373 	struct alt_instr *a;
374 	u8 *instr, *replacement;
375 	u8 insn_buff[MAX_PATCH_LEN];
376 
377 	DPRINTK("alt table %px, -> %px", start, end);
378 	/*
379 	 * The scan order should be from start to end. A later scanned
380 	 * alternative code can overwrite previously scanned alternative code.
381 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
382 	 * patch code.
383 	 *
384 	 * So be careful if you want to change the scan order to any other
385 	 * order.
386 	 */
387 	for (a = start; a < end; a++) {
388 		int insn_buff_sz = 0;
389 
390 		instr = (u8 *)&a->instr_offset + a->instr_offset;
391 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
392 		BUG_ON(a->instrlen > sizeof(insn_buff));
393 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
394 		if (!boot_cpu_has(a->cpuid)) {
395 			if (a->padlen > 1)
396 				optimize_nops(a, instr);
397 
398 			continue;
399 		}
400 
401 		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
402 			a->cpuid >> 5,
403 			a->cpuid & 0x1f,
404 			instr, instr, a->instrlen,
405 			replacement, a->replacementlen, a->padlen);
406 
407 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
408 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
409 
410 		memcpy(insn_buff, replacement, a->replacementlen);
411 		insn_buff_sz = a->replacementlen;
412 
413 		/*
414 		 * 0xe8 is a relative jump; fix the offset.
415 		 *
416 		 * Instruction length is checked before the opcode to avoid
417 		 * accessing uninitialized bytes for zero-length replacements.
418 		 */
419 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
420 			*(s32 *)(insn_buff + 1) += replacement - instr;
421 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
422 				*(s32 *)(insn_buff + 1),
423 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
424 		}
425 
426 		if (a->replacementlen && is_jmp(replacement[0]))
427 			recompute_jump(a, instr, replacement, insn_buff);
428 
429 		if (a->instrlen > a->replacementlen) {
430 			add_nops(insn_buff + a->replacementlen,
431 				 a->instrlen - a->replacementlen);
432 			insn_buff_sz += a->instrlen - a->replacementlen;
433 		}
434 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
435 
436 		text_poke_early(instr, insn_buff, insn_buff_sz);
437 	}
438 }
439 
440 #ifdef CONFIG_SMP
441 static void alternatives_smp_lock(const s32 *start, const s32 *end,
442 				  u8 *text, u8 *text_end)
443 {
444 	const s32 *poff;
445 
446 	for (poff = start; poff < end; poff++) {
447 		u8 *ptr = (u8 *)poff + *poff;
448 
449 		if (!*poff || ptr < text || ptr >= text_end)
450 			continue;
451 		/* turn DS segment override prefix into lock prefix */
452 		if (*ptr == 0x3e)
453 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
454 	}
455 }
456 
457 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
458 				    u8 *text, u8 *text_end)
459 {
460 	const s32 *poff;
461 
462 	for (poff = start; poff < end; poff++) {
463 		u8 *ptr = (u8 *)poff + *poff;
464 
465 		if (!*poff || ptr < text || ptr >= text_end)
466 			continue;
467 		/* turn lock prefix into DS segment override prefix */
468 		if (*ptr == 0xf0)
469 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
470 	}
471 }
472 
473 struct smp_alt_module {
474 	/* what is this ??? */
475 	struct module	*mod;
476 	char		*name;
477 
478 	/* ptrs to lock prefixes */
479 	const s32	*locks;
480 	const s32	*locks_end;
481 
482 	/* .text segment, needed to avoid patching init code ;) */
483 	u8		*text;
484 	u8		*text_end;
485 
486 	struct list_head next;
487 };
488 static LIST_HEAD(smp_alt_modules);
489 static bool uniproc_patched = false;	/* protected by text_mutex */
490 
491 void __init_or_module alternatives_smp_module_add(struct module *mod,
492 						  char *name,
493 						  void *locks, void *locks_end,
494 						  void *text,  void *text_end)
495 {
496 	struct smp_alt_module *smp;
497 
498 	mutex_lock(&text_mutex);
499 	if (!uniproc_patched)
500 		goto unlock;
501 
502 	if (num_possible_cpus() == 1)
503 		/* Don't bother remembering, we'll never have to undo it. */
504 		goto smp_unlock;
505 
506 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
507 	if (NULL == smp)
508 		/* we'll run the (safe but slow) SMP code then ... */
509 		goto unlock;
510 
511 	smp->mod	= mod;
512 	smp->name	= name;
513 	smp->locks	= locks;
514 	smp->locks_end	= locks_end;
515 	smp->text	= text;
516 	smp->text_end	= text_end;
517 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
518 		smp->locks, smp->locks_end,
519 		smp->text, smp->text_end, smp->name);
520 
521 	list_add_tail(&smp->next, &smp_alt_modules);
522 smp_unlock:
523 	alternatives_smp_unlock(locks, locks_end, text, text_end);
524 unlock:
525 	mutex_unlock(&text_mutex);
526 }
527 
528 void __init_or_module alternatives_smp_module_del(struct module *mod)
529 {
530 	struct smp_alt_module *item;
531 
532 	mutex_lock(&text_mutex);
533 	list_for_each_entry(item, &smp_alt_modules, next) {
534 		if (mod != item->mod)
535 			continue;
536 		list_del(&item->next);
537 		kfree(item);
538 		break;
539 	}
540 	mutex_unlock(&text_mutex);
541 }
542 
543 void alternatives_enable_smp(void)
544 {
545 	struct smp_alt_module *mod;
546 
547 	/* Why bother if there are no other CPUs? */
548 	BUG_ON(num_possible_cpus() == 1);
549 
550 	mutex_lock(&text_mutex);
551 
552 	if (uniproc_patched) {
553 		pr_info("switching to SMP code\n");
554 		BUG_ON(num_online_cpus() != 1);
555 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
556 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
557 		list_for_each_entry(mod, &smp_alt_modules, next)
558 			alternatives_smp_lock(mod->locks, mod->locks_end,
559 					      mod->text, mod->text_end);
560 		uniproc_patched = false;
561 	}
562 	mutex_unlock(&text_mutex);
563 }
564 
565 /*
566  * Return 1 if the address range is reserved for SMP-alternatives.
567  * Must hold text_mutex.
568  */
569 int alternatives_text_reserved(void *start, void *end)
570 {
571 	struct smp_alt_module *mod;
572 	const s32 *poff;
573 	u8 *text_start = start;
574 	u8 *text_end = end;
575 
576 	lockdep_assert_held(&text_mutex);
577 
578 	list_for_each_entry(mod, &smp_alt_modules, next) {
579 		if (mod->text > text_end || mod->text_end < text_start)
580 			continue;
581 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
582 			const u8 *ptr = (const u8 *)poff + *poff;
583 
584 			if (text_start <= ptr && text_end > ptr)
585 				return 1;
586 		}
587 	}
588 
589 	return 0;
590 }
591 #endif /* CONFIG_SMP */
592 
593 #ifdef CONFIG_PARAVIRT
594 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
595 				     struct paravirt_patch_site *end)
596 {
597 	struct paravirt_patch_site *p;
598 	char insn_buff[MAX_PATCH_LEN];
599 
600 	for (p = start; p < end; p++) {
601 		unsigned int used;
602 
603 		BUG_ON(p->len > MAX_PATCH_LEN);
604 		/* prep the buffer with the original instructions */
605 		memcpy(insn_buff, p->instr, p->len);
606 		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
607 
608 		BUG_ON(used > p->len);
609 
610 		/* Pad the rest with nops */
611 		add_nops(insn_buff + used, p->len - used);
612 		text_poke_early(p->instr, insn_buff, p->len);
613 	}
614 }
615 extern struct paravirt_patch_site __start_parainstructions[],
616 	__stop_parainstructions[];
617 #endif	/* CONFIG_PARAVIRT */
618 
619 /*
620  * Self-test for the INT3 based CALL emulation code.
621  *
622  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
623  * properly and that there is a stack gap between the INT3 frame and the
624  * previous context. Without this gap doing a virtual PUSH on the interrupted
625  * stack would corrupt the INT3 IRET frame.
626  *
627  * See entry_{32,64}.S for more details.
628  */
629 
630 /*
631  * We define the int3_magic() function in assembly to control the calling
632  * convention such that we can 'call' it from assembly.
633  */
634 
635 extern void int3_magic(unsigned int *ptr); /* defined in asm */
636 
637 asm (
638 "	.pushsection	.init.text, \"ax\", @progbits\n"
639 "	.type		int3_magic, @function\n"
640 "int3_magic:\n"
641 "	movl	$1, (%" _ASM_ARG1 ")\n"
642 "	ret\n"
643 "	.size		int3_magic, .-int3_magic\n"
644 "	.popsection\n"
645 );
646 
647 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
648 
649 static int __init
650 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
651 {
652 	struct die_args *args = data;
653 	struct pt_regs *regs = args->regs;
654 
655 	if (!regs || user_mode(regs))
656 		return NOTIFY_DONE;
657 
658 	if (val != DIE_INT3)
659 		return NOTIFY_DONE;
660 
661 	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
662 		return NOTIFY_DONE;
663 
664 	int3_emulate_call(regs, (unsigned long)&int3_magic);
665 	return NOTIFY_STOP;
666 }
667 
668 static void __init int3_selftest(void)
669 {
670 	static __initdata struct notifier_block int3_exception_nb = {
671 		.notifier_call	= int3_exception_notify,
672 		.priority	= INT_MAX-1, /* last */
673 	};
674 	unsigned int val = 0;
675 
676 	BUG_ON(register_die_notifier(&int3_exception_nb));
677 
678 	/*
679 	 * Basically: int3_magic(&val); but really complicated :-)
680 	 *
681 	 * Stick the address of the INT3 instruction into int3_selftest_ip,
682 	 * then trigger the INT3, padded with NOPs to match a CALL instruction
683 	 * length.
684 	 */
685 	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
686 		      ".pushsection .init.data,\"aw\"\n\t"
687 		      ".align " __ASM_SEL(4, 8) "\n\t"
688 		      ".type int3_selftest_ip, @object\n\t"
689 		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
690 		      "int3_selftest_ip:\n\t"
691 		      __ASM_SEL(.long, .quad) " 1b\n\t"
692 		      ".popsection\n\t"
693 		      : ASM_CALL_CONSTRAINT
694 		      : __ASM_SEL_RAW(a, D) (&val)
695 		      : "memory");
696 
697 	BUG_ON(val != 1);
698 
699 	unregister_die_notifier(&int3_exception_nb);
700 }
701 
702 void __init alternative_instructions(void)
703 {
704 	int3_selftest();
705 
706 	/*
707 	 * The patching is not fully atomic, so try to avoid local
708 	 * interruptions that might execute the to be patched code.
709 	 * Other CPUs are not running.
710 	 */
711 	stop_nmi();
712 
713 	/*
714 	 * Don't stop machine check exceptions while patching.
715 	 * MCEs only happen when something got corrupted and in this
716 	 * case we must do something about the corruption.
717 	 * Ignoring it is worse than an unlikely patching race.
718 	 * Also machine checks tend to be broadcast and if one CPU
719 	 * goes into machine check the others follow quickly, so we don't
720 	 * expect a machine check to cause undue problems during to code
721 	 * patching.
722 	 */
723 
724 	apply_alternatives(__alt_instructions, __alt_instructions_end);
725 
726 #ifdef CONFIG_SMP
727 	/* Patch to UP if other cpus not imminent. */
728 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
729 		uniproc_patched = true;
730 		alternatives_smp_module_add(NULL, "core kernel",
731 					    __smp_locks, __smp_locks_end,
732 					    _text, _etext);
733 	}
734 
735 	if (!uniproc_patched || num_possible_cpus() == 1) {
736 		free_init_pages("SMP alternatives",
737 				(unsigned long)__smp_locks,
738 				(unsigned long)__smp_locks_end);
739 	}
740 #endif
741 
742 	apply_paravirt(__parainstructions, __parainstructions_end);
743 
744 	restart_nmi();
745 	alternatives_patched = 1;
746 }
747 
748 /**
749  * text_poke_early - Update instructions on a live kernel at boot time
750  * @addr: address to modify
751  * @opcode: source of the copy
752  * @len: length to copy
753  *
754  * When you use this code to patch more than one byte of an instruction
755  * you need to make sure that other CPUs cannot execute this code in parallel.
756  * Also no thread must be currently preempted in the middle of these
757  * instructions. And on the local CPU you need to be protected against NMI or
758  * MCE handlers seeing an inconsistent instruction while you patch.
759  */
760 void __init_or_module text_poke_early(void *addr, const void *opcode,
761 				      size_t len)
762 {
763 	unsigned long flags;
764 
765 	if (boot_cpu_has(X86_FEATURE_NX) &&
766 	    is_module_text_address((unsigned long)addr)) {
767 		/*
768 		 * Modules text is marked initially as non-executable, so the
769 		 * code cannot be running and speculative code-fetches are
770 		 * prevented. Just change the code.
771 		 */
772 		memcpy(addr, opcode, len);
773 	} else {
774 		local_irq_save(flags);
775 		memcpy(addr, opcode, len);
776 		local_irq_restore(flags);
777 		sync_core();
778 
779 		/*
780 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
781 		 * that causes hangs on some VIA CPUs.
782 		 */
783 	}
784 }
785 
786 __ro_after_init struct mm_struct *poking_mm;
787 __ro_after_init unsigned long poking_addr;
788 
789 static void *__text_poke(void *addr, const void *opcode, size_t len)
790 {
791 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
792 	struct page *pages[2] = {NULL};
793 	temp_mm_state_t prev;
794 	unsigned long flags;
795 	pte_t pte, *ptep;
796 	spinlock_t *ptl;
797 	pgprot_t pgprot;
798 
799 	/*
800 	 * While boot memory allocator is running we cannot use struct pages as
801 	 * they are not yet initialized. There is no way to recover.
802 	 */
803 	BUG_ON(!after_bootmem);
804 
805 	if (!core_kernel_text((unsigned long)addr)) {
806 		pages[0] = vmalloc_to_page(addr);
807 		if (cross_page_boundary)
808 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
809 	} else {
810 		pages[0] = virt_to_page(addr);
811 		WARN_ON(!PageReserved(pages[0]));
812 		if (cross_page_boundary)
813 			pages[1] = virt_to_page(addr + PAGE_SIZE);
814 	}
815 	/*
816 	 * If something went wrong, crash and burn since recovery paths are not
817 	 * implemented.
818 	 */
819 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
820 
821 	local_irq_save(flags);
822 
823 	/*
824 	 * Map the page without the global bit, as TLB flushing is done with
825 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
826 	 */
827 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
828 
829 	/*
830 	 * The lock is not really needed, but this allows to avoid open-coding.
831 	 */
832 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
833 
834 	/*
835 	 * This must not fail; preallocated in poking_init().
836 	 */
837 	VM_BUG_ON(!ptep);
838 
839 	pte = mk_pte(pages[0], pgprot);
840 	set_pte_at(poking_mm, poking_addr, ptep, pte);
841 
842 	if (cross_page_boundary) {
843 		pte = mk_pte(pages[1], pgprot);
844 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
845 	}
846 
847 	/*
848 	 * Loading the temporary mm behaves as a compiler barrier, which
849 	 * guarantees that the PTE will be set at the time memcpy() is done.
850 	 */
851 	prev = use_temporary_mm(poking_mm);
852 
853 	kasan_disable_current();
854 	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
855 	kasan_enable_current();
856 
857 	/*
858 	 * Ensure that the PTE is only cleared after the instructions of memcpy
859 	 * were issued by using a compiler barrier.
860 	 */
861 	barrier();
862 
863 	pte_clear(poking_mm, poking_addr, ptep);
864 	if (cross_page_boundary)
865 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
866 
867 	/*
868 	 * Loading the previous page-table hierarchy requires a serializing
869 	 * instruction that already allows the core to see the updated version.
870 	 * Xen-PV is assumed to serialize execution in a similar manner.
871 	 */
872 	unuse_temporary_mm(prev);
873 
874 	/*
875 	 * Flushing the TLB might involve IPIs, which would require enabled
876 	 * IRQs, but not if the mm is not used, as it is in this point.
877 	 */
878 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
879 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
880 			   PAGE_SHIFT, false);
881 
882 	/*
883 	 * If the text does not match what we just wrote then something is
884 	 * fundamentally screwy; there's nothing we can really do about that.
885 	 */
886 	BUG_ON(memcmp(addr, opcode, len));
887 
888 	pte_unmap_unlock(ptep, ptl);
889 	local_irq_restore(flags);
890 	return addr;
891 }
892 
893 /**
894  * text_poke - Update instructions on a live kernel
895  * @addr: address to modify
896  * @opcode: source of the copy
897  * @len: length to copy
898  *
899  * Only atomic text poke/set should be allowed when not doing early patching.
900  * It means the size must be writable atomically and the address must be aligned
901  * in a way that permits an atomic write. It also makes sure we fit on a single
902  * page.
903  *
904  * Note that the caller must ensure that if the modified code is part of a
905  * module, the module would not be removed during poking. This can be achieved
906  * by registering a module notifier, and ordering module removal and patching
907  * trough a mutex.
908  */
909 void *text_poke(void *addr, const void *opcode, size_t len)
910 {
911 	lockdep_assert_held(&text_mutex);
912 
913 	return __text_poke(addr, opcode, len);
914 }
915 
916 /**
917  * text_poke_kgdb - Update instructions on a live kernel by kgdb
918  * @addr: address to modify
919  * @opcode: source of the copy
920  * @len: length to copy
921  *
922  * Only atomic text poke/set should be allowed when not doing early patching.
923  * It means the size must be writable atomically and the address must be aligned
924  * in a way that permits an atomic write. It also makes sure we fit on a single
925  * page.
926  *
927  * Context: should only be used by kgdb, which ensures no other core is running,
928  *	    despite the fact it does not hold the text_mutex.
929  */
930 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
931 {
932 	return __text_poke(addr, opcode, len);
933 }
934 
935 static void do_sync_core(void *info)
936 {
937 	sync_core();
938 }
939 
940 void text_poke_sync(void)
941 {
942 	on_each_cpu(do_sync_core, NULL, 1);
943 }
944 
945 struct text_poke_loc {
946 	s32 rel_addr; /* addr := _stext + rel_addr */
947 	s32 rel32;
948 	u8 opcode;
949 	const u8 text[POKE_MAX_OPCODE_SIZE];
950 };
951 
952 struct bp_patching_desc {
953 	struct text_poke_loc *vec;
954 	int nr_entries;
955 	atomic_t refs;
956 };
957 
958 static struct bp_patching_desc *bp_desc;
959 
960 static inline struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
961 {
962 	struct bp_patching_desc *desc = READ_ONCE(*descp); /* rcu_dereference */
963 
964 	if (!desc || !atomic_inc_not_zero(&desc->refs))
965 		return NULL;
966 
967 	return desc;
968 }
969 
970 static inline void put_desc(struct bp_patching_desc *desc)
971 {
972 	smp_mb__before_atomic();
973 	atomic_dec(&desc->refs);
974 }
975 
976 static inline void *text_poke_addr(struct text_poke_loc *tp)
977 {
978 	return _stext + tp->rel_addr;
979 }
980 
981 static int notrace patch_cmp(const void *key, const void *elt)
982 {
983 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
984 
985 	if (key < text_poke_addr(tp))
986 		return -1;
987 	if (key > text_poke_addr(tp))
988 		return 1;
989 	return 0;
990 }
991 NOKPROBE_SYMBOL(patch_cmp);
992 
993 int notrace poke_int3_handler(struct pt_regs *regs)
994 {
995 	struct bp_patching_desc *desc;
996 	struct text_poke_loc *tp;
997 	int len, ret = 0;
998 	void *ip;
999 
1000 	if (user_mode(regs))
1001 		return 0;
1002 
1003 	/*
1004 	 * Having observed our INT3 instruction, we now must observe
1005 	 * bp_desc:
1006 	 *
1007 	 *	bp_desc = desc			INT3
1008 	 *	WMB				RMB
1009 	 *	write INT3			if (desc)
1010 	 */
1011 	smp_rmb();
1012 
1013 	desc = try_get_desc(&bp_desc);
1014 	if (!desc)
1015 		return 0;
1016 
1017 	/*
1018 	 * Discount the INT3. See text_poke_bp_batch().
1019 	 */
1020 	ip = (void *) regs->ip - INT3_INSN_SIZE;
1021 
1022 	/*
1023 	 * Skip the binary search if there is a single member in the vector.
1024 	 */
1025 	if (unlikely(desc->nr_entries > 1)) {
1026 		tp = bsearch(ip, desc->vec, desc->nr_entries,
1027 			     sizeof(struct text_poke_loc),
1028 			     patch_cmp);
1029 		if (!tp)
1030 			goto out_put;
1031 	} else {
1032 		tp = desc->vec;
1033 		if (text_poke_addr(tp) != ip)
1034 			goto out_put;
1035 	}
1036 
1037 	len = text_opcode_size(tp->opcode);
1038 	ip += len;
1039 
1040 	switch (tp->opcode) {
1041 	case INT3_INSN_OPCODE:
1042 		/*
1043 		 * Someone poked an explicit INT3, they'll want to handle it,
1044 		 * do not consume.
1045 		 */
1046 		goto out_put;
1047 
1048 	case CALL_INSN_OPCODE:
1049 		int3_emulate_call(regs, (long)ip + tp->rel32);
1050 		break;
1051 
1052 	case JMP32_INSN_OPCODE:
1053 	case JMP8_INSN_OPCODE:
1054 		int3_emulate_jmp(regs, (long)ip + tp->rel32);
1055 		break;
1056 
1057 	default:
1058 		BUG();
1059 	}
1060 
1061 	ret = 1;
1062 
1063 out_put:
1064 	put_desc(desc);
1065 	return ret;
1066 }
1067 NOKPROBE_SYMBOL(poke_int3_handler);
1068 
1069 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1070 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1071 static int tp_vec_nr;
1072 
1073 /**
1074  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1075  * @tp:			vector of instructions to patch
1076  * @nr_entries:		number of entries in the vector
1077  *
1078  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1079  * We completely avoid stop_machine() here, and achieve the
1080  * synchronization using int3 breakpoint.
1081  *
1082  * The way it is done:
1083  *	- For each entry in the vector:
1084  *		- add a int3 trap to the address that will be patched
1085  *	- sync cores
1086  *	- For each entry in the vector:
1087  *		- update all but the first byte of the patched range
1088  *	- sync cores
1089  *	- For each entry in the vector:
1090  *		- replace the first byte (int3) by the first byte of
1091  *		  replacing opcode
1092  *	- sync cores
1093  */
1094 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1095 {
1096 	struct bp_patching_desc desc = {
1097 		.vec = tp,
1098 		.nr_entries = nr_entries,
1099 		.refs = ATOMIC_INIT(1),
1100 	};
1101 	unsigned char int3 = INT3_INSN_OPCODE;
1102 	unsigned int i;
1103 	int do_sync;
1104 
1105 	lockdep_assert_held(&text_mutex);
1106 
1107 	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1108 
1109 	/*
1110 	 * Corresponding read barrier in int3 notifier for making sure the
1111 	 * nr_entries and handler are correctly ordered wrt. patching.
1112 	 */
1113 	smp_wmb();
1114 
1115 	/*
1116 	 * First step: add a int3 trap to the address that will be patched.
1117 	 */
1118 	for (i = 0; i < nr_entries; i++)
1119 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1120 
1121 	text_poke_sync();
1122 
1123 	/*
1124 	 * Second step: update all but the first byte of the patched range.
1125 	 */
1126 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1127 		int len = text_opcode_size(tp[i].opcode);
1128 
1129 		if (len - INT3_INSN_SIZE > 0) {
1130 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1131 				  (const char *)tp[i].text + INT3_INSN_SIZE,
1132 				  len - INT3_INSN_SIZE);
1133 			do_sync++;
1134 		}
1135 	}
1136 
1137 	if (do_sync) {
1138 		/*
1139 		 * According to Intel, this core syncing is very likely
1140 		 * not necessary and we'd be safe even without it. But
1141 		 * better safe than sorry (plus there's not only Intel).
1142 		 */
1143 		text_poke_sync();
1144 	}
1145 
1146 	/*
1147 	 * Third step: replace the first byte (int3) by the first byte of
1148 	 * replacing opcode.
1149 	 */
1150 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1151 		if (tp[i].text[0] == INT3_INSN_OPCODE)
1152 			continue;
1153 
1154 		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1155 		do_sync++;
1156 	}
1157 
1158 	if (do_sync)
1159 		text_poke_sync();
1160 
1161 	/*
1162 	 * Remove and synchronize_rcu(), except we have a very primitive
1163 	 * refcount based completion.
1164 	 */
1165 	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1166 	if (!atomic_dec_and_test(&desc.refs))
1167 		atomic_cond_read_acquire(&desc.refs, !VAL);
1168 }
1169 
1170 void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1171 			const void *opcode, size_t len, const void *emulate)
1172 {
1173 	struct insn insn;
1174 
1175 	memcpy((void *)tp->text, opcode, len);
1176 	if (!emulate)
1177 		emulate = opcode;
1178 
1179 	kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1180 	insn_get_length(&insn);
1181 
1182 	BUG_ON(!insn_complete(&insn));
1183 	BUG_ON(len != insn.length);
1184 
1185 	tp->rel_addr = addr - (void *)_stext;
1186 	tp->opcode = insn.opcode.bytes[0];
1187 
1188 	switch (tp->opcode) {
1189 	case INT3_INSN_OPCODE:
1190 		break;
1191 
1192 	case CALL_INSN_OPCODE:
1193 	case JMP32_INSN_OPCODE:
1194 	case JMP8_INSN_OPCODE:
1195 		tp->rel32 = insn.immediate.value;
1196 		break;
1197 
1198 	default: /* assume NOP */
1199 		switch (len) {
1200 		case 2: /* NOP2 -- emulate as JMP8+0 */
1201 			BUG_ON(memcmp(emulate, ideal_nops[len], len));
1202 			tp->opcode = JMP8_INSN_OPCODE;
1203 			tp->rel32 = 0;
1204 			break;
1205 
1206 		case 5: /* NOP5 -- emulate as JMP32+0 */
1207 			BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1208 			tp->opcode = JMP32_INSN_OPCODE;
1209 			tp->rel32 = 0;
1210 			break;
1211 
1212 		default: /* unknown instruction */
1213 			BUG();
1214 		}
1215 		break;
1216 	}
1217 }
1218 
1219 /*
1220  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1221  * early if needed.
1222  */
1223 static bool tp_order_fail(void *addr)
1224 {
1225 	struct text_poke_loc *tp;
1226 
1227 	if (!tp_vec_nr)
1228 		return false;
1229 
1230 	if (!addr) /* force */
1231 		return true;
1232 
1233 	tp = &tp_vec[tp_vec_nr - 1];
1234 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1235 		return true;
1236 
1237 	return false;
1238 }
1239 
1240 static void text_poke_flush(void *addr)
1241 {
1242 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1243 		text_poke_bp_batch(tp_vec, tp_vec_nr);
1244 		tp_vec_nr = 0;
1245 	}
1246 }
1247 
1248 void text_poke_finish(void)
1249 {
1250 	text_poke_flush(NULL);
1251 }
1252 
1253 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1254 {
1255 	struct text_poke_loc *tp;
1256 
1257 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1258 		text_poke_early(addr, opcode, len);
1259 		return;
1260 	}
1261 
1262 	text_poke_flush(addr);
1263 
1264 	tp = &tp_vec[tp_vec_nr++];
1265 	text_poke_loc_init(tp, addr, opcode, len, emulate);
1266 }
1267 
1268 /**
1269  * text_poke_bp() -- update instructions on live kernel on SMP
1270  * @addr:	address to patch
1271  * @opcode:	opcode of new instruction
1272  * @len:	length to copy
1273  * @handler:	address to jump to when the temporary breakpoint is hit
1274  *
1275  * Update a single instruction with the vector in the stack, avoiding
1276  * dynamically allocated memory. This function should be used when it is
1277  * not possible to allocate memory.
1278  */
1279 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1280 {
1281 	struct text_poke_loc tp;
1282 
1283 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1284 		text_poke_early(addr, opcode, len);
1285 		return;
1286 	}
1287 
1288 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1289 	text_poke_bp_batch(&tp, 1);
1290 }
1291