xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 
34 int __read_mostly alternatives_patched;
35 
36 EXPORT_SYMBOL_GPL(alternatives_patched);
37 
38 #define MAX_PATCH_LEN (255-1)
39 
40 static int __initdata_or_module debug_alternative;
41 
42 static int __init debug_alt(char *str)
43 {
44 	debug_alternative = 1;
45 	return 1;
46 }
47 __setup("debug-alternative", debug_alt);
48 
49 static int noreplace_smp;
50 
51 static int __init setup_noreplace_smp(char *str)
52 {
53 	noreplace_smp = 1;
54 	return 1;
55 }
56 __setup("noreplace-smp", setup_noreplace_smp);
57 
58 #define DPRINTK(fmt, args...)						\
59 do {									\
60 	if (debug_alternative)						\
61 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
62 } while (0)
63 
64 #define DUMP_BYTES(buf, len, fmt, args...)				\
65 do {									\
66 	if (unlikely(debug_alternative)) {				\
67 		int j;							\
68 									\
69 		if (!(len))						\
70 			break;						\
71 									\
72 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
73 		for (j = 0; j < (len) - 1; j++)				\
74 			printk(KERN_CONT "%02hhx ", buf[j]);		\
75 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
76 	}								\
77 } while (0)
78 
79 static const unsigned char x86nops[] =
80 {
81 	BYTES_NOP1,
82 	BYTES_NOP2,
83 	BYTES_NOP3,
84 	BYTES_NOP4,
85 	BYTES_NOP5,
86 	BYTES_NOP6,
87 	BYTES_NOP7,
88 	BYTES_NOP8,
89 };
90 
91 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
92 {
93 	NULL,
94 	x86nops,
95 	x86nops + 1,
96 	x86nops + 1 + 2,
97 	x86nops + 1 + 2 + 3,
98 	x86nops + 1 + 2 + 3 + 4,
99 	x86nops + 1 + 2 + 3 + 4 + 5,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
101 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102 };
103 
104 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
105 static void __init_or_module add_nops(void *insns, unsigned int len)
106 {
107 	while (len > 0) {
108 		unsigned int noplen = len;
109 		if (noplen > ASM_NOP_MAX)
110 			noplen = ASM_NOP_MAX;
111 		memcpy(insns, x86_nops[noplen], noplen);
112 		insns += noplen;
113 		len -= noplen;
114 	}
115 }
116 
117 extern s32 __retpoline_sites[], __retpoline_sites_end[];
118 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
119 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
120 extern s32 __smp_locks[], __smp_locks_end[];
121 void text_poke_early(void *addr, const void *opcode, size_t len);
122 
123 /*
124  * Are we looking at a near JMP with a 1 or 4-byte displacement.
125  */
126 static inline bool is_jmp(const u8 opcode)
127 {
128 	return opcode == 0xeb || opcode == 0xe9;
129 }
130 
131 static void __init_or_module
132 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
133 {
134 	u8 *next_rip, *tgt_rip;
135 	s32 n_dspl, o_dspl;
136 	int repl_len;
137 
138 	if (a->replacementlen != 5)
139 		return;
140 
141 	o_dspl = *(s32 *)(insn_buff + 1);
142 
143 	/* next_rip of the replacement JMP */
144 	next_rip = repl_insn + a->replacementlen;
145 	/* target rip of the replacement JMP */
146 	tgt_rip  = next_rip + o_dspl;
147 	n_dspl = tgt_rip - orig_insn;
148 
149 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
150 
151 	if (tgt_rip - orig_insn >= 0) {
152 		if (n_dspl - 2 <= 127)
153 			goto two_byte_jmp;
154 		else
155 			goto five_byte_jmp;
156 	/* negative offset */
157 	} else {
158 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
159 			goto two_byte_jmp;
160 		else
161 			goto five_byte_jmp;
162 	}
163 
164 two_byte_jmp:
165 	n_dspl -= 2;
166 
167 	insn_buff[0] = 0xeb;
168 	insn_buff[1] = (s8)n_dspl;
169 	add_nops(insn_buff + 2, 3);
170 
171 	repl_len = 2;
172 	goto done;
173 
174 five_byte_jmp:
175 	n_dspl -= 5;
176 
177 	insn_buff[0] = 0xe9;
178 	*(s32 *)&insn_buff[1] = n_dspl;
179 
180 	repl_len = 5;
181 
182 done:
183 
184 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
185 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
186 }
187 
188 /*
189  * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
190  *
191  * @instr: instruction byte stream
192  * @instrlen: length of the above
193  * @off: offset within @instr where the first NOP has been detected
194  *
195  * Return: number of NOPs found (and replaced).
196  */
197 static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
198 {
199 	unsigned long flags;
200 	int i = off, nnops;
201 
202 	while (i < instrlen) {
203 		if (instr[i] != 0x90)
204 			break;
205 
206 		i++;
207 	}
208 
209 	nnops = i - off;
210 
211 	if (nnops <= 1)
212 		return nnops;
213 
214 	local_irq_save(flags);
215 	add_nops(instr + off, nnops);
216 	local_irq_restore(flags);
217 
218 	DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
219 
220 	return nnops;
221 }
222 
223 /*
224  * "noinline" to cause control flow change and thus invalidate I$ and
225  * cause refetch after modification.
226  */
227 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
228 {
229 	struct insn insn;
230 	int i = 0;
231 
232 	/*
233 	 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
234 	 * ones.
235 	 */
236 	for (;;) {
237 		if (insn_decode_kernel(&insn, &instr[i]))
238 			return;
239 
240 		/*
241 		 * See if this and any potentially following NOPs can be
242 		 * optimized.
243 		 */
244 		if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
245 			i += optimize_nops_range(instr, len, i);
246 		else
247 			i += insn.length;
248 
249 		if (i >= len)
250 			return;
251 	}
252 }
253 
254 /*
255  * Replace instructions with better alternatives for this CPU type. This runs
256  * before SMP is initialized to avoid SMP problems with self modifying code.
257  * This implies that asymmetric systems where APs have less capabilities than
258  * the boot processor are not handled. Tough. Make sure you disable such
259  * features by hand.
260  *
261  * Marked "noinline" to cause control flow change and thus insn cache
262  * to refetch changed I$ lines.
263  */
264 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
265 						  struct alt_instr *end)
266 {
267 	struct alt_instr *a;
268 	u8 *instr, *replacement;
269 	u8 insn_buff[MAX_PATCH_LEN];
270 
271 	DPRINTK("alt table %px, -> %px", start, end);
272 	/*
273 	 * The scan order should be from start to end. A later scanned
274 	 * alternative code can overwrite previously scanned alternative code.
275 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
276 	 * patch code.
277 	 *
278 	 * So be careful if you want to change the scan order to any other
279 	 * order.
280 	 */
281 	for (a = start; a < end; a++) {
282 		int insn_buff_sz = 0;
283 		/* Mask away "NOT" flag bit for feature to test. */
284 		u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
285 
286 		instr = (u8 *)&a->instr_offset + a->instr_offset;
287 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
288 		BUG_ON(a->instrlen > sizeof(insn_buff));
289 		BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
290 
291 		/*
292 		 * Patch if either:
293 		 * - feature is present
294 		 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
295 		 *   patch if feature is *NOT* present.
296 		 */
297 		if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
298 			goto next;
299 
300 		DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
301 			(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
302 			feature >> 5,
303 			feature & 0x1f,
304 			instr, instr, a->instrlen,
305 			replacement, a->replacementlen);
306 
307 		DUMP_BYTES(instr, a->instrlen, "%px:   old_insn: ", instr);
308 		DUMP_BYTES(replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
309 
310 		memcpy(insn_buff, replacement, a->replacementlen);
311 		insn_buff_sz = a->replacementlen;
312 
313 		/*
314 		 * 0xe8 is a relative jump; fix the offset.
315 		 *
316 		 * Instruction length is checked before the opcode to avoid
317 		 * accessing uninitialized bytes for zero-length replacements.
318 		 */
319 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
320 			*(s32 *)(insn_buff + 1) += replacement - instr;
321 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
322 				*(s32 *)(insn_buff + 1),
323 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
324 		}
325 
326 		if (a->replacementlen && is_jmp(replacement[0]))
327 			recompute_jump(a, instr, replacement, insn_buff);
328 
329 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
330 			insn_buff[insn_buff_sz] = 0x90;
331 
332 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
333 
334 		text_poke_early(instr, insn_buff, insn_buff_sz);
335 
336 next:
337 		optimize_nops(instr, a->instrlen);
338 	}
339 }
340 
341 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
342 
343 /*
344  * CALL/JMP *%\reg
345  */
346 static int emit_indirect(int op, int reg, u8 *bytes)
347 {
348 	int i = 0;
349 	u8 modrm;
350 
351 	switch (op) {
352 	case CALL_INSN_OPCODE:
353 		modrm = 0x10; /* Reg = 2; CALL r/m */
354 		break;
355 
356 	case JMP32_INSN_OPCODE:
357 		modrm = 0x20; /* Reg = 4; JMP r/m */
358 		break;
359 
360 	default:
361 		WARN_ON_ONCE(1);
362 		return -1;
363 	}
364 
365 	if (reg >= 8) {
366 		bytes[i++] = 0x41; /* REX.B prefix */
367 		reg -= 8;
368 	}
369 
370 	modrm |= 0xc0; /* Mod = 3 */
371 	modrm += reg;
372 
373 	bytes[i++] = 0xff; /* opcode */
374 	bytes[i++] = modrm;
375 
376 	return i;
377 }
378 
379 /*
380  * Rewrite the compiler generated retpoline thunk calls.
381  *
382  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
383  * indirect instructions, avoiding the extra indirection.
384  *
385  * For example, convert:
386  *
387  *   CALL __x86_indirect_thunk_\reg
388  *
389  * into:
390  *
391  *   CALL *%\reg
392  *
393  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
394  */
395 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
396 {
397 	retpoline_thunk_t *target;
398 	int reg, ret, i = 0;
399 	u8 op, cc;
400 
401 	target = addr + insn->length + insn->immediate.value;
402 	reg = target - __x86_indirect_thunk_array;
403 
404 	if (WARN_ON_ONCE(reg & ~0xf))
405 		return -1;
406 
407 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
408 	BUG_ON(reg == 4);
409 
410 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
411 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE))
412 		return -1;
413 
414 	op = insn->opcode.bytes[0];
415 
416 	/*
417 	 * Convert:
418 	 *
419 	 *   Jcc.d32 __x86_indirect_thunk_\reg
420 	 *
421 	 * into:
422 	 *
423 	 *   Jncc.d8 1f
424 	 *   [ LFENCE ]
425 	 *   JMP *%\reg
426 	 *   [ NOP ]
427 	 * 1:
428 	 */
429 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
430 	if (op == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80) {
431 		cc = insn->opcode.bytes[1] & 0xf;
432 		cc ^= 1; /* invert condition */
433 
434 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
435 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
436 
437 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
438 		op = JMP32_INSN_OPCODE;
439 	}
440 
441 	/*
442 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
443 	 */
444 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
445 		bytes[i++] = 0x0f;
446 		bytes[i++] = 0xae;
447 		bytes[i++] = 0xe8; /* LFENCE */
448 	}
449 
450 	ret = emit_indirect(op, reg, bytes + i);
451 	if (ret < 0)
452 		return ret;
453 	i += ret;
454 
455 	for (; i < insn->length;)
456 		bytes[i++] = BYTES_NOP1;
457 
458 	return i;
459 }
460 
461 /*
462  * Generated by 'objtool --retpoline'.
463  */
464 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
465 {
466 	s32 *s;
467 
468 	for (s = start; s < end; s++) {
469 		void *addr = (void *)s + *s;
470 		struct insn insn;
471 		int len, ret;
472 		u8 bytes[16];
473 		u8 op1, op2;
474 
475 		ret = insn_decode_kernel(&insn, addr);
476 		if (WARN_ON_ONCE(ret < 0))
477 			continue;
478 
479 		op1 = insn.opcode.bytes[0];
480 		op2 = insn.opcode.bytes[1];
481 
482 		switch (op1) {
483 		case CALL_INSN_OPCODE:
484 		case JMP32_INSN_OPCODE:
485 			break;
486 
487 		case 0x0f: /* escape */
488 			if (op2 >= 0x80 && op2 <= 0x8f)
489 				break;
490 			fallthrough;
491 		default:
492 			WARN_ON_ONCE(1);
493 			continue;
494 		}
495 
496 		DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
497 			addr, addr, insn.length,
498 			addr + insn.length + insn.immediate.value);
499 
500 		len = patch_retpoline(addr, &insn, bytes);
501 		if (len == insn.length) {
502 			optimize_nops(bytes, len);
503 			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
504 			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
505 			text_poke_early(addr, bytes, len);
506 		}
507 	}
508 }
509 
510 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
511 
512 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
513 
514 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
515 
516 #ifdef CONFIG_X86_KERNEL_IBT
517 
518 /*
519  * Generated by: objtool --ibt
520  */
521 void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
522 {
523 	s32 *s;
524 
525 	for (s = start; s < end; s++) {
526 		u32 endbr, poison = gen_endbr_poison();
527 		void *addr = (void *)s + *s;
528 
529 		if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
530 			continue;
531 
532 		if (WARN_ON_ONCE(!is_endbr(endbr)))
533 			continue;
534 
535 		DPRINTK("ENDBR at: %pS (%px)", addr, addr);
536 
537 		/*
538 		 * When we have IBT, the lack of ENDBR will trigger #CP
539 		 */
540 		DUMP_BYTES(((u8*)addr), 4, "%px: orig: ", addr);
541 		DUMP_BYTES(((u8*)&poison), 4, "%px: repl: ", addr);
542 		text_poke_early(addr, &poison, 4);
543 	}
544 }
545 
546 #else
547 
548 void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end) { }
549 
550 #endif /* CONFIG_X86_KERNEL_IBT */
551 
552 #ifdef CONFIG_SMP
553 static void alternatives_smp_lock(const s32 *start, const s32 *end,
554 				  u8 *text, u8 *text_end)
555 {
556 	const s32 *poff;
557 
558 	for (poff = start; poff < end; poff++) {
559 		u8 *ptr = (u8 *)poff + *poff;
560 
561 		if (!*poff || ptr < text || ptr >= text_end)
562 			continue;
563 		/* turn DS segment override prefix into lock prefix */
564 		if (*ptr == 0x3e)
565 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
566 	}
567 }
568 
569 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
570 				    u8 *text, u8 *text_end)
571 {
572 	const s32 *poff;
573 
574 	for (poff = start; poff < end; poff++) {
575 		u8 *ptr = (u8 *)poff + *poff;
576 
577 		if (!*poff || ptr < text || ptr >= text_end)
578 			continue;
579 		/* turn lock prefix into DS segment override prefix */
580 		if (*ptr == 0xf0)
581 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
582 	}
583 }
584 
585 struct smp_alt_module {
586 	/* what is this ??? */
587 	struct module	*mod;
588 	char		*name;
589 
590 	/* ptrs to lock prefixes */
591 	const s32	*locks;
592 	const s32	*locks_end;
593 
594 	/* .text segment, needed to avoid patching init code ;) */
595 	u8		*text;
596 	u8		*text_end;
597 
598 	struct list_head next;
599 };
600 static LIST_HEAD(smp_alt_modules);
601 static bool uniproc_patched = false;	/* protected by text_mutex */
602 
603 void __init_or_module alternatives_smp_module_add(struct module *mod,
604 						  char *name,
605 						  void *locks, void *locks_end,
606 						  void *text,  void *text_end)
607 {
608 	struct smp_alt_module *smp;
609 
610 	mutex_lock(&text_mutex);
611 	if (!uniproc_patched)
612 		goto unlock;
613 
614 	if (num_possible_cpus() == 1)
615 		/* Don't bother remembering, we'll never have to undo it. */
616 		goto smp_unlock;
617 
618 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
619 	if (NULL == smp)
620 		/* we'll run the (safe but slow) SMP code then ... */
621 		goto unlock;
622 
623 	smp->mod	= mod;
624 	smp->name	= name;
625 	smp->locks	= locks;
626 	smp->locks_end	= locks_end;
627 	smp->text	= text;
628 	smp->text_end	= text_end;
629 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
630 		smp->locks, smp->locks_end,
631 		smp->text, smp->text_end, smp->name);
632 
633 	list_add_tail(&smp->next, &smp_alt_modules);
634 smp_unlock:
635 	alternatives_smp_unlock(locks, locks_end, text, text_end);
636 unlock:
637 	mutex_unlock(&text_mutex);
638 }
639 
640 void __init_or_module alternatives_smp_module_del(struct module *mod)
641 {
642 	struct smp_alt_module *item;
643 
644 	mutex_lock(&text_mutex);
645 	list_for_each_entry(item, &smp_alt_modules, next) {
646 		if (mod != item->mod)
647 			continue;
648 		list_del(&item->next);
649 		kfree(item);
650 		break;
651 	}
652 	mutex_unlock(&text_mutex);
653 }
654 
655 void alternatives_enable_smp(void)
656 {
657 	struct smp_alt_module *mod;
658 
659 	/* Why bother if there are no other CPUs? */
660 	BUG_ON(num_possible_cpus() == 1);
661 
662 	mutex_lock(&text_mutex);
663 
664 	if (uniproc_patched) {
665 		pr_info("switching to SMP code\n");
666 		BUG_ON(num_online_cpus() != 1);
667 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
668 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
669 		list_for_each_entry(mod, &smp_alt_modules, next)
670 			alternatives_smp_lock(mod->locks, mod->locks_end,
671 					      mod->text, mod->text_end);
672 		uniproc_patched = false;
673 	}
674 	mutex_unlock(&text_mutex);
675 }
676 
677 /*
678  * Return 1 if the address range is reserved for SMP-alternatives.
679  * Must hold text_mutex.
680  */
681 int alternatives_text_reserved(void *start, void *end)
682 {
683 	struct smp_alt_module *mod;
684 	const s32 *poff;
685 	u8 *text_start = start;
686 	u8 *text_end = end;
687 
688 	lockdep_assert_held(&text_mutex);
689 
690 	list_for_each_entry(mod, &smp_alt_modules, next) {
691 		if (mod->text > text_end || mod->text_end < text_start)
692 			continue;
693 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
694 			const u8 *ptr = (const u8 *)poff + *poff;
695 
696 			if (text_start <= ptr && text_end > ptr)
697 				return 1;
698 		}
699 	}
700 
701 	return 0;
702 }
703 #endif /* CONFIG_SMP */
704 
705 #ifdef CONFIG_PARAVIRT
706 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
707 				     struct paravirt_patch_site *end)
708 {
709 	struct paravirt_patch_site *p;
710 	char insn_buff[MAX_PATCH_LEN];
711 
712 	for (p = start; p < end; p++) {
713 		unsigned int used;
714 
715 		BUG_ON(p->len > MAX_PATCH_LEN);
716 		/* prep the buffer with the original instructions */
717 		memcpy(insn_buff, p->instr, p->len);
718 		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
719 
720 		BUG_ON(used > p->len);
721 
722 		/* Pad the rest with nops */
723 		add_nops(insn_buff + used, p->len - used);
724 		text_poke_early(p->instr, insn_buff, p->len);
725 	}
726 }
727 extern struct paravirt_patch_site __start_parainstructions[],
728 	__stop_parainstructions[];
729 #endif	/* CONFIG_PARAVIRT */
730 
731 /*
732  * Self-test for the INT3 based CALL emulation code.
733  *
734  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
735  * properly and that there is a stack gap between the INT3 frame and the
736  * previous context. Without this gap doing a virtual PUSH on the interrupted
737  * stack would corrupt the INT3 IRET frame.
738  *
739  * See entry_{32,64}.S for more details.
740  */
741 
742 /*
743  * We define the int3_magic() function in assembly to control the calling
744  * convention such that we can 'call' it from assembly.
745  */
746 
747 extern void int3_magic(unsigned int *ptr); /* defined in asm */
748 
749 asm (
750 "	.pushsection	.init.text, \"ax\", @progbits\n"
751 "	.type		int3_magic, @function\n"
752 "int3_magic:\n"
753 	ANNOTATE_NOENDBR
754 "	movl	$1, (%" _ASM_ARG1 ")\n"
755 	ASM_RET
756 "	.size		int3_magic, .-int3_magic\n"
757 "	.popsection\n"
758 );
759 
760 extern void int3_selftest_ip(void); /* defined in asm below */
761 
762 static int __init
763 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
764 {
765 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
766 	struct die_args *args = data;
767 	struct pt_regs *regs = args->regs;
768 
769 	OPTIMIZER_HIDE_VAR(selftest);
770 
771 	if (!regs || user_mode(regs))
772 		return NOTIFY_DONE;
773 
774 	if (val != DIE_INT3)
775 		return NOTIFY_DONE;
776 
777 	if (regs->ip - INT3_INSN_SIZE != selftest)
778 		return NOTIFY_DONE;
779 
780 	int3_emulate_call(regs, (unsigned long)&int3_magic);
781 	return NOTIFY_STOP;
782 }
783 
784 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
785 static noinline void __init int3_selftest(void)
786 {
787 	static __initdata struct notifier_block int3_exception_nb = {
788 		.notifier_call	= int3_exception_notify,
789 		.priority	= INT_MAX-1, /* last */
790 	};
791 	unsigned int val = 0;
792 
793 	BUG_ON(register_die_notifier(&int3_exception_nb));
794 
795 	/*
796 	 * Basically: int3_magic(&val); but really complicated :-)
797 	 *
798 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
799 	 * notifier above will emulate CALL for us.
800 	 */
801 	asm volatile ("int3_selftest_ip:\n\t"
802 		      ANNOTATE_NOENDBR
803 		      "    int3; nop; nop; nop; nop\n\t"
804 		      : ASM_CALL_CONSTRAINT
805 		      : __ASM_SEL_RAW(a, D) (&val)
806 		      : "memory");
807 
808 	BUG_ON(val != 1);
809 
810 	unregister_die_notifier(&int3_exception_nb);
811 }
812 
813 void __init alternative_instructions(void)
814 {
815 	int3_selftest();
816 
817 	/*
818 	 * The patching is not fully atomic, so try to avoid local
819 	 * interruptions that might execute the to be patched code.
820 	 * Other CPUs are not running.
821 	 */
822 	stop_nmi();
823 
824 	/*
825 	 * Don't stop machine check exceptions while patching.
826 	 * MCEs only happen when something got corrupted and in this
827 	 * case we must do something about the corruption.
828 	 * Ignoring it is worse than an unlikely patching race.
829 	 * Also machine checks tend to be broadcast and if one CPU
830 	 * goes into machine check the others follow quickly, so we don't
831 	 * expect a machine check to cause undue problems during to code
832 	 * patching.
833 	 */
834 
835 	/*
836 	 * Paravirt patching and alternative patching can be combined to
837 	 * replace a function call with a short direct code sequence (e.g.
838 	 * by setting a constant return value instead of doing that in an
839 	 * external function).
840 	 * In order to make this work the following sequence is required:
841 	 * 1. set (artificial) features depending on used paravirt
842 	 *    functions which can later influence alternative patching
843 	 * 2. apply paravirt patching (generally replacing an indirect
844 	 *    function call with a direct one)
845 	 * 3. apply alternative patching (e.g. replacing a direct function
846 	 *    call with a custom code sequence)
847 	 * Doing paravirt patching after alternative patching would clobber
848 	 * the optimization of the custom code with a function call again.
849 	 */
850 	paravirt_set_cap();
851 
852 	/*
853 	 * First patch paravirt functions, such that we overwrite the indirect
854 	 * call with the direct call.
855 	 */
856 	apply_paravirt(__parainstructions, __parainstructions_end);
857 
858 	/*
859 	 * Rewrite the retpolines, must be done before alternatives since
860 	 * those can rewrite the retpoline thunks.
861 	 */
862 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
863 
864 	/*
865 	 * Then patch alternatives, such that those paravirt calls that are in
866 	 * alternatives can be overwritten by their immediate fragments.
867 	 */
868 	apply_alternatives(__alt_instructions, __alt_instructions_end);
869 
870 	apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
871 
872 #ifdef CONFIG_SMP
873 	/* Patch to UP if other cpus not imminent. */
874 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
875 		uniproc_patched = true;
876 		alternatives_smp_module_add(NULL, "core kernel",
877 					    __smp_locks, __smp_locks_end,
878 					    _text, _etext);
879 	}
880 
881 	if (!uniproc_patched || num_possible_cpus() == 1) {
882 		free_init_pages("SMP alternatives",
883 				(unsigned long)__smp_locks,
884 				(unsigned long)__smp_locks_end);
885 	}
886 #endif
887 
888 	restart_nmi();
889 	alternatives_patched = 1;
890 }
891 
892 /**
893  * text_poke_early - Update instructions on a live kernel at boot time
894  * @addr: address to modify
895  * @opcode: source of the copy
896  * @len: length to copy
897  *
898  * When you use this code to patch more than one byte of an instruction
899  * you need to make sure that other CPUs cannot execute this code in parallel.
900  * Also no thread must be currently preempted in the middle of these
901  * instructions. And on the local CPU you need to be protected against NMI or
902  * MCE handlers seeing an inconsistent instruction while you patch.
903  */
904 void __init_or_module text_poke_early(void *addr, const void *opcode,
905 				      size_t len)
906 {
907 	unsigned long flags;
908 
909 	if (boot_cpu_has(X86_FEATURE_NX) &&
910 	    is_module_text_address((unsigned long)addr)) {
911 		/*
912 		 * Modules text is marked initially as non-executable, so the
913 		 * code cannot be running and speculative code-fetches are
914 		 * prevented. Just change the code.
915 		 */
916 		memcpy(addr, opcode, len);
917 	} else {
918 		local_irq_save(flags);
919 		memcpy(addr, opcode, len);
920 		local_irq_restore(flags);
921 		sync_core();
922 
923 		/*
924 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
925 		 * that causes hangs on some VIA CPUs.
926 		 */
927 	}
928 }
929 
930 typedef struct {
931 	struct mm_struct *mm;
932 } temp_mm_state_t;
933 
934 /*
935  * Using a temporary mm allows to set temporary mappings that are not accessible
936  * by other CPUs. Such mappings are needed to perform sensitive memory writes
937  * that override the kernel memory protections (e.g., W^X), without exposing the
938  * temporary page-table mappings that are required for these write operations to
939  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
940  * mapping is torn down.
941  *
942  * Context: The temporary mm needs to be used exclusively by a single core. To
943  *          harden security IRQs must be disabled while the temporary mm is
944  *          loaded, thereby preventing interrupt handler bugs from overriding
945  *          the kernel memory protection.
946  */
947 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
948 {
949 	temp_mm_state_t temp_state;
950 
951 	lockdep_assert_irqs_disabled();
952 
953 	/*
954 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
955 	 * with a stale address space WITHOUT being in lazy mode after
956 	 * restoring the previous mm.
957 	 */
958 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
959 		leave_mm(smp_processor_id());
960 
961 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
962 	switch_mm_irqs_off(NULL, mm, current);
963 
964 	/*
965 	 * If breakpoints are enabled, disable them while the temporary mm is
966 	 * used. Userspace might set up watchpoints on addresses that are used
967 	 * in the temporary mm, which would lead to wrong signals being sent or
968 	 * crashes.
969 	 *
970 	 * Note that breakpoints are not disabled selectively, which also causes
971 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
972 	 * undesirable, but still seems reasonable as the code that runs in the
973 	 * temporary mm should be short.
974 	 */
975 	if (hw_breakpoint_active())
976 		hw_breakpoint_disable();
977 
978 	return temp_state;
979 }
980 
981 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
982 {
983 	lockdep_assert_irqs_disabled();
984 	switch_mm_irqs_off(NULL, prev_state.mm, current);
985 
986 	/*
987 	 * Restore the breakpoints if they were disabled before the temporary mm
988 	 * was loaded.
989 	 */
990 	if (hw_breakpoint_active())
991 		hw_breakpoint_restore();
992 }
993 
994 __ro_after_init struct mm_struct *poking_mm;
995 __ro_after_init unsigned long poking_addr;
996 
997 static void text_poke_memcpy(void *dst, const void *src, size_t len)
998 {
999 	memcpy(dst, src, len);
1000 }
1001 
1002 static void text_poke_memset(void *dst, const void *src, size_t len)
1003 {
1004 	int c = *(const int *)src;
1005 
1006 	memset(dst, c, len);
1007 }
1008 
1009 typedef void text_poke_f(void *dst, const void *src, size_t len);
1010 
1011 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1012 {
1013 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1014 	struct page *pages[2] = {NULL};
1015 	temp_mm_state_t prev;
1016 	unsigned long flags;
1017 	pte_t pte, *ptep;
1018 	spinlock_t *ptl;
1019 	pgprot_t pgprot;
1020 
1021 	/*
1022 	 * While boot memory allocator is running we cannot use struct pages as
1023 	 * they are not yet initialized. There is no way to recover.
1024 	 */
1025 	BUG_ON(!after_bootmem);
1026 
1027 	if (!core_kernel_text((unsigned long)addr)) {
1028 		pages[0] = vmalloc_to_page(addr);
1029 		if (cross_page_boundary)
1030 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1031 	} else {
1032 		pages[0] = virt_to_page(addr);
1033 		WARN_ON(!PageReserved(pages[0]));
1034 		if (cross_page_boundary)
1035 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1036 	}
1037 	/*
1038 	 * If something went wrong, crash and burn since recovery paths are not
1039 	 * implemented.
1040 	 */
1041 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1042 
1043 	/*
1044 	 * Map the page without the global bit, as TLB flushing is done with
1045 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1046 	 */
1047 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1048 
1049 	/*
1050 	 * The lock is not really needed, but this allows to avoid open-coding.
1051 	 */
1052 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1053 
1054 	/*
1055 	 * This must not fail; preallocated in poking_init().
1056 	 */
1057 	VM_BUG_ON(!ptep);
1058 
1059 	local_irq_save(flags);
1060 
1061 	pte = mk_pte(pages[0], pgprot);
1062 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1063 
1064 	if (cross_page_boundary) {
1065 		pte = mk_pte(pages[1], pgprot);
1066 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1067 	}
1068 
1069 	/*
1070 	 * Loading the temporary mm behaves as a compiler barrier, which
1071 	 * guarantees that the PTE will be set at the time memcpy() is done.
1072 	 */
1073 	prev = use_temporary_mm(poking_mm);
1074 
1075 	kasan_disable_current();
1076 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1077 	kasan_enable_current();
1078 
1079 	/*
1080 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1081 	 * were issued by using a compiler barrier.
1082 	 */
1083 	barrier();
1084 
1085 	pte_clear(poking_mm, poking_addr, ptep);
1086 	if (cross_page_boundary)
1087 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1088 
1089 	/*
1090 	 * Loading the previous page-table hierarchy requires a serializing
1091 	 * instruction that already allows the core to see the updated version.
1092 	 * Xen-PV is assumed to serialize execution in a similar manner.
1093 	 */
1094 	unuse_temporary_mm(prev);
1095 
1096 	/*
1097 	 * Flushing the TLB might involve IPIs, which would require enabled
1098 	 * IRQs, but not if the mm is not used, as it is in this point.
1099 	 */
1100 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1101 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1102 			   PAGE_SHIFT, false);
1103 
1104 	if (func == text_poke_memcpy) {
1105 		/*
1106 		 * If the text does not match what we just wrote then something is
1107 		 * fundamentally screwy; there's nothing we can really do about that.
1108 		 */
1109 		BUG_ON(memcmp(addr, src, len));
1110 	}
1111 
1112 	local_irq_restore(flags);
1113 	pte_unmap_unlock(ptep, ptl);
1114 	return addr;
1115 }
1116 
1117 /**
1118  * text_poke - Update instructions on a live kernel
1119  * @addr: address to modify
1120  * @opcode: source of the copy
1121  * @len: length to copy
1122  *
1123  * Only atomic text poke/set should be allowed when not doing early patching.
1124  * It means the size must be writable atomically and the address must be aligned
1125  * in a way that permits an atomic write. It also makes sure we fit on a single
1126  * page.
1127  *
1128  * Note that the caller must ensure that if the modified code is part of a
1129  * module, the module would not be removed during poking. This can be achieved
1130  * by registering a module notifier, and ordering module removal and patching
1131  * trough a mutex.
1132  */
1133 void *text_poke(void *addr, const void *opcode, size_t len)
1134 {
1135 	lockdep_assert_held(&text_mutex);
1136 
1137 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1138 }
1139 
1140 /**
1141  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1142  * @addr: address to modify
1143  * @opcode: source of the copy
1144  * @len: length to copy
1145  *
1146  * Only atomic text poke/set should be allowed when not doing early patching.
1147  * It means the size must be writable atomically and the address must be aligned
1148  * in a way that permits an atomic write. It also makes sure we fit on a single
1149  * page.
1150  *
1151  * Context: should only be used by kgdb, which ensures no other core is running,
1152  *	    despite the fact it does not hold the text_mutex.
1153  */
1154 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1155 {
1156 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1157 }
1158 
1159 /**
1160  * text_poke_copy - Copy instructions into (an unused part of) RX memory
1161  * @addr: address to modify
1162  * @opcode: source of the copy
1163  * @len: length to copy, could be more than 2x PAGE_SIZE
1164  *
1165  * Not safe against concurrent execution; useful for JITs to dump
1166  * new code blocks into unused regions of RX memory. Can be used in
1167  * conjunction with synchronize_rcu_tasks() to wait for existing
1168  * execution to quiesce after having made sure no existing functions
1169  * pointers are live.
1170  */
1171 void *text_poke_copy(void *addr, const void *opcode, size_t len)
1172 {
1173 	unsigned long start = (unsigned long)addr;
1174 	size_t patched = 0;
1175 
1176 	if (WARN_ON_ONCE(core_kernel_text(start)))
1177 		return NULL;
1178 
1179 	mutex_lock(&text_mutex);
1180 	while (patched < len) {
1181 		unsigned long ptr = start + patched;
1182 		size_t s;
1183 
1184 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1185 
1186 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1187 		patched += s;
1188 	}
1189 	mutex_unlock(&text_mutex);
1190 	return addr;
1191 }
1192 
1193 /**
1194  * text_poke_set - memset into (an unused part of) RX memory
1195  * @addr: address to modify
1196  * @c: the byte to fill the area with
1197  * @len: length to copy, could be more than 2x PAGE_SIZE
1198  *
1199  * This is useful to overwrite unused regions of RX memory with illegal
1200  * instructions.
1201  */
1202 void *text_poke_set(void *addr, int c, size_t len)
1203 {
1204 	unsigned long start = (unsigned long)addr;
1205 	size_t patched = 0;
1206 
1207 	if (WARN_ON_ONCE(core_kernel_text(start)))
1208 		return NULL;
1209 
1210 	mutex_lock(&text_mutex);
1211 	while (patched < len) {
1212 		unsigned long ptr = start + patched;
1213 		size_t s;
1214 
1215 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1216 
1217 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
1218 		patched += s;
1219 	}
1220 	mutex_unlock(&text_mutex);
1221 	return addr;
1222 }
1223 
1224 static void do_sync_core(void *info)
1225 {
1226 	sync_core();
1227 }
1228 
1229 void text_poke_sync(void)
1230 {
1231 	on_each_cpu(do_sync_core, NULL, 1);
1232 }
1233 
1234 struct text_poke_loc {
1235 	/* addr := _stext + rel_addr */
1236 	s32 rel_addr;
1237 	s32 disp;
1238 	u8 len;
1239 	u8 opcode;
1240 	const u8 text[POKE_MAX_OPCODE_SIZE];
1241 	/* see text_poke_bp_batch() */
1242 	u8 old;
1243 };
1244 
1245 struct bp_patching_desc {
1246 	struct text_poke_loc *vec;
1247 	int nr_entries;
1248 	atomic_t refs;
1249 };
1250 
1251 static struct bp_patching_desc *bp_desc;
1252 
1253 static __always_inline
1254 struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1255 {
1256 	/* rcu_dereference */
1257 	struct bp_patching_desc *desc = __READ_ONCE(*descp);
1258 
1259 	if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1260 		return NULL;
1261 
1262 	return desc;
1263 }
1264 
1265 static __always_inline void put_desc(struct bp_patching_desc *desc)
1266 {
1267 	smp_mb__before_atomic();
1268 	arch_atomic_dec(&desc->refs);
1269 }
1270 
1271 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1272 {
1273 	return _stext + tp->rel_addr;
1274 }
1275 
1276 static __always_inline int patch_cmp(const void *key, const void *elt)
1277 {
1278 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1279 
1280 	if (key < text_poke_addr(tp))
1281 		return -1;
1282 	if (key > text_poke_addr(tp))
1283 		return 1;
1284 	return 0;
1285 }
1286 
1287 noinstr int poke_int3_handler(struct pt_regs *regs)
1288 {
1289 	struct bp_patching_desc *desc;
1290 	struct text_poke_loc *tp;
1291 	int ret = 0;
1292 	void *ip;
1293 
1294 	if (user_mode(regs))
1295 		return 0;
1296 
1297 	/*
1298 	 * Having observed our INT3 instruction, we now must observe
1299 	 * bp_desc:
1300 	 *
1301 	 *	bp_desc = desc			INT3
1302 	 *	WMB				RMB
1303 	 *	write INT3			if (desc)
1304 	 */
1305 	smp_rmb();
1306 
1307 	desc = try_get_desc(&bp_desc);
1308 	if (!desc)
1309 		return 0;
1310 
1311 	/*
1312 	 * Discount the INT3. See text_poke_bp_batch().
1313 	 */
1314 	ip = (void *) regs->ip - INT3_INSN_SIZE;
1315 
1316 	/*
1317 	 * Skip the binary search if there is a single member in the vector.
1318 	 */
1319 	if (unlikely(desc->nr_entries > 1)) {
1320 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1321 				      sizeof(struct text_poke_loc),
1322 				      patch_cmp);
1323 		if (!tp)
1324 			goto out_put;
1325 	} else {
1326 		tp = desc->vec;
1327 		if (text_poke_addr(tp) != ip)
1328 			goto out_put;
1329 	}
1330 
1331 	ip += tp->len;
1332 
1333 	switch (tp->opcode) {
1334 	case INT3_INSN_OPCODE:
1335 		/*
1336 		 * Someone poked an explicit INT3, they'll want to handle it,
1337 		 * do not consume.
1338 		 */
1339 		goto out_put;
1340 
1341 	case RET_INSN_OPCODE:
1342 		int3_emulate_ret(regs);
1343 		break;
1344 
1345 	case CALL_INSN_OPCODE:
1346 		int3_emulate_call(regs, (long)ip + tp->disp);
1347 		break;
1348 
1349 	case JMP32_INSN_OPCODE:
1350 	case JMP8_INSN_OPCODE:
1351 		int3_emulate_jmp(regs, (long)ip + tp->disp);
1352 		break;
1353 
1354 	default:
1355 		BUG();
1356 	}
1357 
1358 	ret = 1;
1359 
1360 out_put:
1361 	put_desc(desc);
1362 	return ret;
1363 }
1364 
1365 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1366 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1367 static int tp_vec_nr;
1368 
1369 /**
1370  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1371  * @tp:			vector of instructions to patch
1372  * @nr_entries:		number of entries in the vector
1373  *
1374  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1375  * We completely avoid stop_machine() here, and achieve the
1376  * synchronization using int3 breakpoint.
1377  *
1378  * The way it is done:
1379  *	- For each entry in the vector:
1380  *		- add a int3 trap to the address that will be patched
1381  *	- sync cores
1382  *	- For each entry in the vector:
1383  *		- update all but the first byte of the patched range
1384  *	- sync cores
1385  *	- For each entry in the vector:
1386  *		- replace the first byte (int3) by the first byte of
1387  *		  replacing opcode
1388  *	- sync cores
1389  */
1390 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1391 {
1392 	struct bp_patching_desc desc = {
1393 		.vec = tp,
1394 		.nr_entries = nr_entries,
1395 		.refs = ATOMIC_INIT(1),
1396 	};
1397 	unsigned char int3 = INT3_INSN_OPCODE;
1398 	unsigned int i;
1399 	int do_sync;
1400 
1401 	lockdep_assert_held(&text_mutex);
1402 
1403 	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1404 
1405 	/*
1406 	 * Corresponding read barrier in int3 notifier for making sure the
1407 	 * nr_entries and handler are correctly ordered wrt. patching.
1408 	 */
1409 	smp_wmb();
1410 
1411 	/*
1412 	 * First step: add a int3 trap to the address that will be patched.
1413 	 */
1414 	for (i = 0; i < nr_entries; i++) {
1415 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1416 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1417 	}
1418 
1419 	text_poke_sync();
1420 
1421 	/*
1422 	 * Second step: update all but the first byte of the patched range.
1423 	 */
1424 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1425 		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1426 		int len = tp[i].len;
1427 
1428 		if (len - INT3_INSN_SIZE > 0) {
1429 			memcpy(old + INT3_INSN_SIZE,
1430 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1431 			       len - INT3_INSN_SIZE);
1432 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1433 				  (const char *)tp[i].text + INT3_INSN_SIZE,
1434 				  len - INT3_INSN_SIZE);
1435 			do_sync++;
1436 		}
1437 
1438 		/*
1439 		 * Emit a perf event to record the text poke, primarily to
1440 		 * support Intel PT decoding which must walk the executable code
1441 		 * to reconstruct the trace. The flow up to here is:
1442 		 *   - write INT3 byte
1443 		 *   - IPI-SYNC
1444 		 *   - write instruction tail
1445 		 * At this point the actual control flow will be through the
1446 		 * INT3 and handler and not hit the old or new instruction.
1447 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1448 		 * can still be decoded. Subsequently:
1449 		 *   - emit RECORD_TEXT_POKE with the new instruction
1450 		 *   - IPI-SYNC
1451 		 *   - write first byte
1452 		 *   - IPI-SYNC
1453 		 * So before the text poke event timestamp, the decoder will see
1454 		 * either the old instruction flow or FUP/TIP of INT3. After the
1455 		 * text poke event timestamp, the decoder will see either the
1456 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1457 		 * use the timestamp as the point at which to modify the
1458 		 * executable code.
1459 		 * The old instruction is recorded so that the event can be
1460 		 * processed forwards or backwards.
1461 		 */
1462 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1463 				     tp[i].text, len);
1464 	}
1465 
1466 	if (do_sync) {
1467 		/*
1468 		 * According to Intel, this core syncing is very likely
1469 		 * not necessary and we'd be safe even without it. But
1470 		 * better safe than sorry (plus there's not only Intel).
1471 		 */
1472 		text_poke_sync();
1473 	}
1474 
1475 	/*
1476 	 * Third step: replace the first byte (int3) by the first byte of
1477 	 * replacing opcode.
1478 	 */
1479 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1480 		if (tp[i].text[0] == INT3_INSN_OPCODE)
1481 			continue;
1482 
1483 		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1484 		do_sync++;
1485 	}
1486 
1487 	if (do_sync)
1488 		text_poke_sync();
1489 
1490 	/*
1491 	 * Remove and synchronize_rcu(), except we have a very primitive
1492 	 * refcount based completion.
1493 	 */
1494 	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1495 	if (!atomic_dec_and_test(&desc.refs))
1496 		atomic_cond_read_acquire(&desc.refs, !VAL);
1497 }
1498 
1499 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1500 			       const void *opcode, size_t len, const void *emulate)
1501 {
1502 	struct insn insn;
1503 	int ret, i;
1504 
1505 	memcpy((void *)tp->text, opcode, len);
1506 	if (!emulate)
1507 		emulate = opcode;
1508 
1509 	ret = insn_decode_kernel(&insn, emulate);
1510 	BUG_ON(ret < 0);
1511 
1512 	tp->rel_addr = addr - (void *)_stext;
1513 	tp->len = len;
1514 	tp->opcode = insn.opcode.bytes[0];
1515 
1516 	switch (tp->opcode) {
1517 	case RET_INSN_OPCODE:
1518 	case JMP32_INSN_OPCODE:
1519 	case JMP8_INSN_OPCODE:
1520 		/*
1521 		 * Control flow instructions without implied execution of the
1522 		 * next instruction can be padded with INT3.
1523 		 */
1524 		for (i = insn.length; i < len; i++)
1525 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
1526 		break;
1527 
1528 	default:
1529 		BUG_ON(len != insn.length);
1530 	};
1531 
1532 
1533 	switch (tp->opcode) {
1534 	case INT3_INSN_OPCODE:
1535 	case RET_INSN_OPCODE:
1536 		break;
1537 
1538 	case CALL_INSN_OPCODE:
1539 	case JMP32_INSN_OPCODE:
1540 	case JMP8_INSN_OPCODE:
1541 		tp->disp = insn.immediate.value;
1542 		break;
1543 
1544 	default: /* assume NOP */
1545 		switch (len) {
1546 		case 2: /* NOP2 -- emulate as JMP8+0 */
1547 			BUG_ON(memcmp(emulate, x86_nops[len], len));
1548 			tp->opcode = JMP8_INSN_OPCODE;
1549 			tp->disp = 0;
1550 			break;
1551 
1552 		case 5: /* NOP5 -- emulate as JMP32+0 */
1553 			BUG_ON(memcmp(emulate, x86_nops[len], len));
1554 			tp->opcode = JMP32_INSN_OPCODE;
1555 			tp->disp = 0;
1556 			break;
1557 
1558 		default: /* unknown instruction */
1559 			BUG();
1560 		}
1561 		break;
1562 	}
1563 }
1564 
1565 /*
1566  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1567  * early if needed.
1568  */
1569 static bool tp_order_fail(void *addr)
1570 {
1571 	struct text_poke_loc *tp;
1572 
1573 	if (!tp_vec_nr)
1574 		return false;
1575 
1576 	if (!addr) /* force */
1577 		return true;
1578 
1579 	tp = &tp_vec[tp_vec_nr - 1];
1580 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1581 		return true;
1582 
1583 	return false;
1584 }
1585 
1586 static void text_poke_flush(void *addr)
1587 {
1588 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1589 		text_poke_bp_batch(tp_vec, tp_vec_nr);
1590 		tp_vec_nr = 0;
1591 	}
1592 }
1593 
1594 void text_poke_finish(void)
1595 {
1596 	text_poke_flush(NULL);
1597 }
1598 
1599 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1600 {
1601 	struct text_poke_loc *tp;
1602 
1603 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1604 		text_poke_early(addr, opcode, len);
1605 		return;
1606 	}
1607 
1608 	text_poke_flush(addr);
1609 
1610 	tp = &tp_vec[tp_vec_nr++];
1611 	text_poke_loc_init(tp, addr, opcode, len, emulate);
1612 }
1613 
1614 /**
1615  * text_poke_bp() -- update instructions on live kernel on SMP
1616  * @addr:	address to patch
1617  * @opcode:	opcode of new instruction
1618  * @len:	length to copy
1619  * @emulate:	instruction to be emulated
1620  *
1621  * Update a single instruction with the vector in the stack, avoiding
1622  * dynamically allocated memory. This function should be used when it is
1623  * not possible to allocate memory.
1624  */
1625 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1626 {
1627 	struct text_poke_loc tp;
1628 
1629 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1630 		text_poke_early(addr, opcode, len);
1631 		return;
1632 	}
1633 
1634 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1635 	text_poke_bp_batch(&tp, 1);
1636 }
1637