1 #define pr_fmt(fmt) "SMP alternatives: " fmt 2 3 #include <linux/module.h> 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 #include <linux/list.h> 7 #include <linux/stringify.h> 8 #include <linux/mm.h> 9 #include <linux/vmalloc.h> 10 #include <linux/memory.h> 11 #include <linux/stop_machine.h> 12 #include <linux/slab.h> 13 #include <linux/kdebug.h> 14 #include <asm/text-patching.h> 15 #include <asm/alternative.h> 16 #include <asm/sections.h> 17 #include <asm/pgtable.h> 18 #include <asm/mce.h> 19 #include <asm/nmi.h> 20 #include <asm/cacheflush.h> 21 #include <asm/tlbflush.h> 22 #include <asm/io.h> 23 #include <asm/fixmap.h> 24 25 int __read_mostly alternatives_patched; 26 27 EXPORT_SYMBOL_GPL(alternatives_patched); 28 29 #define MAX_PATCH_LEN (255-1) 30 31 static int __initdata_or_module debug_alternative; 32 33 static int __init debug_alt(char *str) 34 { 35 debug_alternative = 1; 36 return 1; 37 } 38 __setup("debug-alternative", debug_alt); 39 40 static int noreplace_smp; 41 42 static int __init setup_noreplace_smp(char *str) 43 { 44 noreplace_smp = 1; 45 return 1; 46 } 47 __setup("noreplace-smp", setup_noreplace_smp); 48 49 #define DPRINTK(fmt, args...) \ 50 do { \ 51 if (debug_alternative) \ 52 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \ 53 } while (0) 54 55 #define DUMP_BYTES(buf, len, fmt, args...) \ 56 do { \ 57 if (unlikely(debug_alternative)) { \ 58 int j; \ 59 \ 60 if (!(len)) \ 61 break; \ 62 \ 63 printk(KERN_DEBUG fmt, ##args); \ 64 for (j = 0; j < (len) - 1; j++) \ 65 printk(KERN_CONT "%02hhx ", buf[j]); \ 66 printk(KERN_CONT "%02hhx\n", buf[j]); \ 67 } \ 68 } while (0) 69 70 /* 71 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes 72 * that correspond to that nop. Getting from one nop to the next, we 73 * add to the array the offset that is equal to the sum of all sizes of 74 * nops preceding the one we are after. 75 * 76 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the 77 * nice symmetry of sizes of the previous nops. 78 */ 79 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64) 80 static const unsigned char intelnops[] = 81 { 82 GENERIC_NOP1, 83 GENERIC_NOP2, 84 GENERIC_NOP3, 85 GENERIC_NOP4, 86 GENERIC_NOP5, 87 GENERIC_NOP6, 88 GENERIC_NOP7, 89 GENERIC_NOP8, 90 GENERIC_NOP5_ATOMIC 91 }; 92 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] = 93 { 94 NULL, 95 intelnops, 96 intelnops + 1, 97 intelnops + 1 + 2, 98 intelnops + 1 + 2 + 3, 99 intelnops + 1 + 2 + 3 + 4, 100 intelnops + 1 + 2 + 3 + 4 + 5, 101 intelnops + 1 + 2 + 3 + 4 + 5 + 6, 102 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 103 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 104 }; 105 #endif 106 107 #ifdef K8_NOP1 108 static const unsigned char k8nops[] = 109 { 110 K8_NOP1, 111 K8_NOP2, 112 K8_NOP3, 113 K8_NOP4, 114 K8_NOP5, 115 K8_NOP6, 116 K8_NOP7, 117 K8_NOP8, 118 K8_NOP5_ATOMIC 119 }; 120 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] = 121 { 122 NULL, 123 k8nops, 124 k8nops + 1, 125 k8nops + 1 + 2, 126 k8nops + 1 + 2 + 3, 127 k8nops + 1 + 2 + 3 + 4, 128 k8nops + 1 + 2 + 3 + 4 + 5, 129 k8nops + 1 + 2 + 3 + 4 + 5 + 6, 130 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 131 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 132 }; 133 #endif 134 135 #if defined(K7_NOP1) && !defined(CONFIG_X86_64) 136 static const unsigned char k7nops[] = 137 { 138 K7_NOP1, 139 K7_NOP2, 140 K7_NOP3, 141 K7_NOP4, 142 K7_NOP5, 143 K7_NOP6, 144 K7_NOP7, 145 K7_NOP8, 146 K7_NOP5_ATOMIC 147 }; 148 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] = 149 { 150 NULL, 151 k7nops, 152 k7nops + 1, 153 k7nops + 1 + 2, 154 k7nops + 1 + 2 + 3, 155 k7nops + 1 + 2 + 3 + 4, 156 k7nops + 1 + 2 + 3 + 4 + 5, 157 k7nops + 1 + 2 + 3 + 4 + 5 + 6, 158 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 159 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 160 }; 161 #endif 162 163 #ifdef P6_NOP1 164 static const unsigned char p6nops[] = 165 { 166 P6_NOP1, 167 P6_NOP2, 168 P6_NOP3, 169 P6_NOP4, 170 P6_NOP5, 171 P6_NOP6, 172 P6_NOP7, 173 P6_NOP8, 174 P6_NOP5_ATOMIC 175 }; 176 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] = 177 { 178 NULL, 179 p6nops, 180 p6nops + 1, 181 p6nops + 1 + 2, 182 p6nops + 1 + 2 + 3, 183 p6nops + 1 + 2 + 3 + 4, 184 p6nops + 1 + 2 + 3 + 4 + 5, 185 p6nops + 1 + 2 + 3 + 4 + 5 + 6, 186 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 187 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 188 }; 189 #endif 190 191 /* Initialize these to a safe default */ 192 #ifdef CONFIG_X86_64 193 const unsigned char * const *ideal_nops = p6_nops; 194 #else 195 const unsigned char * const *ideal_nops = intel_nops; 196 #endif 197 198 void __init arch_init_ideal_nops(void) 199 { 200 switch (boot_cpu_data.x86_vendor) { 201 case X86_VENDOR_INTEL: 202 /* 203 * Due to a decoder implementation quirk, some 204 * specific Intel CPUs actually perform better with 205 * the "k8_nops" than with the SDM-recommended NOPs. 206 */ 207 if (boot_cpu_data.x86 == 6 && 208 boot_cpu_data.x86_model >= 0x0f && 209 boot_cpu_data.x86_model != 0x1c && 210 boot_cpu_data.x86_model != 0x26 && 211 boot_cpu_data.x86_model != 0x27 && 212 boot_cpu_data.x86_model < 0x30) { 213 ideal_nops = k8_nops; 214 } else if (boot_cpu_has(X86_FEATURE_NOPL)) { 215 ideal_nops = p6_nops; 216 } else { 217 #ifdef CONFIG_X86_64 218 ideal_nops = k8_nops; 219 #else 220 ideal_nops = intel_nops; 221 #endif 222 } 223 break; 224 225 case X86_VENDOR_AMD: 226 if (boot_cpu_data.x86 > 0xf) { 227 ideal_nops = p6_nops; 228 return; 229 } 230 231 /* fall through */ 232 233 default: 234 #ifdef CONFIG_X86_64 235 ideal_nops = k8_nops; 236 #else 237 if (boot_cpu_has(X86_FEATURE_K8)) 238 ideal_nops = k8_nops; 239 else if (boot_cpu_has(X86_FEATURE_K7)) 240 ideal_nops = k7_nops; 241 else 242 ideal_nops = intel_nops; 243 #endif 244 } 245 } 246 247 /* Use this to add nops to a buffer, then text_poke the whole buffer. */ 248 static void __init_or_module add_nops(void *insns, unsigned int len) 249 { 250 while (len > 0) { 251 unsigned int noplen = len; 252 if (noplen > ASM_NOP_MAX) 253 noplen = ASM_NOP_MAX; 254 memcpy(insns, ideal_nops[noplen], noplen); 255 insns += noplen; 256 len -= noplen; 257 } 258 } 259 260 extern struct alt_instr __alt_instructions[], __alt_instructions_end[]; 261 extern s32 __smp_locks[], __smp_locks_end[]; 262 void *text_poke_early(void *addr, const void *opcode, size_t len); 263 264 /* 265 * Are we looking at a near JMP with a 1 or 4-byte displacement. 266 */ 267 static inline bool is_jmp(const u8 opcode) 268 { 269 return opcode == 0xeb || opcode == 0xe9; 270 } 271 272 static void __init_or_module 273 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf) 274 { 275 u8 *next_rip, *tgt_rip; 276 s32 n_dspl, o_dspl; 277 int repl_len; 278 279 if (a->replacementlen != 5) 280 return; 281 282 o_dspl = *(s32 *)(insnbuf + 1); 283 284 /* next_rip of the replacement JMP */ 285 next_rip = repl_insn + a->replacementlen; 286 /* target rip of the replacement JMP */ 287 tgt_rip = next_rip + o_dspl; 288 n_dspl = tgt_rip - orig_insn; 289 290 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl); 291 292 if (tgt_rip - orig_insn >= 0) { 293 if (n_dspl - 2 <= 127) 294 goto two_byte_jmp; 295 else 296 goto five_byte_jmp; 297 /* negative offset */ 298 } else { 299 if (((n_dspl - 2) & 0xff) == (n_dspl - 2)) 300 goto two_byte_jmp; 301 else 302 goto five_byte_jmp; 303 } 304 305 two_byte_jmp: 306 n_dspl -= 2; 307 308 insnbuf[0] = 0xeb; 309 insnbuf[1] = (s8)n_dspl; 310 add_nops(insnbuf + 2, 3); 311 312 repl_len = 2; 313 goto done; 314 315 five_byte_jmp: 316 n_dspl -= 5; 317 318 insnbuf[0] = 0xe9; 319 *(s32 *)&insnbuf[1] = n_dspl; 320 321 repl_len = 5; 322 323 done: 324 325 DPRINTK("final displ: 0x%08x, JMP 0x%lx", 326 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len); 327 } 328 329 /* 330 * "noinline" to cause control flow change and thus invalidate I$ and 331 * cause refetch after modification. 332 */ 333 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr) 334 { 335 unsigned long flags; 336 int i; 337 338 for (i = 0; i < a->padlen; i++) { 339 if (instr[i] != 0x90) 340 return; 341 } 342 343 local_irq_save(flags); 344 add_nops(instr + (a->instrlen - a->padlen), a->padlen); 345 local_irq_restore(flags); 346 347 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ", 348 instr, a->instrlen - a->padlen, a->padlen); 349 } 350 351 /* 352 * Replace instructions with better alternatives for this CPU type. This runs 353 * before SMP is initialized to avoid SMP problems with self modifying code. 354 * This implies that asymmetric systems where APs have less capabilities than 355 * the boot processor are not handled. Tough. Make sure you disable such 356 * features by hand. 357 * 358 * Marked "noinline" to cause control flow change and thus insn cache 359 * to refetch changed I$ lines. 360 */ 361 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 362 struct alt_instr *end) 363 { 364 struct alt_instr *a; 365 u8 *instr, *replacement; 366 u8 insnbuf[MAX_PATCH_LEN]; 367 368 DPRINTK("alt table %px, -> %px", start, end); 369 /* 370 * The scan order should be from start to end. A later scanned 371 * alternative code can overwrite previously scanned alternative code. 372 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 373 * patch code. 374 * 375 * So be careful if you want to change the scan order to any other 376 * order. 377 */ 378 for (a = start; a < end; a++) { 379 int insnbuf_sz = 0; 380 381 instr = (u8 *)&a->instr_offset + a->instr_offset; 382 replacement = (u8 *)&a->repl_offset + a->repl_offset; 383 BUG_ON(a->instrlen > sizeof(insnbuf)); 384 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 385 if (!boot_cpu_has(a->cpuid)) { 386 if (a->padlen > 1) 387 optimize_nops(a, instr); 388 389 continue; 390 } 391 392 DPRINTK("feat: %d*32+%d, old: (%px len: %d), repl: (%px, len: %d), pad: %d", 393 a->cpuid >> 5, 394 a->cpuid & 0x1f, 395 instr, a->instrlen, 396 replacement, a->replacementlen, a->padlen); 397 398 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr); 399 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 400 401 memcpy(insnbuf, replacement, a->replacementlen); 402 insnbuf_sz = a->replacementlen; 403 404 /* 405 * 0xe8 is a relative jump; fix the offset. 406 * 407 * Instruction length is checked before the opcode to avoid 408 * accessing uninitialized bytes for zero-length replacements. 409 */ 410 if (a->replacementlen == 5 && *insnbuf == 0xe8) { 411 *(s32 *)(insnbuf + 1) += replacement - instr; 412 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx", 413 *(s32 *)(insnbuf + 1), 414 (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5); 415 } 416 417 if (a->replacementlen && is_jmp(replacement[0])) 418 recompute_jump(a, instr, replacement, insnbuf); 419 420 if (a->instrlen > a->replacementlen) { 421 add_nops(insnbuf + a->replacementlen, 422 a->instrlen - a->replacementlen); 423 insnbuf_sz += a->instrlen - a->replacementlen; 424 } 425 DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr); 426 427 text_poke_early(instr, insnbuf, insnbuf_sz); 428 } 429 } 430 431 #ifdef CONFIG_SMP 432 static void alternatives_smp_lock(const s32 *start, const s32 *end, 433 u8 *text, u8 *text_end) 434 { 435 const s32 *poff; 436 437 for (poff = start; poff < end; poff++) { 438 u8 *ptr = (u8 *)poff + *poff; 439 440 if (!*poff || ptr < text || ptr >= text_end) 441 continue; 442 /* turn DS segment override prefix into lock prefix */ 443 if (*ptr == 0x3e) 444 text_poke(ptr, ((unsigned char []){0xf0}), 1); 445 } 446 } 447 448 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 449 u8 *text, u8 *text_end) 450 { 451 const s32 *poff; 452 453 for (poff = start; poff < end; poff++) { 454 u8 *ptr = (u8 *)poff + *poff; 455 456 if (!*poff || ptr < text || ptr >= text_end) 457 continue; 458 /* turn lock prefix into DS segment override prefix */ 459 if (*ptr == 0xf0) 460 text_poke(ptr, ((unsigned char []){0x3E}), 1); 461 } 462 } 463 464 struct smp_alt_module { 465 /* what is this ??? */ 466 struct module *mod; 467 char *name; 468 469 /* ptrs to lock prefixes */ 470 const s32 *locks; 471 const s32 *locks_end; 472 473 /* .text segment, needed to avoid patching init code ;) */ 474 u8 *text; 475 u8 *text_end; 476 477 struct list_head next; 478 }; 479 static LIST_HEAD(smp_alt_modules); 480 static bool uniproc_patched = false; /* protected by text_mutex */ 481 482 void __init_or_module alternatives_smp_module_add(struct module *mod, 483 char *name, 484 void *locks, void *locks_end, 485 void *text, void *text_end) 486 { 487 struct smp_alt_module *smp; 488 489 mutex_lock(&text_mutex); 490 if (!uniproc_patched) 491 goto unlock; 492 493 if (num_possible_cpus() == 1) 494 /* Don't bother remembering, we'll never have to undo it. */ 495 goto smp_unlock; 496 497 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 498 if (NULL == smp) 499 /* we'll run the (safe but slow) SMP code then ... */ 500 goto unlock; 501 502 smp->mod = mod; 503 smp->name = name; 504 smp->locks = locks; 505 smp->locks_end = locks_end; 506 smp->text = text; 507 smp->text_end = text_end; 508 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n", 509 smp->locks, smp->locks_end, 510 smp->text, smp->text_end, smp->name); 511 512 list_add_tail(&smp->next, &smp_alt_modules); 513 smp_unlock: 514 alternatives_smp_unlock(locks, locks_end, text, text_end); 515 unlock: 516 mutex_unlock(&text_mutex); 517 } 518 519 void __init_or_module alternatives_smp_module_del(struct module *mod) 520 { 521 struct smp_alt_module *item; 522 523 mutex_lock(&text_mutex); 524 list_for_each_entry(item, &smp_alt_modules, next) { 525 if (mod != item->mod) 526 continue; 527 list_del(&item->next); 528 kfree(item); 529 break; 530 } 531 mutex_unlock(&text_mutex); 532 } 533 534 void alternatives_enable_smp(void) 535 { 536 struct smp_alt_module *mod; 537 538 /* Why bother if there are no other CPUs? */ 539 BUG_ON(num_possible_cpus() == 1); 540 541 mutex_lock(&text_mutex); 542 543 if (uniproc_patched) { 544 pr_info("switching to SMP code\n"); 545 BUG_ON(num_online_cpus() != 1); 546 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 547 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 548 list_for_each_entry(mod, &smp_alt_modules, next) 549 alternatives_smp_lock(mod->locks, mod->locks_end, 550 mod->text, mod->text_end); 551 uniproc_patched = false; 552 } 553 mutex_unlock(&text_mutex); 554 } 555 556 /* 557 * Return 1 if the address range is reserved for SMP-alternatives. 558 * Must hold text_mutex. 559 */ 560 int alternatives_text_reserved(void *start, void *end) 561 { 562 struct smp_alt_module *mod; 563 const s32 *poff; 564 u8 *text_start = start; 565 u8 *text_end = end; 566 567 lockdep_assert_held(&text_mutex); 568 569 list_for_each_entry(mod, &smp_alt_modules, next) { 570 if (mod->text > text_end || mod->text_end < text_start) 571 continue; 572 for (poff = mod->locks; poff < mod->locks_end; poff++) { 573 const u8 *ptr = (const u8 *)poff + *poff; 574 575 if (text_start <= ptr && text_end > ptr) 576 return 1; 577 } 578 } 579 580 return 0; 581 } 582 #endif /* CONFIG_SMP */ 583 584 #ifdef CONFIG_PARAVIRT 585 void __init_or_module apply_paravirt(struct paravirt_patch_site *start, 586 struct paravirt_patch_site *end) 587 { 588 struct paravirt_patch_site *p; 589 char insnbuf[MAX_PATCH_LEN]; 590 591 for (p = start; p < end; p++) { 592 unsigned int used; 593 594 BUG_ON(p->len > MAX_PATCH_LEN); 595 /* prep the buffer with the original instructions */ 596 memcpy(insnbuf, p->instr, p->len); 597 used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf, 598 (unsigned long)p->instr, p->len); 599 600 BUG_ON(used > p->len); 601 602 /* Pad the rest with nops */ 603 add_nops(insnbuf + used, p->len - used); 604 text_poke_early(p->instr, insnbuf, p->len); 605 } 606 } 607 extern struct paravirt_patch_site __start_parainstructions[], 608 __stop_parainstructions[]; 609 #endif /* CONFIG_PARAVIRT */ 610 611 void __init alternative_instructions(void) 612 { 613 /* The patching is not fully atomic, so try to avoid local interruptions 614 that might execute the to be patched code. 615 Other CPUs are not running. */ 616 stop_nmi(); 617 618 /* 619 * Don't stop machine check exceptions while patching. 620 * MCEs only happen when something got corrupted and in this 621 * case we must do something about the corruption. 622 * Ignoring it is worse than a unlikely patching race. 623 * Also machine checks tend to be broadcast and if one CPU 624 * goes into machine check the others follow quickly, so we don't 625 * expect a machine check to cause undue problems during to code 626 * patching. 627 */ 628 629 apply_alternatives(__alt_instructions, __alt_instructions_end); 630 631 #ifdef CONFIG_SMP 632 /* Patch to UP if other cpus not imminent. */ 633 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 634 uniproc_patched = true; 635 alternatives_smp_module_add(NULL, "core kernel", 636 __smp_locks, __smp_locks_end, 637 _text, _etext); 638 } 639 640 if (!uniproc_patched || num_possible_cpus() == 1) 641 free_init_pages("SMP alternatives", 642 (unsigned long)__smp_locks, 643 (unsigned long)__smp_locks_end); 644 #endif 645 646 apply_paravirt(__parainstructions, __parainstructions_end); 647 648 restart_nmi(); 649 alternatives_patched = 1; 650 } 651 652 /** 653 * text_poke_early - Update instructions on a live kernel at boot time 654 * @addr: address to modify 655 * @opcode: source of the copy 656 * @len: length to copy 657 * 658 * When you use this code to patch more than one byte of an instruction 659 * you need to make sure that other CPUs cannot execute this code in parallel. 660 * Also no thread must be currently preempted in the middle of these 661 * instructions. And on the local CPU you need to be protected again NMI or MCE 662 * handlers seeing an inconsistent instruction while you patch. 663 */ 664 void *__init_or_module text_poke_early(void *addr, const void *opcode, 665 size_t len) 666 { 667 unsigned long flags; 668 local_irq_save(flags); 669 memcpy(addr, opcode, len); 670 local_irq_restore(flags); 671 /* Could also do a CLFLUSH here to speed up CPU recovery; but 672 that causes hangs on some VIA CPUs. */ 673 return addr; 674 } 675 676 /** 677 * text_poke - Update instructions on a live kernel 678 * @addr: address to modify 679 * @opcode: source of the copy 680 * @len: length to copy 681 * 682 * Only atomic text poke/set should be allowed when not doing early patching. 683 * It means the size must be writable atomically and the address must be aligned 684 * in a way that permits an atomic write. It also makes sure we fit on a single 685 * page. 686 * 687 * Note: Must be called under text_mutex. 688 */ 689 void *text_poke(void *addr, const void *opcode, size_t len) 690 { 691 unsigned long flags; 692 char *vaddr; 693 struct page *pages[2]; 694 int i; 695 696 if (!core_kernel_text((unsigned long)addr)) { 697 pages[0] = vmalloc_to_page(addr); 698 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 699 } else { 700 pages[0] = virt_to_page(addr); 701 WARN_ON(!PageReserved(pages[0])); 702 pages[1] = virt_to_page(addr + PAGE_SIZE); 703 } 704 BUG_ON(!pages[0]); 705 local_irq_save(flags); 706 set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0])); 707 if (pages[1]) 708 set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1])); 709 vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0); 710 memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len); 711 clear_fixmap(FIX_TEXT_POKE0); 712 if (pages[1]) 713 clear_fixmap(FIX_TEXT_POKE1); 714 local_flush_tlb(); 715 sync_core(); 716 /* Could also do a CLFLUSH here to speed up CPU recovery; but 717 that causes hangs on some VIA CPUs. */ 718 for (i = 0; i < len; i++) 719 BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]); 720 local_irq_restore(flags); 721 return addr; 722 } 723 724 static void do_sync_core(void *info) 725 { 726 sync_core(); 727 } 728 729 static bool bp_patching_in_progress; 730 static void *bp_int3_handler, *bp_int3_addr; 731 732 int poke_int3_handler(struct pt_regs *regs) 733 { 734 /* 735 * Having observed our INT3 instruction, we now must observe 736 * bp_patching_in_progress. 737 * 738 * in_progress = TRUE INT3 739 * WMB RMB 740 * write INT3 if (in_progress) 741 * 742 * Idem for bp_int3_handler. 743 */ 744 smp_rmb(); 745 746 if (likely(!bp_patching_in_progress)) 747 return 0; 748 749 if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr) 750 return 0; 751 752 /* set up the specified breakpoint handler */ 753 regs->ip = (unsigned long) bp_int3_handler; 754 755 return 1; 756 757 } 758 759 /** 760 * text_poke_bp() -- update instructions on live kernel on SMP 761 * @addr: address to patch 762 * @opcode: opcode of new instruction 763 * @len: length to copy 764 * @handler: address to jump to when the temporary breakpoint is hit 765 * 766 * Modify multi-byte instruction by using int3 breakpoint on SMP. 767 * We completely avoid stop_machine() here, and achieve the 768 * synchronization using int3 breakpoint. 769 * 770 * The way it is done: 771 * - add a int3 trap to the address that will be patched 772 * - sync cores 773 * - update all but the first byte of the patched range 774 * - sync cores 775 * - replace the first byte (int3) by the first byte of 776 * replacing opcode 777 * - sync cores 778 * 779 * Note: must be called under text_mutex. 780 */ 781 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler) 782 { 783 unsigned char int3 = 0xcc; 784 785 bp_int3_handler = handler; 786 bp_int3_addr = (u8 *)addr + sizeof(int3); 787 bp_patching_in_progress = true; 788 /* 789 * Corresponding read barrier in int3 notifier for making sure the 790 * in_progress and handler are correctly ordered wrt. patching. 791 */ 792 smp_wmb(); 793 794 text_poke(addr, &int3, sizeof(int3)); 795 796 on_each_cpu(do_sync_core, NULL, 1); 797 798 if (len - sizeof(int3) > 0) { 799 /* patch all but the first byte */ 800 text_poke((char *)addr + sizeof(int3), 801 (const char *) opcode + sizeof(int3), 802 len - sizeof(int3)); 803 /* 804 * According to Intel, this core syncing is very likely 805 * not necessary and we'd be safe even without it. But 806 * better safe than sorry (plus there's not only Intel). 807 */ 808 on_each_cpu(do_sync_core, NULL, 1); 809 } 810 811 /* patch the first byte */ 812 text_poke(addr, opcode, sizeof(int3)); 813 814 on_each_cpu(do_sync_core, NULL, 1); 815 /* 816 * sync_core() implies an smp_mb() and orders this store against 817 * the writing of the new instruction. 818 */ 819 bp_patching_in_progress = false; 820 821 return addr; 822 } 823 824