xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 
32 int __read_mostly alternatives_patched;
33 
34 EXPORT_SYMBOL_GPL(alternatives_patched);
35 
36 #define MAX_PATCH_LEN (255-1)
37 
38 static int __initdata_or_module debug_alternative;
39 
40 static int __init debug_alt(char *str)
41 {
42 	debug_alternative = 1;
43 	return 1;
44 }
45 __setup("debug-alternative", debug_alt);
46 
47 static int noreplace_smp;
48 
49 static int __init setup_noreplace_smp(char *str)
50 {
51 	noreplace_smp = 1;
52 	return 1;
53 }
54 __setup("noreplace-smp", setup_noreplace_smp);
55 
56 #define DPRINTK(fmt, args...)						\
57 do {									\
58 	if (debug_alternative)						\
59 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
60 } while (0)
61 
62 #define DUMP_BYTES(buf, len, fmt, args...)				\
63 do {									\
64 	if (unlikely(debug_alternative)) {				\
65 		int j;							\
66 									\
67 		if (!(len))						\
68 			break;						\
69 									\
70 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
71 		for (j = 0; j < (len) - 1; j++)				\
72 			printk(KERN_CONT "%02hhx ", buf[j]);		\
73 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
74 	}								\
75 } while (0)
76 
77 /*
78  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
79  * that correspond to that nop. Getting from one nop to the next, we
80  * add to the array the offset that is equal to the sum of all sizes of
81  * nops preceding the one we are after.
82  *
83  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
84  * nice symmetry of sizes of the previous nops.
85  */
86 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
87 static const unsigned char intelnops[] =
88 {
89 	GENERIC_NOP1,
90 	GENERIC_NOP2,
91 	GENERIC_NOP3,
92 	GENERIC_NOP4,
93 	GENERIC_NOP5,
94 	GENERIC_NOP6,
95 	GENERIC_NOP7,
96 	GENERIC_NOP8,
97 	GENERIC_NOP5_ATOMIC
98 };
99 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
100 {
101 	NULL,
102 	intelnops,
103 	intelnops + 1,
104 	intelnops + 1 + 2,
105 	intelnops + 1 + 2 + 3,
106 	intelnops + 1 + 2 + 3 + 4,
107 	intelnops + 1 + 2 + 3 + 4 + 5,
108 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
109 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
110 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
111 };
112 #endif
113 
114 #ifdef K8_NOP1
115 static const unsigned char k8nops[] =
116 {
117 	K8_NOP1,
118 	K8_NOP2,
119 	K8_NOP3,
120 	K8_NOP4,
121 	K8_NOP5,
122 	K8_NOP6,
123 	K8_NOP7,
124 	K8_NOP8,
125 	K8_NOP5_ATOMIC
126 };
127 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
128 {
129 	NULL,
130 	k8nops,
131 	k8nops + 1,
132 	k8nops + 1 + 2,
133 	k8nops + 1 + 2 + 3,
134 	k8nops + 1 + 2 + 3 + 4,
135 	k8nops + 1 + 2 + 3 + 4 + 5,
136 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
137 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
138 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
139 };
140 #endif
141 
142 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
143 static const unsigned char k7nops[] =
144 {
145 	K7_NOP1,
146 	K7_NOP2,
147 	K7_NOP3,
148 	K7_NOP4,
149 	K7_NOP5,
150 	K7_NOP6,
151 	K7_NOP7,
152 	K7_NOP8,
153 	K7_NOP5_ATOMIC
154 };
155 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
156 {
157 	NULL,
158 	k7nops,
159 	k7nops + 1,
160 	k7nops + 1 + 2,
161 	k7nops + 1 + 2 + 3,
162 	k7nops + 1 + 2 + 3 + 4,
163 	k7nops + 1 + 2 + 3 + 4 + 5,
164 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
165 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
166 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
167 };
168 #endif
169 
170 #ifdef P6_NOP1
171 static const unsigned char p6nops[] =
172 {
173 	P6_NOP1,
174 	P6_NOP2,
175 	P6_NOP3,
176 	P6_NOP4,
177 	P6_NOP5,
178 	P6_NOP6,
179 	P6_NOP7,
180 	P6_NOP8,
181 	P6_NOP5_ATOMIC
182 };
183 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
184 {
185 	NULL,
186 	p6nops,
187 	p6nops + 1,
188 	p6nops + 1 + 2,
189 	p6nops + 1 + 2 + 3,
190 	p6nops + 1 + 2 + 3 + 4,
191 	p6nops + 1 + 2 + 3 + 4 + 5,
192 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
193 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
194 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
195 };
196 #endif
197 
198 /* Initialize these to a safe default */
199 #ifdef CONFIG_X86_64
200 const unsigned char * const *ideal_nops = p6_nops;
201 #else
202 const unsigned char * const *ideal_nops = intel_nops;
203 #endif
204 
205 void __init arch_init_ideal_nops(void)
206 {
207 	switch (boot_cpu_data.x86_vendor) {
208 	case X86_VENDOR_INTEL:
209 		/*
210 		 * Due to a decoder implementation quirk, some
211 		 * specific Intel CPUs actually perform better with
212 		 * the "k8_nops" than with the SDM-recommended NOPs.
213 		 */
214 		if (boot_cpu_data.x86 == 6 &&
215 		    boot_cpu_data.x86_model >= 0x0f &&
216 		    boot_cpu_data.x86_model != 0x1c &&
217 		    boot_cpu_data.x86_model != 0x26 &&
218 		    boot_cpu_data.x86_model != 0x27 &&
219 		    boot_cpu_data.x86_model < 0x30) {
220 			ideal_nops = k8_nops;
221 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
222 			   ideal_nops = p6_nops;
223 		} else {
224 #ifdef CONFIG_X86_64
225 			ideal_nops = k8_nops;
226 #else
227 			ideal_nops = intel_nops;
228 #endif
229 		}
230 		break;
231 
232 	case X86_VENDOR_HYGON:
233 		ideal_nops = p6_nops;
234 		return;
235 
236 	case X86_VENDOR_AMD:
237 		if (boot_cpu_data.x86 > 0xf) {
238 			ideal_nops = p6_nops;
239 			return;
240 		}
241 
242 		fallthrough;
243 
244 	default:
245 #ifdef CONFIG_X86_64
246 		ideal_nops = k8_nops;
247 #else
248 		if (boot_cpu_has(X86_FEATURE_K8))
249 			ideal_nops = k8_nops;
250 		else if (boot_cpu_has(X86_FEATURE_K7))
251 			ideal_nops = k7_nops;
252 		else
253 			ideal_nops = intel_nops;
254 #endif
255 	}
256 }
257 
258 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
259 static void __init_or_module add_nops(void *insns, unsigned int len)
260 {
261 	while (len > 0) {
262 		unsigned int noplen = len;
263 		if (noplen > ASM_NOP_MAX)
264 			noplen = ASM_NOP_MAX;
265 		memcpy(insns, ideal_nops[noplen], noplen);
266 		insns += noplen;
267 		len -= noplen;
268 	}
269 }
270 
271 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
272 extern s32 __smp_locks[], __smp_locks_end[];
273 void text_poke_early(void *addr, const void *opcode, size_t len);
274 
275 /*
276  * Are we looking at a near JMP with a 1 or 4-byte displacement.
277  */
278 static inline bool is_jmp(const u8 opcode)
279 {
280 	return opcode == 0xeb || opcode == 0xe9;
281 }
282 
283 static void __init_or_module
284 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
285 {
286 	u8 *next_rip, *tgt_rip;
287 	s32 n_dspl, o_dspl;
288 	int repl_len;
289 
290 	if (a->replacementlen != 5)
291 		return;
292 
293 	o_dspl = *(s32 *)(insn_buff + 1);
294 
295 	/* next_rip of the replacement JMP */
296 	next_rip = repl_insn + a->replacementlen;
297 	/* target rip of the replacement JMP */
298 	tgt_rip  = next_rip + o_dspl;
299 	n_dspl = tgt_rip - orig_insn;
300 
301 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
302 
303 	if (tgt_rip - orig_insn >= 0) {
304 		if (n_dspl - 2 <= 127)
305 			goto two_byte_jmp;
306 		else
307 			goto five_byte_jmp;
308 	/* negative offset */
309 	} else {
310 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
311 			goto two_byte_jmp;
312 		else
313 			goto five_byte_jmp;
314 	}
315 
316 two_byte_jmp:
317 	n_dspl -= 2;
318 
319 	insn_buff[0] = 0xeb;
320 	insn_buff[1] = (s8)n_dspl;
321 	add_nops(insn_buff + 2, 3);
322 
323 	repl_len = 2;
324 	goto done;
325 
326 five_byte_jmp:
327 	n_dspl -= 5;
328 
329 	insn_buff[0] = 0xe9;
330 	*(s32 *)&insn_buff[1] = n_dspl;
331 
332 	repl_len = 5;
333 
334 done:
335 
336 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
337 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
338 }
339 
340 /*
341  * "noinline" to cause control flow change and thus invalidate I$ and
342  * cause refetch after modification.
343  */
344 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
345 {
346 	unsigned long flags;
347 	int i;
348 
349 	for (i = 0; i < a->padlen; i++) {
350 		if (instr[i] != 0x90)
351 			return;
352 	}
353 
354 	local_irq_save(flags);
355 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
356 	local_irq_restore(flags);
357 
358 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
359 		   instr, a->instrlen - a->padlen, a->padlen);
360 }
361 
362 /*
363  * Replace instructions with better alternatives for this CPU type. This runs
364  * before SMP is initialized to avoid SMP problems with self modifying code.
365  * This implies that asymmetric systems where APs have less capabilities than
366  * the boot processor are not handled. Tough. Make sure you disable such
367  * features by hand.
368  *
369  * Marked "noinline" to cause control flow change and thus insn cache
370  * to refetch changed I$ lines.
371  */
372 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
373 						  struct alt_instr *end)
374 {
375 	struct alt_instr *a;
376 	u8 *instr, *replacement;
377 	u8 insn_buff[MAX_PATCH_LEN];
378 
379 	DPRINTK("alt table %px, -> %px", start, end);
380 	/*
381 	 * The scan order should be from start to end. A later scanned
382 	 * alternative code can overwrite previously scanned alternative code.
383 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
384 	 * patch code.
385 	 *
386 	 * So be careful if you want to change the scan order to any other
387 	 * order.
388 	 */
389 	for (a = start; a < end; a++) {
390 		int insn_buff_sz = 0;
391 
392 		instr = (u8 *)&a->instr_offset + a->instr_offset;
393 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
394 		BUG_ON(a->instrlen > sizeof(insn_buff));
395 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
396 		if (!boot_cpu_has(a->cpuid)) {
397 			if (a->padlen > 1)
398 				optimize_nops(a, instr);
399 
400 			continue;
401 		}
402 
403 		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
404 			a->cpuid >> 5,
405 			a->cpuid & 0x1f,
406 			instr, instr, a->instrlen,
407 			replacement, a->replacementlen, a->padlen);
408 
409 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
410 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
411 
412 		memcpy(insn_buff, replacement, a->replacementlen);
413 		insn_buff_sz = a->replacementlen;
414 
415 		/*
416 		 * 0xe8 is a relative jump; fix the offset.
417 		 *
418 		 * Instruction length is checked before the opcode to avoid
419 		 * accessing uninitialized bytes for zero-length replacements.
420 		 */
421 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
422 			*(s32 *)(insn_buff + 1) += replacement - instr;
423 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
424 				*(s32 *)(insn_buff + 1),
425 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
426 		}
427 
428 		if (a->replacementlen && is_jmp(replacement[0]))
429 			recompute_jump(a, instr, replacement, insn_buff);
430 
431 		if (a->instrlen > a->replacementlen) {
432 			add_nops(insn_buff + a->replacementlen,
433 				 a->instrlen - a->replacementlen);
434 			insn_buff_sz += a->instrlen - a->replacementlen;
435 		}
436 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
437 
438 		text_poke_early(instr, insn_buff, insn_buff_sz);
439 	}
440 }
441 
442 #ifdef CONFIG_SMP
443 static void alternatives_smp_lock(const s32 *start, const s32 *end,
444 				  u8 *text, u8 *text_end)
445 {
446 	const s32 *poff;
447 
448 	for (poff = start; poff < end; poff++) {
449 		u8 *ptr = (u8 *)poff + *poff;
450 
451 		if (!*poff || ptr < text || ptr >= text_end)
452 			continue;
453 		/* turn DS segment override prefix into lock prefix */
454 		if (*ptr == 0x3e)
455 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
456 	}
457 }
458 
459 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
460 				    u8 *text, u8 *text_end)
461 {
462 	const s32 *poff;
463 
464 	for (poff = start; poff < end; poff++) {
465 		u8 *ptr = (u8 *)poff + *poff;
466 
467 		if (!*poff || ptr < text || ptr >= text_end)
468 			continue;
469 		/* turn lock prefix into DS segment override prefix */
470 		if (*ptr == 0xf0)
471 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
472 	}
473 }
474 
475 struct smp_alt_module {
476 	/* what is this ??? */
477 	struct module	*mod;
478 	char		*name;
479 
480 	/* ptrs to lock prefixes */
481 	const s32	*locks;
482 	const s32	*locks_end;
483 
484 	/* .text segment, needed to avoid patching init code ;) */
485 	u8		*text;
486 	u8		*text_end;
487 
488 	struct list_head next;
489 };
490 static LIST_HEAD(smp_alt_modules);
491 static bool uniproc_patched = false;	/* protected by text_mutex */
492 
493 void __init_or_module alternatives_smp_module_add(struct module *mod,
494 						  char *name,
495 						  void *locks, void *locks_end,
496 						  void *text,  void *text_end)
497 {
498 	struct smp_alt_module *smp;
499 
500 	mutex_lock(&text_mutex);
501 	if (!uniproc_patched)
502 		goto unlock;
503 
504 	if (num_possible_cpus() == 1)
505 		/* Don't bother remembering, we'll never have to undo it. */
506 		goto smp_unlock;
507 
508 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
509 	if (NULL == smp)
510 		/* we'll run the (safe but slow) SMP code then ... */
511 		goto unlock;
512 
513 	smp->mod	= mod;
514 	smp->name	= name;
515 	smp->locks	= locks;
516 	smp->locks_end	= locks_end;
517 	smp->text	= text;
518 	smp->text_end	= text_end;
519 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
520 		smp->locks, smp->locks_end,
521 		smp->text, smp->text_end, smp->name);
522 
523 	list_add_tail(&smp->next, &smp_alt_modules);
524 smp_unlock:
525 	alternatives_smp_unlock(locks, locks_end, text, text_end);
526 unlock:
527 	mutex_unlock(&text_mutex);
528 }
529 
530 void __init_or_module alternatives_smp_module_del(struct module *mod)
531 {
532 	struct smp_alt_module *item;
533 
534 	mutex_lock(&text_mutex);
535 	list_for_each_entry(item, &smp_alt_modules, next) {
536 		if (mod != item->mod)
537 			continue;
538 		list_del(&item->next);
539 		kfree(item);
540 		break;
541 	}
542 	mutex_unlock(&text_mutex);
543 }
544 
545 void alternatives_enable_smp(void)
546 {
547 	struct smp_alt_module *mod;
548 
549 	/* Why bother if there are no other CPUs? */
550 	BUG_ON(num_possible_cpus() == 1);
551 
552 	mutex_lock(&text_mutex);
553 
554 	if (uniproc_patched) {
555 		pr_info("switching to SMP code\n");
556 		BUG_ON(num_online_cpus() != 1);
557 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
558 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
559 		list_for_each_entry(mod, &smp_alt_modules, next)
560 			alternatives_smp_lock(mod->locks, mod->locks_end,
561 					      mod->text, mod->text_end);
562 		uniproc_patched = false;
563 	}
564 	mutex_unlock(&text_mutex);
565 }
566 
567 /*
568  * Return 1 if the address range is reserved for SMP-alternatives.
569  * Must hold text_mutex.
570  */
571 int alternatives_text_reserved(void *start, void *end)
572 {
573 	struct smp_alt_module *mod;
574 	const s32 *poff;
575 	u8 *text_start = start;
576 	u8 *text_end = end;
577 
578 	lockdep_assert_held(&text_mutex);
579 
580 	list_for_each_entry(mod, &smp_alt_modules, next) {
581 		if (mod->text > text_end || mod->text_end < text_start)
582 			continue;
583 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
584 			const u8 *ptr = (const u8 *)poff + *poff;
585 
586 			if (text_start <= ptr && text_end > ptr)
587 				return 1;
588 		}
589 	}
590 
591 	return 0;
592 }
593 #endif /* CONFIG_SMP */
594 
595 #ifdef CONFIG_PARAVIRT
596 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
597 				     struct paravirt_patch_site *end)
598 {
599 	struct paravirt_patch_site *p;
600 	char insn_buff[MAX_PATCH_LEN];
601 
602 	for (p = start; p < end; p++) {
603 		unsigned int used;
604 
605 		BUG_ON(p->len > MAX_PATCH_LEN);
606 		/* prep the buffer with the original instructions */
607 		memcpy(insn_buff, p->instr, p->len);
608 		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
609 
610 		BUG_ON(used > p->len);
611 
612 		/* Pad the rest with nops */
613 		add_nops(insn_buff + used, p->len - used);
614 		text_poke_early(p->instr, insn_buff, p->len);
615 	}
616 }
617 extern struct paravirt_patch_site __start_parainstructions[],
618 	__stop_parainstructions[];
619 #endif	/* CONFIG_PARAVIRT */
620 
621 /*
622  * Self-test for the INT3 based CALL emulation code.
623  *
624  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
625  * properly and that there is a stack gap between the INT3 frame and the
626  * previous context. Without this gap doing a virtual PUSH on the interrupted
627  * stack would corrupt the INT3 IRET frame.
628  *
629  * See entry_{32,64}.S for more details.
630  */
631 
632 /*
633  * We define the int3_magic() function in assembly to control the calling
634  * convention such that we can 'call' it from assembly.
635  */
636 
637 extern void int3_magic(unsigned int *ptr); /* defined in asm */
638 
639 asm (
640 "	.pushsection	.init.text, \"ax\", @progbits\n"
641 "	.type		int3_magic, @function\n"
642 "int3_magic:\n"
643 "	movl	$1, (%" _ASM_ARG1 ")\n"
644 "	ret\n"
645 "	.size		int3_magic, .-int3_magic\n"
646 "	.popsection\n"
647 );
648 
649 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
650 
651 static int __init
652 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
653 {
654 	struct die_args *args = data;
655 	struct pt_regs *regs = args->regs;
656 
657 	if (!regs || user_mode(regs))
658 		return NOTIFY_DONE;
659 
660 	if (val != DIE_INT3)
661 		return NOTIFY_DONE;
662 
663 	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
664 		return NOTIFY_DONE;
665 
666 	int3_emulate_call(regs, (unsigned long)&int3_magic);
667 	return NOTIFY_STOP;
668 }
669 
670 static void __init int3_selftest(void)
671 {
672 	static __initdata struct notifier_block int3_exception_nb = {
673 		.notifier_call	= int3_exception_notify,
674 		.priority	= INT_MAX-1, /* last */
675 	};
676 	unsigned int val = 0;
677 
678 	BUG_ON(register_die_notifier(&int3_exception_nb));
679 
680 	/*
681 	 * Basically: int3_magic(&val); but really complicated :-)
682 	 *
683 	 * Stick the address of the INT3 instruction into int3_selftest_ip,
684 	 * then trigger the INT3, padded with NOPs to match a CALL instruction
685 	 * length.
686 	 */
687 	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
688 		      ".pushsection .init.data,\"aw\"\n\t"
689 		      ".align " __ASM_SEL(4, 8) "\n\t"
690 		      ".type int3_selftest_ip, @object\n\t"
691 		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
692 		      "int3_selftest_ip:\n\t"
693 		      __ASM_SEL(.long, .quad) " 1b\n\t"
694 		      ".popsection\n\t"
695 		      : ASM_CALL_CONSTRAINT
696 		      : __ASM_SEL_RAW(a, D) (&val)
697 		      : "memory");
698 
699 	BUG_ON(val != 1);
700 
701 	unregister_die_notifier(&int3_exception_nb);
702 }
703 
704 void __init alternative_instructions(void)
705 {
706 	int3_selftest();
707 
708 	/*
709 	 * The patching is not fully atomic, so try to avoid local
710 	 * interruptions that might execute the to be patched code.
711 	 * Other CPUs are not running.
712 	 */
713 	stop_nmi();
714 
715 	/*
716 	 * Don't stop machine check exceptions while patching.
717 	 * MCEs only happen when something got corrupted and in this
718 	 * case we must do something about the corruption.
719 	 * Ignoring it is worse than an unlikely patching race.
720 	 * Also machine checks tend to be broadcast and if one CPU
721 	 * goes into machine check the others follow quickly, so we don't
722 	 * expect a machine check to cause undue problems during to code
723 	 * patching.
724 	 */
725 
726 	apply_alternatives(__alt_instructions, __alt_instructions_end);
727 
728 #ifdef CONFIG_SMP
729 	/* Patch to UP if other cpus not imminent. */
730 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
731 		uniproc_patched = true;
732 		alternatives_smp_module_add(NULL, "core kernel",
733 					    __smp_locks, __smp_locks_end,
734 					    _text, _etext);
735 	}
736 
737 	if (!uniproc_patched || num_possible_cpus() == 1) {
738 		free_init_pages("SMP alternatives",
739 				(unsigned long)__smp_locks,
740 				(unsigned long)__smp_locks_end);
741 	}
742 #endif
743 
744 	apply_paravirt(__parainstructions, __parainstructions_end);
745 
746 	restart_nmi();
747 	alternatives_patched = 1;
748 }
749 
750 /**
751  * text_poke_early - Update instructions on a live kernel at boot time
752  * @addr: address to modify
753  * @opcode: source of the copy
754  * @len: length to copy
755  *
756  * When you use this code to patch more than one byte of an instruction
757  * you need to make sure that other CPUs cannot execute this code in parallel.
758  * Also no thread must be currently preempted in the middle of these
759  * instructions. And on the local CPU you need to be protected against NMI or
760  * MCE handlers seeing an inconsistent instruction while you patch.
761  */
762 void __init_or_module text_poke_early(void *addr, const void *opcode,
763 				      size_t len)
764 {
765 	unsigned long flags;
766 
767 	if (boot_cpu_has(X86_FEATURE_NX) &&
768 	    is_module_text_address((unsigned long)addr)) {
769 		/*
770 		 * Modules text is marked initially as non-executable, so the
771 		 * code cannot be running and speculative code-fetches are
772 		 * prevented. Just change the code.
773 		 */
774 		memcpy(addr, opcode, len);
775 	} else {
776 		local_irq_save(flags);
777 		memcpy(addr, opcode, len);
778 		local_irq_restore(flags);
779 		sync_core();
780 
781 		/*
782 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
783 		 * that causes hangs on some VIA CPUs.
784 		 */
785 	}
786 }
787 
788 typedef struct {
789 	struct mm_struct *mm;
790 } temp_mm_state_t;
791 
792 /*
793  * Using a temporary mm allows to set temporary mappings that are not accessible
794  * by other CPUs. Such mappings are needed to perform sensitive memory writes
795  * that override the kernel memory protections (e.g., W^X), without exposing the
796  * temporary page-table mappings that are required for these write operations to
797  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
798  * mapping is torn down.
799  *
800  * Context: The temporary mm needs to be used exclusively by a single core. To
801  *          harden security IRQs must be disabled while the temporary mm is
802  *          loaded, thereby preventing interrupt handler bugs from overriding
803  *          the kernel memory protection.
804  */
805 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
806 {
807 	temp_mm_state_t temp_state;
808 
809 	lockdep_assert_irqs_disabled();
810 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
811 	switch_mm_irqs_off(NULL, mm, current);
812 
813 	/*
814 	 * If breakpoints are enabled, disable them while the temporary mm is
815 	 * used. Userspace might set up watchpoints on addresses that are used
816 	 * in the temporary mm, which would lead to wrong signals being sent or
817 	 * crashes.
818 	 *
819 	 * Note that breakpoints are not disabled selectively, which also causes
820 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
821 	 * undesirable, but still seems reasonable as the code that runs in the
822 	 * temporary mm should be short.
823 	 */
824 	if (hw_breakpoint_active())
825 		hw_breakpoint_disable();
826 
827 	return temp_state;
828 }
829 
830 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
831 {
832 	lockdep_assert_irqs_disabled();
833 	switch_mm_irqs_off(NULL, prev_state.mm, current);
834 
835 	/*
836 	 * Restore the breakpoints if they were disabled before the temporary mm
837 	 * was loaded.
838 	 */
839 	if (hw_breakpoint_active())
840 		hw_breakpoint_restore();
841 }
842 
843 __ro_after_init struct mm_struct *poking_mm;
844 __ro_after_init unsigned long poking_addr;
845 
846 static void *__text_poke(void *addr, const void *opcode, size_t len)
847 {
848 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
849 	struct page *pages[2] = {NULL};
850 	temp_mm_state_t prev;
851 	unsigned long flags;
852 	pte_t pte, *ptep;
853 	spinlock_t *ptl;
854 	pgprot_t pgprot;
855 
856 	/*
857 	 * While boot memory allocator is running we cannot use struct pages as
858 	 * they are not yet initialized. There is no way to recover.
859 	 */
860 	BUG_ON(!after_bootmem);
861 
862 	if (!core_kernel_text((unsigned long)addr)) {
863 		pages[0] = vmalloc_to_page(addr);
864 		if (cross_page_boundary)
865 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
866 	} else {
867 		pages[0] = virt_to_page(addr);
868 		WARN_ON(!PageReserved(pages[0]));
869 		if (cross_page_boundary)
870 			pages[1] = virt_to_page(addr + PAGE_SIZE);
871 	}
872 	/*
873 	 * If something went wrong, crash and burn since recovery paths are not
874 	 * implemented.
875 	 */
876 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
877 
878 	/*
879 	 * Map the page without the global bit, as TLB flushing is done with
880 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
881 	 */
882 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
883 
884 	/*
885 	 * The lock is not really needed, but this allows to avoid open-coding.
886 	 */
887 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
888 
889 	/*
890 	 * This must not fail; preallocated in poking_init().
891 	 */
892 	VM_BUG_ON(!ptep);
893 
894 	local_irq_save(flags);
895 
896 	pte = mk_pte(pages[0], pgprot);
897 	set_pte_at(poking_mm, poking_addr, ptep, pte);
898 
899 	if (cross_page_boundary) {
900 		pte = mk_pte(pages[1], pgprot);
901 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
902 	}
903 
904 	/*
905 	 * Loading the temporary mm behaves as a compiler barrier, which
906 	 * guarantees that the PTE will be set at the time memcpy() is done.
907 	 */
908 	prev = use_temporary_mm(poking_mm);
909 
910 	kasan_disable_current();
911 	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
912 	kasan_enable_current();
913 
914 	/*
915 	 * Ensure that the PTE is only cleared after the instructions of memcpy
916 	 * were issued by using a compiler barrier.
917 	 */
918 	barrier();
919 
920 	pte_clear(poking_mm, poking_addr, ptep);
921 	if (cross_page_boundary)
922 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
923 
924 	/*
925 	 * Loading the previous page-table hierarchy requires a serializing
926 	 * instruction that already allows the core to see the updated version.
927 	 * Xen-PV is assumed to serialize execution in a similar manner.
928 	 */
929 	unuse_temporary_mm(prev);
930 
931 	/*
932 	 * Flushing the TLB might involve IPIs, which would require enabled
933 	 * IRQs, but not if the mm is not used, as it is in this point.
934 	 */
935 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
936 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
937 			   PAGE_SHIFT, false);
938 
939 	/*
940 	 * If the text does not match what we just wrote then something is
941 	 * fundamentally screwy; there's nothing we can really do about that.
942 	 */
943 	BUG_ON(memcmp(addr, opcode, len));
944 
945 	local_irq_restore(flags);
946 	pte_unmap_unlock(ptep, ptl);
947 	return addr;
948 }
949 
950 /**
951  * text_poke - Update instructions on a live kernel
952  * @addr: address to modify
953  * @opcode: source of the copy
954  * @len: length to copy
955  *
956  * Only atomic text poke/set should be allowed when not doing early patching.
957  * It means the size must be writable atomically and the address must be aligned
958  * in a way that permits an atomic write. It also makes sure we fit on a single
959  * page.
960  *
961  * Note that the caller must ensure that if the modified code is part of a
962  * module, the module would not be removed during poking. This can be achieved
963  * by registering a module notifier, and ordering module removal and patching
964  * trough a mutex.
965  */
966 void *text_poke(void *addr, const void *opcode, size_t len)
967 {
968 	lockdep_assert_held(&text_mutex);
969 
970 	return __text_poke(addr, opcode, len);
971 }
972 
973 /**
974  * text_poke_kgdb - Update instructions on a live kernel by kgdb
975  * @addr: address to modify
976  * @opcode: source of the copy
977  * @len: length to copy
978  *
979  * Only atomic text poke/set should be allowed when not doing early patching.
980  * It means the size must be writable atomically and the address must be aligned
981  * in a way that permits an atomic write. It also makes sure we fit on a single
982  * page.
983  *
984  * Context: should only be used by kgdb, which ensures no other core is running,
985  *	    despite the fact it does not hold the text_mutex.
986  */
987 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
988 {
989 	return __text_poke(addr, opcode, len);
990 }
991 
992 static void do_sync_core(void *info)
993 {
994 	sync_core();
995 }
996 
997 void text_poke_sync(void)
998 {
999 	on_each_cpu(do_sync_core, NULL, 1);
1000 }
1001 
1002 struct text_poke_loc {
1003 	s32 rel_addr; /* addr := _stext + rel_addr */
1004 	s32 rel32;
1005 	u8 opcode;
1006 	const u8 text[POKE_MAX_OPCODE_SIZE];
1007 	u8 old;
1008 };
1009 
1010 struct bp_patching_desc {
1011 	struct text_poke_loc *vec;
1012 	int nr_entries;
1013 	atomic_t refs;
1014 };
1015 
1016 static struct bp_patching_desc *bp_desc;
1017 
1018 static __always_inline
1019 struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1020 {
1021 	struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
1022 
1023 	if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1024 		return NULL;
1025 
1026 	return desc;
1027 }
1028 
1029 static __always_inline void put_desc(struct bp_patching_desc *desc)
1030 {
1031 	smp_mb__before_atomic();
1032 	arch_atomic_dec(&desc->refs);
1033 }
1034 
1035 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1036 {
1037 	return _stext + tp->rel_addr;
1038 }
1039 
1040 static __always_inline int patch_cmp(const void *key, const void *elt)
1041 {
1042 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1043 
1044 	if (key < text_poke_addr(tp))
1045 		return -1;
1046 	if (key > text_poke_addr(tp))
1047 		return 1;
1048 	return 0;
1049 }
1050 
1051 noinstr int poke_int3_handler(struct pt_regs *regs)
1052 {
1053 	struct bp_patching_desc *desc;
1054 	struct text_poke_loc *tp;
1055 	int len, ret = 0;
1056 	void *ip;
1057 
1058 	if (user_mode(regs))
1059 		return 0;
1060 
1061 	/*
1062 	 * Having observed our INT3 instruction, we now must observe
1063 	 * bp_desc:
1064 	 *
1065 	 *	bp_desc = desc			INT3
1066 	 *	WMB				RMB
1067 	 *	write INT3			if (desc)
1068 	 */
1069 	smp_rmb();
1070 
1071 	desc = try_get_desc(&bp_desc);
1072 	if (!desc)
1073 		return 0;
1074 
1075 	/*
1076 	 * Discount the INT3. See text_poke_bp_batch().
1077 	 */
1078 	ip = (void *) regs->ip - INT3_INSN_SIZE;
1079 
1080 	/*
1081 	 * Skip the binary search if there is a single member in the vector.
1082 	 */
1083 	if (unlikely(desc->nr_entries > 1)) {
1084 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1085 				      sizeof(struct text_poke_loc),
1086 				      patch_cmp);
1087 		if (!tp)
1088 			goto out_put;
1089 	} else {
1090 		tp = desc->vec;
1091 		if (text_poke_addr(tp) != ip)
1092 			goto out_put;
1093 	}
1094 
1095 	len = text_opcode_size(tp->opcode);
1096 	ip += len;
1097 
1098 	switch (tp->opcode) {
1099 	case INT3_INSN_OPCODE:
1100 		/*
1101 		 * Someone poked an explicit INT3, they'll want to handle it,
1102 		 * do not consume.
1103 		 */
1104 		goto out_put;
1105 
1106 	case CALL_INSN_OPCODE:
1107 		int3_emulate_call(regs, (long)ip + tp->rel32);
1108 		break;
1109 
1110 	case JMP32_INSN_OPCODE:
1111 	case JMP8_INSN_OPCODE:
1112 		int3_emulate_jmp(regs, (long)ip + tp->rel32);
1113 		break;
1114 
1115 	default:
1116 		BUG();
1117 	}
1118 
1119 	ret = 1;
1120 
1121 out_put:
1122 	put_desc(desc);
1123 	return ret;
1124 }
1125 
1126 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1127 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1128 static int tp_vec_nr;
1129 
1130 /**
1131  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1132  * @tp:			vector of instructions to patch
1133  * @nr_entries:		number of entries in the vector
1134  *
1135  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1136  * We completely avoid stop_machine() here, and achieve the
1137  * synchronization using int3 breakpoint.
1138  *
1139  * The way it is done:
1140  *	- For each entry in the vector:
1141  *		- add a int3 trap to the address that will be patched
1142  *	- sync cores
1143  *	- For each entry in the vector:
1144  *		- update all but the first byte of the patched range
1145  *	- sync cores
1146  *	- For each entry in the vector:
1147  *		- replace the first byte (int3) by the first byte of
1148  *		  replacing opcode
1149  *	- sync cores
1150  */
1151 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1152 {
1153 	struct bp_patching_desc desc = {
1154 		.vec = tp,
1155 		.nr_entries = nr_entries,
1156 		.refs = ATOMIC_INIT(1),
1157 	};
1158 	unsigned char int3 = INT3_INSN_OPCODE;
1159 	unsigned int i;
1160 	int do_sync;
1161 
1162 	lockdep_assert_held(&text_mutex);
1163 
1164 	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1165 
1166 	/*
1167 	 * Corresponding read barrier in int3 notifier for making sure the
1168 	 * nr_entries and handler are correctly ordered wrt. patching.
1169 	 */
1170 	smp_wmb();
1171 
1172 	/*
1173 	 * First step: add a int3 trap to the address that will be patched.
1174 	 */
1175 	for (i = 0; i < nr_entries; i++) {
1176 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1177 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1178 	}
1179 
1180 	text_poke_sync();
1181 
1182 	/*
1183 	 * Second step: update all but the first byte of the patched range.
1184 	 */
1185 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1186 		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1187 		int len = text_opcode_size(tp[i].opcode);
1188 
1189 		if (len - INT3_INSN_SIZE > 0) {
1190 			memcpy(old + INT3_INSN_SIZE,
1191 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1192 			       len - INT3_INSN_SIZE);
1193 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1194 				  (const char *)tp[i].text + INT3_INSN_SIZE,
1195 				  len - INT3_INSN_SIZE);
1196 			do_sync++;
1197 		}
1198 
1199 		/*
1200 		 * Emit a perf event to record the text poke, primarily to
1201 		 * support Intel PT decoding which must walk the executable code
1202 		 * to reconstruct the trace. The flow up to here is:
1203 		 *   - write INT3 byte
1204 		 *   - IPI-SYNC
1205 		 *   - write instruction tail
1206 		 * At this point the actual control flow will be through the
1207 		 * INT3 and handler and not hit the old or new instruction.
1208 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1209 		 * can still be decoded. Subsequently:
1210 		 *   - emit RECORD_TEXT_POKE with the new instruction
1211 		 *   - IPI-SYNC
1212 		 *   - write first byte
1213 		 *   - IPI-SYNC
1214 		 * So before the text poke event timestamp, the decoder will see
1215 		 * either the old instruction flow or FUP/TIP of INT3. After the
1216 		 * text poke event timestamp, the decoder will see either the
1217 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1218 		 * use the timestamp as the point at which to modify the
1219 		 * executable code.
1220 		 * The old instruction is recorded so that the event can be
1221 		 * processed forwards or backwards.
1222 		 */
1223 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1224 				     tp[i].text, len);
1225 	}
1226 
1227 	if (do_sync) {
1228 		/*
1229 		 * According to Intel, this core syncing is very likely
1230 		 * not necessary and we'd be safe even without it. But
1231 		 * better safe than sorry (plus there's not only Intel).
1232 		 */
1233 		text_poke_sync();
1234 	}
1235 
1236 	/*
1237 	 * Third step: replace the first byte (int3) by the first byte of
1238 	 * replacing opcode.
1239 	 */
1240 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1241 		if (tp[i].text[0] == INT3_INSN_OPCODE)
1242 			continue;
1243 
1244 		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1245 		do_sync++;
1246 	}
1247 
1248 	if (do_sync)
1249 		text_poke_sync();
1250 
1251 	/*
1252 	 * Remove and synchronize_rcu(), except we have a very primitive
1253 	 * refcount based completion.
1254 	 */
1255 	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1256 	if (!atomic_dec_and_test(&desc.refs))
1257 		atomic_cond_read_acquire(&desc.refs, !VAL);
1258 }
1259 
1260 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1261 			       const void *opcode, size_t len, const void *emulate)
1262 {
1263 	struct insn insn;
1264 
1265 	memcpy((void *)tp->text, opcode, len);
1266 	if (!emulate)
1267 		emulate = opcode;
1268 
1269 	kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1270 	insn_get_length(&insn);
1271 
1272 	BUG_ON(!insn_complete(&insn));
1273 	BUG_ON(len != insn.length);
1274 
1275 	tp->rel_addr = addr - (void *)_stext;
1276 	tp->opcode = insn.opcode.bytes[0];
1277 
1278 	switch (tp->opcode) {
1279 	case INT3_INSN_OPCODE:
1280 		break;
1281 
1282 	case CALL_INSN_OPCODE:
1283 	case JMP32_INSN_OPCODE:
1284 	case JMP8_INSN_OPCODE:
1285 		tp->rel32 = insn.immediate.value;
1286 		break;
1287 
1288 	default: /* assume NOP */
1289 		switch (len) {
1290 		case 2: /* NOP2 -- emulate as JMP8+0 */
1291 			BUG_ON(memcmp(emulate, ideal_nops[len], len));
1292 			tp->opcode = JMP8_INSN_OPCODE;
1293 			tp->rel32 = 0;
1294 			break;
1295 
1296 		case 5: /* NOP5 -- emulate as JMP32+0 */
1297 			BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1298 			tp->opcode = JMP32_INSN_OPCODE;
1299 			tp->rel32 = 0;
1300 			break;
1301 
1302 		default: /* unknown instruction */
1303 			BUG();
1304 		}
1305 		break;
1306 	}
1307 }
1308 
1309 /*
1310  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1311  * early if needed.
1312  */
1313 static bool tp_order_fail(void *addr)
1314 {
1315 	struct text_poke_loc *tp;
1316 
1317 	if (!tp_vec_nr)
1318 		return false;
1319 
1320 	if (!addr) /* force */
1321 		return true;
1322 
1323 	tp = &tp_vec[tp_vec_nr - 1];
1324 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1325 		return true;
1326 
1327 	return false;
1328 }
1329 
1330 static void text_poke_flush(void *addr)
1331 {
1332 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1333 		text_poke_bp_batch(tp_vec, tp_vec_nr);
1334 		tp_vec_nr = 0;
1335 	}
1336 }
1337 
1338 void text_poke_finish(void)
1339 {
1340 	text_poke_flush(NULL);
1341 }
1342 
1343 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1344 {
1345 	struct text_poke_loc *tp;
1346 
1347 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1348 		text_poke_early(addr, opcode, len);
1349 		return;
1350 	}
1351 
1352 	text_poke_flush(addr);
1353 
1354 	tp = &tp_vec[tp_vec_nr++];
1355 	text_poke_loc_init(tp, addr, opcode, len, emulate);
1356 }
1357 
1358 /**
1359  * text_poke_bp() -- update instructions on live kernel on SMP
1360  * @addr:	address to patch
1361  * @opcode:	opcode of new instruction
1362  * @len:	length to copy
1363  * @handler:	address to jump to when the temporary breakpoint is hit
1364  *
1365  * Update a single instruction with the vector in the stack, avoiding
1366  * dynamically allocated memory. This function should be used when it is
1367  * not possible to allocate memory.
1368  */
1369 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1370 {
1371 	struct text_poke_loc tp;
1372 
1373 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1374 		text_poke_early(addr, opcode, len);
1375 		return;
1376 	}
1377 
1378 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1379 	text_poke_bp_batch(&tp, 1);
1380 }
1381