xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision c819e2cf)
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2 
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <asm/alternative.h>
15 #include <asm/sections.h>
16 #include <asm/pgtable.h>
17 #include <asm/mce.h>
18 #include <asm/nmi.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/io.h>
22 #include <asm/fixmap.h>
23 
24 #define MAX_PATCH_LEN (255-1)
25 
26 static int __initdata_or_module debug_alternative;
27 
28 static int __init debug_alt(char *str)
29 {
30 	debug_alternative = 1;
31 	return 1;
32 }
33 __setup("debug-alternative", debug_alt);
34 
35 static int noreplace_smp;
36 
37 static int __init setup_noreplace_smp(char *str)
38 {
39 	noreplace_smp = 1;
40 	return 1;
41 }
42 __setup("noreplace-smp", setup_noreplace_smp);
43 
44 #ifdef CONFIG_PARAVIRT
45 static int __initdata_or_module noreplace_paravirt = 0;
46 
47 static int __init setup_noreplace_paravirt(char *str)
48 {
49 	noreplace_paravirt = 1;
50 	return 1;
51 }
52 __setup("noreplace-paravirt", setup_noreplace_paravirt);
53 #endif
54 
55 #define DPRINTK(fmt, ...)				\
56 do {							\
57 	if (debug_alternative)				\
58 		printk(KERN_DEBUG fmt, ##__VA_ARGS__);	\
59 } while (0)
60 
61 /*
62  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
63  * that correspond to that nop. Getting from one nop to the next, we
64  * add to the array the offset that is equal to the sum of all sizes of
65  * nops preceding the one we are after.
66  *
67  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
68  * nice symmetry of sizes of the previous nops.
69  */
70 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
71 static const unsigned char intelnops[] =
72 {
73 	GENERIC_NOP1,
74 	GENERIC_NOP2,
75 	GENERIC_NOP3,
76 	GENERIC_NOP4,
77 	GENERIC_NOP5,
78 	GENERIC_NOP6,
79 	GENERIC_NOP7,
80 	GENERIC_NOP8,
81 	GENERIC_NOP5_ATOMIC
82 };
83 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
84 {
85 	NULL,
86 	intelnops,
87 	intelnops + 1,
88 	intelnops + 1 + 2,
89 	intelnops + 1 + 2 + 3,
90 	intelnops + 1 + 2 + 3 + 4,
91 	intelnops + 1 + 2 + 3 + 4 + 5,
92 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
93 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
94 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
95 };
96 #endif
97 
98 #ifdef K8_NOP1
99 static const unsigned char k8nops[] =
100 {
101 	K8_NOP1,
102 	K8_NOP2,
103 	K8_NOP3,
104 	K8_NOP4,
105 	K8_NOP5,
106 	K8_NOP6,
107 	K8_NOP7,
108 	K8_NOP8,
109 	K8_NOP5_ATOMIC
110 };
111 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
112 {
113 	NULL,
114 	k8nops,
115 	k8nops + 1,
116 	k8nops + 1 + 2,
117 	k8nops + 1 + 2 + 3,
118 	k8nops + 1 + 2 + 3 + 4,
119 	k8nops + 1 + 2 + 3 + 4 + 5,
120 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
121 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
122 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
123 };
124 #endif
125 
126 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
127 static const unsigned char k7nops[] =
128 {
129 	K7_NOP1,
130 	K7_NOP2,
131 	K7_NOP3,
132 	K7_NOP4,
133 	K7_NOP5,
134 	K7_NOP6,
135 	K7_NOP7,
136 	K7_NOP8,
137 	K7_NOP5_ATOMIC
138 };
139 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
140 {
141 	NULL,
142 	k7nops,
143 	k7nops + 1,
144 	k7nops + 1 + 2,
145 	k7nops + 1 + 2 + 3,
146 	k7nops + 1 + 2 + 3 + 4,
147 	k7nops + 1 + 2 + 3 + 4 + 5,
148 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
149 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
150 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
151 };
152 #endif
153 
154 #ifdef P6_NOP1
155 static const unsigned char p6nops[] =
156 {
157 	P6_NOP1,
158 	P6_NOP2,
159 	P6_NOP3,
160 	P6_NOP4,
161 	P6_NOP5,
162 	P6_NOP6,
163 	P6_NOP7,
164 	P6_NOP8,
165 	P6_NOP5_ATOMIC
166 };
167 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
168 {
169 	NULL,
170 	p6nops,
171 	p6nops + 1,
172 	p6nops + 1 + 2,
173 	p6nops + 1 + 2 + 3,
174 	p6nops + 1 + 2 + 3 + 4,
175 	p6nops + 1 + 2 + 3 + 4 + 5,
176 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
177 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
178 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
179 };
180 #endif
181 
182 /* Initialize these to a safe default */
183 #ifdef CONFIG_X86_64
184 const unsigned char * const *ideal_nops = p6_nops;
185 #else
186 const unsigned char * const *ideal_nops = intel_nops;
187 #endif
188 
189 void __init arch_init_ideal_nops(void)
190 {
191 	switch (boot_cpu_data.x86_vendor) {
192 	case X86_VENDOR_INTEL:
193 		/*
194 		 * Due to a decoder implementation quirk, some
195 		 * specific Intel CPUs actually perform better with
196 		 * the "k8_nops" than with the SDM-recommended NOPs.
197 		 */
198 		if (boot_cpu_data.x86 == 6 &&
199 		    boot_cpu_data.x86_model >= 0x0f &&
200 		    boot_cpu_data.x86_model != 0x1c &&
201 		    boot_cpu_data.x86_model != 0x26 &&
202 		    boot_cpu_data.x86_model != 0x27 &&
203 		    boot_cpu_data.x86_model < 0x30) {
204 			ideal_nops = k8_nops;
205 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
206 			   ideal_nops = p6_nops;
207 		} else {
208 #ifdef CONFIG_X86_64
209 			ideal_nops = k8_nops;
210 #else
211 			ideal_nops = intel_nops;
212 #endif
213 		}
214 		break;
215 	default:
216 #ifdef CONFIG_X86_64
217 		ideal_nops = k8_nops;
218 #else
219 		if (boot_cpu_has(X86_FEATURE_K8))
220 			ideal_nops = k8_nops;
221 		else if (boot_cpu_has(X86_FEATURE_K7))
222 			ideal_nops = k7_nops;
223 		else
224 			ideal_nops = intel_nops;
225 #endif
226 	}
227 }
228 
229 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
230 static void __init_or_module add_nops(void *insns, unsigned int len)
231 {
232 	while (len > 0) {
233 		unsigned int noplen = len;
234 		if (noplen > ASM_NOP_MAX)
235 			noplen = ASM_NOP_MAX;
236 		memcpy(insns, ideal_nops[noplen], noplen);
237 		insns += noplen;
238 		len -= noplen;
239 	}
240 }
241 
242 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
243 extern s32 __smp_locks[], __smp_locks_end[];
244 void *text_poke_early(void *addr, const void *opcode, size_t len);
245 
246 /* Replace instructions with better alternatives for this CPU type.
247    This runs before SMP is initialized to avoid SMP problems with
248    self modifying code. This implies that asymmetric systems where
249    APs have less capabilities than the boot processor are not handled.
250    Tough. Make sure you disable such features by hand. */
251 
252 void __init_or_module apply_alternatives(struct alt_instr *start,
253 					 struct alt_instr *end)
254 {
255 	struct alt_instr *a;
256 	u8 *instr, *replacement;
257 	u8 insnbuf[MAX_PATCH_LEN];
258 
259 	DPRINTK("%s: alt table %p -> %p\n", __func__, start, end);
260 	/*
261 	 * The scan order should be from start to end. A later scanned
262 	 * alternative code can overwrite a previous scanned alternative code.
263 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
264 	 * patch code.
265 	 *
266 	 * So be careful if you want to change the scan order to any other
267 	 * order.
268 	 */
269 	for (a = start; a < end; a++) {
270 		instr = (u8 *)&a->instr_offset + a->instr_offset;
271 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
272 		BUG_ON(a->replacementlen > a->instrlen);
273 		BUG_ON(a->instrlen > sizeof(insnbuf));
274 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
275 		if (!boot_cpu_has(a->cpuid))
276 			continue;
277 
278 		memcpy(insnbuf, replacement, a->replacementlen);
279 
280 		/* 0xe8 is a relative jump; fix the offset. */
281 		if (*insnbuf == 0xe8 && a->replacementlen == 5)
282 		    *(s32 *)(insnbuf + 1) += replacement - instr;
283 
284 		add_nops(insnbuf + a->replacementlen,
285 			 a->instrlen - a->replacementlen);
286 
287 		text_poke_early(instr, insnbuf, a->instrlen);
288 	}
289 }
290 
291 #ifdef CONFIG_SMP
292 
293 static void alternatives_smp_lock(const s32 *start, const s32 *end,
294 				  u8 *text, u8 *text_end)
295 {
296 	const s32 *poff;
297 
298 	mutex_lock(&text_mutex);
299 	for (poff = start; poff < end; poff++) {
300 		u8 *ptr = (u8 *)poff + *poff;
301 
302 		if (!*poff || ptr < text || ptr >= text_end)
303 			continue;
304 		/* turn DS segment override prefix into lock prefix */
305 		if (*ptr == 0x3e)
306 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
307 	}
308 	mutex_unlock(&text_mutex);
309 }
310 
311 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
312 				    u8 *text, u8 *text_end)
313 {
314 	const s32 *poff;
315 
316 	mutex_lock(&text_mutex);
317 	for (poff = start; poff < end; poff++) {
318 		u8 *ptr = (u8 *)poff + *poff;
319 
320 		if (!*poff || ptr < text || ptr >= text_end)
321 			continue;
322 		/* turn lock prefix into DS segment override prefix */
323 		if (*ptr == 0xf0)
324 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
325 	}
326 	mutex_unlock(&text_mutex);
327 }
328 
329 struct smp_alt_module {
330 	/* what is this ??? */
331 	struct module	*mod;
332 	char		*name;
333 
334 	/* ptrs to lock prefixes */
335 	const s32	*locks;
336 	const s32	*locks_end;
337 
338 	/* .text segment, needed to avoid patching init code ;) */
339 	u8		*text;
340 	u8		*text_end;
341 
342 	struct list_head next;
343 };
344 static LIST_HEAD(smp_alt_modules);
345 static DEFINE_MUTEX(smp_alt);
346 static bool uniproc_patched = false;	/* protected by smp_alt */
347 
348 void __init_or_module alternatives_smp_module_add(struct module *mod,
349 						  char *name,
350 						  void *locks, void *locks_end,
351 						  void *text,  void *text_end)
352 {
353 	struct smp_alt_module *smp;
354 
355 	mutex_lock(&smp_alt);
356 	if (!uniproc_patched)
357 		goto unlock;
358 
359 	if (num_possible_cpus() == 1)
360 		/* Don't bother remembering, we'll never have to undo it. */
361 		goto smp_unlock;
362 
363 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
364 	if (NULL == smp)
365 		/* we'll run the (safe but slow) SMP code then ... */
366 		goto unlock;
367 
368 	smp->mod	= mod;
369 	smp->name	= name;
370 	smp->locks	= locks;
371 	smp->locks_end	= locks_end;
372 	smp->text	= text;
373 	smp->text_end	= text_end;
374 	DPRINTK("%s: locks %p -> %p, text %p -> %p, name %s\n",
375 		__func__, smp->locks, smp->locks_end,
376 		smp->text, smp->text_end, smp->name);
377 
378 	list_add_tail(&smp->next, &smp_alt_modules);
379 smp_unlock:
380 	alternatives_smp_unlock(locks, locks_end, text, text_end);
381 unlock:
382 	mutex_unlock(&smp_alt);
383 }
384 
385 void __init_or_module alternatives_smp_module_del(struct module *mod)
386 {
387 	struct smp_alt_module *item;
388 
389 	mutex_lock(&smp_alt);
390 	list_for_each_entry(item, &smp_alt_modules, next) {
391 		if (mod != item->mod)
392 			continue;
393 		list_del(&item->next);
394 		kfree(item);
395 		break;
396 	}
397 	mutex_unlock(&smp_alt);
398 }
399 
400 void alternatives_enable_smp(void)
401 {
402 	struct smp_alt_module *mod;
403 
404 	/* Why bother if there are no other CPUs? */
405 	BUG_ON(num_possible_cpus() == 1);
406 
407 	mutex_lock(&smp_alt);
408 
409 	if (uniproc_patched) {
410 		pr_info("switching to SMP code\n");
411 		BUG_ON(num_online_cpus() != 1);
412 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
413 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
414 		list_for_each_entry(mod, &smp_alt_modules, next)
415 			alternatives_smp_lock(mod->locks, mod->locks_end,
416 					      mod->text, mod->text_end);
417 		uniproc_patched = false;
418 	}
419 	mutex_unlock(&smp_alt);
420 }
421 
422 /* Return 1 if the address range is reserved for smp-alternatives */
423 int alternatives_text_reserved(void *start, void *end)
424 {
425 	struct smp_alt_module *mod;
426 	const s32 *poff;
427 	u8 *text_start = start;
428 	u8 *text_end = end;
429 
430 	list_for_each_entry(mod, &smp_alt_modules, next) {
431 		if (mod->text > text_end || mod->text_end < text_start)
432 			continue;
433 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
434 			const u8 *ptr = (const u8 *)poff + *poff;
435 
436 			if (text_start <= ptr && text_end > ptr)
437 				return 1;
438 		}
439 	}
440 
441 	return 0;
442 }
443 #endif
444 
445 #ifdef CONFIG_PARAVIRT
446 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
447 				     struct paravirt_patch_site *end)
448 {
449 	struct paravirt_patch_site *p;
450 	char insnbuf[MAX_PATCH_LEN];
451 
452 	if (noreplace_paravirt)
453 		return;
454 
455 	for (p = start; p < end; p++) {
456 		unsigned int used;
457 
458 		BUG_ON(p->len > MAX_PATCH_LEN);
459 		/* prep the buffer with the original instructions */
460 		memcpy(insnbuf, p->instr, p->len);
461 		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
462 					 (unsigned long)p->instr, p->len);
463 
464 		BUG_ON(used > p->len);
465 
466 		/* Pad the rest with nops */
467 		add_nops(insnbuf + used, p->len - used);
468 		text_poke_early(p->instr, insnbuf, p->len);
469 	}
470 }
471 extern struct paravirt_patch_site __start_parainstructions[],
472 	__stop_parainstructions[];
473 #endif	/* CONFIG_PARAVIRT */
474 
475 void __init alternative_instructions(void)
476 {
477 	/* The patching is not fully atomic, so try to avoid local interruptions
478 	   that might execute the to be patched code.
479 	   Other CPUs are not running. */
480 	stop_nmi();
481 
482 	/*
483 	 * Don't stop machine check exceptions while patching.
484 	 * MCEs only happen when something got corrupted and in this
485 	 * case we must do something about the corruption.
486 	 * Ignoring it is worse than a unlikely patching race.
487 	 * Also machine checks tend to be broadcast and if one CPU
488 	 * goes into machine check the others follow quickly, so we don't
489 	 * expect a machine check to cause undue problems during to code
490 	 * patching.
491 	 */
492 
493 	apply_alternatives(__alt_instructions, __alt_instructions_end);
494 
495 #ifdef CONFIG_SMP
496 	/* Patch to UP if other cpus not imminent. */
497 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
498 		uniproc_patched = true;
499 		alternatives_smp_module_add(NULL, "core kernel",
500 					    __smp_locks, __smp_locks_end,
501 					    _text, _etext);
502 	}
503 
504 	if (!uniproc_patched || num_possible_cpus() == 1)
505 		free_init_pages("SMP alternatives",
506 				(unsigned long)__smp_locks,
507 				(unsigned long)__smp_locks_end);
508 #endif
509 
510 	apply_paravirt(__parainstructions, __parainstructions_end);
511 
512 	restart_nmi();
513 }
514 
515 /**
516  * text_poke_early - Update instructions on a live kernel at boot time
517  * @addr: address to modify
518  * @opcode: source of the copy
519  * @len: length to copy
520  *
521  * When you use this code to patch more than one byte of an instruction
522  * you need to make sure that other CPUs cannot execute this code in parallel.
523  * Also no thread must be currently preempted in the middle of these
524  * instructions. And on the local CPU you need to be protected again NMI or MCE
525  * handlers seeing an inconsistent instruction while you patch.
526  */
527 void *__init_or_module text_poke_early(void *addr, const void *opcode,
528 					      size_t len)
529 {
530 	unsigned long flags;
531 	local_irq_save(flags);
532 	memcpy(addr, opcode, len);
533 	sync_core();
534 	local_irq_restore(flags);
535 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
536 	   that causes hangs on some VIA CPUs. */
537 	return addr;
538 }
539 
540 /**
541  * text_poke - Update instructions on a live kernel
542  * @addr: address to modify
543  * @opcode: source of the copy
544  * @len: length to copy
545  *
546  * Only atomic text poke/set should be allowed when not doing early patching.
547  * It means the size must be writable atomically and the address must be aligned
548  * in a way that permits an atomic write. It also makes sure we fit on a single
549  * page.
550  *
551  * Note: Must be called under text_mutex.
552  */
553 void *text_poke(void *addr, const void *opcode, size_t len)
554 {
555 	unsigned long flags;
556 	char *vaddr;
557 	struct page *pages[2];
558 	int i;
559 
560 	if (!core_kernel_text((unsigned long)addr)) {
561 		pages[0] = vmalloc_to_page(addr);
562 		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
563 	} else {
564 		pages[0] = virt_to_page(addr);
565 		WARN_ON(!PageReserved(pages[0]));
566 		pages[1] = virt_to_page(addr + PAGE_SIZE);
567 	}
568 	BUG_ON(!pages[0]);
569 	local_irq_save(flags);
570 	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
571 	if (pages[1])
572 		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
573 	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
574 	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
575 	clear_fixmap(FIX_TEXT_POKE0);
576 	if (pages[1])
577 		clear_fixmap(FIX_TEXT_POKE1);
578 	local_flush_tlb();
579 	sync_core();
580 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
581 	   that causes hangs on some VIA CPUs. */
582 	for (i = 0; i < len; i++)
583 		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
584 	local_irq_restore(flags);
585 	return addr;
586 }
587 
588 static void do_sync_core(void *info)
589 {
590 	sync_core();
591 }
592 
593 static bool bp_patching_in_progress;
594 static void *bp_int3_handler, *bp_int3_addr;
595 
596 int poke_int3_handler(struct pt_regs *regs)
597 {
598 	/* bp_patching_in_progress */
599 	smp_rmb();
600 
601 	if (likely(!bp_patching_in_progress))
602 		return 0;
603 
604 	if (user_mode_vm(regs) || regs->ip != (unsigned long)bp_int3_addr)
605 		return 0;
606 
607 	/* set up the specified breakpoint handler */
608 	regs->ip = (unsigned long) bp_int3_handler;
609 
610 	return 1;
611 
612 }
613 
614 /**
615  * text_poke_bp() -- update instructions on live kernel on SMP
616  * @addr:	address to patch
617  * @opcode:	opcode of new instruction
618  * @len:	length to copy
619  * @handler:	address to jump to when the temporary breakpoint is hit
620  *
621  * Modify multi-byte instruction by using int3 breakpoint on SMP.
622  * We completely avoid stop_machine() here, and achieve the
623  * synchronization using int3 breakpoint.
624  *
625  * The way it is done:
626  *	- add a int3 trap to the address that will be patched
627  *	- sync cores
628  *	- update all but the first byte of the patched range
629  *	- sync cores
630  *	- replace the first byte (int3) by the first byte of
631  *	  replacing opcode
632  *	- sync cores
633  *
634  * Note: must be called under text_mutex.
635  */
636 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
637 {
638 	unsigned char int3 = 0xcc;
639 
640 	bp_int3_handler = handler;
641 	bp_int3_addr = (u8 *)addr + sizeof(int3);
642 	bp_patching_in_progress = true;
643 	/*
644 	 * Corresponding read barrier in int3 notifier for
645 	 * making sure the in_progress flags is correctly ordered wrt.
646 	 * patching
647 	 */
648 	smp_wmb();
649 
650 	text_poke(addr, &int3, sizeof(int3));
651 
652 	on_each_cpu(do_sync_core, NULL, 1);
653 
654 	if (len - sizeof(int3) > 0) {
655 		/* patch all but the first byte */
656 		text_poke((char *)addr + sizeof(int3),
657 			  (const char *) opcode + sizeof(int3),
658 			  len - sizeof(int3));
659 		/*
660 		 * According to Intel, this core syncing is very likely
661 		 * not necessary and we'd be safe even without it. But
662 		 * better safe than sorry (plus there's not only Intel).
663 		 */
664 		on_each_cpu(do_sync_core, NULL, 1);
665 	}
666 
667 	/* patch the first byte */
668 	text_poke(addr, opcode, sizeof(int3));
669 
670 	on_each_cpu(do_sync_core, NULL, 1);
671 
672 	bp_patching_in_progress = false;
673 	smp_wmb();
674 
675 	return addr;
676 }
677 
678