1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/module.h> 5 #include <linux/sched.h> 6 #include <linux/perf_event.h> 7 #include <linux/mutex.h> 8 #include <linux/list.h> 9 #include <linux/stringify.h> 10 #include <linux/highmem.h> 11 #include <linux/mm.h> 12 #include <linux/vmalloc.h> 13 #include <linux/memory.h> 14 #include <linux/stop_machine.h> 15 #include <linux/slab.h> 16 #include <linux/kdebug.h> 17 #include <linux/kprobes.h> 18 #include <linux/mmu_context.h> 19 #include <linux/bsearch.h> 20 #include <linux/sync_core.h> 21 #include <asm/text-patching.h> 22 #include <asm/alternative.h> 23 #include <asm/sections.h> 24 #include <asm/mce.h> 25 #include <asm/nmi.h> 26 #include <asm/cacheflush.h> 27 #include <asm/tlbflush.h> 28 #include <asm/insn.h> 29 #include <asm/io.h> 30 #include <asm/fixmap.h> 31 #include <asm/paravirt.h> 32 33 int __read_mostly alternatives_patched; 34 35 EXPORT_SYMBOL_GPL(alternatives_patched); 36 37 #define MAX_PATCH_LEN (255-1) 38 39 static int __initdata_or_module debug_alternative; 40 41 static int __init debug_alt(char *str) 42 { 43 debug_alternative = 1; 44 return 1; 45 } 46 __setup("debug-alternative", debug_alt); 47 48 static int noreplace_smp; 49 50 static int __init setup_noreplace_smp(char *str) 51 { 52 noreplace_smp = 1; 53 return 1; 54 } 55 __setup("noreplace-smp", setup_noreplace_smp); 56 57 #define DPRINTK(fmt, args...) \ 58 do { \ 59 if (debug_alternative) \ 60 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 61 } while (0) 62 63 #define DUMP_BYTES(buf, len, fmt, args...) \ 64 do { \ 65 if (unlikely(debug_alternative)) { \ 66 int j; \ 67 \ 68 if (!(len)) \ 69 break; \ 70 \ 71 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 72 for (j = 0; j < (len) - 1; j++) \ 73 printk(KERN_CONT "%02hhx ", buf[j]); \ 74 printk(KERN_CONT "%02hhx\n", buf[j]); \ 75 } \ 76 } while (0) 77 78 const unsigned char x86nops[] = 79 { 80 BYTES_NOP1, 81 BYTES_NOP2, 82 BYTES_NOP3, 83 BYTES_NOP4, 84 BYTES_NOP5, 85 BYTES_NOP6, 86 BYTES_NOP7, 87 BYTES_NOP8, 88 }; 89 90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 91 { 92 NULL, 93 x86nops, 94 x86nops + 1, 95 x86nops + 1 + 2, 96 x86nops + 1 + 2 + 3, 97 x86nops + 1 + 2 + 3 + 4, 98 x86nops + 1 + 2 + 3 + 4 + 5, 99 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 100 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 101 }; 102 103 /* Use this to add nops to a buffer, then text_poke the whole buffer. */ 104 static void __init_or_module add_nops(void *insns, unsigned int len) 105 { 106 while (len > 0) { 107 unsigned int noplen = len; 108 if (noplen > ASM_NOP_MAX) 109 noplen = ASM_NOP_MAX; 110 memcpy(insns, x86_nops[noplen], noplen); 111 insns += noplen; 112 len -= noplen; 113 } 114 } 115 116 extern struct alt_instr __alt_instructions[], __alt_instructions_end[]; 117 extern s32 __smp_locks[], __smp_locks_end[]; 118 void text_poke_early(void *addr, const void *opcode, size_t len); 119 120 /* 121 * Are we looking at a near JMP with a 1 or 4-byte displacement. 122 */ 123 static inline bool is_jmp(const u8 opcode) 124 { 125 return opcode == 0xeb || opcode == 0xe9; 126 } 127 128 static void __init_or_module 129 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff) 130 { 131 u8 *next_rip, *tgt_rip; 132 s32 n_dspl, o_dspl; 133 int repl_len; 134 135 if (a->replacementlen != 5) 136 return; 137 138 o_dspl = *(s32 *)(insn_buff + 1); 139 140 /* next_rip of the replacement JMP */ 141 next_rip = repl_insn + a->replacementlen; 142 /* target rip of the replacement JMP */ 143 tgt_rip = next_rip + o_dspl; 144 n_dspl = tgt_rip - orig_insn; 145 146 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl); 147 148 if (tgt_rip - orig_insn >= 0) { 149 if (n_dspl - 2 <= 127) 150 goto two_byte_jmp; 151 else 152 goto five_byte_jmp; 153 /* negative offset */ 154 } else { 155 if (((n_dspl - 2) & 0xff) == (n_dspl - 2)) 156 goto two_byte_jmp; 157 else 158 goto five_byte_jmp; 159 } 160 161 two_byte_jmp: 162 n_dspl -= 2; 163 164 insn_buff[0] = 0xeb; 165 insn_buff[1] = (s8)n_dspl; 166 add_nops(insn_buff + 2, 3); 167 168 repl_len = 2; 169 goto done; 170 171 five_byte_jmp: 172 n_dspl -= 5; 173 174 insn_buff[0] = 0xe9; 175 *(s32 *)&insn_buff[1] = n_dspl; 176 177 repl_len = 5; 178 179 done: 180 181 DPRINTK("final displ: 0x%08x, JMP 0x%lx", 182 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len); 183 } 184 185 /* 186 * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90) 187 * 188 * @instr: instruction byte stream 189 * @instrlen: length of the above 190 * @off: offset within @instr where the first NOP has been detected 191 * 192 * Return: number of NOPs found (and replaced). 193 */ 194 static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off) 195 { 196 unsigned long flags; 197 int i = off, nnops; 198 199 while (i < instrlen) { 200 if (instr[i] != 0x90) 201 break; 202 203 i++; 204 } 205 206 nnops = i - off; 207 208 if (nnops <= 1) 209 return nnops; 210 211 local_irq_save(flags); 212 add_nops(instr + off, nnops); 213 local_irq_restore(flags); 214 215 DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i); 216 217 return nnops; 218 } 219 220 /* 221 * "noinline" to cause control flow change and thus invalidate I$ and 222 * cause refetch after modification. 223 */ 224 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr) 225 { 226 struct insn insn; 227 int i = 0; 228 229 /* 230 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger 231 * ones. 232 */ 233 for (;;) { 234 if (insn_decode_kernel(&insn, &instr[i])) 235 return; 236 237 /* 238 * See if this and any potentially following NOPs can be 239 * optimized. 240 */ 241 if (insn.length == 1 && insn.opcode.bytes[0] == 0x90) 242 i += optimize_nops_range(instr, a->instrlen, i); 243 else 244 i += insn.length; 245 246 if (i >= a->instrlen) 247 return; 248 } 249 } 250 251 /* 252 * Replace instructions with better alternatives for this CPU type. This runs 253 * before SMP is initialized to avoid SMP problems with self modifying code. 254 * This implies that asymmetric systems where APs have less capabilities than 255 * the boot processor are not handled. Tough. Make sure you disable such 256 * features by hand. 257 * 258 * Marked "noinline" to cause control flow change and thus insn cache 259 * to refetch changed I$ lines. 260 */ 261 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 262 struct alt_instr *end) 263 { 264 struct alt_instr *a; 265 u8 *instr, *replacement; 266 u8 insn_buff[MAX_PATCH_LEN]; 267 268 DPRINTK("alt table %px, -> %px", start, end); 269 /* 270 * The scan order should be from start to end. A later scanned 271 * alternative code can overwrite previously scanned alternative code. 272 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 273 * patch code. 274 * 275 * So be careful if you want to change the scan order to any other 276 * order. 277 */ 278 for (a = start; a < end; a++) { 279 int insn_buff_sz = 0; 280 /* Mask away "NOT" flag bit for feature to test. */ 281 u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV; 282 283 instr = (u8 *)&a->instr_offset + a->instr_offset; 284 replacement = (u8 *)&a->repl_offset + a->repl_offset; 285 BUG_ON(a->instrlen > sizeof(insn_buff)); 286 BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32); 287 288 /* 289 * Patch if either: 290 * - feature is present 291 * - feature not present but ALTINSTR_FLAG_INV is set to mean, 292 * patch if feature is *NOT* present. 293 */ 294 if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV)) 295 goto next; 296 297 DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)", 298 (a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "", 299 feature >> 5, 300 feature & 0x1f, 301 instr, instr, a->instrlen, 302 replacement, a->replacementlen); 303 304 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr); 305 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 306 307 memcpy(insn_buff, replacement, a->replacementlen); 308 insn_buff_sz = a->replacementlen; 309 310 /* 311 * 0xe8 is a relative jump; fix the offset. 312 * 313 * Instruction length is checked before the opcode to avoid 314 * accessing uninitialized bytes for zero-length replacements. 315 */ 316 if (a->replacementlen == 5 && *insn_buff == 0xe8) { 317 *(s32 *)(insn_buff + 1) += replacement - instr; 318 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx", 319 *(s32 *)(insn_buff + 1), 320 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5); 321 } 322 323 if (a->replacementlen && is_jmp(replacement[0])) 324 recompute_jump(a, instr, replacement, insn_buff); 325 326 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 327 insn_buff[insn_buff_sz] = 0x90; 328 329 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 330 331 text_poke_early(instr, insn_buff, insn_buff_sz); 332 333 next: 334 optimize_nops(a, instr); 335 } 336 } 337 338 #ifdef CONFIG_SMP 339 static void alternatives_smp_lock(const s32 *start, const s32 *end, 340 u8 *text, u8 *text_end) 341 { 342 const s32 *poff; 343 344 for (poff = start; poff < end; poff++) { 345 u8 *ptr = (u8 *)poff + *poff; 346 347 if (!*poff || ptr < text || ptr >= text_end) 348 continue; 349 /* turn DS segment override prefix into lock prefix */ 350 if (*ptr == 0x3e) 351 text_poke(ptr, ((unsigned char []){0xf0}), 1); 352 } 353 } 354 355 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 356 u8 *text, u8 *text_end) 357 { 358 const s32 *poff; 359 360 for (poff = start; poff < end; poff++) { 361 u8 *ptr = (u8 *)poff + *poff; 362 363 if (!*poff || ptr < text || ptr >= text_end) 364 continue; 365 /* turn lock prefix into DS segment override prefix */ 366 if (*ptr == 0xf0) 367 text_poke(ptr, ((unsigned char []){0x3E}), 1); 368 } 369 } 370 371 struct smp_alt_module { 372 /* what is this ??? */ 373 struct module *mod; 374 char *name; 375 376 /* ptrs to lock prefixes */ 377 const s32 *locks; 378 const s32 *locks_end; 379 380 /* .text segment, needed to avoid patching init code ;) */ 381 u8 *text; 382 u8 *text_end; 383 384 struct list_head next; 385 }; 386 static LIST_HEAD(smp_alt_modules); 387 static bool uniproc_patched = false; /* protected by text_mutex */ 388 389 void __init_or_module alternatives_smp_module_add(struct module *mod, 390 char *name, 391 void *locks, void *locks_end, 392 void *text, void *text_end) 393 { 394 struct smp_alt_module *smp; 395 396 mutex_lock(&text_mutex); 397 if (!uniproc_patched) 398 goto unlock; 399 400 if (num_possible_cpus() == 1) 401 /* Don't bother remembering, we'll never have to undo it. */ 402 goto smp_unlock; 403 404 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 405 if (NULL == smp) 406 /* we'll run the (safe but slow) SMP code then ... */ 407 goto unlock; 408 409 smp->mod = mod; 410 smp->name = name; 411 smp->locks = locks; 412 smp->locks_end = locks_end; 413 smp->text = text; 414 smp->text_end = text_end; 415 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n", 416 smp->locks, smp->locks_end, 417 smp->text, smp->text_end, smp->name); 418 419 list_add_tail(&smp->next, &smp_alt_modules); 420 smp_unlock: 421 alternatives_smp_unlock(locks, locks_end, text, text_end); 422 unlock: 423 mutex_unlock(&text_mutex); 424 } 425 426 void __init_or_module alternatives_smp_module_del(struct module *mod) 427 { 428 struct smp_alt_module *item; 429 430 mutex_lock(&text_mutex); 431 list_for_each_entry(item, &smp_alt_modules, next) { 432 if (mod != item->mod) 433 continue; 434 list_del(&item->next); 435 kfree(item); 436 break; 437 } 438 mutex_unlock(&text_mutex); 439 } 440 441 void alternatives_enable_smp(void) 442 { 443 struct smp_alt_module *mod; 444 445 /* Why bother if there are no other CPUs? */ 446 BUG_ON(num_possible_cpus() == 1); 447 448 mutex_lock(&text_mutex); 449 450 if (uniproc_patched) { 451 pr_info("switching to SMP code\n"); 452 BUG_ON(num_online_cpus() != 1); 453 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 454 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 455 list_for_each_entry(mod, &smp_alt_modules, next) 456 alternatives_smp_lock(mod->locks, mod->locks_end, 457 mod->text, mod->text_end); 458 uniproc_patched = false; 459 } 460 mutex_unlock(&text_mutex); 461 } 462 463 /* 464 * Return 1 if the address range is reserved for SMP-alternatives. 465 * Must hold text_mutex. 466 */ 467 int alternatives_text_reserved(void *start, void *end) 468 { 469 struct smp_alt_module *mod; 470 const s32 *poff; 471 u8 *text_start = start; 472 u8 *text_end = end; 473 474 lockdep_assert_held(&text_mutex); 475 476 list_for_each_entry(mod, &smp_alt_modules, next) { 477 if (mod->text > text_end || mod->text_end < text_start) 478 continue; 479 for (poff = mod->locks; poff < mod->locks_end; poff++) { 480 const u8 *ptr = (const u8 *)poff + *poff; 481 482 if (text_start <= ptr && text_end > ptr) 483 return 1; 484 } 485 } 486 487 return 0; 488 } 489 #endif /* CONFIG_SMP */ 490 491 #ifdef CONFIG_PARAVIRT 492 void __init_or_module apply_paravirt(struct paravirt_patch_site *start, 493 struct paravirt_patch_site *end) 494 { 495 struct paravirt_patch_site *p; 496 char insn_buff[MAX_PATCH_LEN]; 497 498 for (p = start; p < end; p++) { 499 unsigned int used; 500 501 BUG_ON(p->len > MAX_PATCH_LEN); 502 /* prep the buffer with the original instructions */ 503 memcpy(insn_buff, p->instr, p->len); 504 used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len); 505 506 BUG_ON(used > p->len); 507 508 /* Pad the rest with nops */ 509 add_nops(insn_buff + used, p->len - used); 510 text_poke_early(p->instr, insn_buff, p->len); 511 } 512 } 513 extern struct paravirt_patch_site __start_parainstructions[], 514 __stop_parainstructions[]; 515 #endif /* CONFIG_PARAVIRT */ 516 517 /* 518 * Self-test for the INT3 based CALL emulation code. 519 * 520 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 521 * properly and that there is a stack gap between the INT3 frame and the 522 * previous context. Without this gap doing a virtual PUSH on the interrupted 523 * stack would corrupt the INT3 IRET frame. 524 * 525 * See entry_{32,64}.S for more details. 526 */ 527 528 /* 529 * We define the int3_magic() function in assembly to control the calling 530 * convention such that we can 'call' it from assembly. 531 */ 532 533 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 534 535 asm ( 536 " .pushsection .init.text, \"ax\", @progbits\n" 537 " .type int3_magic, @function\n" 538 "int3_magic:\n" 539 " movl $1, (%" _ASM_ARG1 ")\n" 540 " ret\n" 541 " .size int3_magic, .-int3_magic\n" 542 " .popsection\n" 543 ); 544 545 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */ 546 547 static int __init 548 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 549 { 550 struct die_args *args = data; 551 struct pt_regs *regs = args->regs; 552 553 if (!regs || user_mode(regs)) 554 return NOTIFY_DONE; 555 556 if (val != DIE_INT3) 557 return NOTIFY_DONE; 558 559 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip) 560 return NOTIFY_DONE; 561 562 int3_emulate_call(regs, (unsigned long)&int3_magic); 563 return NOTIFY_STOP; 564 } 565 566 static void __init int3_selftest(void) 567 { 568 static __initdata struct notifier_block int3_exception_nb = { 569 .notifier_call = int3_exception_notify, 570 .priority = INT_MAX-1, /* last */ 571 }; 572 unsigned int val = 0; 573 574 BUG_ON(register_die_notifier(&int3_exception_nb)); 575 576 /* 577 * Basically: int3_magic(&val); but really complicated :-) 578 * 579 * Stick the address of the INT3 instruction into int3_selftest_ip, 580 * then trigger the INT3, padded with NOPs to match a CALL instruction 581 * length. 582 */ 583 asm volatile ("1: int3; nop; nop; nop; nop\n\t" 584 ".pushsection .init.data,\"aw\"\n\t" 585 ".align " __ASM_SEL(4, 8) "\n\t" 586 ".type int3_selftest_ip, @object\n\t" 587 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t" 588 "int3_selftest_ip:\n\t" 589 __ASM_SEL(.long, .quad) " 1b\n\t" 590 ".popsection\n\t" 591 : ASM_CALL_CONSTRAINT 592 : __ASM_SEL_RAW(a, D) (&val) 593 : "memory"); 594 595 BUG_ON(val != 1); 596 597 unregister_die_notifier(&int3_exception_nb); 598 } 599 600 void __init alternative_instructions(void) 601 { 602 int3_selftest(); 603 604 /* 605 * The patching is not fully atomic, so try to avoid local 606 * interruptions that might execute the to be patched code. 607 * Other CPUs are not running. 608 */ 609 stop_nmi(); 610 611 /* 612 * Don't stop machine check exceptions while patching. 613 * MCEs only happen when something got corrupted and in this 614 * case we must do something about the corruption. 615 * Ignoring it is worse than an unlikely patching race. 616 * Also machine checks tend to be broadcast and if one CPU 617 * goes into machine check the others follow quickly, so we don't 618 * expect a machine check to cause undue problems during to code 619 * patching. 620 */ 621 622 /* 623 * Paravirt patching and alternative patching can be combined to 624 * replace a function call with a short direct code sequence (e.g. 625 * by setting a constant return value instead of doing that in an 626 * external function). 627 * In order to make this work the following sequence is required: 628 * 1. set (artificial) features depending on used paravirt 629 * functions which can later influence alternative patching 630 * 2. apply paravirt patching (generally replacing an indirect 631 * function call with a direct one) 632 * 3. apply alternative patching (e.g. replacing a direct function 633 * call with a custom code sequence) 634 * Doing paravirt patching after alternative patching would clobber 635 * the optimization of the custom code with a function call again. 636 */ 637 paravirt_set_cap(); 638 639 /* 640 * First patch paravirt functions, such that we overwrite the indirect 641 * call with the direct call. 642 */ 643 apply_paravirt(__parainstructions, __parainstructions_end); 644 645 /* 646 * Then patch alternatives, such that those paravirt calls that are in 647 * alternatives can be overwritten by their immediate fragments. 648 */ 649 apply_alternatives(__alt_instructions, __alt_instructions_end); 650 651 #ifdef CONFIG_SMP 652 /* Patch to UP if other cpus not imminent. */ 653 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 654 uniproc_patched = true; 655 alternatives_smp_module_add(NULL, "core kernel", 656 __smp_locks, __smp_locks_end, 657 _text, _etext); 658 } 659 660 if (!uniproc_patched || num_possible_cpus() == 1) { 661 free_init_pages("SMP alternatives", 662 (unsigned long)__smp_locks, 663 (unsigned long)__smp_locks_end); 664 } 665 #endif 666 667 restart_nmi(); 668 alternatives_patched = 1; 669 } 670 671 /** 672 * text_poke_early - Update instructions on a live kernel at boot time 673 * @addr: address to modify 674 * @opcode: source of the copy 675 * @len: length to copy 676 * 677 * When you use this code to patch more than one byte of an instruction 678 * you need to make sure that other CPUs cannot execute this code in parallel. 679 * Also no thread must be currently preempted in the middle of these 680 * instructions. And on the local CPU you need to be protected against NMI or 681 * MCE handlers seeing an inconsistent instruction while you patch. 682 */ 683 void __init_or_module text_poke_early(void *addr, const void *opcode, 684 size_t len) 685 { 686 unsigned long flags; 687 688 if (boot_cpu_has(X86_FEATURE_NX) && 689 is_module_text_address((unsigned long)addr)) { 690 /* 691 * Modules text is marked initially as non-executable, so the 692 * code cannot be running and speculative code-fetches are 693 * prevented. Just change the code. 694 */ 695 memcpy(addr, opcode, len); 696 } else { 697 local_irq_save(flags); 698 memcpy(addr, opcode, len); 699 local_irq_restore(flags); 700 sync_core(); 701 702 /* 703 * Could also do a CLFLUSH here to speed up CPU recovery; but 704 * that causes hangs on some VIA CPUs. 705 */ 706 } 707 } 708 709 typedef struct { 710 struct mm_struct *mm; 711 } temp_mm_state_t; 712 713 /* 714 * Using a temporary mm allows to set temporary mappings that are not accessible 715 * by other CPUs. Such mappings are needed to perform sensitive memory writes 716 * that override the kernel memory protections (e.g., W^X), without exposing the 717 * temporary page-table mappings that are required for these write operations to 718 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the 719 * mapping is torn down. 720 * 721 * Context: The temporary mm needs to be used exclusively by a single core. To 722 * harden security IRQs must be disabled while the temporary mm is 723 * loaded, thereby preventing interrupt handler bugs from overriding 724 * the kernel memory protection. 725 */ 726 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) 727 { 728 temp_mm_state_t temp_state; 729 730 lockdep_assert_irqs_disabled(); 731 732 /* 733 * Make sure not to be in TLB lazy mode, as otherwise we'll end up 734 * with a stale address space WITHOUT being in lazy mode after 735 * restoring the previous mm. 736 */ 737 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) 738 leave_mm(smp_processor_id()); 739 740 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); 741 switch_mm_irqs_off(NULL, mm, current); 742 743 /* 744 * If breakpoints are enabled, disable them while the temporary mm is 745 * used. Userspace might set up watchpoints on addresses that are used 746 * in the temporary mm, which would lead to wrong signals being sent or 747 * crashes. 748 * 749 * Note that breakpoints are not disabled selectively, which also causes 750 * kernel breakpoints (e.g., perf's) to be disabled. This might be 751 * undesirable, but still seems reasonable as the code that runs in the 752 * temporary mm should be short. 753 */ 754 if (hw_breakpoint_active()) 755 hw_breakpoint_disable(); 756 757 return temp_state; 758 } 759 760 static inline void unuse_temporary_mm(temp_mm_state_t prev_state) 761 { 762 lockdep_assert_irqs_disabled(); 763 switch_mm_irqs_off(NULL, prev_state.mm, current); 764 765 /* 766 * Restore the breakpoints if they were disabled before the temporary mm 767 * was loaded. 768 */ 769 if (hw_breakpoint_active()) 770 hw_breakpoint_restore(); 771 } 772 773 __ro_after_init struct mm_struct *poking_mm; 774 __ro_after_init unsigned long poking_addr; 775 776 static void *__text_poke(void *addr, const void *opcode, size_t len) 777 { 778 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 779 struct page *pages[2] = {NULL}; 780 temp_mm_state_t prev; 781 unsigned long flags; 782 pte_t pte, *ptep; 783 spinlock_t *ptl; 784 pgprot_t pgprot; 785 786 /* 787 * While boot memory allocator is running we cannot use struct pages as 788 * they are not yet initialized. There is no way to recover. 789 */ 790 BUG_ON(!after_bootmem); 791 792 if (!core_kernel_text((unsigned long)addr)) { 793 pages[0] = vmalloc_to_page(addr); 794 if (cross_page_boundary) 795 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 796 } else { 797 pages[0] = virt_to_page(addr); 798 WARN_ON(!PageReserved(pages[0])); 799 if (cross_page_boundary) 800 pages[1] = virt_to_page(addr + PAGE_SIZE); 801 } 802 /* 803 * If something went wrong, crash and burn since recovery paths are not 804 * implemented. 805 */ 806 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 807 808 /* 809 * Map the page without the global bit, as TLB flushing is done with 810 * flush_tlb_mm_range(), which is intended for non-global PTEs. 811 */ 812 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 813 814 /* 815 * The lock is not really needed, but this allows to avoid open-coding. 816 */ 817 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 818 819 /* 820 * This must not fail; preallocated in poking_init(). 821 */ 822 VM_BUG_ON(!ptep); 823 824 local_irq_save(flags); 825 826 pte = mk_pte(pages[0], pgprot); 827 set_pte_at(poking_mm, poking_addr, ptep, pte); 828 829 if (cross_page_boundary) { 830 pte = mk_pte(pages[1], pgprot); 831 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); 832 } 833 834 /* 835 * Loading the temporary mm behaves as a compiler barrier, which 836 * guarantees that the PTE will be set at the time memcpy() is done. 837 */ 838 prev = use_temporary_mm(poking_mm); 839 840 kasan_disable_current(); 841 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len); 842 kasan_enable_current(); 843 844 /* 845 * Ensure that the PTE is only cleared after the instructions of memcpy 846 * were issued by using a compiler barrier. 847 */ 848 barrier(); 849 850 pte_clear(poking_mm, poking_addr, ptep); 851 if (cross_page_boundary) 852 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1); 853 854 /* 855 * Loading the previous page-table hierarchy requires a serializing 856 * instruction that already allows the core to see the updated version. 857 * Xen-PV is assumed to serialize execution in a similar manner. 858 */ 859 unuse_temporary_mm(prev); 860 861 /* 862 * Flushing the TLB might involve IPIs, which would require enabled 863 * IRQs, but not if the mm is not used, as it is in this point. 864 */ 865 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr + 866 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 867 PAGE_SHIFT, false); 868 869 /* 870 * If the text does not match what we just wrote then something is 871 * fundamentally screwy; there's nothing we can really do about that. 872 */ 873 BUG_ON(memcmp(addr, opcode, len)); 874 875 local_irq_restore(flags); 876 pte_unmap_unlock(ptep, ptl); 877 return addr; 878 } 879 880 /** 881 * text_poke - Update instructions on a live kernel 882 * @addr: address to modify 883 * @opcode: source of the copy 884 * @len: length to copy 885 * 886 * Only atomic text poke/set should be allowed when not doing early patching. 887 * It means the size must be writable atomically and the address must be aligned 888 * in a way that permits an atomic write. It also makes sure we fit on a single 889 * page. 890 * 891 * Note that the caller must ensure that if the modified code is part of a 892 * module, the module would not be removed during poking. This can be achieved 893 * by registering a module notifier, and ordering module removal and patching 894 * trough a mutex. 895 */ 896 void *text_poke(void *addr, const void *opcode, size_t len) 897 { 898 lockdep_assert_held(&text_mutex); 899 900 return __text_poke(addr, opcode, len); 901 } 902 903 /** 904 * text_poke_kgdb - Update instructions on a live kernel by kgdb 905 * @addr: address to modify 906 * @opcode: source of the copy 907 * @len: length to copy 908 * 909 * Only atomic text poke/set should be allowed when not doing early patching. 910 * It means the size must be writable atomically and the address must be aligned 911 * in a way that permits an atomic write. It also makes sure we fit on a single 912 * page. 913 * 914 * Context: should only be used by kgdb, which ensures no other core is running, 915 * despite the fact it does not hold the text_mutex. 916 */ 917 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 918 { 919 return __text_poke(addr, opcode, len); 920 } 921 922 static void do_sync_core(void *info) 923 { 924 sync_core(); 925 } 926 927 void text_poke_sync(void) 928 { 929 on_each_cpu(do_sync_core, NULL, 1); 930 } 931 932 struct text_poke_loc { 933 s32 rel_addr; /* addr := _stext + rel_addr */ 934 s32 rel32; 935 u8 opcode; 936 const u8 text[POKE_MAX_OPCODE_SIZE]; 937 u8 old; 938 }; 939 940 struct bp_patching_desc { 941 struct text_poke_loc *vec; 942 int nr_entries; 943 atomic_t refs; 944 }; 945 946 static struct bp_patching_desc *bp_desc; 947 948 static __always_inline 949 struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp) 950 { 951 struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */ 952 953 if (!desc || !arch_atomic_inc_not_zero(&desc->refs)) 954 return NULL; 955 956 return desc; 957 } 958 959 static __always_inline void put_desc(struct bp_patching_desc *desc) 960 { 961 smp_mb__before_atomic(); 962 arch_atomic_dec(&desc->refs); 963 } 964 965 static __always_inline void *text_poke_addr(struct text_poke_loc *tp) 966 { 967 return _stext + tp->rel_addr; 968 } 969 970 static __always_inline int patch_cmp(const void *key, const void *elt) 971 { 972 struct text_poke_loc *tp = (struct text_poke_loc *) elt; 973 974 if (key < text_poke_addr(tp)) 975 return -1; 976 if (key > text_poke_addr(tp)) 977 return 1; 978 return 0; 979 } 980 981 noinstr int poke_int3_handler(struct pt_regs *regs) 982 { 983 struct bp_patching_desc *desc; 984 struct text_poke_loc *tp; 985 int len, ret = 0; 986 void *ip; 987 988 if (user_mode(regs)) 989 return 0; 990 991 /* 992 * Having observed our INT3 instruction, we now must observe 993 * bp_desc: 994 * 995 * bp_desc = desc INT3 996 * WMB RMB 997 * write INT3 if (desc) 998 */ 999 smp_rmb(); 1000 1001 desc = try_get_desc(&bp_desc); 1002 if (!desc) 1003 return 0; 1004 1005 /* 1006 * Discount the INT3. See text_poke_bp_batch(). 1007 */ 1008 ip = (void *) regs->ip - INT3_INSN_SIZE; 1009 1010 /* 1011 * Skip the binary search if there is a single member in the vector. 1012 */ 1013 if (unlikely(desc->nr_entries > 1)) { 1014 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries, 1015 sizeof(struct text_poke_loc), 1016 patch_cmp); 1017 if (!tp) 1018 goto out_put; 1019 } else { 1020 tp = desc->vec; 1021 if (text_poke_addr(tp) != ip) 1022 goto out_put; 1023 } 1024 1025 len = text_opcode_size(tp->opcode); 1026 ip += len; 1027 1028 switch (tp->opcode) { 1029 case INT3_INSN_OPCODE: 1030 /* 1031 * Someone poked an explicit INT3, they'll want to handle it, 1032 * do not consume. 1033 */ 1034 goto out_put; 1035 1036 case RET_INSN_OPCODE: 1037 int3_emulate_ret(regs); 1038 break; 1039 1040 case CALL_INSN_OPCODE: 1041 int3_emulate_call(regs, (long)ip + tp->rel32); 1042 break; 1043 1044 case JMP32_INSN_OPCODE: 1045 case JMP8_INSN_OPCODE: 1046 int3_emulate_jmp(regs, (long)ip + tp->rel32); 1047 break; 1048 1049 default: 1050 BUG(); 1051 } 1052 1053 ret = 1; 1054 1055 out_put: 1056 put_desc(desc); 1057 return ret; 1058 } 1059 1060 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc)) 1061 static struct text_poke_loc tp_vec[TP_VEC_MAX]; 1062 static int tp_vec_nr; 1063 1064 /** 1065 * text_poke_bp_batch() -- update instructions on live kernel on SMP 1066 * @tp: vector of instructions to patch 1067 * @nr_entries: number of entries in the vector 1068 * 1069 * Modify multi-byte instruction by using int3 breakpoint on SMP. 1070 * We completely avoid stop_machine() here, and achieve the 1071 * synchronization using int3 breakpoint. 1072 * 1073 * The way it is done: 1074 * - For each entry in the vector: 1075 * - add a int3 trap to the address that will be patched 1076 * - sync cores 1077 * - For each entry in the vector: 1078 * - update all but the first byte of the patched range 1079 * - sync cores 1080 * - For each entry in the vector: 1081 * - replace the first byte (int3) by the first byte of 1082 * replacing opcode 1083 * - sync cores 1084 */ 1085 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries) 1086 { 1087 struct bp_patching_desc desc = { 1088 .vec = tp, 1089 .nr_entries = nr_entries, 1090 .refs = ATOMIC_INIT(1), 1091 }; 1092 unsigned char int3 = INT3_INSN_OPCODE; 1093 unsigned int i; 1094 int do_sync; 1095 1096 lockdep_assert_held(&text_mutex); 1097 1098 smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */ 1099 1100 /* 1101 * Corresponding read barrier in int3 notifier for making sure the 1102 * nr_entries and handler are correctly ordered wrt. patching. 1103 */ 1104 smp_wmb(); 1105 1106 /* 1107 * First step: add a int3 trap to the address that will be patched. 1108 */ 1109 for (i = 0; i < nr_entries; i++) { 1110 tp[i].old = *(u8 *)text_poke_addr(&tp[i]); 1111 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE); 1112 } 1113 1114 text_poke_sync(); 1115 1116 /* 1117 * Second step: update all but the first byte of the patched range. 1118 */ 1119 for (do_sync = 0, i = 0; i < nr_entries; i++) { 1120 u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, }; 1121 int len = text_opcode_size(tp[i].opcode); 1122 1123 if (len - INT3_INSN_SIZE > 0) { 1124 memcpy(old + INT3_INSN_SIZE, 1125 text_poke_addr(&tp[i]) + INT3_INSN_SIZE, 1126 len - INT3_INSN_SIZE); 1127 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE, 1128 (const char *)tp[i].text + INT3_INSN_SIZE, 1129 len - INT3_INSN_SIZE); 1130 do_sync++; 1131 } 1132 1133 /* 1134 * Emit a perf event to record the text poke, primarily to 1135 * support Intel PT decoding which must walk the executable code 1136 * to reconstruct the trace. The flow up to here is: 1137 * - write INT3 byte 1138 * - IPI-SYNC 1139 * - write instruction tail 1140 * At this point the actual control flow will be through the 1141 * INT3 and handler and not hit the old or new instruction. 1142 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 1143 * can still be decoded. Subsequently: 1144 * - emit RECORD_TEXT_POKE with the new instruction 1145 * - IPI-SYNC 1146 * - write first byte 1147 * - IPI-SYNC 1148 * So before the text poke event timestamp, the decoder will see 1149 * either the old instruction flow or FUP/TIP of INT3. After the 1150 * text poke event timestamp, the decoder will see either the 1151 * new instruction flow or FUP/TIP of INT3. Thus decoders can 1152 * use the timestamp as the point at which to modify the 1153 * executable code. 1154 * The old instruction is recorded so that the event can be 1155 * processed forwards or backwards. 1156 */ 1157 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, 1158 tp[i].text, len); 1159 } 1160 1161 if (do_sync) { 1162 /* 1163 * According to Intel, this core syncing is very likely 1164 * not necessary and we'd be safe even without it. But 1165 * better safe than sorry (plus there's not only Intel). 1166 */ 1167 text_poke_sync(); 1168 } 1169 1170 /* 1171 * Third step: replace the first byte (int3) by the first byte of 1172 * replacing opcode. 1173 */ 1174 for (do_sync = 0, i = 0; i < nr_entries; i++) { 1175 if (tp[i].text[0] == INT3_INSN_OPCODE) 1176 continue; 1177 1178 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE); 1179 do_sync++; 1180 } 1181 1182 if (do_sync) 1183 text_poke_sync(); 1184 1185 /* 1186 * Remove and synchronize_rcu(), except we have a very primitive 1187 * refcount based completion. 1188 */ 1189 WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */ 1190 if (!atomic_dec_and_test(&desc.refs)) 1191 atomic_cond_read_acquire(&desc.refs, !VAL); 1192 } 1193 1194 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr, 1195 const void *opcode, size_t len, const void *emulate) 1196 { 1197 struct insn insn; 1198 int ret; 1199 1200 memcpy((void *)tp->text, opcode, len); 1201 if (!emulate) 1202 emulate = opcode; 1203 1204 ret = insn_decode_kernel(&insn, emulate); 1205 1206 BUG_ON(ret < 0); 1207 BUG_ON(len != insn.length); 1208 1209 tp->rel_addr = addr - (void *)_stext; 1210 tp->opcode = insn.opcode.bytes[0]; 1211 1212 switch (tp->opcode) { 1213 case INT3_INSN_OPCODE: 1214 case RET_INSN_OPCODE: 1215 break; 1216 1217 case CALL_INSN_OPCODE: 1218 case JMP32_INSN_OPCODE: 1219 case JMP8_INSN_OPCODE: 1220 tp->rel32 = insn.immediate.value; 1221 break; 1222 1223 default: /* assume NOP */ 1224 switch (len) { 1225 case 2: /* NOP2 -- emulate as JMP8+0 */ 1226 BUG_ON(memcmp(emulate, x86_nops[len], len)); 1227 tp->opcode = JMP8_INSN_OPCODE; 1228 tp->rel32 = 0; 1229 break; 1230 1231 case 5: /* NOP5 -- emulate as JMP32+0 */ 1232 BUG_ON(memcmp(emulate, x86_nops[len], len)); 1233 tp->opcode = JMP32_INSN_OPCODE; 1234 tp->rel32 = 0; 1235 break; 1236 1237 default: /* unknown instruction */ 1238 BUG(); 1239 } 1240 break; 1241 } 1242 } 1243 1244 /* 1245 * We hard rely on the tp_vec being ordered; ensure this is so by flushing 1246 * early if needed. 1247 */ 1248 static bool tp_order_fail(void *addr) 1249 { 1250 struct text_poke_loc *tp; 1251 1252 if (!tp_vec_nr) 1253 return false; 1254 1255 if (!addr) /* force */ 1256 return true; 1257 1258 tp = &tp_vec[tp_vec_nr - 1]; 1259 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr) 1260 return true; 1261 1262 return false; 1263 } 1264 1265 static void text_poke_flush(void *addr) 1266 { 1267 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) { 1268 text_poke_bp_batch(tp_vec, tp_vec_nr); 1269 tp_vec_nr = 0; 1270 } 1271 } 1272 1273 void text_poke_finish(void) 1274 { 1275 text_poke_flush(NULL); 1276 } 1277 1278 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate) 1279 { 1280 struct text_poke_loc *tp; 1281 1282 if (unlikely(system_state == SYSTEM_BOOTING)) { 1283 text_poke_early(addr, opcode, len); 1284 return; 1285 } 1286 1287 text_poke_flush(addr); 1288 1289 tp = &tp_vec[tp_vec_nr++]; 1290 text_poke_loc_init(tp, addr, opcode, len, emulate); 1291 } 1292 1293 /** 1294 * text_poke_bp() -- update instructions on live kernel on SMP 1295 * @addr: address to patch 1296 * @opcode: opcode of new instruction 1297 * @len: length to copy 1298 * @emulate: instruction to be emulated 1299 * 1300 * Update a single instruction with the vector in the stack, avoiding 1301 * dynamically allocated memory. This function should be used when it is 1302 * not possible to allocate memory. 1303 */ 1304 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate) 1305 { 1306 struct text_poke_loc tp; 1307 1308 if (unlikely(system_state == SYSTEM_BOOTING)) { 1309 text_poke_early(addr, opcode, len); 1310 return; 1311 } 1312 1313 text_poke_loc_init(&tp, addr, opcode, len, emulate); 1314 text_poke_bp_batch(&tp, 1); 1315 } 1316