xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 
34 int __read_mostly alternatives_patched;
35 
36 EXPORT_SYMBOL_GPL(alternatives_patched);
37 
38 #define MAX_PATCH_LEN (255-1)
39 
40 static int __initdata_or_module debug_alternative;
41 
42 static int __init debug_alt(char *str)
43 {
44 	debug_alternative = 1;
45 	return 1;
46 }
47 __setup("debug-alternative", debug_alt);
48 
49 static int noreplace_smp;
50 
51 static int __init setup_noreplace_smp(char *str)
52 {
53 	noreplace_smp = 1;
54 	return 1;
55 }
56 __setup("noreplace-smp", setup_noreplace_smp);
57 
58 #define DPRINTK(fmt, args...)						\
59 do {									\
60 	if (debug_alternative)						\
61 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
62 } while (0)
63 
64 #define DUMP_BYTES(buf, len, fmt, args...)				\
65 do {									\
66 	if (unlikely(debug_alternative)) {				\
67 		int j;							\
68 									\
69 		if (!(len))						\
70 			break;						\
71 									\
72 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
73 		for (j = 0; j < (len) - 1; j++)				\
74 			printk(KERN_CONT "%02hhx ", buf[j]);		\
75 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
76 	}								\
77 } while (0)
78 
79 static const unsigned char x86nops[] =
80 {
81 	BYTES_NOP1,
82 	BYTES_NOP2,
83 	BYTES_NOP3,
84 	BYTES_NOP4,
85 	BYTES_NOP5,
86 	BYTES_NOP6,
87 	BYTES_NOP7,
88 	BYTES_NOP8,
89 };
90 
91 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
92 {
93 	NULL,
94 	x86nops,
95 	x86nops + 1,
96 	x86nops + 1 + 2,
97 	x86nops + 1 + 2 + 3,
98 	x86nops + 1 + 2 + 3 + 4,
99 	x86nops + 1 + 2 + 3 + 4 + 5,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
101 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102 };
103 
104 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
105 static void __init_or_module add_nops(void *insns, unsigned int len)
106 {
107 	while (len > 0) {
108 		unsigned int noplen = len;
109 		if (noplen > ASM_NOP_MAX)
110 			noplen = ASM_NOP_MAX;
111 		memcpy(insns, x86_nops[noplen], noplen);
112 		insns += noplen;
113 		len -= noplen;
114 	}
115 }
116 
117 extern s32 __retpoline_sites[], __retpoline_sites_end[];
118 extern s32 __return_sites[], __return_sites_end[];
119 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
120 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
121 extern s32 __smp_locks[], __smp_locks_end[];
122 void text_poke_early(void *addr, const void *opcode, size_t len);
123 
124 /*
125  * Are we looking at a near JMP with a 1 or 4-byte displacement.
126  */
127 static inline bool is_jmp(const u8 opcode)
128 {
129 	return opcode == 0xeb || opcode == 0xe9;
130 }
131 
132 static void __init_or_module
133 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
134 {
135 	u8 *next_rip, *tgt_rip;
136 	s32 n_dspl, o_dspl;
137 	int repl_len;
138 
139 	if (a->replacementlen != 5)
140 		return;
141 
142 	o_dspl = *(s32 *)(insn_buff + 1);
143 
144 	/* next_rip of the replacement JMP */
145 	next_rip = repl_insn + a->replacementlen;
146 	/* target rip of the replacement JMP */
147 	tgt_rip  = next_rip + o_dspl;
148 	n_dspl = tgt_rip - orig_insn;
149 
150 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
151 
152 	if (tgt_rip - orig_insn >= 0) {
153 		if (n_dspl - 2 <= 127)
154 			goto two_byte_jmp;
155 		else
156 			goto five_byte_jmp;
157 	/* negative offset */
158 	} else {
159 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
160 			goto two_byte_jmp;
161 		else
162 			goto five_byte_jmp;
163 	}
164 
165 two_byte_jmp:
166 	n_dspl -= 2;
167 
168 	insn_buff[0] = 0xeb;
169 	insn_buff[1] = (s8)n_dspl;
170 	add_nops(insn_buff + 2, 3);
171 
172 	repl_len = 2;
173 	goto done;
174 
175 five_byte_jmp:
176 	n_dspl -= 5;
177 
178 	insn_buff[0] = 0xe9;
179 	*(s32 *)&insn_buff[1] = n_dspl;
180 
181 	repl_len = 5;
182 
183 done:
184 
185 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
186 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
187 }
188 
189 /*
190  * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
191  *
192  * @instr: instruction byte stream
193  * @instrlen: length of the above
194  * @off: offset within @instr where the first NOP has been detected
195  *
196  * Return: number of NOPs found (and replaced).
197  */
198 static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
199 {
200 	unsigned long flags;
201 	int i = off, nnops;
202 
203 	while (i < instrlen) {
204 		if (instr[i] != 0x90)
205 			break;
206 
207 		i++;
208 	}
209 
210 	nnops = i - off;
211 
212 	if (nnops <= 1)
213 		return nnops;
214 
215 	local_irq_save(flags);
216 	add_nops(instr + off, nnops);
217 	local_irq_restore(flags);
218 
219 	DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
220 
221 	return nnops;
222 }
223 
224 /*
225  * "noinline" to cause control flow change and thus invalidate I$ and
226  * cause refetch after modification.
227  */
228 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
229 {
230 	struct insn insn;
231 	int i = 0;
232 
233 	/*
234 	 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
235 	 * ones.
236 	 */
237 	for (;;) {
238 		if (insn_decode_kernel(&insn, &instr[i]))
239 			return;
240 
241 		/*
242 		 * See if this and any potentially following NOPs can be
243 		 * optimized.
244 		 */
245 		if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
246 			i += optimize_nops_range(instr, len, i);
247 		else
248 			i += insn.length;
249 
250 		if (i >= len)
251 			return;
252 	}
253 }
254 
255 /*
256  * Replace instructions with better alternatives for this CPU type. This runs
257  * before SMP is initialized to avoid SMP problems with self modifying code.
258  * This implies that asymmetric systems where APs have less capabilities than
259  * the boot processor are not handled. Tough. Make sure you disable such
260  * features by hand.
261  *
262  * Marked "noinline" to cause control flow change and thus insn cache
263  * to refetch changed I$ lines.
264  */
265 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
266 						  struct alt_instr *end)
267 {
268 	struct alt_instr *a;
269 	u8 *instr, *replacement;
270 	u8 insn_buff[MAX_PATCH_LEN];
271 
272 	DPRINTK("alt table %px, -> %px", start, end);
273 	/*
274 	 * The scan order should be from start to end. A later scanned
275 	 * alternative code can overwrite previously scanned alternative code.
276 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
277 	 * patch code.
278 	 *
279 	 * So be careful if you want to change the scan order to any other
280 	 * order.
281 	 */
282 	for (a = start; a < end; a++) {
283 		int insn_buff_sz = 0;
284 		/* Mask away "NOT" flag bit for feature to test. */
285 		u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
286 
287 		instr = (u8 *)&a->instr_offset + a->instr_offset;
288 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
289 		BUG_ON(a->instrlen > sizeof(insn_buff));
290 		BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
291 
292 		/*
293 		 * Patch if either:
294 		 * - feature is present
295 		 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
296 		 *   patch if feature is *NOT* present.
297 		 */
298 		if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
299 			goto next;
300 
301 		DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
302 			(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
303 			feature >> 5,
304 			feature & 0x1f,
305 			instr, instr, a->instrlen,
306 			replacement, a->replacementlen);
307 
308 		DUMP_BYTES(instr, a->instrlen, "%px:   old_insn: ", instr);
309 		DUMP_BYTES(replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
310 
311 		memcpy(insn_buff, replacement, a->replacementlen);
312 		insn_buff_sz = a->replacementlen;
313 
314 		/*
315 		 * 0xe8 is a relative jump; fix the offset.
316 		 *
317 		 * Instruction length is checked before the opcode to avoid
318 		 * accessing uninitialized bytes for zero-length replacements.
319 		 */
320 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
321 			*(s32 *)(insn_buff + 1) += replacement - instr;
322 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
323 				*(s32 *)(insn_buff + 1),
324 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
325 		}
326 
327 		if (a->replacementlen && is_jmp(replacement[0]))
328 			recompute_jump(a, instr, replacement, insn_buff);
329 
330 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
331 			insn_buff[insn_buff_sz] = 0x90;
332 
333 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
334 
335 		text_poke_early(instr, insn_buff, insn_buff_sz);
336 
337 next:
338 		optimize_nops(instr, a->instrlen);
339 	}
340 }
341 
342 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
343 
344 /*
345  * CALL/JMP *%\reg
346  */
347 static int emit_indirect(int op, int reg, u8 *bytes)
348 {
349 	int i = 0;
350 	u8 modrm;
351 
352 	switch (op) {
353 	case CALL_INSN_OPCODE:
354 		modrm = 0x10; /* Reg = 2; CALL r/m */
355 		break;
356 
357 	case JMP32_INSN_OPCODE:
358 		modrm = 0x20; /* Reg = 4; JMP r/m */
359 		break;
360 
361 	default:
362 		WARN_ON_ONCE(1);
363 		return -1;
364 	}
365 
366 	if (reg >= 8) {
367 		bytes[i++] = 0x41; /* REX.B prefix */
368 		reg -= 8;
369 	}
370 
371 	modrm |= 0xc0; /* Mod = 3 */
372 	modrm += reg;
373 
374 	bytes[i++] = 0xff; /* opcode */
375 	bytes[i++] = modrm;
376 
377 	return i;
378 }
379 
380 /*
381  * Rewrite the compiler generated retpoline thunk calls.
382  *
383  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
384  * indirect instructions, avoiding the extra indirection.
385  *
386  * For example, convert:
387  *
388  *   CALL __x86_indirect_thunk_\reg
389  *
390  * into:
391  *
392  *   CALL *%\reg
393  *
394  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
395  */
396 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
397 {
398 	retpoline_thunk_t *target;
399 	int reg, ret, i = 0;
400 	u8 op, cc;
401 
402 	target = addr + insn->length + insn->immediate.value;
403 	reg = target - __x86_indirect_thunk_array;
404 
405 	if (WARN_ON_ONCE(reg & ~0xf))
406 		return -1;
407 
408 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
409 	BUG_ON(reg == 4);
410 
411 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
412 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE))
413 		return -1;
414 
415 	op = insn->opcode.bytes[0];
416 
417 	/*
418 	 * Convert:
419 	 *
420 	 *   Jcc.d32 __x86_indirect_thunk_\reg
421 	 *
422 	 * into:
423 	 *
424 	 *   Jncc.d8 1f
425 	 *   [ LFENCE ]
426 	 *   JMP *%\reg
427 	 *   [ NOP ]
428 	 * 1:
429 	 */
430 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
431 	if (op == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80) {
432 		cc = insn->opcode.bytes[1] & 0xf;
433 		cc ^= 1; /* invert condition */
434 
435 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
436 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
437 
438 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
439 		op = JMP32_INSN_OPCODE;
440 	}
441 
442 	/*
443 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
444 	 */
445 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
446 		bytes[i++] = 0x0f;
447 		bytes[i++] = 0xae;
448 		bytes[i++] = 0xe8; /* LFENCE */
449 	}
450 
451 	ret = emit_indirect(op, reg, bytes + i);
452 	if (ret < 0)
453 		return ret;
454 	i += ret;
455 
456 	/*
457 	 * The compiler is supposed to EMIT an INT3 after every unconditional
458 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
459 	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
460 	 * even on Intel.
461 	 */
462 	if (op == JMP32_INSN_OPCODE && i < insn->length)
463 		bytes[i++] = INT3_INSN_OPCODE;
464 
465 	for (; i < insn->length;)
466 		bytes[i++] = BYTES_NOP1;
467 
468 	return i;
469 }
470 
471 /*
472  * Generated by 'objtool --retpoline'.
473  */
474 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
475 {
476 	s32 *s;
477 
478 	for (s = start; s < end; s++) {
479 		void *addr = (void *)s + *s;
480 		struct insn insn;
481 		int len, ret;
482 		u8 bytes[16];
483 		u8 op1, op2;
484 
485 		ret = insn_decode_kernel(&insn, addr);
486 		if (WARN_ON_ONCE(ret < 0))
487 			continue;
488 
489 		op1 = insn.opcode.bytes[0];
490 		op2 = insn.opcode.bytes[1];
491 
492 		switch (op1) {
493 		case CALL_INSN_OPCODE:
494 		case JMP32_INSN_OPCODE:
495 			break;
496 
497 		case 0x0f: /* escape */
498 			if (op2 >= 0x80 && op2 <= 0x8f)
499 				break;
500 			fallthrough;
501 		default:
502 			WARN_ON_ONCE(1);
503 			continue;
504 		}
505 
506 		DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
507 			addr, addr, insn.length,
508 			addr + insn.length + insn.immediate.value);
509 
510 		len = patch_retpoline(addr, &insn, bytes);
511 		if (len == insn.length) {
512 			optimize_nops(bytes, len);
513 			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
514 			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
515 			text_poke_early(addr, bytes, len);
516 		}
517 	}
518 }
519 
520 #ifdef CONFIG_RETHUNK
521 /*
522  * Rewrite the compiler generated return thunk tail-calls.
523  *
524  * For example, convert:
525  *
526  *   JMP __x86_return_thunk
527  *
528  * into:
529  *
530  *   RET
531  */
532 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
533 {
534 	int i = 0;
535 
536 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
537 		return -1;
538 
539 	bytes[i++] = RET_INSN_OPCODE;
540 
541 	for (; i < insn->length;)
542 		bytes[i++] = INT3_INSN_OPCODE;
543 
544 	return i;
545 }
546 
547 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
548 {
549 	s32 *s;
550 
551 	for (s = start; s < end; s++) {
552 		void *dest = NULL, *addr = (void *)s + *s;
553 		struct insn insn;
554 		int len, ret;
555 		u8 bytes[16];
556 		u8 op;
557 
558 		ret = insn_decode_kernel(&insn, addr);
559 		if (WARN_ON_ONCE(ret < 0))
560 			continue;
561 
562 		op = insn.opcode.bytes[0];
563 		if (op == JMP32_INSN_OPCODE)
564 			dest = addr + insn.length + insn.immediate.value;
565 
566 		if (__static_call_fixup(addr, op, dest) ||
567 		    WARN_ONCE(dest != &__x86_return_thunk,
568 			      "missing return thunk: %pS-%pS: %*ph",
569 			      addr, dest, 5, addr))
570 			continue;
571 
572 		DPRINTK("return thunk at: %pS (%px) len: %d to: %pS",
573 			addr, addr, insn.length,
574 			addr + insn.length + insn.immediate.value);
575 
576 		len = patch_return(addr, &insn, bytes);
577 		if (len == insn.length) {
578 			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
579 			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
580 			text_poke_early(addr, bytes, len);
581 		}
582 	}
583 }
584 #else
585 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
586 #endif /* CONFIG_RETHUNK */
587 
588 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
589 
590 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
591 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
592 
593 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
594 
595 #ifdef CONFIG_X86_KERNEL_IBT
596 
597 /*
598  * Generated by: objtool --ibt
599  */
600 void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
601 {
602 	s32 *s;
603 
604 	for (s = start; s < end; s++) {
605 		u32 endbr, poison = gen_endbr_poison();
606 		void *addr = (void *)s + *s;
607 
608 		if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
609 			continue;
610 
611 		if (WARN_ON_ONCE(!is_endbr(endbr)))
612 			continue;
613 
614 		DPRINTK("ENDBR at: %pS (%px)", addr, addr);
615 
616 		/*
617 		 * When we have IBT, the lack of ENDBR will trigger #CP
618 		 */
619 		DUMP_BYTES(((u8*)addr), 4, "%px: orig: ", addr);
620 		DUMP_BYTES(((u8*)&poison), 4, "%px: repl: ", addr);
621 		text_poke_early(addr, &poison, 4);
622 	}
623 }
624 
625 #else
626 
627 void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end) { }
628 
629 #endif /* CONFIG_X86_KERNEL_IBT */
630 
631 #ifdef CONFIG_SMP
632 static void alternatives_smp_lock(const s32 *start, const s32 *end,
633 				  u8 *text, u8 *text_end)
634 {
635 	const s32 *poff;
636 
637 	for (poff = start; poff < end; poff++) {
638 		u8 *ptr = (u8 *)poff + *poff;
639 
640 		if (!*poff || ptr < text || ptr >= text_end)
641 			continue;
642 		/* turn DS segment override prefix into lock prefix */
643 		if (*ptr == 0x3e)
644 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
645 	}
646 }
647 
648 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
649 				    u8 *text, u8 *text_end)
650 {
651 	const s32 *poff;
652 
653 	for (poff = start; poff < end; poff++) {
654 		u8 *ptr = (u8 *)poff + *poff;
655 
656 		if (!*poff || ptr < text || ptr >= text_end)
657 			continue;
658 		/* turn lock prefix into DS segment override prefix */
659 		if (*ptr == 0xf0)
660 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
661 	}
662 }
663 
664 struct smp_alt_module {
665 	/* what is this ??? */
666 	struct module	*mod;
667 	char		*name;
668 
669 	/* ptrs to lock prefixes */
670 	const s32	*locks;
671 	const s32	*locks_end;
672 
673 	/* .text segment, needed to avoid patching init code ;) */
674 	u8		*text;
675 	u8		*text_end;
676 
677 	struct list_head next;
678 };
679 static LIST_HEAD(smp_alt_modules);
680 static bool uniproc_patched = false;	/* protected by text_mutex */
681 
682 void __init_or_module alternatives_smp_module_add(struct module *mod,
683 						  char *name,
684 						  void *locks, void *locks_end,
685 						  void *text,  void *text_end)
686 {
687 	struct smp_alt_module *smp;
688 
689 	mutex_lock(&text_mutex);
690 	if (!uniproc_patched)
691 		goto unlock;
692 
693 	if (num_possible_cpus() == 1)
694 		/* Don't bother remembering, we'll never have to undo it. */
695 		goto smp_unlock;
696 
697 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
698 	if (NULL == smp)
699 		/* we'll run the (safe but slow) SMP code then ... */
700 		goto unlock;
701 
702 	smp->mod	= mod;
703 	smp->name	= name;
704 	smp->locks	= locks;
705 	smp->locks_end	= locks_end;
706 	smp->text	= text;
707 	smp->text_end	= text_end;
708 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
709 		smp->locks, smp->locks_end,
710 		smp->text, smp->text_end, smp->name);
711 
712 	list_add_tail(&smp->next, &smp_alt_modules);
713 smp_unlock:
714 	alternatives_smp_unlock(locks, locks_end, text, text_end);
715 unlock:
716 	mutex_unlock(&text_mutex);
717 }
718 
719 void __init_or_module alternatives_smp_module_del(struct module *mod)
720 {
721 	struct smp_alt_module *item;
722 
723 	mutex_lock(&text_mutex);
724 	list_for_each_entry(item, &smp_alt_modules, next) {
725 		if (mod != item->mod)
726 			continue;
727 		list_del(&item->next);
728 		kfree(item);
729 		break;
730 	}
731 	mutex_unlock(&text_mutex);
732 }
733 
734 void alternatives_enable_smp(void)
735 {
736 	struct smp_alt_module *mod;
737 
738 	/* Why bother if there are no other CPUs? */
739 	BUG_ON(num_possible_cpus() == 1);
740 
741 	mutex_lock(&text_mutex);
742 
743 	if (uniproc_patched) {
744 		pr_info("switching to SMP code\n");
745 		BUG_ON(num_online_cpus() != 1);
746 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
747 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
748 		list_for_each_entry(mod, &smp_alt_modules, next)
749 			alternatives_smp_lock(mod->locks, mod->locks_end,
750 					      mod->text, mod->text_end);
751 		uniproc_patched = false;
752 	}
753 	mutex_unlock(&text_mutex);
754 }
755 
756 /*
757  * Return 1 if the address range is reserved for SMP-alternatives.
758  * Must hold text_mutex.
759  */
760 int alternatives_text_reserved(void *start, void *end)
761 {
762 	struct smp_alt_module *mod;
763 	const s32 *poff;
764 	u8 *text_start = start;
765 	u8 *text_end = end;
766 
767 	lockdep_assert_held(&text_mutex);
768 
769 	list_for_each_entry(mod, &smp_alt_modules, next) {
770 		if (mod->text > text_end || mod->text_end < text_start)
771 			continue;
772 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
773 			const u8 *ptr = (const u8 *)poff + *poff;
774 
775 			if (text_start <= ptr && text_end > ptr)
776 				return 1;
777 		}
778 	}
779 
780 	return 0;
781 }
782 #endif /* CONFIG_SMP */
783 
784 #ifdef CONFIG_PARAVIRT
785 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
786 				     struct paravirt_patch_site *end)
787 {
788 	struct paravirt_patch_site *p;
789 	char insn_buff[MAX_PATCH_LEN];
790 
791 	for (p = start; p < end; p++) {
792 		unsigned int used;
793 
794 		BUG_ON(p->len > MAX_PATCH_LEN);
795 		/* prep the buffer with the original instructions */
796 		memcpy(insn_buff, p->instr, p->len);
797 		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
798 
799 		BUG_ON(used > p->len);
800 
801 		/* Pad the rest with nops */
802 		add_nops(insn_buff + used, p->len - used);
803 		text_poke_early(p->instr, insn_buff, p->len);
804 	}
805 }
806 extern struct paravirt_patch_site __start_parainstructions[],
807 	__stop_parainstructions[];
808 #endif	/* CONFIG_PARAVIRT */
809 
810 /*
811  * Self-test for the INT3 based CALL emulation code.
812  *
813  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
814  * properly and that there is a stack gap between the INT3 frame and the
815  * previous context. Without this gap doing a virtual PUSH on the interrupted
816  * stack would corrupt the INT3 IRET frame.
817  *
818  * See entry_{32,64}.S for more details.
819  */
820 
821 /*
822  * We define the int3_magic() function in assembly to control the calling
823  * convention such that we can 'call' it from assembly.
824  */
825 
826 extern void int3_magic(unsigned int *ptr); /* defined in asm */
827 
828 asm (
829 "	.pushsection	.init.text, \"ax\", @progbits\n"
830 "	.type		int3_magic, @function\n"
831 "int3_magic:\n"
832 	ANNOTATE_NOENDBR
833 "	movl	$1, (%" _ASM_ARG1 ")\n"
834 	ASM_RET
835 "	.size		int3_magic, .-int3_magic\n"
836 "	.popsection\n"
837 );
838 
839 extern void int3_selftest_ip(void); /* defined in asm below */
840 
841 static int __init
842 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
843 {
844 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
845 	struct die_args *args = data;
846 	struct pt_regs *regs = args->regs;
847 
848 	OPTIMIZER_HIDE_VAR(selftest);
849 
850 	if (!regs || user_mode(regs))
851 		return NOTIFY_DONE;
852 
853 	if (val != DIE_INT3)
854 		return NOTIFY_DONE;
855 
856 	if (regs->ip - INT3_INSN_SIZE != selftest)
857 		return NOTIFY_DONE;
858 
859 	int3_emulate_call(regs, (unsigned long)&int3_magic);
860 	return NOTIFY_STOP;
861 }
862 
863 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
864 static noinline void __init int3_selftest(void)
865 {
866 	static __initdata struct notifier_block int3_exception_nb = {
867 		.notifier_call	= int3_exception_notify,
868 		.priority	= INT_MAX-1, /* last */
869 	};
870 	unsigned int val = 0;
871 
872 	BUG_ON(register_die_notifier(&int3_exception_nb));
873 
874 	/*
875 	 * Basically: int3_magic(&val); but really complicated :-)
876 	 *
877 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
878 	 * notifier above will emulate CALL for us.
879 	 */
880 	asm volatile ("int3_selftest_ip:\n\t"
881 		      ANNOTATE_NOENDBR
882 		      "    int3; nop; nop; nop; nop\n\t"
883 		      : ASM_CALL_CONSTRAINT
884 		      : __ASM_SEL_RAW(a, D) (&val)
885 		      : "memory");
886 
887 	BUG_ON(val != 1);
888 
889 	unregister_die_notifier(&int3_exception_nb);
890 }
891 
892 void __init alternative_instructions(void)
893 {
894 	int3_selftest();
895 
896 	/*
897 	 * The patching is not fully atomic, so try to avoid local
898 	 * interruptions that might execute the to be patched code.
899 	 * Other CPUs are not running.
900 	 */
901 	stop_nmi();
902 
903 	/*
904 	 * Don't stop machine check exceptions while patching.
905 	 * MCEs only happen when something got corrupted and in this
906 	 * case we must do something about the corruption.
907 	 * Ignoring it is worse than an unlikely patching race.
908 	 * Also machine checks tend to be broadcast and if one CPU
909 	 * goes into machine check the others follow quickly, so we don't
910 	 * expect a machine check to cause undue problems during to code
911 	 * patching.
912 	 */
913 
914 	/*
915 	 * Paravirt patching and alternative patching can be combined to
916 	 * replace a function call with a short direct code sequence (e.g.
917 	 * by setting a constant return value instead of doing that in an
918 	 * external function).
919 	 * In order to make this work the following sequence is required:
920 	 * 1. set (artificial) features depending on used paravirt
921 	 *    functions which can later influence alternative patching
922 	 * 2. apply paravirt patching (generally replacing an indirect
923 	 *    function call with a direct one)
924 	 * 3. apply alternative patching (e.g. replacing a direct function
925 	 *    call with a custom code sequence)
926 	 * Doing paravirt patching after alternative patching would clobber
927 	 * the optimization of the custom code with a function call again.
928 	 */
929 	paravirt_set_cap();
930 
931 	/*
932 	 * First patch paravirt functions, such that we overwrite the indirect
933 	 * call with the direct call.
934 	 */
935 	apply_paravirt(__parainstructions, __parainstructions_end);
936 
937 	/*
938 	 * Rewrite the retpolines, must be done before alternatives since
939 	 * those can rewrite the retpoline thunks.
940 	 */
941 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
942 	apply_returns(__return_sites, __return_sites_end);
943 
944 	/*
945 	 * Then patch alternatives, such that those paravirt calls that are in
946 	 * alternatives can be overwritten by their immediate fragments.
947 	 */
948 	apply_alternatives(__alt_instructions, __alt_instructions_end);
949 
950 	apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
951 
952 #ifdef CONFIG_SMP
953 	/* Patch to UP if other cpus not imminent. */
954 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
955 		uniproc_patched = true;
956 		alternatives_smp_module_add(NULL, "core kernel",
957 					    __smp_locks, __smp_locks_end,
958 					    _text, _etext);
959 	}
960 
961 	if (!uniproc_patched || num_possible_cpus() == 1) {
962 		free_init_pages("SMP alternatives",
963 				(unsigned long)__smp_locks,
964 				(unsigned long)__smp_locks_end);
965 	}
966 #endif
967 
968 	restart_nmi();
969 	alternatives_patched = 1;
970 }
971 
972 /**
973  * text_poke_early - Update instructions on a live kernel at boot time
974  * @addr: address to modify
975  * @opcode: source of the copy
976  * @len: length to copy
977  *
978  * When you use this code to patch more than one byte of an instruction
979  * you need to make sure that other CPUs cannot execute this code in parallel.
980  * Also no thread must be currently preempted in the middle of these
981  * instructions. And on the local CPU you need to be protected against NMI or
982  * MCE handlers seeing an inconsistent instruction while you patch.
983  */
984 void __init_or_module text_poke_early(void *addr, const void *opcode,
985 				      size_t len)
986 {
987 	unsigned long flags;
988 
989 	if (boot_cpu_has(X86_FEATURE_NX) &&
990 	    is_module_text_address((unsigned long)addr)) {
991 		/*
992 		 * Modules text is marked initially as non-executable, so the
993 		 * code cannot be running and speculative code-fetches are
994 		 * prevented. Just change the code.
995 		 */
996 		memcpy(addr, opcode, len);
997 	} else {
998 		local_irq_save(flags);
999 		memcpy(addr, opcode, len);
1000 		local_irq_restore(flags);
1001 		sync_core();
1002 
1003 		/*
1004 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1005 		 * that causes hangs on some VIA CPUs.
1006 		 */
1007 	}
1008 }
1009 
1010 typedef struct {
1011 	struct mm_struct *mm;
1012 } temp_mm_state_t;
1013 
1014 /*
1015  * Using a temporary mm allows to set temporary mappings that are not accessible
1016  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1017  * that override the kernel memory protections (e.g., W^X), without exposing the
1018  * temporary page-table mappings that are required for these write operations to
1019  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1020  * mapping is torn down.
1021  *
1022  * Context: The temporary mm needs to be used exclusively by a single core. To
1023  *          harden security IRQs must be disabled while the temporary mm is
1024  *          loaded, thereby preventing interrupt handler bugs from overriding
1025  *          the kernel memory protection.
1026  */
1027 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1028 {
1029 	temp_mm_state_t temp_state;
1030 
1031 	lockdep_assert_irqs_disabled();
1032 
1033 	/*
1034 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1035 	 * with a stale address space WITHOUT being in lazy mode after
1036 	 * restoring the previous mm.
1037 	 */
1038 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1039 		leave_mm(smp_processor_id());
1040 
1041 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1042 	switch_mm_irqs_off(NULL, mm, current);
1043 
1044 	/*
1045 	 * If breakpoints are enabled, disable them while the temporary mm is
1046 	 * used. Userspace might set up watchpoints on addresses that are used
1047 	 * in the temporary mm, which would lead to wrong signals being sent or
1048 	 * crashes.
1049 	 *
1050 	 * Note that breakpoints are not disabled selectively, which also causes
1051 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1052 	 * undesirable, but still seems reasonable as the code that runs in the
1053 	 * temporary mm should be short.
1054 	 */
1055 	if (hw_breakpoint_active())
1056 		hw_breakpoint_disable();
1057 
1058 	return temp_state;
1059 }
1060 
1061 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1062 {
1063 	lockdep_assert_irqs_disabled();
1064 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1065 
1066 	/*
1067 	 * Restore the breakpoints if they were disabled before the temporary mm
1068 	 * was loaded.
1069 	 */
1070 	if (hw_breakpoint_active())
1071 		hw_breakpoint_restore();
1072 }
1073 
1074 __ro_after_init struct mm_struct *poking_mm;
1075 __ro_after_init unsigned long poking_addr;
1076 
1077 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1078 {
1079 	memcpy(dst, src, len);
1080 }
1081 
1082 static void text_poke_memset(void *dst, const void *src, size_t len)
1083 {
1084 	int c = *(const int *)src;
1085 
1086 	memset(dst, c, len);
1087 }
1088 
1089 typedef void text_poke_f(void *dst, const void *src, size_t len);
1090 
1091 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1092 {
1093 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1094 	struct page *pages[2] = {NULL};
1095 	temp_mm_state_t prev;
1096 	unsigned long flags;
1097 	pte_t pte, *ptep;
1098 	spinlock_t *ptl;
1099 	pgprot_t pgprot;
1100 
1101 	/*
1102 	 * While boot memory allocator is running we cannot use struct pages as
1103 	 * they are not yet initialized. There is no way to recover.
1104 	 */
1105 	BUG_ON(!after_bootmem);
1106 
1107 	if (!core_kernel_text((unsigned long)addr)) {
1108 		pages[0] = vmalloc_to_page(addr);
1109 		if (cross_page_boundary)
1110 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1111 	} else {
1112 		pages[0] = virt_to_page(addr);
1113 		WARN_ON(!PageReserved(pages[0]));
1114 		if (cross_page_boundary)
1115 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1116 	}
1117 	/*
1118 	 * If something went wrong, crash and burn since recovery paths are not
1119 	 * implemented.
1120 	 */
1121 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1122 
1123 	/*
1124 	 * Map the page without the global bit, as TLB flushing is done with
1125 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1126 	 */
1127 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1128 
1129 	/*
1130 	 * The lock is not really needed, but this allows to avoid open-coding.
1131 	 */
1132 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1133 
1134 	/*
1135 	 * This must not fail; preallocated in poking_init().
1136 	 */
1137 	VM_BUG_ON(!ptep);
1138 
1139 	local_irq_save(flags);
1140 
1141 	pte = mk_pte(pages[0], pgprot);
1142 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1143 
1144 	if (cross_page_boundary) {
1145 		pte = mk_pte(pages[1], pgprot);
1146 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1147 	}
1148 
1149 	/*
1150 	 * Loading the temporary mm behaves as a compiler barrier, which
1151 	 * guarantees that the PTE will be set at the time memcpy() is done.
1152 	 */
1153 	prev = use_temporary_mm(poking_mm);
1154 
1155 	kasan_disable_current();
1156 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1157 	kasan_enable_current();
1158 
1159 	/*
1160 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1161 	 * were issued by using a compiler barrier.
1162 	 */
1163 	barrier();
1164 
1165 	pte_clear(poking_mm, poking_addr, ptep);
1166 	if (cross_page_boundary)
1167 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1168 
1169 	/*
1170 	 * Loading the previous page-table hierarchy requires a serializing
1171 	 * instruction that already allows the core to see the updated version.
1172 	 * Xen-PV is assumed to serialize execution in a similar manner.
1173 	 */
1174 	unuse_temporary_mm(prev);
1175 
1176 	/*
1177 	 * Flushing the TLB might involve IPIs, which would require enabled
1178 	 * IRQs, but not if the mm is not used, as it is in this point.
1179 	 */
1180 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1181 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1182 			   PAGE_SHIFT, false);
1183 
1184 	if (func == text_poke_memcpy) {
1185 		/*
1186 		 * If the text does not match what we just wrote then something is
1187 		 * fundamentally screwy; there's nothing we can really do about that.
1188 		 */
1189 		BUG_ON(memcmp(addr, src, len));
1190 	}
1191 
1192 	local_irq_restore(flags);
1193 	pte_unmap_unlock(ptep, ptl);
1194 	return addr;
1195 }
1196 
1197 /**
1198  * text_poke - Update instructions on a live kernel
1199  * @addr: address to modify
1200  * @opcode: source of the copy
1201  * @len: length to copy
1202  *
1203  * Only atomic text poke/set should be allowed when not doing early patching.
1204  * It means the size must be writable atomically and the address must be aligned
1205  * in a way that permits an atomic write. It also makes sure we fit on a single
1206  * page.
1207  *
1208  * Note that the caller must ensure that if the modified code is part of a
1209  * module, the module would not be removed during poking. This can be achieved
1210  * by registering a module notifier, and ordering module removal and patching
1211  * trough a mutex.
1212  */
1213 void *text_poke(void *addr, const void *opcode, size_t len)
1214 {
1215 	lockdep_assert_held(&text_mutex);
1216 
1217 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1218 }
1219 
1220 /**
1221  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1222  * @addr: address to modify
1223  * @opcode: source of the copy
1224  * @len: length to copy
1225  *
1226  * Only atomic text poke/set should be allowed when not doing early patching.
1227  * It means the size must be writable atomically and the address must be aligned
1228  * in a way that permits an atomic write. It also makes sure we fit on a single
1229  * page.
1230  *
1231  * Context: should only be used by kgdb, which ensures no other core is running,
1232  *	    despite the fact it does not hold the text_mutex.
1233  */
1234 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1235 {
1236 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1237 }
1238 
1239 /**
1240  * text_poke_copy - Copy instructions into (an unused part of) RX memory
1241  * @addr: address to modify
1242  * @opcode: source of the copy
1243  * @len: length to copy, could be more than 2x PAGE_SIZE
1244  *
1245  * Not safe against concurrent execution; useful for JITs to dump
1246  * new code blocks into unused regions of RX memory. Can be used in
1247  * conjunction with synchronize_rcu_tasks() to wait for existing
1248  * execution to quiesce after having made sure no existing functions
1249  * pointers are live.
1250  */
1251 void *text_poke_copy(void *addr, const void *opcode, size_t len)
1252 {
1253 	unsigned long start = (unsigned long)addr;
1254 	size_t patched = 0;
1255 
1256 	if (WARN_ON_ONCE(core_kernel_text(start)))
1257 		return NULL;
1258 
1259 	mutex_lock(&text_mutex);
1260 	while (patched < len) {
1261 		unsigned long ptr = start + patched;
1262 		size_t s;
1263 
1264 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1265 
1266 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1267 		patched += s;
1268 	}
1269 	mutex_unlock(&text_mutex);
1270 	return addr;
1271 }
1272 
1273 /**
1274  * text_poke_set - memset into (an unused part of) RX memory
1275  * @addr: address to modify
1276  * @c: the byte to fill the area with
1277  * @len: length to copy, could be more than 2x PAGE_SIZE
1278  *
1279  * This is useful to overwrite unused regions of RX memory with illegal
1280  * instructions.
1281  */
1282 void *text_poke_set(void *addr, int c, size_t len)
1283 {
1284 	unsigned long start = (unsigned long)addr;
1285 	size_t patched = 0;
1286 
1287 	if (WARN_ON_ONCE(core_kernel_text(start)))
1288 		return NULL;
1289 
1290 	mutex_lock(&text_mutex);
1291 	while (patched < len) {
1292 		unsigned long ptr = start + patched;
1293 		size_t s;
1294 
1295 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1296 
1297 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
1298 		patched += s;
1299 	}
1300 	mutex_unlock(&text_mutex);
1301 	return addr;
1302 }
1303 
1304 static void do_sync_core(void *info)
1305 {
1306 	sync_core();
1307 }
1308 
1309 void text_poke_sync(void)
1310 {
1311 	on_each_cpu(do_sync_core, NULL, 1);
1312 }
1313 
1314 struct text_poke_loc {
1315 	/* addr := _stext + rel_addr */
1316 	s32 rel_addr;
1317 	s32 disp;
1318 	u8 len;
1319 	u8 opcode;
1320 	const u8 text[POKE_MAX_OPCODE_SIZE];
1321 	/* see text_poke_bp_batch() */
1322 	u8 old;
1323 };
1324 
1325 struct bp_patching_desc {
1326 	struct text_poke_loc *vec;
1327 	int nr_entries;
1328 	atomic_t refs;
1329 };
1330 
1331 static struct bp_patching_desc bp_desc;
1332 
1333 static __always_inline
1334 struct bp_patching_desc *try_get_desc(void)
1335 {
1336 	struct bp_patching_desc *desc = &bp_desc;
1337 
1338 	if (!arch_atomic_inc_not_zero(&desc->refs))
1339 		return NULL;
1340 
1341 	return desc;
1342 }
1343 
1344 static __always_inline void put_desc(void)
1345 {
1346 	struct bp_patching_desc *desc = &bp_desc;
1347 
1348 	smp_mb__before_atomic();
1349 	arch_atomic_dec(&desc->refs);
1350 }
1351 
1352 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1353 {
1354 	return _stext + tp->rel_addr;
1355 }
1356 
1357 static __always_inline int patch_cmp(const void *key, const void *elt)
1358 {
1359 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1360 
1361 	if (key < text_poke_addr(tp))
1362 		return -1;
1363 	if (key > text_poke_addr(tp))
1364 		return 1;
1365 	return 0;
1366 }
1367 
1368 noinstr int poke_int3_handler(struct pt_regs *regs)
1369 {
1370 	struct bp_patching_desc *desc;
1371 	struct text_poke_loc *tp;
1372 	int ret = 0;
1373 	void *ip;
1374 
1375 	if (user_mode(regs))
1376 		return 0;
1377 
1378 	/*
1379 	 * Having observed our INT3 instruction, we now must observe
1380 	 * bp_desc with non-zero refcount:
1381 	 *
1382 	 *	bp_desc.refs = 1		INT3
1383 	 *	WMB				RMB
1384 	 *	write INT3			if (bp_desc.refs != 0)
1385 	 */
1386 	smp_rmb();
1387 
1388 	desc = try_get_desc();
1389 	if (!desc)
1390 		return 0;
1391 
1392 	/*
1393 	 * Discount the INT3. See text_poke_bp_batch().
1394 	 */
1395 	ip = (void *) regs->ip - INT3_INSN_SIZE;
1396 
1397 	/*
1398 	 * Skip the binary search if there is a single member in the vector.
1399 	 */
1400 	if (unlikely(desc->nr_entries > 1)) {
1401 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1402 				      sizeof(struct text_poke_loc),
1403 				      patch_cmp);
1404 		if (!tp)
1405 			goto out_put;
1406 	} else {
1407 		tp = desc->vec;
1408 		if (text_poke_addr(tp) != ip)
1409 			goto out_put;
1410 	}
1411 
1412 	ip += tp->len;
1413 
1414 	switch (tp->opcode) {
1415 	case INT3_INSN_OPCODE:
1416 		/*
1417 		 * Someone poked an explicit INT3, they'll want to handle it,
1418 		 * do not consume.
1419 		 */
1420 		goto out_put;
1421 
1422 	case RET_INSN_OPCODE:
1423 		int3_emulate_ret(regs);
1424 		break;
1425 
1426 	case CALL_INSN_OPCODE:
1427 		int3_emulate_call(regs, (long)ip + tp->disp);
1428 		break;
1429 
1430 	case JMP32_INSN_OPCODE:
1431 	case JMP8_INSN_OPCODE:
1432 		int3_emulate_jmp(regs, (long)ip + tp->disp);
1433 		break;
1434 
1435 	default:
1436 		BUG();
1437 	}
1438 
1439 	ret = 1;
1440 
1441 out_put:
1442 	put_desc();
1443 	return ret;
1444 }
1445 
1446 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1447 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1448 static int tp_vec_nr;
1449 
1450 /**
1451  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1452  * @tp:			vector of instructions to patch
1453  * @nr_entries:		number of entries in the vector
1454  *
1455  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1456  * We completely avoid stop_machine() here, and achieve the
1457  * synchronization using int3 breakpoint.
1458  *
1459  * The way it is done:
1460  *	- For each entry in the vector:
1461  *		- add a int3 trap to the address that will be patched
1462  *	- sync cores
1463  *	- For each entry in the vector:
1464  *		- update all but the first byte of the patched range
1465  *	- sync cores
1466  *	- For each entry in the vector:
1467  *		- replace the first byte (int3) by the first byte of
1468  *		  replacing opcode
1469  *	- sync cores
1470  */
1471 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1472 {
1473 	unsigned char int3 = INT3_INSN_OPCODE;
1474 	unsigned int i;
1475 	int do_sync;
1476 
1477 	lockdep_assert_held(&text_mutex);
1478 
1479 	bp_desc.vec = tp;
1480 	bp_desc.nr_entries = nr_entries;
1481 
1482 	/*
1483 	 * Corresponds to the implicit memory barrier in try_get_desc() to
1484 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
1485 	 */
1486 	atomic_set_release(&bp_desc.refs, 1);
1487 
1488 	/*
1489 	 * Corresponding read barrier in int3 notifier for making sure the
1490 	 * nr_entries and handler are correctly ordered wrt. patching.
1491 	 */
1492 	smp_wmb();
1493 
1494 	/*
1495 	 * First step: add a int3 trap to the address that will be patched.
1496 	 */
1497 	for (i = 0; i < nr_entries; i++) {
1498 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1499 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1500 	}
1501 
1502 	text_poke_sync();
1503 
1504 	/*
1505 	 * Second step: update all but the first byte of the patched range.
1506 	 */
1507 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1508 		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1509 		int len = tp[i].len;
1510 
1511 		if (len - INT3_INSN_SIZE > 0) {
1512 			memcpy(old + INT3_INSN_SIZE,
1513 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1514 			       len - INT3_INSN_SIZE);
1515 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1516 				  (const char *)tp[i].text + INT3_INSN_SIZE,
1517 				  len - INT3_INSN_SIZE);
1518 			do_sync++;
1519 		}
1520 
1521 		/*
1522 		 * Emit a perf event to record the text poke, primarily to
1523 		 * support Intel PT decoding which must walk the executable code
1524 		 * to reconstruct the trace. The flow up to here is:
1525 		 *   - write INT3 byte
1526 		 *   - IPI-SYNC
1527 		 *   - write instruction tail
1528 		 * At this point the actual control flow will be through the
1529 		 * INT3 and handler and not hit the old or new instruction.
1530 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1531 		 * can still be decoded. Subsequently:
1532 		 *   - emit RECORD_TEXT_POKE with the new instruction
1533 		 *   - IPI-SYNC
1534 		 *   - write first byte
1535 		 *   - IPI-SYNC
1536 		 * So before the text poke event timestamp, the decoder will see
1537 		 * either the old instruction flow or FUP/TIP of INT3. After the
1538 		 * text poke event timestamp, the decoder will see either the
1539 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1540 		 * use the timestamp as the point at which to modify the
1541 		 * executable code.
1542 		 * The old instruction is recorded so that the event can be
1543 		 * processed forwards or backwards.
1544 		 */
1545 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1546 				     tp[i].text, len);
1547 	}
1548 
1549 	if (do_sync) {
1550 		/*
1551 		 * According to Intel, this core syncing is very likely
1552 		 * not necessary and we'd be safe even without it. But
1553 		 * better safe than sorry (plus there's not only Intel).
1554 		 */
1555 		text_poke_sync();
1556 	}
1557 
1558 	/*
1559 	 * Third step: replace the first byte (int3) by the first byte of
1560 	 * replacing opcode.
1561 	 */
1562 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1563 		if (tp[i].text[0] == INT3_INSN_OPCODE)
1564 			continue;
1565 
1566 		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1567 		do_sync++;
1568 	}
1569 
1570 	if (do_sync)
1571 		text_poke_sync();
1572 
1573 	/*
1574 	 * Remove and wait for refs to be zero.
1575 	 */
1576 	if (!atomic_dec_and_test(&bp_desc.refs))
1577 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
1578 }
1579 
1580 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1581 			       const void *opcode, size_t len, const void *emulate)
1582 {
1583 	struct insn insn;
1584 	int ret, i;
1585 
1586 	memcpy((void *)tp->text, opcode, len);
1587 	if (!emulate)
1588 		emulate = opcode;
1589 
1590 	ret = insn_decode_kernel(&insn, emulate);
1591 	BUG_ON(ret < 0);
1592 
1593 	tp->rel_addr = addr - (void *)_stext;
1594 	tp->len = len;
1595 	tp->opcode = insn.opcode.bytes[0];
1596 
1597 	switch (tp->opcode) {
1598 	case RET_INSN_OPCODE:
1599 	case JMP32_INSN_OPCODE:
1600 	case JMP8_INSN_OPCODE:
1601 		/*
1602 		 * Control flow instructions without implied execution of the
1603 		 * next instruction can be padded with INT3.
1604 		 */
1605 		for (i = insn.length; i < len; i++)
1606 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
1607 		break;
1608 
1609 	default:
1610 		BUG_ON(len != insn.length);
1611 	};
1612 
1613 
1614 	switch (tp->opcode) {
1615 	case INT3_INSN_OPCODE:
1616 	case RET_INSN_OPCODE:
1617 		break;
1618 
1619 	case CALL_INSN_OPCODE:
1620 	case JMP32_INSN_OPCODE:
1621 	case JMP8_INSN_OPCODE:
1622 		tp->disp = insn.immediate.value;
1623 		break;
1624 
1625 	default: /* assume NOP */
1626 		switch (len) {
1627 		case 2: /* NOP2 -- emulate as JMP8+0 */
1628 			BUG_ON(memcmp(emulate, x86_nops[len], len));
1629 			tp->opcode = JMP8_INSN_OPCODE;
1630 			tp->disp = 0;
1631 			break;
1632 
1633 		case 5: /* NOP5 -- emulate as JMP32+0 */
1634 			BUG_ON(memcmp(emulate, x86_nops[len], len));
1635 			tp->opcode = JMP32_INSN_OPCODE;
1636 			tp->disp = 0;
1637 			break;
1638 
1639 		default: /* unknown instruction */
1640 			BUG();
1641 		}
1642 		break;
1643 	}
1644 }
1645 
1646 /*
1647  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1648  * early if needed.
1649  */
1650 static bool tp_order_fail(void *addr)
1651 {
1652 	struct text_poke_loc *tp;
1653 
1654 	if (!tp_vec_nr)
1655 		return false;
1656 
1657 	if (!addr) /* force */
1658 		return true;
1659 
1660 	tp = &tp_vec[tp_vec_nr - 1];
1661 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1662 		return true;
1663 
1664 	return false;
1665 }
1666 
1667 static void text_poke_flush(void *addr)
1668 {
1669 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1670 		text_poke_bp_batch(tp_vec, tp_vec_nr);
1671 		tp_vec_nr = 0;
1672 	}
1673 }
1674 
1675 void text_poke_finish(void)
1676 {
1677 	text_poke_flush(NULL);
1678 }
1679 
1680 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1681 {
1682 	struct text_poke_loc *tp;
1683 
1684 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1685 		text_poke_early(addr, opcode, len);
1686 		return;
1687 	}
1688 
1689 	text_poke_flush(addr);
1690 
1691 	tp = &tp_vec[tp_vec_nr++];
1692 	text_poke_loc_init(tp, addr, opcode, len, emulate);
1693 }
1694 
1695 /**
1696  * text_poke_bp() -- update instructions on live kernel on SMP
1697  * @addr:	address to patch
1698  * @opcode:	opcode of new instruction
1699  * @len:	length to copy
1700  * @emulate:	instruction to be emulated
1701  *
1702  * Update a single instruction with the vector in the stack, avoiding
1703  * dynamically allocated memory. This function should be used when it is
1704  * not possible to allocate memory.
1705  */
1706 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1707 {
1708 	struct text_poke_loc tp;
1709 
1710 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1711 		text_poke_early(addr, opcode, len);
1712 		return;
1713 	}
1714 
1715 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1716 	text_poke_bp_batch(&tp, 1);
1717 }
1718