xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 9be08a27)
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2 
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <asm/text-patching.h>
15 #include <asm/alternative.h>
16 #include <asm/sections.h>
17 #include <asm/pgtable.h>
18 #include <asm/mce.h>
19 #include <asm/nmi.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
22 #include <asm/io.h>
23 #include <asm/fixmap.h>
24 
25 int __read_mostly alternatives_patched;
26 
27 EXPORT_SYMBOL_GPL(alternatives_patched);
28 
29 #define MAX_PATCH_LEN (255-1)
30 
31 static int __initdata_or_module debug_alternative;
32 
33 static int __init debug_alt(char *str)
34 {
35 	debug_alternative = 1;
36 	return 1;
37 }
38 __setup("debug-alternative", debug_alt);
39 
40 static int noreplace_smp;
41 
42 static int __init setup_noreplace_smp(char *str)
43 {
44 	noreplace_smp = 1;
45 	return 1;
46 }
47 __setup("noreplace-smp", setup_noreplace_smp);
48 
49 #define DPRINTK(fmt, args...)						\
50 do {									\
51 	if (debug_alternative)						\
52 		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
53 } while (0)
54 
55 #define DUMP_BYTES(buf, len, fmt, args...)				\
56 do {									\
57 	if (unlikely(debug_alternative)) {				\
58 		int j;							\
59 									\
60 		if (!(len))						\
61 			break;						\
62 									\
63 		printk(KERN_DEBUG fmt, ##args);				\
64 		for (j = 0; j < (len) - 1; j++)				\
65 			printk(KERN_CONT "%02hhx ", buf[j]);		\
66 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
67 	}								\
68 } while (0)
69 
70 /*
71  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
72  * that correspond to that nop. Getting from one nop to the next, we
73  * add to the array the offset that is equal to the sum of all sizes of
74  * nops preceding the one we are after.
75  *
76  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
77  * nice symmetry of sizes of the previous nops.
78  */
79 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
80 static const unsigned char intelnops[] =
81 {
82 	GENERIC_NOP1,
83 	GENERIC_NOP2,
84 	GENERIC_NOP3,
85 	GENERIC_NOP4,
86 	GENERIC_NOP5,
87 	GENERIC_NOP6,
88 	GENERIC_NOP7,
89 	GENERIC_NOP8,
90 	GENERIC_NOP5_ATOMIC
91 };
92 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
93 {
94 	NULL,
95 	intelnops,
96 	intelnops + 1,
97 	intelnops + 1 + 2,
98 	intelnops + 1 + 2 + 3,
99 	intelnops + 1 + 2 + 3 + 4,
100 	intelnops + 1 + 2 + 3 + 4 + 5,
101 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
102 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
103 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
104 };
105 #endif
106 
107 #ifdef K8_NOP1
108 static const unsigned char k8nops[] =
109 {
110 	K8_NOP1,
111 	K8_NOP2,
112 	K8_NOP3,
113 	K8_NOP4,
114 	K8_NOP5,
115 	K8_NOP6,
116 	K8_NOP7,
117 	K8_NOP8,
118 	K8_NOP5_ATOMIC
119 };
120 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
121 {
122 	NULL,
123 	k8nops,
124 	k8nops + 1,
125 	k8nops + 1 + 2,
126 	k8nops + 1 + 2 + 3,
127 	k8nops + 1 + 2 + 3 + 4,
128 	k8nops + 1 + 2 + 3 + 4 + 5,
129 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
130 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
131 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
132 };
133 #endif
134 
135 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
136 static const unsigned char k7nops[] =
137 {
138 	K7_NOP1,
139 	K7_NOP2,
140 	K7_NOP3,
141 	K7_NOP4,
142 	K7_NOP5,
143 	K7_NOP6,
144 	K7_NOP7,
145 	K7_NOP8,
146 	K7_NOP5_ATOMIC
147 };
148 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
149 {
150 	NULL,
151 	k7nops,
152 	k7nops + 1,
153 	k7nops + 1 + 2,
154 	k7nops + 1 + 2 + 3,
155 	k7nops + 1 + 2 + 3 + 4,
156 	k7nops + 1 + 2 + 3 + 4 + 5,
157 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
158 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
159 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
160 };
161 #endif
162 
163 #ifdef P6_NOP1
164 static const unsigned char p6nops[] =
165 {
166 	P6_NOP1,
167 	P6_NOP2,
168 	P6_NOP3,
169 	P6_NOP4,
170 	P6_NOP5,
171 	P6_NOP6,
172 	P6_NOP7,
173 	P6_NOP8,
174 	P6_NOP5_ATOMIC
175 };
176 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
177 {
178 	NULL,
179 	p6nops,
180 	p6nops + 1,
181 	p6nops + 1 + 2,
182 	p6nops + 1 + 2 + 3,
183 	p6nops + 1 + 2 + 3 + 4,
184 	p6nops + 1 + 2 + 3 + 4 + 5,
185 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
186 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
187 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
188 };
189 #endif
190 
191 /* Initialize these to a safe default */
192 #ifdef CONFIG_X86_64
193 const unsigned char * const *ideal_nops = p6_nops;
194 #else
195 const unsigned char * const *ideal_nops = intel_nops;
196 #endif
197 
198 void __init arch_init_ideal_nops(void)
199 {
200 	switch (boot_cpu_data.x86_vendor) {
201 	case X86_VENDOR_INTEL:
202 		/*
203 		 * Due to a decoder implementation quirk, some
204 		 * specific Intel CPUs actually perform better with
205 		 * the "k8_nops" than with the SDM-recommended NOPs.
206 		 */
207 		if (boot_cpu_data.x86 == 6 &&
208 		    boot_cpu_data.x86_model >= 0x0f &&
209 		    boot_cpu_data.x86_model != 0x1c &&
210 		    boot_cpu_data.x86_model != 0x26 &&
211 		    boot_cpu_data.x86_model != 0x27 &&
212 		    boot_cpu_data.x86_model < 0x30) {
213 			ideal_nops = k8_nops;
214 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
215 			   ideal_nops = p6_nops;
216 		} else {
217 #ifdef CONFIG_X86_64
218 			ideal_nops = k8_nops;
219 #else
220 			ideal_nops = intel_nops;
221 #endif
222 		}
223 		break;
224 
225 	case X86_VENDOR_AMD:
226 		if (boot_cpu_data.x86 > 0xf) {
227 			ideal_nops = p6_nops;
228 			return;
229 		}
230 
231 		/* fall through */
232 
233 	default:
234 #ifdef CONFIG_X86_64
235 		ideal_nops = k8_nops;
236 #else
237 		if (boot_cpu_has(X86_FEATURE_K8))
238 			ideal_nops = k8_nops;
239 		else if (boot_cpu_has(X86_FEATURE_K7))
240 			ideal_nops = k7_nops;
241 		else
242 			ideal_nops = intel_nops;
243 #endif
244 	}
245 }
246 
247 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
248 static void __init_or_module add_nops(void *insns, unsigned int len)
249 {
250 	while (len > 0) {
251 		unsigned int noplen = len;
252 		if (noplen > ASM_NOP_MAX)
253 			noplen = ASM_NOP_MAX;
254 		memcpy(insns, ideal_nops[noplen], noplen);
255 		insns += noplen;
256 		len -= noplen;
257 	}
258 }
259 
260 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
261 extern s32 __smp_locks[], __smp_locks_end[];
262 void *text_poke_early(void *addr, const void *opcode, size_t len);
263 
264 /*
265  * Are we looking at a near JMP with a 1 or 4-byte displacement.
266  */
267 static inline bool is_jmp(const u8 opcode)
268 {
269 	return opcode == 0xeb || opcode == 0xe9;
270 }
271 
272 static void __init_or_module
273 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
274 {
275 	u8 *next_rip, *tgt_rip;
276 	s32 n_dspl, o_dspl;
277 	int repl_len;
278 
279 	if (a->replacementlen != 5)
280 		return;
281 
282 	o_dspl = *(s32 *)(insnbuf + 1);
283 
284 	/* next_rip of the replacement JMP */
285 	next_rip = repl_insn + a->replacementlen;
286 	/* target rip of the replacement JMP */
287 	tgt_rip  = next_rip + o_dspl;
288 	n_dspl = tgt_rip - orig_insn;
289 
290 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
291 
292 	if (tgt_rip - orig_insn >= 0) {
293 		if (n_dspl - 2 <= 127)
294 			goto two_byte_jmp;
295 		else
296 			goto five_byte_jmp;
297 	/* negative offset */
298 	} else {
299 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
300 			goto two_byte_jmp;
301 		else
302 			goto five_byte_jmp;
303 	}
304 
305 two_byte_jmp:
306 	n_dspl -= 2;
307 
308 	insnbuf[0] = 0xeb;
309 	insnbuf[1] = (s8)n_dspl;
310 	add_nops(insnbuf + 2, 3);
311 
312 	repl_len = 2;
313 	goto done;
314 
315 five_byte_jmp:
316 	n_dspl -= 5;
317 
318 	insnbuf[0] = 0xe9;
319 	*(s32 *)&insnbuf[1] = n_dspl;
320 
321 	repl_len = 5;
322 
323 done:
324 
325 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
326 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
327 }
328 
329 /*
330  * "noinline" to cause control flow change and thus invalidate I$ and
331  * cause refetch after modification.
332  */
333 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
334 {
335 	unsigned long flags;
336 	int i;
337 
338 	for (i = 0; i < a->padlen; i++) {
339 		if (instr[i] != 0x90)
340 			return;
341 	}
342 
343 	local_irq_save(flags);
344 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
345 	local_irq_restore(flags);
346 
347 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
348 		   instr, a->instrlen - a->padlen, a->padlen);
349 }
350 
351 /*
352  * Replace instructions with better alternatives for this CPU type. This runs
353  * before SMP is initialized to avoid SMP problems with self modifying code.
354  * This implies that asymmetric systems where APs have less capabilities than
355  * the boot processor are not handled. Tough. Make sure you disable such
356  * features by hand.
357  *
358  * Marked "noinline" to cause control flow change and thus insn cache
359  * to refetch changed I$ lines.
360  */
361 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
362 						  struct alt_instr *end)
363 {
364 	struct alt_instr *a;
365 	u8 *instr, *replacement;
366 	u8 insnbuf[MAX_PATCH_LEN];
367 
368 	DPRINTK("alt table %px, -> %px", start, end);
369 	/*
370 	 * The scan order should be from start to end. A later scanned
371 	 * alternative code can overwrite previously scanned alternative code.
372 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
373 	 * patch code.
374 	 *
375 	 * So be careful if you want to change the scan order to any other
376 	 * order.
377 	 */
378 	for (a = start; a < end; a++) {
379 		int insnbuf_sz = 0;
380 
381 		instr = (u8 *)&a->instr_offset + a->instr_offset;
382 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
383 		BUG_ON(a->instrlen > sizeof(insnbuf));
384 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
385 		if (!boot_cpu_has(a->cpuid)) {
386 			if (a->padlen > 1)
387 				optimize_nops(a, instr);
388 
389 			continue;
390 		}
391 
392 		DPRINTK("feat: %d*32+%d, old: (%px len: %d), repl: (%px, len: %d), pad: %d",
393 			a->cpuid >> 5,
394 			a->cpuid & 0x1f,
395 			instr, a->instrlen,
396 			replacement, a->replacementlen, a->padlen);
397 
398 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
399 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
400 
401 		memcpy(insnbuf, replacement, a->replacementlen);
402 		insnbuf_sz = a->replacementlen;
403 
404 		/*
405 		 * 0xe8 is a relative jump; fix the offset.
406 		 *
407 		 * Instruction length is checked before the opcode to avoid
408 		 * accessing uninitialized bytes for zero-length replacements.
409 		 */
410 		if (a->replacementlen == 5 && *insnbuf == 0xe8) {
411 			*(s32 *)(insnbuf + 1) += replacement - instr;
412 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
413 				*(s32 *)(insnbuf + 1),
414 				(unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
415 		}
416 
417 		if (a->replacementlen && is_jmp(replacement[0]))
418 			recompute_jump(a, instr, replacement, insnbuf);
419 
420 		if (a->instrlen > a->replacementlen) {
421 			add_nops(insnbuf + a->replacementlen,
422 				 a->instrlen - a->replacementlen);
423 			insnbuf_sz += a->instrlen - a->replacementlen;
424 		}
425 		DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
426 
427 		text_poke_early(instr, insnbuf, insnbuf_sz);
428 	}
429 }
430 
431 #ifdef CONFIG_SMP
432 static void alternatives_smp_lock(const s32 *start, const s32 *end,
433 				  u8 *text, u8 *text_end)
434 {
435 	const s32 *poff;
436 
437 	for (poff = start; poff < end; poff++) {
438 		u8 *ptr = (u8 *)poff + *poff;
439 
440 		if (!*poff || ptr < text || ptr >= text_end)
441 			continue;
442 		/* turn DS segment override prefix into lock prefix */
443 		if (*ptr == 0x3e)
444 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
445 	}
446 }
447 
448 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
449 				    u8 *text, u8 *text_end)
450 {
451 	const s32 *poff;
452 
453 	for (poff = start; poff < end; poff++) {
454 		u8 *ptr = (u8 *)poff + *poff;
455 
456 		if (!*poff || ptr < text || ptr >= text_end)
457 			continue;
458 		/* turn lock prefix into DS segment override prefix */
459 		if (*ptr == 0xf0)
460 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
461 	}
462 }
463 
464 struct smp_alt_module {
465 	/* what is this ??? */
466 	struct module	*mod;
467 	char		*name;
468 
469 	/* ptrs to lock prefixes */
470 	const s32	*locks;
471 	const s32	*locks_end;
472 
473 	/* .text segment, needed to avoid patching init code ;) */
474 	u8		*text;
475 	u8		*text_end;
476 
477 	struct list_head next;
478 };
479 static LIST_HEAD(smp_alt_modules);
480 static bool uniproc_patched = false;	/* protected by text_mutex */
481 
482 void __init_or_module alternatives_smp_module_add(struct module *mod,
483 						  char *name,
484 						  void *locks, void *locks_end,
485 						  void *text,  void *text_end)
486 {
487 	struct smp_alt_module *smp;
488 
489 	mutex_lock(&text_mutex);
490 	if (!uniproc_patched)
491 		goto unlock;
492 
493 	if (num_possible_cpus() == 1)
494 		/* Don't bother remembering, we'll never have to undo it. */
495 		goto smp_unlock;
496 
497 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
498 	if (NULL == smp)
499 		/* we'll run the (safe but slow) SMP code then ... */
500 		goto unlock;
501 
502 	smp->mod	= mod;
503 	smp->name	= name;
504 	smp->locks	= locks;
505 	smp->locks_end	= locks_end;
506 	smp->text	= text;
507 	smp->text_end	= text_end;
508 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
509 		smp->locks, smp->locks_end,
510 		smp->text, smp->text_end, smp->name);
511 
512 	list_add_tail(&smp->next, &smp_alt_modules);
513 smp_unlock:
514 	alternatives_smp_unlock(locks, locks_end, text, text_end);
515 unlock:
516 	mutex_unlock(&text_mutex);
517 }
518 
519 void __init_or_module alternatives_smp_module_del(struct module *mod)
520 {
521 	struct smp_alt_module *item;
522 
523 	mutex_lock(&text_mutex);
524 	list_for_each_entry(item, &smp_alt_modules, next) {
525 		if (mod != item->mod)
526 			continue;
527 		list_del(&item->next);
528 		kfree(item);
529 		break;
530 	}
531 	mutex_unlock(&text_mutex);
532 }
533 
534 void alternatives_enable_smp(void)
535 {
536 	struct smp_alt_module *mod;
537 
538 	/* Why bother if there are no other CPUs? */
539 	BUG_ON(num_possible_cpus() == 1);
540 
541 	mutex_lock(&text_mutex);
542 
543 	if (uniproc_patched) {
544 		pr_info("switching to SMP code\n");
545 		BUG_ON(num_online_cpus() != 1);
546 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
547 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
548 		list_for_each_entry(mod, &smp_alt_modules, next)
549 			alternatives_smp_lock(mod->locks, mod->locks_end,
550 					      mod->text, mod->text_end);
551 		uniproc_patched = false;
552 	}
553 	mutex_unlock(&text_mutex);
554 }
555 
556 /*
557  * Return 1 if the address range is reserved for SMP-alternatives.
558  * Must hold text_mutex.
559  */
560 int alternatives_text_reserved(void *start, void *end)
561 {
562 	struct smp_alt_module *mod;
563 	const s32 *poff;
564 	u8 *text_start = start;
565 	u8 *text_end = end;
566 
567 	lockdep_assert_held(&text_mutex);
568 
569 	list_for_each_entry(mod, &smp_alt_modules, next) {
570 		if (mod->text > text_end || mod->text_end < text_start)
571 			continue;
572 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
573 			const u8 *ptr = (const u8 *)poff + *poff;
574 
575 			if (text_start <= ptr && text_end > ptr)
576 				return 1;
577 		}
578 	}
579 
580 	return 0;
581 }
582 #endif /* CONFIG_SMP */
583 
584 #ifdef CONFIG_PARAVIRT
585 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
586 				     struct paravirt_patch_site *end)
587 {
588 	struct paravirt_patch_site *p;
589 	char insnbuf[MAX_PATCH_LEN];
590 
591 	for (p = start; p < end; p++) {
592 		unsigned int used;
593 
594 		BUG_ON(p->len > MAX_PATCH_LEN);
595 		/* prep the buffer with the original instructions */
596 		memcpy(insnbuf, p->instr, p->len);
597 		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
598 					 (unsigned long)p->instr, p->len);
599 
600 		BUG_ON(used > p->len);
601 
602 		/* Pad the rest with nops */
603 		add_nops(insnbuf + used, p->len - used);
604 		text_poke_early(p->instr, insnbuf, p->len);
605 	}
606 }
607 extern struct paravirt_patch_site __start_parainstructions[],
608 	__stop_parainstructions[];
609 #endif	/* CONFIG_PARAVIRT */
610 
611 void __init alternative_instructions(void)
612 {
613 	/* The patching is not fully atomic, so try to avoid local interruptions
614 	   that might execute the to be patched code.
615 	   Other CPUs are not running. */
616 	stop_nmi();
617 
618 	/*
619 	 * Don't stop machine check exceptions while patching.
620 	 * MCEs only happen when something got corrupted and in this
621 	 * case we must do something about the corruption.
622 	 * Ignoring it is worse than a unlikely patching race.
623 	 * Also machine checks tend to be broadcast and if one CPU
624 	 * goes into machine check the others follow quickly, so we don't
625 	 * expect a machine check to cause undue problems during to code
626 	 * patching.
627 	 */
628 
629 	apply_alternatives(__alt_instructions, __alt_instructions_end);
630 
631 #ifdef CONFIG_SMP
632 	/* Patch to UP if other cpus not imminent. */
633 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
634 		uniproc_patched = true;
635 		alternatives_smp_module_add(NULL, "core kernel",
636 					    __smp_locks, __smp_locks_end,
637 					    _text, _etext);
638 	}
639 
640 	if (!uniproc_patched || num_possible_cpus() == 1)
641 		free_init_pages("SMP alternatives",
642 				(unsigned long)__smp_locks,
643 				(unsigned long)__smp_locks_end);
644 #endif
645 
646 	apply_paravirt(__parainstructions, __parainstructions_end);
647 
648 	restart_nmi();
649 	alternatives_patched = 1;
650 }
651 
652 /**
653  * text_poke_early - Update instructions on a live kernel at boot time
654  * @addr: address to modify
655  * @opcode: source of the copy
656  * @len: length to copy
657  *
658  * When you use this code to patch more than one byte of an instruction
659  * you need to make sure that other CPUs cannot execute this code in parallel.
660  * Also no thread must be currently preempted in the middle of these
661  * instructions. And on the local CPU you need to be protected again NMI or MCE
662  * handlers seeing an inconsistent instruction while you patch.
663  */
664 void *__init_or_module text_poke_early(void *addr, const void *opcode,
665 					      size_t len)
666 {
667 	unsigned long flags;
668 	local_irq_save(flags);
669 	memcpy(addr, opcode, len);
670 	local_irq_restore(flags);
671 	sync_core();
672 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
673 	   that causes hangs on some VIA CPUs. */
674 	return addr;
675 }
676 
677 /**
678  * text_poke - Update instructions on a live kernel
679  * @addr: address to modify
680  * @opcode: source of the copy
681  * @len: length to copy
682  *
683  * Only atomic text poke/set should be allowed when not doing early patching.
684  * It means the size must be writable atomically and the address must be aligned
685  * in a way that permits an atomic write. It also makes sure we fit on a single
686  * page.
687  *
688  * Note: Must be called under text_mutex.
689  */
690 void *text_poke(void *addr, const void *opcode, size_t len)
691 {
692 	unsigned long flags;
693 	char *vaddr;
694 	struct page *pages[2];
695 	int i;
696 
697 	/*
698 	 * While boot memory allocator is runnig we cannot use struct
699 	 * pages as they are not yet initialized.
700 	 */
701 	BUG_ON(!after_bootmem);
702 
703 	if (!core_kernel_text((unsigned long)addr)) {
704 		pages[0] = vmalloc_to_page(addr);
705 		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
706 	} else {
707 		pages[0] = virt_to_page(addr);
708 		WARN_ON(!PageReserved(pages[0]));
709 		pages[1] = virt_to_page(addr + PAGE_SIZE);
710 	}
711 	BUG_ON(!pages[0]);
712 	local_irq_save(flags);
713 	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
714 	if (pages[1])
715 		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
716 	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
717 	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
718 	clear_fixmap(FIX_TEXT_POKE0);
719 	if (pages[1])
720 		clear_fixmap(FIX_TEXT_POKE1);
721 	local_flush_tlb();
722 	sync_core();
723 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
724 	   that causes hangs on some VIA CPUs. */
725 	for (i = 0; i < len; i++)
726 		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
727 	local_irq_restore(flags);
728 	return addr;
729 }
730 
731 static void do_sync_core(void *info)
732 {
733 	sync_core();
734 }
735 
736 static bool bp_patching_in_progress;
737 static void *bp_int3_handler, *bp_int3_addr;
738 
739 int poke_int3_handler(struct pt_regs *regs)
740 {
741 	/*
742 	 * Having observed our INT3 instruction, we now must observe
743 	 * bp_patching_in_progress.
744 	 *
745 	 * 	in_progress = TRUE		INT3
746 	 * 	WMB				RMB
747 	 * 	write INT3			if (in_progress)
748 	 *
749 	 * Idem for bp_int3_handler.
750 	 */
751 	smp_rmb();
752 
753 	if (likely(!bp_patching_in_progress))
754 		return 0;
755 
756 	if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
757 		return 0;
758 
759 	/* set up the specified breakpoint handler */
760 	regs->ip = (unsigned long) bp_int3_handler;
761 
762 	return 1;
763 
764 }
765 
766 /**
767  * text_poke_bp() -- update instructions on live kernel on SMP
768  * @addr:	address to patch
769  * @opcode:	opcode of new instruction
770  * @len:	length to copy
771  * @handler:	address to jump to when the temporary breakpoint is hit
772  *
773  * Modify multi-byte instruction by using int3 breakpoint on SMP.
774  * We completely avoid stop_machine() here, and achieve the
775  * synchronization using int3 breakpoint.
776  *
777  * The way it is done:
778  *	- add a int3 trap to the address that will be patched
779  *	- sync cores
780  *	- update all but the first byte of the patched range
781  *	- sync cores
782  *	- replace the first byte (int3) by the first byte of
783  *	  replacing opcode
784  *	- sync cores
785  *
786  * Note: must be called under text_mutex.
787  */
788 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
789 {
790 	unsigned char int3 = 0xcc;
791 
792 	bp_int3_handler = handler;
793 	bp_int3_addr = (u8 *)addr + sizeof(int3);
794 	bp_patching_in_progress = true;
795 	/*
796 	 * Corresponding read barrier in int3 notifier for making sure the
797 	 * in_progress and handler are correctly ordered wrt. patching.
798 	 */
799 	smp_wmb();
800 
801 	text_poke(addr, &int3, sizeof(int3));
802 
803 	on_each_cpu(do_sync_core, NULL, 1);
804 
805 	if (len - sizeof(int3) > 0) {
806 		/* patch all but the first byte */
807 		text_poke((char *)addr + sizeof(int3),
808 			  (const char *) opcode + sizeof(int3),
809 			  len - sizeof(int3));
810 		/*
811 		 * According to Intel, this core syncing is very likely
812 		 * not necessary and we'd be safe even without it. But
813 		 * better safe than sorry (plus there's not only Intel).
814 		 */
815 		on_each_cpu(do_sync_core, NULL, 1);
816 	}
817 
818 	/* patch the first byte */
819 	text_poke(addr, opcode, sizeof(int3));
820 
821 	on_each_cpu(do_sync_core, NULL, 1);
822 	/*
823 	 * sync_core() implies an smp_mb() and orders this store against
824 	 * the writing of the new instruction.
825 	 */
826 	bp_patching_in_progress = false;
827 
828 	return addr;
829 }
830 
831