xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/memory.h>
13 #include <linux/stop_machine.h>
14 #include <linux/slab.h>
15 #include <linux/kdebug.h>
16 #include <linux/kprobes.h>
17 #include <linux/mmu_context.h>
18 #include <linux/bsearch.h>
19 #include <linux/sync_core.h>
20 #include <asm/text-patching.h>
21 #include <asm/alternative.h>
22 #include <asm/sections.h>
23 #include <asm/mce.h>
24 #include <asm/nmi.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/insn.h>
28 #include <asm/io.h>
29 #include <asm/fixmap.h>
30 
31 int __read_mostly alternatives_patched;
32 
33 EXPORT_SYMBOL_GPL(alternatives_patched);
34 
35 #define MAX_PATCH_LEN (255-1)
36 
37 static int __initdata_or_module debug_alternative;
38 
39 static int __init debug_alt(char *str)
40 {
41 	debug_alternative = 1;
42 	return 1;
43 }
44 __setup("debug-alternative", debug_alt);
45 
46 static int noreplace_smp;
47 
48 static int __init setup_noreplace_smp(char *str)
49 {
50 	noreplace_smp = 1;
51 	return 1;
52 }
53 __setup("noreplace-smp", setup_noreplace_smp);
54 
55 #define DPRINTK(fmt, args...)						\
56 do {									\
57 	if (debug_alternative)						\
58 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
59 } while (0)
60 
61 #define DUMP_BYTES(buf, len, fmt, args...)				\
62 do {									\
63 	if (unlikely(debug_alternative)) {				\
64 		int j;							\
65 									\
66 		if (!(len))						\
67 			break;						\
68 									\
69 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
70 		for (j = 0; j < (len) - 1; j++)				\
71 			printk(KERN_CONT "%02hhx ", buf[j]);		\
72 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
73 	}								\
74 } while (0)
75 
76 /*
77  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
78  * that correspond to that nop. Getting from one nop to the next, we
79  * add to the array the offset that is equal to the sum of all sizes of
80  * nops preceding the one we are after.
81  *
82  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
83  * nice symmetry of sizes of the previous nops.
84  */
85 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
86 static const unsigned char intelnops[] =
87 {
88 	GENERIC_NOP1,
89 	GENERIC_NOP2,
90 	GENERIC_NOP3,
91 	GENERIC_NOP4,
92 	GENERIC_NOP5,
93 	GENERIC_NOP6,
94 	GENERIC_NOP7,
95 	GENERIC_NOP8,
96 	GENERIC_NOP5_ATOMIC
97 };
98 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
99 {
100 	NULL,
101 	intelnops,
102 	intelnops + 1,
103 	intelnops + 1 + 2,
104 	intelnops + 1 + 2 + 3,
105 	intelnops + 1 + 2 + 3 + 4,
106 	intelnops + 1 + 2 + 3 + 4 + 5,
107 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
108 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
109 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
110 };
111 #endif
112 
113 #ifdef K8_NOP1
114 static const unsigned char k8nops[] =
115 {
116 	K8_NOP1,
117 	K8_NOP2,
118 	K8_NOP3,
119 	K8_NOP4,
120 	K8_NOP5,
121 	K8_NOP6,
122 	K8_NOP7,
123 	K8_NOP8,
124 	K8_NOP5_ATOMIC
125 };
126 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
127 {
128 	NULL,
129 	k8nops,
130 	k8nops + 1,
131 	k8nops + 1 + 2,
132 	k8nops + 1 + 2 + 3,
133 	k8nops + 1 + 2 + 3 + 4,
134 	k8nops + 1 + 2 + 3 + 4 + 5,
135 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
136 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
137 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
138 };
139 #endif
140 
141 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
142 static const unsigned char k7nops[] =
143 {
144 	K7_NOP1,
145 	K7_NOP2,
146 	K7_NOP3,
147 	K7_NOP4,
148 	K7_NOP5,
149 	K7_NOP6,
150 	K7_NOP7,
151 	K7_NOP8,
152 	K7_NOP5_ATOMIC
153 };
154 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
155 {
156 	NULL,
157 	k7nops,
158 	k7nops + 1,
159 	k7nops + 1 + 2,
160 	k7nops + 1 + 2 + 3,
161 	k7nops + 1 + 2 + 3 + 4,
162 	k7nops + 1 + 2 + 3 + 4 + 5,
163 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
164 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
165 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
166 };
167 #endif
168 
169 #ifdef P6_NOP1
170 static const unsigned char p6nops[] =
171 {
172 	P6_NOP1,
173 	P6_NOP2,
174 	P6_NOP3,
175 	P6_NOP4,
176 	P6_NOP5,
177 	P6_NOP6,
178 	P6_NOP7,
179 	P6_NOP8,
180 	P6_NOP5_ATOMIC
181 };
182 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
183 {
184 	NULL,
185 	p6nops,
186 	p6nops + 1,
187 	p6nops + 1 + 2,
188 	p6nops + 1 + 2 + 3,
189 	p6nops + 1 + 2 + 3 + 4,
190 	p6nops + 1 + 2 + 3 + 4 + 5,
191 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
192 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
193 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
194 };
195 #endif
196 
197 /* Initialize these to a safe default */
198 #ifdef CONFIG_X86_64
199 const unsigned char * const *ideal_nops = p6_nops;
200 #else
201 const unsigned char * const *ideal_nops = intel_nops;
202 #endif
203 
204 void __init arch_init_ideal_nops(void)
205 {
206 	switch (boot_cpu_data.x86_vendor) {
207 	case X86_VENDOR_INTEL:
208 		/*
209 		 * Due to a decoder implementation quirk, some
210 		 * specific Intel CPUs actually perform better with
211 		 * the "k8_nops" than with the SDM-recommended NOPs.
212 		 */
213 		if (boot_cpu_data.x86 == 6 &&
214 		    boot_cpu_data.x86_model >= 0x0f &&
215 		    boot_cpu_data.x86_model != 0x1c &&
216 		    boot_cpu_data.x86_model != 0x26 &&
217 		    boot_cpu_data.x86_model != 0x27 &&
218 		    boot_cpu_data.x86_model < 0x30) {
219 			ideal_nops = k8_nops;
220 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
221 			   ideal_nops = p6_nops;
222 		} else {
223 #ifdef CONFIG_X86_64
224 			ideal_nops = k8_nops;
225 #else
226 			ideal_nops = intel_nops;
227 #endif
228 		}
229 		break;
230 
231 	case X86_VENDOR_HYGON:
232 		ideal_nops = p6_nops;
233 		return;
234 
235 	case X86_VENDOR_AMD:
236 		if (boot_cpu_data.x86 > 0xf) {
237 			ideal_nops = p6_nops;
238 			return;
239 		}
240 
241 		/* fall through */
242 
243 	default:
244 #ifdef CONFIG_X86_64
245 		ideal_nops = k8_nops;
246 #else
247 		if (boot_cpu_has(X86_FEATURE_K8))
248 			ideal_nops = k8_nops;
249 		else if (boot_cpu_has(X86_FEATURE_K7))
250 			ideal_nops = k7_nops;
251 		else
252 			ideal_nops = intel_nops;
253 #endif
254 	}
255 }
256 
257 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
258 static void __init_or_module add_nops(void *insns, unsigned int len)
259 {
260 	while (len > 0) {
261 		unsigned int noplen = len;
262 		if (noplen > ASM_NOP_MAX)
263 			noplen = ASM_NOP_MAX;
264 		memcpy(insns, ideal_nops[noplen], noplen);
265 		insns += noplen;
266 		len -= noplen;
267 	}
268 }
269 
270 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
271 extern s32 __smp_locks[], __smp_locks_end[];
272 void text_poke_early(void *addr, const void *opcode, size_t len);
273 
274 /*
275  * Are we looking at a near JMP with a 1 or 4-byte displacement.
276  */
277 static inline bool is_jmp(const u8 opcode)
278 {
279 	return opcode == 0xeb || opcode == 0xe9;
280 }
281 
282 static void __init_or_module
283 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
284 {
285 	u8 *next_rip, *tgt_rip;
286 	s32 n_dspl, o_dspl;
287 	int repl_len;
288 
289 	if (a->replacementlen != 5)
290 		return;
291 
292 	o_dspl = *(s32 *)(insn_buff + 1);
293 
294 	/* next_rip of the replacement JMP */
295 	next_rip = repl_insn + a->replacementlen;
296 	/* target rip of the replacement JMP */
297 	tgt_rip  = next_rip + o_dspl;
298 	n_dspl = tgt_rip - orig_insn;
299 
300 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
301 
302 	if (tgt_rip - orig_insn >= 0) {
303 		if (n_dspl - 2 <= 127)
304 			goto two_byte_jmp;
305 		else
306 			goto five_byte_jmp;
307 	/* negative offset */
308 	} else {
309 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
310 			goto two_byte_jmp;
311 		else
312 			goto five_byte_jmp;
313 	}
314 
315 two_byte_jmp:
316 	n_dspl -= 2;
317 
318 	insn_buff[0] = 0xeb;
319 	insn_buff[1] = (s8)n_dspl;
320 	add_nops(insn_buff + 2, 3);
321 
322 	repl_len = 2;
323 	goto done;
324 
325 five_byte_jmp:
326 	n_dspl -= 5;
327 
328 	insn_buff[0] = 0xe9;
329 	*(s32 *)&insn_buff[1] = n_dspl;
330 
331 	repl_len = 5;
332 
333 done:
334 
335 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
336 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
337 }
338 
339 /*
340  * "noinline" to cause control flow change and thus invalidate I$ and
341  * cause refetch after modification.
342  */
343 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
344 {
345 	unsigned long flags;
346 	int i;
347 
348 	for (i = 0; i < a->padlen; i++) {
349 		if (instr[i] != 0x90)
350 			return;
351 	}
352 
353 	local_irq_save(flags);
354 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
355 	local_irq_restore(flags);
356 
357 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
358 		   instr, a->instrlen - a->padlen, a->padlen);
359 }
360 
361 /*
362  * Replace instructions with better alternatives for this CPU type. This runs
363  * before SMP is initialized to avoid SMP problems with self modifying code.
364  * This implies that asymmetric systems where APs have less capabilities than
365  * the boot processor are not handled. Tough. Make sure you disable such
366  * features by hand.
367  *
368  * Marked "noinline" to cause control flow change and thus insn cache
369  * to refetch changed I$ lines.
370  */
371 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
372 						  struct alt_instr *end)
373 {
374 	struct alt_instr *a;
375 	u8 *instr, *replacement;
376 	u8 insn_buff[MAX_PATCH_LEN];
377 
378 	DPRINTK("alt table %px, -> %px", start, end);
379 	/*
380 	 * The scan order should be from start to end. A later scanned
381 	 * alternative code can overwrite previously scanned alternative code.
382 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
383 	 * patch code.
384 	 *
385 	 * So be careful if you want to change the scan order to any other
386 	 * order.
387 	 */
388 	for (a = start; a < end; a++) {
389 		int insn_buff_sz = 0;
390 
391 		instr = (u8 *)&a->instr_offset + a->instr_offset;
392 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
393 		BUG_ON(a->instrlen > sizeof(insn_buff));
394 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
395 		if (!boot_cpu_has(a->cpuid)) {
396 			if (a->padlen > 1)
397 				optimize_nops(a, instr);
398 
399 			continue;
400 		}
401 
402 		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
403 			a->cpuid >> 5,
404 			a->cpuid & 0x1f,
405 			instr, instr, a->instrlen,
406 			replacement, a->replacementlen, a->padlen);
407 
408 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
409 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
410 
411 		memcpy(insn_buff, replacement, a->replacementlen);
412 		insn_buff_sz = a->replacementlen;
413 
414 		/*
415 		 * 0xe8 is a relative jump; fix the offset.
416 		 *
417 		 * Instruction length is checked before the opcode to avoid
418 		 * accessing uninitialized bytes for zero-length replacements.
419 		 */
420 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
421 			*(s32 *)(insn_buff + 1) += replacement - instr;
422 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
423 				*(s32 *)(insn_buff + 1),
424 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
425 		}
426 
427 		if (a->replacementlen && is_jmp(replacement[0]))
428 			recompute_jump(a, instr, replacement, insn_buff);
429 
430 		if (a->instrlen > a->replacementlen) {
431 			add_nops(insn_buff + a->replacementlen,
432 				 a->instrlen - a->replacementlen);
433 			insn_buff_sz += a->instrlen - a->replacementlen;
434 		}
435 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
436 
437 		text_poke_early(instr, insn_buff, insn_buff_sz);
438 	}
439 }
440 
441 #ifdef CONFIG_SMP
442 static void alternatives_smp_lock(const s32 *start, const s32 *end,
443 				  u8 *text, u8 *text_end)
444 {
445 	const s32 *poff;
446 
447 	for (poff = start; poff < end; poff++) {
448 		u8 *ptr = (u8 *)poff + *poff;
449 
450 		if (!*poff || ptr < text || ptr >= text_end)
451 			continue;
452 		/* turn DS segment override prefix into lock prefix */
453 		if (*ptr == 0x3e)
454 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
455 	}
456 }
457 
458 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
459 				    u8 *text, u8 *text_end)
460 {
461 	const s32 *poff;
462 
463 	for (poff = start; poff < end; poff++) {
464 		u8 *ptr = (u8 *)poff + *poff;
465 
466 		if (!*poff || ptr < text || ptr >= text_end)
467 			continue;
468 		/* turn lock prefix into DS segment override prefix */
469 		if (*ptr == 0xf0)
470 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
471 	}
472 }
473 
474 struct smp_alt_module {
475 	/* what is this ??? */
476 	struct module	*mod;
477 	char		*name;
478 
479 	/* ptrs to lock prefixes */
480 	const s32	*locks;
481 	const s32	*locks_end;
482 
483 	/* .text segment, needed to avoid patching init code ;) */
484 	u8		*text;
485 	u8		*text_end;
486 
487 	struct list_head next;
488 };
489 static LIST_HEAD(smp_alt_modules);
490 static bool uniproc_patched = false;	/* protected by text_mutex */
491 
492 void __init_or_module alternatives_smp_module_add(struct module *mod,
493 						  char *name,
494 						  void *locks, void *locks_end,
495 						  void *text,  void *text_end)
496 {
497 	struct smp_alt_module *smp;
498 
499 	mutex_lock(&text_mutex);
500 	if (!uniproc_patched)
501 		goto unlock;
502 
503 	if (num_possible_cpus() == 1)
504 		/* Don't bother remembering, we'll never have to undo it. */
505 		goto smp_unlock;
506 
507 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
508 	if (NULL == smp)
509 		/* we'll run the (safe but slow) SMP code then ... */
510 		goto unlock;
511 
512 	smp->mod	= mod;
513 	smp->name	= name;
514 	smp->locks	= locks;
515 	smp->locks_end	= locks_end;
516 	smp->text	= text;
517 	smp->text_end	= text_end;
518 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
519 		smp->locks, smp->locks_end,
520 		smp->text, smp->text_end, smp->name);
521 
522 	list_add_tail(&smp->next, &smp_alt_modules);
523 smp_unlock:
524 	alternatives_smp_unlock(locks, locks_end, text, text_end);
525 unlock:
526 	mutex_unlock(&text_mutex);
527 }
528 
529 void __init_or_module alternatives_smp_module_del(struct module *mod)
530 {
531 	struct smp_alt_module *item;
532 
533 	mutex_lock(&text_mutex);
534 	list_for_each_entry(item, &smp_alt_modules, next) {
535 		if (mod != item->mod)
536 			continue;
537 		list_del(&item->next);
538 		kfree(item);
539 		break;
540 	}
541 	mutex_unlock(&text_mutex);
542 }
543 
544 void alternatives_enable_smp(void)
545 {
546 	struct smp_alt_module *mod;
547 
548 	/* Why bother if there are no other CPUs? */
549 	BUG_ON(num_possible_cpus() == 1);
550 
551 	mutex_lock(&text_mutex);
552 
553 	if (uniproc_patched) {
554 		pr_info("switching to SMP code\n");
555 		BUG_ON(num_online_cpus() != 1);
556 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
557 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
558 		list_for_each_entry(mod, &smp_alt_modules, next)
559 			alternatives_smp_lock(mod->locks, mod->locks_end,
560 					      mod->text, mod->text_end);
561 		uniproc_patched = false;
562 	}
563 	mutex_unlock(&text_mutex);
564 }
565 
566 /*
567  * Return 1 if the address range is reserved for SMP-alternatives.
568  * Must hold text_mutex.
569  */
570 int alternatives_text_reserved(void *start, void *end)
571 {
572 	struct smp_alt_module *mod;
573 	const s32 *poff;
574 	u8 *text_start = start;
575 	u8 *text_end = end;
576 
577 	lockdep_assert_held(&text_mutex);
578 
579 	list_for_each_entry(mod, &smp_alt_modules, next) {
580 		if (mod->text > text_end || mod->text_end < text_start)
581 			continue;
582 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
583 			const u8 *ptr = (const u8 *)poff + *poff;
584 
585 			if (text_start <= ptr && text_end > ptr)
586 				return 1;
587 		}
588 	}
589 
590 	return 0;
591 }
592 #endif /* CONFIG_SMP */
593 
594 #ifdef CONFIG_PARAVIRT
595 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
596 				     struct paravirt_patch_site *end)
597 {
598 	struct paravirt_patch_site *p;
599 	char insn_buff[MAX_PATCH_LEN];
600 
601 	for (p = start; p < end; p++) {
602 		unsigned int used;
603 
604 		BUG_ON(p->len > MAX_PATCH_LEN);
605 		/* prep the buffer with the original instructions */
606 		memcpy(insn_buff, p->instr, p->len);
607 		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
608 
609 		BUG_ON(used > p->len);
610 
611 		/* Pad the rest with nops */
612 		add_nops(insn_buff + used, p->len - used);
613 		text_poke_early(p->instr, insn_buff, p->len);
614 	}
615 }
616 extern struct paravirt_patch_site __start_parainstructions[],
617 	__stop_parainstructions[];
618 #endif	/* CONFIG_PARAVIRT */
619 
620 /*
621  * Self-test for the INT3 based CALL emulation code.
622  *
623  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
624  * properly and that there is a stack gap between the INT3 frame and the
625  * previous context. Without this gap doing a virtual PUSH on the interrupted
626  * stack would corrupt the INT3 IRET frame.
627  *
628  * See entry_{32,64}.S for more details.
629  */
630 
631 /*
632  * We define the int3_magic() function in assembly to control the calling
633  * convention such that we can 'call' it from assembly.
634  */
635 
636 extern void int3_magic(unsigned int *ptr); /* defined in asm */
637 
638 asm (
639 "	.pushsection	.init.text, \"ax\", @progbits\n"
640 "	.type		int3_magic, @function\n"
641 "int3_magic:\n"
642 "	movl	$1, (%" _ASM_ARG1 ")\n"
643 "	ret\n"
644 "	.size		int3_magic, .-int3_magic\n"
645 "	.popsection\n"
646 );
647 
648 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
649 
650 static int __init
651 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
652 {
653 	struct die_args *args = data;
654 	struct pt_regs *regs = args->regs;
655 
656 	if (!regs || user_mode(regs))
657 		return NOTIFY_DONE;
658 
659 	if (val != DIE_INT3)
660 		return NOTIFY_DONE;
661 
662 	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
663 		return NOTIFY_DONE;
664 
665 	int3_emulate_call(regs, (unsigned long)&int3_magic);
666 	return NOTIFY_STOP;
667 }
668 
669 static void __init int3_selftest(void)
670 {
671 	static __initdata struct notifier_block int3_exception_nb = {
672 		.notifier_call	= int3_exception_notify,
673 		.priority	= INT_MAX-1, /* last */
674 	};
675 	unsigned int val = 0;
676 
677 	BUG_ON(register_die_notifier(&int3_exception_nb));
678 
679 	/*
680 	 * Basically: int3_magic(&val); but really complicated :-)
681 	 *
682 	 * Stick the address of the INT3 instruction into int3_selftest_ip,
683 	 * then trigger the INT3, padded with NOPs to match a CALL instruction
684 	 * length.
685 	 */
686 	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
687 		      ".pushsection .init.data,\"aw\"\n\t"
688 		      ".align " __ASM_SEL(4, 8) "\n\t"
689 		      ".type int3_selftest_ip, @object\n\t"
690 		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
691 		      "int3_selftest_ip:\n\t"
692 		      __ASM_SEL(.long, .quad) " 1b\n\t"
693 		      ".popsection\n\t"
694 		      : ASM_CALL_CONSTRAINT
695 		      : __ASM_SEL_RAW(a, D) (&val)
696 		      : "memory");
697 
698 	BUG_ON(val != 1);
699 
700 	unregister_die_notifier(&int3_exception_nb);
701 }
702 
703 void __init alternative_instructions(void)
704 {
705 	int3_selftest();
706 
707 	/*
708 	 * The patching is not fully atomic, so try to avoid local
709 	 * interruptions that might execute the to be patched code.
710 	 * Other CPUs are not running.
711 	 */
712 	stop_nmi();
713 
714 	/*
715 	 * Don't stop machine check exceptions while patching.
716 	 * MCEs only happen when something got corrupted and in this
717 	 * case we must do something about the corruption.
718 	 * Ignoring it is worse than an unlikely patching race.
719 	 * Also machine checks tend to be broadcast and if one CPU
720 	 * goes into machine check the others follow quickly, so we don't
721 	 * expect a machine check to cause undue problems during to code
722 	 * patching.
723 	 */
724 
725 	apply_alternatives(__alt_instructions, __alt_instructions_end);
726 
727 #ifdef CONFIG_SMP
728 	/* Patch to UP if other cpus not imminent. */
729 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
730 		uniproc_patched = true;
731 		alternatives_smp_module_add(NULL, "core kernel",
732 					    __smp_locks, __smp_locks_end,
733 					    _text, _etext);
734 	}
735 
736 	if (!uniproc_patched || num_possible_cpus() == 1) {
737 		free_init_pages("SMP alternatives",
738 				(unsigned long)__smp_locks,
739 				(unsigned long)__smp_locks_end);
740 	}
741 #endif
742 
743 	apply_paravirt(__parainstructions, __parainstructions_end);
744 
745 	restart_nmi();
746 	alternatives_patched = 1;
747 }
748 
749 /**
750  * text_poke_early - Update instructions on a live kernel at boot time
751  * @addr: address to modify
752  * @opcode: source of the copy
753  * @len: length to copy
754  *
755  * When you use this code to patch more than one byte of an instruction
756  * you need to make sure that other CPUs cannot execute this code in parallel.
757  * Also no thread must be currently preempted in the middle of these
758  * instructions. And on the local CPU you need to be protected against NMI or
759  * MCE handlers seeing an inconsistent instruction while you patch.
760  */
761 void __init_or_module text_poke_early(void *addr, const void *opcode,
762 				      size_t len)
763 {
764 	unsigned long flags;
765 
766 	if (boot_cpu_has(X86_FEATURE_NX) &&
767 	    is_module_text_address((unsigned long)addr)) {
768 		/*
769 		 * Modules text is marked initially as non-executable, so the
770 		 * code cannot be running and speculative code-fetches are
771 		 * prevented. Just change the code.
772 		 */
773 		memcpy(addr, opcode, len);
774 	} else {
775 		local_irq_save(flags);
776 		memcpy(addr, opcode, len);
777 		local_irq_restore(flags);
778 		sync_core();
779 
780 		/*
781 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
782 		 * that causes hangs on some VIA CPUs.
783 		 */
784 	}
785 }
786 
787 typedef struct {
788 	struct mm_struct *mm;
789 } temp_mm_state_t;
790 
791 /*
792  * Using a temporary mm allows to set temporary mappings that are not accessible
793  * by other CPUs. Such mappings are needed to perform sensitive memory writes
794  * that override the kernel memory protections (e.g., W^X), without exposing the
795  * temporary page-table mappings that are required for these write operations to
796  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
797  * mapping is torn down.
798  *
799  * Context: The temporary mm needs to be used exclusively by a single core. To
800  *          harden security IRQs must be disabled while the temporary mm is
801  *          loaded, thereby preventing interrupt handler bugs from overriding
802  *          the kernel memory protection.
803  */
804 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
805 {
806 	temp_mm_state_t temp_state;
807 
808 	lockdep_assert_irqs_disabled();
809 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
810 	switch_mm_irqs_off(NULL, mm, current);
811 
812 	/*
813 	 * If breakpoints are enabled, disable them while the temporary mm is
814 	 * used. Userspace might set up watchpoints on addresses that are used
815 	 * in the temporary mm, which would lead to wrong signals being sent or
816 	 * crashes.
817 	 *
818 	 * Note that breakpoints are not disabled selectively, which also causes
819 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
820 	 * undesirable, but still seems reasonable as the code that runs in the
821 	 * temporary mm should be short.
822 	 */
823 	if (hw_breakpoint_active())
824 		hw_breakpoint_disable();
825 
826 	return temp_state;
827 }
828 
829 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
830 {
831 	lockdep_assert_irqs_disabled();
832 	switch_mm_irqs_off(NULL, prev_state.mm, current);
833 
834 	/*
835 	 * Restore the breakpoints if they were disabled before the temporary mm
836 	 * was loaded.
837 	 */
838 	if (hw_breakpoint_active())
839 		hw_breakpoint_restore();
840 }
841 
842 __ro_after_init struct mm_struct *poking_mm;
843 __ro_after_init unsigned long poking_addr;
844 
845 static void *__text_poke(void *addr, const void *opcode, size_t len)
846 {
847 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
848 	struct page *pages[2] = {NULL};
849 	temp_mm_state_t prev;
850 	unsigned long flags;
851 	pte_t pte, *ptep;
852 	spinlock_t *ptl;
853 	pgprot_t pgprot;
854 
855 	/*
856 	 * While boot memory allocator is running we cannot use struct pages as
857 	 * they are not yet initialized. There is no way to recover.
858 	 */
859 	BUG_ON(!after_bootmem);
860 
861 	if (!core_kernel_text((unsigned long)addr)) {
862 		pages[0] = vmalloc_to_page(addr);
863 		if (cross_page_boundary)
864 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
865 	} else {
866 		pages[0] = virt_to_page(addr);
867 		WARN_ON(!PageReserved(pages[0]));
868 		if (cross_page_boundary)
869 			pages[1] = virt_to_page(addr + PAGE_SIZE);
870 	}
871 	/*
872 	 * If something went wrong, crash and burn since recovery paths are not
873 	 * implemented.
874 	 */
875 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
876 
877 	local_irq_save(flags);
878 
879 	/*
880 	 * Map the page without the global bit, as TLB flushing is done with
881 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
882 	 */
883 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
884 
885 	/*
886 	 * The lock is not really needed, but this allows to avoid open-coding.
887 	 */
888 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
889 
890 	/*
891 	 * This must not fail; preallocated in poking_init().
892 	 */
893 	VM_BUG_ON(!ptep);
894 
895 	pte = mk_pte(pages[0], pgprot);
896 	set_pte_at(poking_mm, poking_addr, ptep, pte);
897 
898 	if (cross_page_boundary) {
899 		pte = mk_pte(pages[1], pgprot);
900 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
901 	}
902 
903 	/*
904 	 * Loading the temporary mm behaves as a compiler barrier, which
905 	 * guarantees that the PTE will be set at the time memcpy() is done.
906 	 */
907 	prev = use_temporary_mm(poking_mm);
908 
909 	kasan_disable_current();
910 	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
911 	kasan_enable_current();
912 
913 	/*
914 	 * Ensure that the PTE is only cleared after the instructions of memcpy
915 	 * were issued by using a compiler barrier.
916 	 */
917 	barrier();
918 
919 	pte_clear(poking_mm, poking_addr, ptep);
920 	if (cross_page_boundary)
921 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
922 
923 	/*
924 	 * Loading the previous page-table hierarchy requires a serializing
925 	 * instruction that already allows the core to see the updated version.
926 	 * Xen-PV is assumed to serialize execution in a similar manner.
927 	 */
928 	unuse_temporary_mm(prev);
929 
930 	/*
931 	 * Flushing the TLB might involve IPIs, which would require enabled
932 	 * IRQs, but not if the mm is not used, as it is in this point.
933 	 */
934 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
935 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
936 			   PAGE_SHIFT, false);
937 
938 	/*
939 	 * If the text does not match what we just wrote then something is
940 	 * fundamentally screwy; there's nothing we can really do about that.
941 	 */
942 	BUG_ON(memcmp(addr, opcode, len));
943 
944 	pte_unmap_unlock(ptep, ptl);
945 	local_irq_restore(flags);
946 	return addr;
947 }
948 
949 /**
950  * text_poke - Update instructions on a live kernel
951  * @addr: address to modify
952  * @opcode: source of the copy
953  * @len: length to copy
954  *
955  * Only atomic text poke/set should be allowed when not doing early patching.
956  * It means the size must be writable atomically and the address must be aligned
957  * in a way that permits an atomic write. It also makes sure we fit on a single
958  * page.
959  *
960  * Note that the caller must ensure that if the modified code is part of a
961  * module, the module would not be removed during poking. This can be achieved
962  * by registering a module notifier, and ordering module removal and patching
963  * trough a mutex.
964  */
965 void *text_poke(void *addr, const void *opcode, size_t len)
966 {
967 	lockdep_assert_held(&text_mutex);
968 
969 	return __text_poke(addr, opcode, len);
970 }
971 
972 /**
973  * text_poke_kgdb - Update instructions on a live kernel by kgdb
974  * @addr: address to modify
975  * @opcode: source of the copy
976  * @len: length to copy
977  *
978  * Only atomic text poke/set should be allowed when not doing early patching.
979  * It means the size must be writable atomically and the address must be aligned
980  * in a way that permits an atomic write. It also makes sure we fit on a single
981  * page.
982  *
983  * Context: should only be used by kgdb, which ensures no other core is running,
984  *	    despite the fact it does not hold the text_mutex.
985  */
986 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
987 {
988 	return __text_poke(addr, opcode, len);
989 }
990 
991 static void do_sync_core(void *info)
992 {
993 	sync_core();
994 }
995 
996 void text_poke_sync(void)
997 {
998 	on_each_cpu(do_sync_core, NULL, 1);
999 }
1000 
1001 struct text_poke_loc {
1002 	s32 rel_addr; /* addr := _stext + rel_addr */
1003 	s32 rel32;
1004 	u8 opcode;
1005 	const u8 text[POKE_MAX_OPCODE_SIZE];
1006 	u8 old;
1007 };
1008 
1009 struct bp_patching_desc {
1010 	struct text_poke_loc *vec;
1011 	int nr_entries;
1012 	atomic_t refs;
1013 };
1014 
1015 static struct bp_patching_desc *bp_desc;
1016 
1017 static __always_inline
1018 struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1019 {
1020 	struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
1021 
1022 	if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1023 		return NULL;
1024 
1025 	return desc;
1026 }
1027 
1028 static __always_inline void put_desc(struct bp_patching_desc *desc)
1029 {
1030 	smp_mb__before_atomic();
1031 	arch_atomic_dec(&desc->refs);
1032 }
1033 
1034 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1035 {
1036 	return _stext + tp->rel_addr;
1037 }
1038 
1039 static __always_inline int patch_cmp(const void *key, const void *elt)
1040 {
1041 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1042 
1043 	if (key < text_poke_addr(tp))
1044 		return -1;
1045 	if (key > text_poke_addr(tp))
1046 		return 1;
1047 	return 0;
1048 }
1049 
1050 noinstr int poke_int3_handler(struct pt_regs *regs)
1051 {
1052 	struct bp_patching_desc *desc;
1053 	struct text_poke_loc *tp;
1054 	int len, ret = 0;
1055 	void *ip;
1056 
1057 	if (user_mode(regs))
1058 		return 0;
1059 
1060 	/*
1061 	 * Having observed our INT3 instruction, we now must observe
1062 	 * bp_desc:
1063 	 *
1064 	 *	bp_desc = desc			INT3
1065 	 *	WMB				RMB
1066 	 *	write INT3			if (desc)
1067 	 */
1068 	smp_rmb();
1069 
1070 	desc = try_get_desc(&bp_desc);
1071 	if (!desc)
1072 		return 0;
1073 
1074 	/*
1075 	 * Discount the INT3. See text_poke_bp_batch().
1076 	 */
1077 	ip = (void *) regs->ip - INT3_INSN_SIZE;
1078 
1079 	/*
1080 	 * Skip the binary search if there is a single member in the vector.
1081 	 */
1082 	if (unlikely(desc->nr_entries > 1)) {
1083 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1084 				      sizeof(struct text_poke_loc),
1085 				      patch_cmp);
1086 		if (!tp)
1087 			goto out_put;
1088 	} else {
1089 		tp = desc->vec;
1090 		if (text_poke_addr(tp) != ip)
1091 			goto out_put;
1092 	}
1093 
1094 	len = text_opcode_size(tp->opcode);
1095 	ip += len;
1096 
1097 	switch (tp->opcode) {
1098 	case INT3_INSN_OPCODE:
1099 		/*
1100 		 * Someone poked an explicit INT3, they'll want to handle it,
1101 		 * do not consume.
1102 		 */
1103 		goto out_put;
1104 
1105 	case CALL_INSN_OPCODE:
1106 		int3_emulate_call(regs, (long)ip + tp->rel32);
1107 		break;
1108 
1109 	case JMP32_INSN_OPCODE:
1110 	case JMP8_INSN_OPCODE:
1111 		int3_emulate_jmp(regs, (long)ip + tp->rel32);
1112 		break;
1113 
1114 	default:
1115 		BUG();
1116 	}
1117 
1118 	ret = 1;
1119 
1120 out_put:
1121 	put_desc(desc);
1122 	return ret;
1123 }
1124 
1125 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1126 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1127 static int tp_vec_nr;
1128 
1129 /**
1130  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1131  * @tp:			vector of instructions to patch
1132  * @nr_entries:		number of entries in the vector
1133  *
1134  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1135  * We completely avoid stop_machine() here, and achieve the
1136  * synchronization using int3 breakpoint.
1137  *
1138  * The way it is done:
1139  *	- For each entry in the vector:
1140  *		- add a int3 trap to the address that will be patched
1141  *	- sync cores
1142  *	- For each entry in the vector:
1143  *		- update all but the first byte of the patched range
1144  *	- sync cores
1145  *	- For each entry in the vector:
1146  *		- replace the first byte (int3) by the first byte of
1147  *		  replacing opcode
1148  *	- sync cores
1149  */
1150 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1151 {
1152 	struct bp_patching_desc desc = {
1153 		.vec = tp,
1154 		.nr_entries = nr_entries,
1155 		.refs = ATOMIC_INIT(1),
1156 	};
1157 	unsigned char int3 = INT3_INSN_OPCODE;
1158 	unsigned int i;
1159 	int do_sync;
1160 
1161 	lockdep_assert_held(&text_mutex);
1162 
1163 	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1164 
1165 	/*
1166 	 * Corresponding read barrier in int3 notifier for making sure the
1167 	 * nr_entries and handler are correctly ordered wrt. patching.
1168 	 */
1169 	smp_wmb();
1170 
1171 	/*
1172 	 * First step: add a int3 trap to the address that will be patched.
1173 	 */
1174 	for (i = 0; i < nr_entries; i++) {
1175 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1176 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1177 	}
1178 
1179 	text_poke_sync();
1180 
1181 	/*
1182 	 * Second step: update all but the first byte of the patched range.
1183 	 */
1184 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1185 		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1186 		int len = text_opcode_size(tp[i].opcode);
1187 
1188 		if (len - INT3_INSN_SIZE > 0) {
1189 			memcpy(old + INT3_INSN_SIZE,
1190 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1191 			       len - INT3_INSN_SIZE);
1192 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1193 				  (const char *)tp[i].text + INT3_INSN_SIZE,
1194 				  len - INT3_INSN_SIZE);
1195 			do_sync++;
1196 		}
1197 
1198 		/*
1199 		 * Emit a perf event to record the text poke, primarily to
1200 		 * support Intel PT decoding which must walk the executable code
1201 		 * to reconstruct the trace. The flow up to here is:
1202 		 *   - write INT3 byte
1203 		 *   - IPI-SYNC
1204 		 *   - write instruction tail
1205 		 * At this point the actual control flow will be through the
1206 		 * INT3 and handler and not hit the old or new instruction.
1207 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1208 		 * can still be decoded. Subsequently:
1209 		 *   - emit RECORD_TEXT_POKE with the new instruction
1210 		 *   - IPI-SYNC
1211 		 *   - write first byte
1212 		 *   - IPI-SYNC
1213 		 * So before the text poke event timestamp, the decoder will see
1214 		 * either the old instruction flow or FUP/TIP of INT3. After the
1215 		 * text poke event timestamp, the decoder will see either the
1216 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1217 		 * use the timestamp as the point at which to modify the
1218 		 * executable code.
1219 		 * The old instruction is recorded so that the event can be
1220 		 * processed forwards or backwards.
1221 		 */
1222 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1223 				     tp[i].text, len);
1224 	}
1225 
1226 	if (do_sync) {
1227 		/*
1228 		 * According to Intel, this core syncing is very likely
1229 		 * not necessary and we'd be safe even without it. But
1230 		 * better safe than sorry (plus there's not only Intel).
1231 		 */
1232 		text_poke_sync();
1233 	}
1234 
1235 	/*
1236 	 * Third step: replace the first byte (int3) by the first byte of
1237 	 * replacing opcode.
1238 	 */
1239 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1240 		if (tp[i].text[0] == INT3_INSN_OPCODE)
1241 			continue;
1242 
1243 		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1244 		do_sync++;
1245 	}
1246 
1247 	if (do_sync)
1248 		text_poke_sync();
1249 
1250 	/*
1251 	 * Remove and synchronize_rcu(), except we have a very primitive
1252 	 * refcount based completion.
1253 	 */
1254 	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1255 	if (!atomic_dec_and_test(&desc.refs))
1256 		atomic_cond_read_acquire(&desc.refs, !VAL);
1257 }
1258 
1259 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1260 			       const void *opcode, size_t len, const void *emulate)
1261 {
1262 	struct insn insn;
1263 
1264 	memcpy((void *)tp->text, opcode, len);
1265 	if (!emulate)
1266 		emulate = opcode;
1267 
1268 	kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1269 	insn_get_length(&insn);
1270 
1271 	BUG_ON(!insn_complete(&insn));
1272 	BUG_ON(len != insn.length);
1273 
1274 	tp->rel_addr = addr - (void *)_stext;
1275 	tp->opcode = insn.opcode.bytes[0];
1276 
1277 	switch (tp->opcode) {
1278 	case INT3_INSN_OPCODE:
1279 		break;
1280 
1281 	case CALL_INSN_OPCODE:
1282 	case JMP32_INSN_OPCODE:
1283 	case JMP8_INSN_OPCODE:
1284 		tp->rel32 = insn.immediate.value;
1285 		break;
1286 
1287 	default: /* assume NOP */
1288 		switch (len) {
1289 		case 2: /* NOP2 -- emulate as JMP8+0 */
1290 			BUG_ON(memcmp(emulate, ideal_nops[len], len));
1291 			tp->opcode = JMP8_INSN_OPCODE;
1292 			tp->rel32 = 0;
1293 			break;
1294 
1295 		case 5: /* NOP5 -- emulate as JMP32+0 */
1296 			BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1297 			tp->opcode = JMP32_INSN_OPCODE;
1298 			tp->rel32 = 0;
1299 			break;
1300 
1301 		default: /* unknown instruction */
1302 			BUG();
1303 		}
1304 		break;
1305 	}
1306 }
1307 
1308 /*
1309  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1310  * early if needed.
1311  */
1312 static bool tp_order_fail(void *addr)
1313 {
1314 	struct text_poke_loc *tp;
1315 
1316 	if (!tp_vec_nr)
1317 		return false;
1318 
1319 	if (!addr) /* force */
1320 		return true;
1321 
1322 	tp = &tp_vec[tp_vec_nr - 1];
1323 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1324 		return true;
1325 
1326 	return false;
1327 }
1328 
1329 static void text_poke_flush(void *addr)
1330 {
1331 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1332 		text_poke_bp_batch(tp_vec, tp_vec_nr);
1333 		tp_vec_nr = 0;
1334 	}
1335 }
1336 
1337 void text_poke_finish(void)
1338 {
1339 	text_poke_flush(NULL);
1340 }
1341 
1342 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1343 {
1344 	struct text_poke_loc *tp;
1345 
1346 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1347 		text_poke_early(addr, opcode, len);
1348 		return;
1349 	}
1350 
1351 	text_poke_flush(addr);
1352 
1353 	tp = &tp_vec[tp_vec_nr++];
1354 	text_poke_loc_init(tp, addr, opcode, len, emulate);
1355 }
1356 
1357 /**
1358  * text_poke_bp() -- update instructions on live kernel on SMP
1359  * @addr:	address to patch
1360  * @opcode:	opcode of new instruction
1361  * @len:	length to copy
1362  * @handler:	address to jump to when the temporary breakpoint is hit
1363  *
1364  * Update a single instruction with the vector in the stack, avoiding
1365  * dynamically allocated memory. This function should be used when it is
1366  * not possible to allocate memory.
1367  */
1368 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1369 {
1370 	struct text_poke_loc tp;
1371 
1372 	if (unlikely(system_state == SYSTEM_BOOTING)) {
1373 		text_poke_early(addr, opcode, len);
1374 		return;
1375 	}
1376 
1377 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1378 	text_poke_bp_batch(&tp, 1);
1379 }
1380