1 #define pr_fmt(fmt) "SMP alternatives: " fmt 2 3 #include <linux/module.h> 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 #include <linux/list.h> 7 #include <linux/stringify.h> 8 #include <linux/mm.h> 9 #include <linux/vmalloc.h> 10 #include <linux/memory.h> 11 #include <linux/stop_machine.h> 12 #include <linux/slab.h> 13 #include <linux/kdebug.h> 14 #include <asm/text-patching.h> 15 #include <asm/alternative.h> 16 #include <asm/sections.h> 17 #include <asm/pgtable.h> 18 #include <asm/mce.h> 19 #include <asm/nmi.h> 20 #include <asm/cacheflush.h> 21 #include <asm/tlbflush.h> 22 #include <asm/io.h> 23 #include <asm/fixmap.h> 24 25 int __read_mostly alternatives_patched; 26 27 EXPORT_SYMBOL_GPL(alternatives_patched); 28 29 #define MAX_PATCH_LEN (255-1) 30 31 static int __initdata_or_module debug_alternative; 32 33 static int __init debug_alt(char *str) 34 { 35 debug_alternative = 1; 36 return 1; 37 } 38 __setup("debug-alternative", debug_alt); 39 40 static int noreplace_smp; 41 42 static int __init setup_noreplace_smp(char *str) 43 { 44 noreplace_smp = 1; 45 return 1; 46 } 47 __setup("noreplace-smp", setup_noreplace_smp); 48 49 #ifdef CONFIG_PARAVIRT 50 static int __initdata_or_module noreplace_paravirt = 0; 51 52 static int __init setup_noreplace_paravirt(char *str) 53 { 54 noreplace_paravirt = 1; 55 return 1; 56 } 57 __setup("noreplace-paravirt", setup_noreplace_paravirt); 58 #endif 59 60 #define DPRINTK(fmt, args...) \ 61 do { \ 62 if (debug_alternative) \ 63 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \ 64 } while (0) 65 66 #define DUMP_BYTES(buf, len, fmt, args...) \ 67 do { \ 68 if (unlikely(debug_alternative)) { \ 69 int j; \ 70 \ 71 if (!(len)) \ 72 break; \ 73 \ 74 printk(KERN_DEBUG fmt, ##args); \ 75 for (j = 0; j < (len) - 1; j++) \ 76 printk(KERN_CONT "%02hhx ", buf[j]); \ 77 printk(KERN_CONT "%02hhx\n", buf[j]); \ 78 } \ 79 } while (0) 80 81 /* 82 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes 83 * that correspond to that nop. Getting from one nop to the next, we 84 * add to the array the offset that is equal to the sum of all sizes of 85 * nops preceding the one we are after. 86 * 87 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the 88 * nice symmetry of sizes of the previous nops. 89 */ 90 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64) 91 static const unsigned char intelnops[] = 92 { 93 GENERIC_NOP1, 94 GENERIC_NOP2, 95 GENERIC_NOP3, 96 GENERIC_NOP4, 97 GENERIC_NOP5, 98 GENERIC_NOP6, 99 GENERIC_NOP7, 100 GENERIC_NOP8, 101 GENERIC_NOP5_ATOMIC 102 }; 103 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] = 104 { 105 NULL, 106 intelnops, 107 intelnops + 1, 108 intelnops + 1 + 2, 109 intelnops + 1 + 2 + 3, 110 intelnops + 1 + 2 + 3 + 4, 111 intelnops + 1 + 2 + 3 + 4 + 5, 112 intelnops + 1 + 2 + 3 + 4 + 5 + 6, 113 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 114 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 115 }; 116 #endif 117 118 #ifdef K8_NOP1 119 static const unsigned char k8nops[] = 120 { 121 K8_NOP1, 122 K8_NOP2, 123 K8_NOP3, 124 K8_NOP4, 125 K8_NOP5, 126 K8_NOP6, 127 K8_NOP7, 128 K8_NOP8, 129 K8_NOP5_ATOMIC 130 }; 131 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] = 132 { 133 NULL, 134 k8nops, 135 k8nops + 1, 136 k8nops + 1 + 2, 137 k8nops + 1 + 2 + 3, 138 k8nops + 1 + 2 + 3 + 4, 139 k8nops + 1 + 2 + 3 + 4 + 5, 140 k8nops + 1 + 2 + 3 + 4 + 5 + 6, 141 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 142 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 143 }; 144 #endif 145 146 #if defined(K7_NOP1) && !defined(CONFIG_X86_64) 147 static const unsigned char k7nops[] = 148 { 149 K7_NOP1, 150 K7_NOP2, 151 K7_NOP3, 152 K7_NOP4, 153 K7_NOP5, 154 K7_NOP6, 155 K7_NOP7, 156 K7_NOP8, 157 K7_NOP5_ATOMIC 158 }; 159 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] = 160 { 161 NULL, 162 k7nops, 163 k7nops + 1, 164 k7nops + 1 + 2, 165 k7nops + 1 + 2 + 3, 166 k7nops + 1 + 2 + 3 + 4, 167 k7nops + 1 + 2 + 3 + 4 + 5, 168 k7nops + 1 + 2 + 3 + 4 + 5 + 6, 169 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 170 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 171 }; 172 #endif 173 174 #ifdef P6_NOP1 175 static const unsigned char p6nops[] = 176 { 177 P6_NOP1, 178 P6_NOP2, 179 P6_NOP3, 180 P6_NOP4, 181 P6_NOP5, 182 P6_NOP6, 183 P6_NOP7, 184 P6_NOP8, 185 P6_NOP5_ATOMIC 186 }; 187 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] = 188 { 189 NULL, 190 p6nops, 191 p6nops + 1, 192 p6nops + 1 + 2, 193 p6nops + 1 + 2 + 3, 194 p6nops + 1 + 2 + 3 + 4, 195 p6nops + 1 + 2 + 3 + 4 + 5, 196 p6nops + 1 + 2 + 3 + 4 + 5 + 6, 197 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 198 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 199 }; 200 #endif 201 202 /* Initialize these to a safe default */ 203 #ifdef CONFIG_X86_64 204 const unsigned char * const *ideal_nops = p6_nops; 205 #else 206 const unsigned char * const *ideal_nops = intel_nops; 207 #endif 208 209 void __init arch_init_ideal_nops(void) 210 { 211 switch (boot_cpu_data.x86_vendor) { 212 case X86_VENDOR_INTEL: 213 /* 214 * Due to a decoder implementation quirk, some 215 * specific Intel CPUs actually perform better with 216 * the "k8_nops" than with the SDM-recommended NOPs. 217 */ 218 if (boot_cpu_data.x86 == 6 && 219 boot_cpu_data.x86_model >= 0x0f && 220 boot_cpu_data.x86_model != 0x1c && 221 boot_cpu_data.x86_model != 0x26 && 222 boot_cpu_data.x86_model != 0x27 && 223 boot_cpu_data.x86_model < 0x30) { 224 ideal_nops = k8_nops; 225 } else if (boot_cpu_has(X86_FEATURE_NOPL)) { 226 ideal_nops = p6_nops; 227 } else { 228 #ifdef CONFIG_X86_64 229 ideal_nops = k8_nops; 230 #else 231 ideal_nops = intel_nops; 232 #endif 233 } 234 break; 235 236 case X86_VENDOR_AMD: 237 if (boot_cpu_data.x86 > 0xf) { 238 ideal_nops = p6_nops; 239 return; 240 } 241 242 /* fall through */ 243 244 default: 245 #ifdef CONFIG_X86_64 246 ideal_nops = k8_nops; 247 #else 248 if (boot_cpu_has(X86_FEATURE_K8)) 249 ideal_nops = k8_nops; 250 else if (boot_cpu_has(X86_FEATURE_K7)) 251 ideal_nops = k7_nops; 252 else 253 ideal_nops = intel_nops; 254 #endif 255 } 256 } 257 258 /* Use this to add nops to a buffer, then text_poke the whole buffer. */ 259 static void __init_or_module add_nops(void *insns, unsigned int len) 260 { 261 while (len > 0) { 262 unsigned int noplen = len; 263 if (noplen > ASM_NOP_MAX) 264 noplen = ASM_NOP_MAX; 265 memcpy(insns, ideal_nops[noplen], noplen); 266 insns += noplen; 267 len -= noplen; 268 } 269 } 270 271 extern struct alt_instr __alt_instructions[], __alt_instructions_end[]; 272 extern s32 __smp_locks[], __smp_locks_end[]; 273 void *text_poke_early(void *addr, const void *opcode, size_t len); 274 275 /* 276 * Are we looking at a near JMP with a 1 or 4-byte displacement. 277 */ 278 static inline bool is_jmp(const u8 opcode) 279 { 280 return opcode == 0xeb || opcode == 0xe9; 281 } 282 283 static void __init_or_module 284 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf) 285 { 286 u8 *next_rip, *tgt_rip; 287 s32 n_dspl, o_dspl; 288 int repl_len; 289 290 if (a->replacementlen != 5) 291 return; 292 293 o_dspl = *(s32 *)(insnbuf + 1); 294 295 /* next_rip of the replacement JMP */ 296 next_rip = repl_insn + a->replacementlen; 297 /* target rip of the replacement JMP */ 298 tgt_rip = next_rip + o_dspl; 299 n_dspl = tgt_rip - orig_insn; 300 301 DPRINTK("target RIP: %p, new_displ: 0x%x", tgt_rip, n_dspl); 302 303 if (tgt_rip - orig_insn >= 0) { 304 if (n_dspl - 2 <= 127) 305 goto two_byte_jmp; 306 else 307 goto five_byte_jmp; 308 /* negative offset */ 309 } else { 310 if (((n_dspl - 2) & 0xff) == (n_dspl - 2)) 311 goto two_byte_jmp; 312 else 313 goto five_byte_jmp; 314 } 315 316 two_byte_jmp: 317 n_dspl -= 2; 318 319 insnbuf[0] = 0xeb; 320 insnbuf[1] = (s8)n_dspl; 321 add_nops(insnbuf + 2, 3); 322 323 repl_len = 2; 324 goto done; 325 326 five_byte_jmp: 327 n_dspl -= 5; 328 329 insnbuf[0] = 0xe9; 330 *(s32 *)&insnbuf[1] = n_dspl; 331 332 repl_len = 5; 333 334 done: 335 336 DPRINTK("final displ: 0x%08x, JMP 0x%lx", 337 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len); 338 } 339 340 /* 341 * "noinline" to cause control flow change and thus invalidate I$ and 342 * cause refetch after modification. 343 */ 344 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr) 345 { 346 unsigned long flags; 347 348 if (instr[0] != 0x90) 349 return; 350 351 local_irq_save(flags); 352 add_nops(instr + (a->instrlen - a->padlen), a->padlen); 353 local_irq_restore(flags); 354 355 DUMP_BYTES(instr, a->instrlen, "%p: [%d:%d) optimized NOPs: ", 356 instr, a->instrlen - a->padlen, a->padlen); 357 } 358 359 /* 360 * Replace instructions with better alternatives for this CPU type. This runs 361 * before SMP is initialized to avoid SMP problems with self modifying code. 362 * This implies that asymmetric systems where APs have less capabilities than 363 * the boot processor are not handled. Tough. Make sure you disable such 364 * features by hand. 365 * 366 * Marked "noinline" to cause control flow change and thus insn cache 367 * to refetch changed I$ lines. 368 */ 369 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 370 struct alt_instr *end) 371 { 372 struct alt_instr *a; 373 u8 *instr, *replacement; 374 u8 insnbuf[MAX_PATCH_LEN]; 375 376 DPRINTK("alt table %p -> %p", start, end); 377 /* 378 * The scan order should be from start to end. A later scanned 379 * alternative code can overwrite previously scanned alternative code. 380 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 381 * patch code. 382 * 383 * So be careful if you want to change the scan order to any other 384 * order. 385 */ 386 for (a = start; a < end; a++) { 387 int insnbuf_sz = 0; 388 389 instr = (u8 *)&a->instr_offset + a->instr_offset; 390 replacement = (u8 *)&a->repl_offset + a->repl_offset; 391 BUG_ON(a->instrlen > sizeof(insnbuf)); 392 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 393 if (!boot_cpu_has(a->cpuid)) { 394 if (a->padlen > 1) 395 optimize_nops(a, instr); 396 397 continue; 398 } 399 400 DPRINTK("feat: %d*32+%d, old: (%p, len: %d), repl: (%p, len: %d), pad: %d", 401 a->cpuid >> 5, 402 a->cpuid & 0x1f, 403 instr, a->instrlen, 404 replacement, a->replacementlen, a->padlen); 405 406 DUMP_BYTES(instr, a->instrlen, "%p: old_insn: ", instr); 407 DUMP_BYTES(replacement, a->replacementlen, "%p: rpl_insn: ", replacement); 408 409 memcpy(insnbuf, replacement, a->replacementlen); 410 insnbuf_sz = a->replacementlen; 411 412 /* 413 * 0xe8 is a relative jump; fix the offset. 414 * 415 * Instruction length is checked before the opcode to avoid 416 * accessing uninitialized bytes for zero-length replacements. 417 */ 418 if (a->replacementlen == 5 && *insnbuf == 0xe8) { 419 *(s32 *)(insnbuf + 1) += replacement - instr; 420 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx", 421 *(s32 *)(insnbuf + 1), 422 (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5); 423 } 424 425 if (a->replacementlen && is_jmp(replacement[0])) 426 recompute_jump(a, instr, replacement, insnbuf); 427 428 if (a->instrlen > a->replacementlen) { 429 add_nops(insnbuf + a->replacementlen, 430 a->instrlen - a->replacementlen); 431 insnbuf_sz += a->instrlen - a->replacementlen; 432 } 433 DUMP_BYTES(insnbuf, insnbuf_sz, "%p: final_insn: ", instr); 434 435 text_poke_early(instr, insnbuf, insnbuf_sz); 436 } 437 } 438 439 #ifdef CONFIG_SMP 440 static void alternatives_smp_lock(const s32 *start, const s32 *end, 441 u8 *text, u8 *text_end) 442 { 443 const s32 *poff; 444 445 mutex_lock(&text_mutex); 446 for (poff = start; poff < end; poff++) { 447 u8 *ptr = (u8 *)poff + *poff; 448 449 if (!*poff || ptr < text || ptr >= text_end) 450 continue; 451 /* turn DS segment override prefix into lock prefix */ 452 if (*ptr == 0x3e) 453 text_poke(ptr, ((unsigned char []){0xf0}), 1); 454 } 455 mutex_unlock(&text_mutex); 456 } 457 458 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 459 u8 *text, u8 *text_end) 460 { 461 const s32 *poff; 462 463 mutex_lock(&text_mutex); 464 for (poff = start; poff < end; poff++) { 465 u8 *ptr = (u8 *)poff + *poff; 466 467 if (!*poff || ptr < text || ptr >= text_end) 468 continue; 469 /* turn lock prefix into DS segment override prefix */ 470 if (*ptr == 0xf0) 471 text_poke(ptr, ((unsigned char []){0x3E}), 1); 472 } 473 mutex_unlock(&text_mutex); 474 } 475 476 struct smp_alt_module { 477 /* what is this ??? */ 478 struct module *mod; 479 char *name; 480 481 /* ptrs to lock prefixes */ 482 const s32 *locks; 483 const s32 *locks_end; 484 485 /* .text segment, needed to avoid patching init code ;) */ 486 u8 *text; 487 u8 *text_end; 488 489 struct list_head next; 490 }; 491 static LIST_HEAD(smp_alt_modules); 492 static DEFINE_MUTEX(smp_alt); 493 static bool uniproc_patched = false; /* protected by smp_alt */ 494 495 void __init_or_module alternatives_smp_module_add(struct module *mod, 496 char *name, 497 void *locks, void *locks_end, 498 void *text, void *text_end) 499 { 500 struct smp_alt_module *smp; 501 502 mutex_lock(&smp_alt); 503 if (!uniproc_patched) 504 goto unlock; 505 506 if (num_possible_cpus() == 1) 507 /* Don't bother remembering, we'll never have to undo it. */ 508 goto smp_unlock; 509 510 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 511 if (NULL == smp) 512 /* we'll run the (safe but slow) SMP code then ... */ 513 goto unlock; 514 515 smp->mod = mod; 516 smp->name = name; 517 smp->locks = locks; 518 smp->locks_end = locks_end; 519 smp->text = text; 520 smp->text_end = text_end; 521 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n", 522 smp->locks, smp->locks_end, 523 smp->text, smp->text_end, smp->name); 524 525 list_add_tail(&smp->next, &smp_alt_modules); 526 smp_unlock: 527 alternatives_smp_unlock(locks, locks_end, text, text_end); 528 unlock: 529 mutex_unlock(&smp_alt); 530 } 531 532 void __init_or_module alternatives_smp_module_del(struct module *mod) 533 { 534 struct smp_alt_module *item; 535 536 mutex_lock(&smp_alt); 537 list_for_each_entry(item, &smp_alt_modules, next) { 538 if (mod != item->mod) 539 continue; 540 list_del(&item->next); 541 kfree(item); 542 break; 543 } 544 mutex_unlock(&smp_alt); 545 } 546 547 void alternatives_enable_smp(void) 548 { 549 struct smp_alt_module *mod; 550 551 /* Why bother if there are no other CPUs? */ 552 BUG_ON(num_possible_cpus() == 1); 553 554 mutex_lock(&smp_alt); 555 556 if (uniproc_patched) { 557 pr_info("switching to SMP code\n"); 558 BUG_ON(num_online_cpus() != 1); 559 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 560 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 561 list_for_each_entry(mod, &smp_alt_modules, next) 562 alternatives_smp_lock(mod->locks, mod->locks_end, 563 mod->text, mod->text_end); 564 uniproc_patched = false; 565 } 566 mutex_unlock(&smp_alt); 567 } 568 569 /* Return 1 if the address range is reserved for smp-alternatives */ 570 int alternatives_text_reserved(void *start, void *end) 571 { 572 struct smp_alt_module *mod; 573 const s32 *poff; 574 u8 *text_start = start; 575 u8 *text_end = end; 576 577 list_for_each_entry(mod, &smp_alt_modules, next) { 578 if (mod->text > text_end || mod->text_end < text_start) 579 continue; 580 for (poff = mod->locks; poff < mod->locks_end; poff++) { 581 const u8 *ptr = (const u8 *)poff + *poff; 582 583 if (text_start <= ptr && text_end > ptr) 584 return 1; 585 } 586 } 587 588 return 0; 589 } 590 #endif /* CONFIG_SMP */ 591 592 #ifdef CONFIG_PARAVIRT 593 void __init_or_module apply_paravirt(struct paravirt_patch_site *start, 594 struct paravirt_patch_site *end) 595 { 596 struct paravirt_patch_site *p; 597 char insnbuf[MAX_PATCH_LEN]; 598 599 if (noreplace_paravirt) 600 return; 601 602 for (p = start; p < end; p++) { 603 unsigned int used; 604 605 BUG_ON(p->len > MAX_PATCH_LEN); 606 /* prep the buffer with the original instructions */ 607 memcpy(insnbuf, p->instr, p->len); 608 used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf, 609 (unsigned long)p->instr, p->len); 610 611 BUG_ON(used > p->len); 612 613 /* Pad the rest with nops */ 614 add_nops(insnbuf + used, p->len - used); 615 text_poke_early(p->instr, insnbuf, p->len); 616 } 617 } 618 extern struct paravirt_patch_site __start_parainstructions[], 619 __stop_parainstructions[]; 620 #endif /* CONFIG_PARAVIRT */ 621 622 void __init alternative_instructions(void) 623 { 624 /* The patching is not fully atomic, so try to avoid local interruptions 625 that might execute the to be patched code. 626 Other CPUs are not running. */ 627 stop_nmi(); 628 629 /* 630 * Don't stop machine check exceptions while patching. 631 * MCEs only happen when something got corrupted and in this 632 * case we must do something about the corruption. 633 * Ignoring it is worse than a unlikely patching race. 634 * Also machine checks tend to be broadcast and if one CPU 635 * goes into machine check the others follow quickly, so we don't 636 * expect a machine check to cause undue problems during to code 637 * patching. 638 */ 639 640 apply_alternatives(__alt_instructions, __alt_instructions_end); 641 642 #ifdef CONFIG_SMP 643 /* Patch to UP if other cpus not imminent. */ 644 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 645 uniproc_patched = true; 646 alternatives_smp_module_add(NULL, "core kernel", 647 __smp_locks, __smp_locks_end, 648 _text, _etext); 649 } 650 651 if (!uniproc_patched || num_possible_cpus() == 1) 652 free_init_pages("SMP alternatives", 653 (unsigned long)__smp_locks, 654 (unsigned long)__smp_locks_end); 655 #endif 656 657 apply_paravirt(__parainstructions, __parainstructions_end); 658 659 restart_nmi(); 660 alternatives_patched = 1; 661 } 662 663 /** 664 * text_poke_early - Update instructions on a live kernel at boot time 665 * @addr: address to modify 666 * @opcode: source of the copy 667 * @len: length to copy 668 * 669 * When you use this code to patch more than one byte of an instruction 670 * you need to make sure that other CPUs cannot execute this code in parallel. 671 * Also no thread must be currently preempted in the middle of these 672 * instructions. And on the local CPU you need to be protected again NMI or MCE 673 * handlers seeing an inconsistent instruction while you patch. 674 */ 675 void *__init_or_module text_poke_early(void *addr, const void *opcode, 676 size_t len) 677 { 678 unsigned long flags; 679 local_irq_save(flags); 680 memcpy(addr, opcode, len); 681 local_irq_restore(flags); 682 /* Could also do a CLFLUSH here to speed up CPU recovery; but 683 that causes hangs on some VIA CPUs. */ 684 return addr; 685 } 686 687 /** 688 * text_poke - Update instructions on a live kernel 689 * @addr: address to modify 690 * @opcode: source of the copy 691 * @len: length to copy 692 * 693 * Only atomic text poke/set should be allowed when not doing early patching. 694 * It means the size must be writable atomically and the address must be aligned 695 * in a way that permits an atomic write. It also makes sure we fit on a single 696 * page. 697 * 698 * Note: Must be called under text_mutex. 699 */ 700 void *text_poke(void *addr, const void *opcode, size_t len) 701 { 702 unsigned long flags; 703 char *vaddr; 704 struct page *pages[2]; 705 int i; 706 707 if (!core_kernel_text((unsigned long)addr)) { 708 pages[0] = vmalloc_to_page(addr); 709 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 710 } else { 711 pages[0] = virt_to_page(addr); 712 WARN_ON(!PageReserved(pages[0])); 713 pages[1] = virt_to_page(addr + PAGE_SIZE); 714 } 715 BUG_ON(!pages[0]); 716 local_irq_save(flags); 717 set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0])); 718 if (pages[1]) 719 set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1])); 720 vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0); 721 memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len); 722 clear_fixmap(FIX_TEXT_POKE0); 723 if (pages[1]) 724 clear_fixmap(FIX_TEXT_POKE1); 725 local_flush_tlb(); 726 sync_core(); 727 /* Could also do a CLFLUSH here to speed up CPU recovery; but 728 that causes hangs on some VIA CPUs. */ 729 for (i = 0; i < len; i++) 730 BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]); 731 local_irq_restore(flags); 732 return addr; 733 } 734 735 static void do_sync_core(void *info) 736 { 737 sync_core(); 738 } 739 740 static bool bp_patching_in_progress; 741 static void *bp_int3_handler, *bp_int3_addr; 742 743 int poke_int3_handler(struct pt_regs *regs) 744 { 745 /* bp_patching_in_progress */ 746 smp_rmb(); 747 748 if (likely(!bp_patching_in_progress)) 749 return 0; 750 751 if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr) 752 return 0; 753 754 /* set up the specified breakpoint handler */ 755 regs->ip = (unsigned long) bp_int3_handler; 756 757 return 1; 758 759 } 760 761 /** 762 * text_poke_bp() -- update instructions on live kernel on SMP 763 * @addr: address to patch 764 * @opcode: opcode of new instruction 765 * @len: length to copy 766 * @handler: address to jump to when the temporary breakpoint is hit 767 * 768 * Modify multi-byte instruction by using int3 breakpoint on SMP. 769 * We completely avoid stop_machine() here, and achieve the 770 * synchronization using int3 breakpoint. 771 * 772 * The way it is done: 773 * - add a int3 trap to the address that will be patched 774 * - sync cores 775 * - update all but the first byte of the patched range 776 * - sync cores 777 * - replace the first byte (int3) by the first byte of 778 * replacing opcode 779 * - sync cores 780 * 781 * Note: must be called under text_mutex. 782 */ 783 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler) 784 { 785 unsigned char int3 = 0xcc; 786 787 bp_int3_handler = handler; 788 bp_int3_addr = (u8 *)addr + sizeof(int3); 789 bp_patching_in_progress = true; 790 /* 791 * Corresponding read barrier in int3 notifier for 792 * making sure the in_progress flags is correctly ordered wrt. 793 * patching 794 */ 795 smp_wmb(); 796 797 text_poke(addr, &int3, sizeof(int3)); 798 799 on_each_cpu(do_sync_core, NULL, 1); 800 801 if (len - sizeof(int3) > 0) { 802 /* patch all but the first byte */ 803 text_poke((char *)addr + sizeof(int3), 804 (const char *) opcode + sizeof(int3), 805 len - sizeof(int3)); 806 /* 807 * According to Intel, this core syncing is very likely 808 * not necessary and we'd be safe even without it. But 809 * better safe than sorry (plus there's not only Intel). 810 */ 811 on_each_cpu(do_sync_core, NULL, 1); 812 } 813 814 /* patch the first byte */ 815 text_poke(addr, opcode, sizeof(int3)); 816 817 on_each_cpu(do_sync_core, NULL, 1); 818 819 bp_patching_in_progress = false; 820 smp_wmb(); 821 822 return addr; 823 } 824 825