xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 3d40aed8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 
34 int __read_mostly alternatives_patched;
35 
36 EXPORT_SYMBOL_GPL(alternatives_patched);
37 
38 #define MAX_PATCH_LEN (255-1)
39 
40 #define DA_ALL		(~0)
41 #define DA_ALT		0x01
42 #define DA_RET		0x02
43 #define DA_RETPOLINE	0x04
44 #define DA_ENDBR	0x08
45 #define DA_SMP		0x10
46 
47 static unsigned int __initdata_or_module debug_alternative;
48 
49 static int __init debug_alt(char *str)
50 {
51 	if (str && *str == '=')
52 		str++;
53 
54 	if (!str || kstrtouint(str, 0, &debug_alternative))
55 		debug_alternative = DA_ALL;
56 
57 	return 1;
58 }
59 __setup("debug-alternative", debug_alt);
60 
61 static int noreplace_smp;
62 
63 static int __init setup_noreplace_smp(char *str)
64 {
65 	noreplace_smp = 1;
66 	return 1;
67 }
68 __setup("noreplace-smp", setup_noreplace_smp);
69 
70 #define DPRINTK(type, fmt, args...)					\
71 do {									\
72 	if (debug_alternative & DA_##type)				\
73 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
74 } while (0)
75 
76 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
77 do {									\
78 	if (unlikely(debug_alternative & DA_##type)) {			\
79 		int j;							\
80 									\
81 		if (!(len))						\
82 			break;						\
83 									\
84 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
85 		for (j = 0; j < (len) - 1; j++)				\
86 			printk(KERN_CONT "%02hhx ", buf[j]);		\
87 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
88 	}								\
89 } while (0)
90 
91 static const unsigned char x86nops[] =
92 {
93 	BYTES_NOP1,
94 	BYTES_NOP2,
95 	BYTES_NOP3,
96 	BYTES_NOP4,
97 	BYTES_NOP5,
98 	BYTES_NOP6,
99 	BYTES_NOP7,
100 	BYTES_NOP8,
101 #ifdef CONFIG_64BIT
102 	BYTES_NOP9,
103 	BYTES_NOP10,
104 	BYTES_NOP11,
105 #endif
106 };
107 
108 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
109 {
110 	NULL,
111 	x86nops,
112 	x86nops + 1,
113 	x86nops + 1 + 2,
114 	x86nops + 1 + 2 + 3,
115 	x86nops + 1 + 2 + 3 + 4,
116 	x86nops + 1 + 2 + 3 + 4 + 5,
117 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
118 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
119 #ifdef CONFIG_64BIT
120 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
121 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
122 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
123 #endif
124 };
125 
126 /*
127  * Fill the buffer with a single effective instruction of size @len.
128  *
129  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
130  * for every single-byte NOP, try to generate the maximally available NOP of
131  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
132  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
133  * *jump* over instead of executing long and daft NOPs.
134  */
135 static void __init_or_module add_nop(u8 *instr, unsigned int len)
136 {
137 	u8 *target = instr + len;
138 
139 	if (!len)
140 		return;
141 
142 	if (len <= ASM_NOP_MAX) {
143 		memcpy(instr, x86_nops[len], len);
144 		return;
145 	}
146 
147 	if (len < 128) {
148 		__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
149 		instr += JMP8_INSN_SIZE;
150 	} else {
151 		__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
152 		instr += JMP32_INSN_SIZE;
153 	}
154 
155 	for (;instr < target; instr++)
156 		*instr = INT3_INSN_OPCODE;
157 }
158 
159 extern s32 __retpoline_sites[], __retpoline_sites_end[];
160 extern s32 __return_sites[], __return_sites_end[];
161 extern s32 __cfi_sites[], __cfi_sites_end[];
162 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
163 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
164 extern s32 __smp_locks[], __smp_locks_end[];
165 void text_poke_early(void *addr, const void *opcode, size_t len);
166 
167 /*
168  * Matches NOP and NOPL, not any of the other possible NOPs.
169  */
170 static bool insn_is_nop(struct insn *insn)
171 {
172 	/* Anything NOP, but no REP NOP */
173 	if (insn->opcode.bytes[0] == 0x90 &&
174 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
175 		return true;
176 
177 	/* NOPL */
178 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
179 		return true;
180 
181 	/* TODO: more nops */
182 
183 	return false;
184 }
185 
186 /*
187  * Find the offset of the first non-NOP instruction starting at @offset
188  * but no further than @len.
189  */
190 static int skip_nops(u8 *instr, int offset, int len)
191 {
192 	struct insn insn;
193 
194 	for (; offset < len; offset += insn.length) {
195 		if (insn_decode_kernel(&insn, &instr[offset]))
196 			break;
197 
198 		if (!insn_is_nop(&insn))
199 			break;
200 	}
201 
202 	return offset;
203 }
204 
205 /*
206  * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
207  * to the end of the NOP sequence into a single NOP.
208  */
209 static bool __init_or_module
210 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
211 {
212 	int i = *next - insn->length;
213 
214 	switch (insn->opcode.bytes[0]) {
215 	case JMP8_INSN_OPCODE:
216 	case JMP32_INSN_OPCODE:
217 		*prev = i;
218 		*target = *next + insn->immediate.value;
219 		return false;
220 	}
221 
222 	if (insn_is_nop(insn)) {
223 		int nop = i;
224 
225 		*next = skip_nops(instr, *next, len);
226 		if (*target && *next == *target)
227 			nop = *prev;
228 
229 		add_nop(instr + nop, *next - nop);
230 		DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
231 		return true;
232 	}
233 
234 	*target = 0;
235 	return false;
236 }
237 
238 /*
239  * "noinline" to cause control flow change and thus invalidate I$ and
240  * cause refetch after modification.
241  */
242 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
243 {
244 	int prev, target = 0;
245 
246 	for (int next, i = 0; i < len; i = next) {
247 		struct insn insn;
248 
249 		if (insn_decode_kernel(&insn, &instr[i]))
250 			return;
251 
252 		next = i + insn.length;
253 
254 		__optimize_nops(instr, len, &insn, &next, &prev, &target);
255 	}
256 }
257 
258 /*
259  * In this context, "source" is where the instructions are placed in the
260  * section .altinstr_replacement, for example during kernel build by the
261  * toolchain.
262  * "Destination" is where the instructions are being patched in by this
263  * machinery.
264  *
265  * The source offset is:
266  *
267  *   src_imm = target - src_next_ip                  (1)
268  *
269  * and the target offset is:
270  *
271  *   dst_imm = target - dst_next_ip                  (2)
272  *
273  * so rework (1) as an expression for target like:
274  *
275  *   target = src_imm + src_next_ip                  (1a)
276  *
277  * and substitute in (2) to get:
278  *
279  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
280  *
281  * Now, since the instruction stream is 'identical' at src and dst (it
282  * is being copied after all) it can be stated that:
283  *
284  *   src_next_ip = src + ip_offset
285  *   dst_next_ip = dst + ip_offset                   (4)
286  *
287  * Substitute (4) in (3) and observe ip_offset being cancelled out to
288  * obtain:
289  *
290  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
291  *           = src_imm + src - dst + ip_offset - ip_offset
292  *           = src_imm + src - dst                   (5)
293  *
294  * IOW, only the relative displacement of the code block matters.
295  */
296 
297 #define apply_reloc_n(n_, p_, d_)				\
298 	do {							\
299 		s32 v = *(s##n_ *)(p_);				\
300 		v += (d_);					\
301 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
302 		*(s##n_ *)(p_) = (s##n_)v;			\
303 	} while (0)
304 
305 
306 static __always_inline
307 void apply_reloc(int n, void *ptr, uintptr_t diff)
308 {
309 	switch (n) {
310 	case 1: apply_reloc_n(8, ptr, diff); break;
311 	case 2: apply_reloc_n(16, ptr, diff); break;
312 	case 4: apply_reloc_n(32, ptr, diff); break;
313 	default: BUG();
314 	}
315 }
316 
317 static __always_inline
318 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
319 {
320 	u8 *target = src + offset;
321 	/*
322 	 * If the target is inside the patched block, it's relative to the
323 	 * block itself and does not need relocation.
324 	 */
325 	return (target < src || target > src + src_len);
326 }
327 
328 static void __init_or_module noinline
329 apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
330 {
331 	int prev, target = 0;
332 
333 	for (int next, i = 0; i < len; i = next) {
334 		struct insn insn;
335 
336 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
337 			return;
338 
339 		next = i + insn.length;
340 
341 		if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
342 			continue;
343 
344 		switch (insn.opcode.bytes[0]) {
345 		case 0x0f:
346 			if (insn.opcode.bytes[1] < 0x80 ||
347 			    insn.opcode.bytes[1] > 0x8f)
348 				break;
349 
350 			fallthrough;	/* Jcc.d32 */
351 		case 0x70 ... 0x7f:	/* Jcc.d8 */
352 		case JMP8_INSN_OPCODE:
353 		case JMP32_INSN_OPCODE:
354 		case CALL_INSN_OPCODE:
355 			if (need_reloc(next + insn.immediate.value, src, src_len)) {
356 				apply_reloc(insn.immediate.nbytes,
357 					    buf + i + insn_offset_immediate(&insn),
358 					    src - dest);
359 			}
360 
361 			/*
362 			 * Where possible, convert JMP.d32 into JMP.d8.
363 			 */
364 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
365 				s32 imm = insn.immediate.value;
366 				imm += src - dest;
367 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
368 				if ((imm >> 31) == (imm >> 7)) {
369 					buf[i+0] = JMP8_INSN_OPCODE;
370 					buf[i+1] = (s8)imm;
371 
372 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
373 				}
374 			}
375 			break;
376 		}
377 
378 		if (insn_rip_relative(&insn)) {
379 			if (need_reloc(next + insn.displacement.value, src, src_len)) {
380 				apply_reloc(insn.displacement.nbytes,
381 					    buf + i + insn_offset_displacement(&insn),
382 					    src - dest);
383 			}
384 		}
385 	}
386 }
387 
388 /*
389  * Replace instructions with better alternatives for this CPU type. This runs
390  * before SMP is initialized to avoid SMP problems with self modifying code.
391  * This implies that asymmetric systems where APs have less capabilities than
392  * the boot processor are not handled. Tough. Make sure you disable such
393  * features by hand.
394  *
395  * Marked "noinline" to cause control flow change and thus insn cache
396  * to refetch changed I$ lines.
397  */
398 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
399 						  struct alt_instr *end)
400 {
401 	struct alt_instr *a;
402 	u8 *instr, *replacement;
403 	u8 insn_buff[MAX_PATCH_LEN];
404 
405 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
406 	/*
407 	 * The scan order should be from start to end. A later scanned
408 	 * alternative code can overwrite previously scanned alternative code.
409 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
410 	 * patch code.
411 	 *
412 	 * So be careful if you want to change the scan order to any other
413 	 * order.
414 	 */
415 	for (a = start; a < end; a++) {
416 		int insn_buff_sz = 0;
417 
418 		instr = (u8 *)&a->instr_offset + a->instr_offset;
419 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
420 		BUG_ON(a->instrlen > sizeof(insn_buff));
421 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
422 
423 		/*
424 		 * Patch if either:
425 		 * - feature is present
426 		 * - feature not present but ALT_FLAG_NOT is set to mean,
427 		 *   patch if feature is *NOT* present.
428 		 */
429 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
430 			optimize_nops(instr, a->instrlen);
431 			continue;
432 		}
433 
434 		DPRINTK(ALT, "feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
435 			(a->flags & ALT_FLAG_NOT) ? "!" : "",
436 			a->cpuid >> 5,
437 			a->cpuid & 0x1f,
438 			instr, instr, a->instrlen,
439 			replacement, a->replacementlen);
440 
441 		memcpy(insn_buff, replacement, a->replacementlen);
442 		insn_buff_sz = a->replacementlen;
443 
444 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
445 			insn_buff[insn_buff_sz] = 0x90;
446 
447 		apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
448 
449 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
450 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
451 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
452 
453 		text_poke_early(instr, insn_buff, insn_buff_sz);
454 	}
455 }
456 
457 static inline bool is_jcc32(struct insn *insn)
458 {
459 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
460 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
461 }
462 
463 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
464 
465 /*
466  * CALL/JMP *%\reg
467  */
468 static int emit_indirect(int op, int reg, u8 *bytes)
469 {
470 	int i = 0;
471 	u8 modrm;
472 
473 	switch (op) {
474 	case CALL_INSN_OPCODE:
475 		modrm = 0x10; /* Reg = 2; CALL r/m */
476 		break;
477 
478 	case JMP32_INSN_OPCODE:
479 		modrm = 0x20; /* Reg = 4; JMP r/m */
480 		break;
481 
482 	default:
483 		WARN_ON_ONCE(1);
484 		return -1;
485 	}
486 
487 	if (reg >= 8) {
488 		bytes[i++] = 0x41; /* REX.B prefix */
489 		reg -= 8;
490 	}
491 
492 	modrm |= 0xc0; /* Mod = 3 */
493 	modrm += reg;
494 
495 	bytes[i++] = 0xff; /* opcode */
496 	bytes[i++] = modrm;
497 
498 	return i;
499 }
500 
501 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
502 {
503 	u8 op = insn->opcode.bytes[0];
504 	int i = 0;
505 
506 	/*
507 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
508 	 * tail-calls. Deal with them.
509 	 */
510 	if (is_jcc32(insn)) {
511 		bytes[i++] = op;
512 		op = insn->opcode.bytes[1];
513 		goto clang_jcc;
514 	}
515 
516 	if (insn->length == 6)
517 		bytes[i++] = 0x2e; /* CS-prefix */
518 
519 	switch (op) {
520 	case CALL_INSN_OPCODE:
521 		__text_gen_insn(bytes+i, op, addr+i,
522 				__x86_indirect_call_thunk_array[reg],
523 				CALL_INSN_SIZE);
524 		i += CALL_INSN_SIZE;
525 		break;
526 
527 	case JMP32_INSN_OPCODE:
528 clang_jcc:
529 		__text_gen_insn(bytes+i, op, addr+i,
530 				__x86_indirect_jump_thunk_array[reg],
531 				JMP32_INSN_SIZE);
532 		i += JMP32_INSN_SIZE;
533 		break;
534 
535 	default:
536 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
537 		return -1;
538 	}
539 
540 	WARN_ON_ONCE(i != insn->length);
541 
542 	return i;
543 }
544 
545 /*
546  * Rewrite the compiler generated retpoline thunk calls.
547  *
548  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
549  * indirect instructions, avoiding the extra indirection.
550  *
551  * For example, convert:
552  *
553  *   CALL __x86_indirect_thunk_\reg
554  *
555  * into:
556  *
557  *   CALL *%\reg
558  *
559  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
560  */
561 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
562 {
563 	retpoline_thunk_t *target;
564 	int reg, ret, i = 0;
565 	u8 op, cc;
566 
567 	target = addr + insn->length + insn->immediate.value;
568 	reg = target - __x86_indirect_thunk_array;
569 
570 	if (WARN_ON_ONCE(reg & ~0xf))
571 		return -1;
572 
573 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
574 	BUG_ON(reg == 4);
575 
576 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
577 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
578 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
579 			return emit_call_track_retpoline(addr, insn, reg, bytes);
580 
581 		return -1;
582 	}
583 
584 	op = insn->opcode.bytes[0];
585 
586 	/*
587 	 * Convert:
588 	 *
589 	 *   Jcc.d32 __x86_indirect_thunk_\reg
590 	 *
591 	 * into:
592 	 *
593 	 *   Jncc.d8 1f
594 	 *   [ LFENCE ]
595 	 *   JMP *%\reg
596 	 *   [ NOP ]
597 	 * 1:
598 	 */
599 	if (is_jcc32(insn)) {
600 		cc = insn->opcode.bytes[1] & 0xf;
601 		cc ^= 1; /* invert condition */
602 
603 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
604 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
605 
606 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
607 		op = JMP32_INSN_OPCODE;
608 	}
609 
610 	/*
611 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
612 	 */
613 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
614 		bytes[i++] = 0x0f;
615 		bytes[i++] = 0xae;
616 		bytes[i++] = 0xe8; /* LFENCE */
617 	}
618 
619 	ret = emit_indirect(op, reg, bytes + i);
620 	if (ret < 0)
621 		return ret;
622 	i += ret;
623 
624 	/*
625 	 * The compiler is supposed to EMIT an INT3 after every unconditional
626 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
627 	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
628 	 * even on Intel.
629 	 */
630 	if (op == JMP32_INSN_OPCODE && i < insn->length)
631 		bytes[i++] = INT3_INSN_OPCODE;
632 
633 	for (; i < insn->length;)
634 		bytes[i++] = BYTES_NOP1;
635 
636 	return i;
637 }
638 
639 /*
640  * Generated by 'objtool --retpoline'.
641  */
642 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
643 {
644 	s32 *s;
645 
646 	for (s = start; s < end; s++) {
647 		void *addr = (void *)s + *s;
648 		struct insn insn;
649 		int len, ret;
650 		u8 bytes[16];
651 		u8 op1, op2;
652 
653 		ret = insn_decode_kernel(&insn, addr);
654 		if (WARN_ON_ONCE(ret < 0))
655 			continue;
656 
657 		op1 = insn.opcode.bytes[0];
658 		op2 = insn.opcode.bytes[1];
659 
660 		switch (op1) {
661 		case CALL_INSN_OPCODE:
662 		case JMP32_INSN_OPCODE:
663 			break;
664 
665 		case 0x0f: /* escape */
666 			if (op2 >= 0x80 && op2 <= 0x8f)
667 				break;
668 			fallthrough;
669 		default:
670 			WARN_ON_ONCE(1);
671 			continue;
672 		}
673 
674 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
675 			addr, addr, insn.length,
676 			addr + insn.length + insn.immediate.value);
677 
678 		len = patch_retpoline(addr, &insn, bytes);
679 		if (len == insn.length) {
680 			optimize_nops(bytes, len);
681 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
682 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
683 			text_poke_early(addr, bytes, len);
684 		}
685 	}
686 }
687 
688 #ifdef CONFIG_RETHUNK
689 
690 #ifdef CONFIG_CALL_THUNKS
691 void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
692 #endif
693 
694 /*
695  * Rewrite the compiler generated return thunk tail-calls.
696  *
697  * For example, convert:
698  *
699  *   JMP __x86_return_thunk
700  *
701  * into:
702  *
703  *   RET
704  */
705 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
706 {
707 	int i = 0;
708 
709 	/* Patch the custom return thunks... */
710 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
711 		i = JMP32_INSN_SIZE;
712 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
713 	} else {
714 		/* ... or patch them out if not needed. */
715 		bytes[i++] = RET_INSN_OPCODE;
716 	}
717 
718 	for (; i < insn->length;)
719 		bytes[i++] = INT3_INSN_OPCODE;
720 	return i;
721 }
722 
723 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
724 {
725 	s32 *s;
726 
727 	/*
728 	 * Do not patch out the default return thunks if those needed are the
729 	 * ones generated by the compiler.
730 	 */
731 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK) &&
732 	    (x86_return_thunk == __x86_return_thunk))
733 		return;
734 
735 	for (s = start; s < end; s++) {
736 		void *dest = NULL, *addr = (void *)s + *s;
737 		struct insn insn;
738 		int len, ret;
739 		u8 bytes[16];
740 		u8 op;
741 
742 		ret = insn_decode_kernel(&insn, addr);
743 		if (WARN_ON_ONCE(ret < 0))
744 			continue;
745 
746 		op = insn.opcode.bytes[0];
747 		if (op == JMP32_INSN_OPCODE)
748 			dest = addr + insn.length + insn.immediate.value;
749 
750 		if (__static_call_fixup(addr, op, dest) ||
751 		    WARN_ONCE(dest != &__x86_return_thunk,
752 			      "missing return thunk: %pS-%pS: %*ph",
753 			      addr, dest, 5, addr))
754 			continue;
755 
756 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
757 			addr, addr, insn.length,
758 			addr + insn.length + insn.immediate.value);
759 
760 		len = patch_return(addr, &insn, bytes);
761 		if (len == insn.length) {
762 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
763 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
764 			text_poke_early(addr, bytes, len);
765 		}
766 	}
767 }
768 #else
769 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
770 #endif /* CONFIG_RETHUNK */
771 
772 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
773 
774 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
775 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
776 
777 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
778 
779 #ifdef CONFIG_X86_KERNEL_IBT
780 
781 static void poison_cfi(void *addr);
782 
783 static void __init_or_module poison_endbr(void *addr, bool warn)
784 {
785 	u32 endbr, poison = gen_endbr_poison();
786 
787 	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
788 		return;
789 
790 	if (!is_endbr(endbr)) {
791 		WARN_ON_ONCE(warn);
792 		return;
793 	}
794 
795 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
796 
797 	/*
798 	 * When we have IBT, the lack of ENDBR will trigger #CP
799 	 */
800 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
801 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
802 	text_poke_early(addr, &poison, 4);
803 }
804 
805 /*
806  * Generated by: objtool --ibt
807  *
808  * Seal the functions for indirect calls by clobbering the ENDBR instructions
809  * and the kCFI hash value.
810  */
811 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
812 {
813 	s32 *s;
814 
815 	for (s = start; s < end; s++) {
816 		void *addr = (void *)s + *s;
817 
818 		poison_endbr(addr, true);
819 		if (IS_ENABLED(CONFIG_FINEIBT))
820 			poison_cfi(addr - 16);
821 	}
822 }
823 
824 #else
825 
826 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
827 
828 #endif /* CONFIG_X86_KERNEL_IBT */
829 
830 #ifdef CONFIG_FINEIBT
831 
832 enum cfi_mode {
833 	CFI_DEFAULT,
834 	CFI_OFF,
835 	CFI_KCFI,
836 	CFI_FINEIBT,
837 };
838 
839 static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
840 static bool cfi_rand __ro_after_init = true;
841 static u32  cfi_seed __ro_after_init;
842 
843 /*
844  * Re-hash the CFI hash with a boot-time seed while making sure the result is
845  * not a valid ENDBR instruction.
846  */
847 static u32 cfi_rehash(u32 hash)
848 {
849 	hash ^= cfi_seed;
850 	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
851 		bool lsb = hash & 1;
852 		hash >>= 1;
853 		if (lsb)
854 			hash ^= 0x80200003;
855 	}
856 	return hash;
857 }
858 
859 static __init int cfi_parse_cmdline(char *str)
860 {
861 	if (!str)
862 		return -EINVAL;
863 
864 	while (str) {
865 		char *next = strchr(str, ',');
866 		if (next) {
867 			*next = 0;
868 			next++;
869 		}
870 
871 		if (!strcmp(str, "auto")) {
872 			cfi_mode = CFI_DEFAULT;
873 		} else if (!strcmp(str, "off")) {
874 			cfi_mode = CFI_OFF;
875 			cfi_rand = false;
876 		} else if (!strcmp(str, "kcfi")) {
877 			cfi_mode = CFI_KCFI;
878 		} else if (!strcmp(str, "fineibt")) {
879 			cfi_mode = CFI_FINEIBT;
880 		} else if (!strcmp(str, "norand")) {
881 			cfi_rand = false;
882 		} else {
883 			pr_err("Ignoring unknown cfi option (%s).", str);
884 		}
885 
886 		str = next;
887 	}
888 
889 	return 0;
890 }
891 early_param("cfi", cfi_parse_cmdline);
892 
893 /*
894  * kCFI						FineIBT
895  *
896  * __cfi_\func:					__cfi_\func:
897  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
898  *	nop					     subl   $0x12345678,%r10d   // 7
899  *	nop					     jz     1f			// 2
900  *	nop					     ud2			// 2
901  *	nop					1:   nop			// 1
902  *	nop
903  *	nop
904  *	nop
905  *	nop
906  *	nop
907  *	nop
908  *	nop
909  *
910  *
911  * caller:					caller:
912  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
913  *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
914  *	je	1f			 // 2	     nop4			// 4
915  *	ud2				 // 2
916  * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
917  *
918  */
919 
920 asm(	".pushsection .rodata			\n"
921 	"fineibt_preamble_start:		\n"
922 	"	endbr64				\n"
923 	"	subl	$0x12345678, %r10d	\n"
924 	"	je	fineibt_preamble_end	\n"
925 	"	ud2				\n"
926 	"	nop				\n"
927 	"fineibt_preamble_end:			\n"
928 	".popsection\n"
929 );
930 
931 extern u8 fineibt_preamble_start[];
932 extern u8 fineibt_preamble_end[];
933 
934 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
935 #define fineibt_preamble_hash 7
936 
937 asm(	".pushsection .rodata			\n"
938 	"fineibt_caller_start:			\n"
939 	"	movl	$0x12345678, %r10d	\n"
940 	"	sub	$16, %r11		\n"
941 	ASM_NOP4
942 	"fineibt_caller_end:			\n"
943 	".popsection				\n"
944 );
945 
946 extern u8 fineibt_caller_start[];
947 extern u8 fineibt_caller_end[];
948 
949 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
950 #define fineibt_caller_hash 2
951 
952 #define fineibt_caller_jmp (fineibt_caller_size - 2)
953 
954 static u32 decode_preamble_hash(void *addr)
955 {
956 	u8 *p = addr;
957 
958 	/* b8 78 56 34 12          mov    $0x12345678,%eax */
959 	if (p[0] == 0xb8)
960 		return *(u32 *)(addr + 1);
961 
962 	return 0; /* invalid hash value */
963 }
964 
965 static u32 decode_caller_hash(void *addr)
966 {
967 	u8 *p = addr;
968 
969 	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
970 	if (p[0] == 0x41 && p[1] == 0xba)
971 		return -*(u32 *)(addr + 2);
972 
973 	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
974 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
975 		return -*(u32 *)(addr + 2);
976 
977 	return 0; /* invalid hash value */
978 }
979 
980 /* .retpoline_sites */
981 static int cfi_disable_callers(s32 *start, s32 *end)
982 {
983 	/*
984 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
985 	 * in tact for later usage. Also see decode_caller_hash() and
986 	 * cfi_rewrite_callers().
987 	 */
988 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
989 	s32 *s;
990 
991 	for (s = start; s < end; s++) {
992 		void *addr = (void *)s + *s;
993 		u32 hash;
994 
995 		addr -= fineibt_caller_size;
996 		hash = decode_caller_hash(addr);
997 		if (!hash) /* nocfi callers */
998 			continue;
999 
1000 		text_poke_early(addr, jmp, 2);
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static int cfi_enable_callers(s32 *start, s32 *end)
1007 {
1008 	/*
1009 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1010 	 */
1011 	const u8 mov[] = { 0x41, 0xba };
1012 	s32 *s;
1013 
1014 	for (s = start; s < end; s++) {
1015 		void *addr = (void *)s + *s;
1016 		u32 hash;
1017 
1018 		addr -= fineibt_caller_size;
1019 		hash = decode_caller_hash(addr);
1020 		if (!hash) /* nocfi callers */
1021 			continue;
1022 
1023 		text_poke_early(addr, mov, 2);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 /* .cfi_sites */
1030 static int cfi_rand_preamble(s32 *start, s32 *end)
1031 {
1032 	s32 *s;
1033 
1034 	for (s = start; s < end; s++) {
1035 		void *addr = (void *)s + *s;
1036 		u32 hash;
1037 
1038 		hash = decode_preamble_hash(addr);
1039 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1040 			 addr, addr, 5, addr))
1041 			return -EINVAL;
1042 
1043 		hash = cfi_rehash(hash);
1044 		text_poke_early(addr + 1, &hash, 4);
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1051 {
1052 	s32 *s;
1053 
1054 	for (s = start; s < end; s++) {
1055 		void *addr = (void *)s + *s;
1056 		u32 hash;
1057 
1058 		hash = decode_preamble_hash(addr);
1059 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1060 			 addr, addr, 5, addr))
1061 			return -EINVAL;
1062 
1063 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1064 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1065 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1072 {
1073 	s32 *s;
1074 
1075 	for (s = start; s < end; s++) {
1076 		void *addr = (void *)s + *s;
1077 
1078 		poison_endbr(addr+16, false);
1079 	}
1080 }
1081 
1082 /* .retpoline_sites */
1083 static int cfi_rand_callers(s32 *start, s32 *end)
1084 {
1085 	s32 *s;
1086 
1087 	for (s = start; s < end; s++) {
1088 		void *addr = (void *)s + *s;
1089 		u32 hash;
1090 
1091 		addr -= fineibt_caller_size;
1092 		hash = decode_caller_hash(addr);
1093 		if (hash) {
1094 			hash = -cfi_rehash(hash);
1095 			text_poke_early(addr + 2, &hash, 4);
1096 		}
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 static int cfi_rewrite_callers(s32 *start, s32 *end)
1103 {
1104 	s32 *s;
1105 
1106 	for (s = start; s < end; s++) {
1107 		void *addr = (void *)s + *s;
1108 		u32 hash;
1109 
1110 		addr -= fineibt_caller_size;
1111 		hash = decode_caller_hash(addr);
1112 		if (hash) {
1113 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1114 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1115 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1116 		}
1117 		/* rely on apply_retpolines() */
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1124 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1125 {
1126 	int ret;
1127 
1128 	if (WARN_ONCE(fineibt_preamble_size != 16,
1129 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1130 		return;
1131 
1132 	if (cfi_mode == CFI_DEFAULT) {
1133 		cfi_mode = CFI_KCFI;
1134 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1135 			cfi_mode = CFI_FINEIBT;
1136 	}
1137 
1138 	/*
1139 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1140 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1141 	 * later stages fails, we're without CFI.
1142 	 */
1143 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1144 	if (ret)
1145 		goto err;
1146 
1147 	if (cfi_rand) {
1148 		if (builtin)
1149 			cfi_seed = get_random_u32();
1150 
1151 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1152 		if (ret)
1153 			goto err;
1154 
1155 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1156 		if (ret)
1157 			goto err;
1158 	}
1159 
1160 	switch (cfi_mode) {
1161 	case CFI_OFF:
1162 		if (builtin)
1163 			pr_info("Disabling CFI\n");
1164 		return;
1165 
1166 	case CFI_KCFI:
1167 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1168 		if (ret)
1169 			goto err;
1170 
1171 		if (builtin)
1172 			pr_info("Using kCFI\n");
1173 		return;
1174 
1175 	case CFI_FINEIBT:
1176 		/* place the FineIBT preamble at func()-16 */
1177 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1178 		if (ret)
1179 			goto err;
1180 
1181 		/* rewrite the callers to target func()-16 */
1182 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1183 		if (ret)
1184 			goto err;
1185 
1186 		/* now that nobody targets func()+0, remove ENDBR there */
1187 		cfi_rewrite_endbr(start_cfi, end_cfi);
1188 
1189 		if (builtin)
1190 			pr_info("Using FineIBT CFI\n");
1191 		return;
1192 
1193 	default:
1194 		break;
1195 	}
1196 
1197 err:
1198 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1199 }
1200 
1201 static inline void poison_hash(void *addr)
1202 {
1203 	*(u32 *)addr = 0;
1204 }
1205 
1206 static void poison_cfi(void *addr)
1207 {
1208 	switch (cfi_mode) {
1209 	case CFI_FINEIBT:
1210 		/*
1211 		 * __cfi_\func:
1212 		 *	osp nopl (%rax)
1213 		 *	subl	$0, %r10d
1214 		 *	jz	1f
1215 		 *	ud2
1216 		 * 1:	nop
1217 		 */
1218 		poison_endbr(addr, false);
1219 		poison_hash(addr + fineibt_preamble_hash);
1220 		break;
1221 
1222 	case CFI_KCFI:
1223 		/*
1224 		 * __cfi_\func:
1225 		 *	movl	$0, %eax
1226 		 *	.skip	11, 0x90
1227 		 */
1228 		poison_hash(addr + 1);
1229 		break;
1230 
1231 	default:
1232 		break;
1233 	}
1234 }
1235 
1236 #else
1237 
1238 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1239 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1240 {
1241 }
1242 
1243 #ifdef CONFIG_X86_KERNEL_IBT
1244 static void poison_cfi(void *addr) { }
1245 #endif
1246 
1247 #endif
1248 
1249 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1250 		   s32 *start_cfi, s32 *end_cfi)
1251 {
1252 	return __apply_fineibt(start_retpoline, end_retpoline,
1253 			       start_cfi, end_cfi,
1254 			       /* .builtin = */ false);
1255 }
1256 
1257 #ifdef CONFIG_SMP
1258 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1259 				  u8 *text, u8 *text_end)
1260 {
1261 	const s32 *poff;
1262 
1263 	for (poff = start; poff < end; poff++) {
1264 		u8 *ptr = (u8 *)poff + *poff;
1265 
1266 		if (!*poff || ptr < text || ptr >= text_end)
1267 			continue;
1268 		/* turn DS segment override prefix into lock prefix */
1269 		if (*ptr == 0x3e)
1270 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1271 	}
1272 }
1273 
1274 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1275 				    u8 *text, u8 *text_end)
1276 {
1277 	const s32 *poff;
1278 
1279 	for (poff = start; poff < end; poff++) {
1280 		u8 *ptr = (u8 *)poff + *poff;
1281 
1282 		if (!*poff || ptr < text || ptr >= text_end)
1283 			continue;
1284 		/* turn lock prefix into DS segment override prefix */
1285 		if (*ptr == 0xf0)
1286 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1287 	}
1288 }
1289 
1290 struct smp_alt_module {
1291 	/* what is this ??? */
1292 	struct module	*mod;
1293 	char		*name;
1294 
1295 	/* ptrs to lock prefixes */
1296 	const s32	*locks;
1297 	const s32	*locks_end;
1298 
1299 	/* .text segment, needed to avoid patching init code ;) */
1300 	u8		*text;
1301 	u8		*text_end;
1302 
1303 	struct list_head next;
1304 };
1305 static LIST_HEAD(smp_alt_modules);
1306 static bool uniproc_patched = false;	/* protected by text_mutex */
1307 
1308 void __init_or_module alternatives_smp_module_add(struct module *mod,
1309 						  char *name,
1310 						  void *locks, void *locks_end,
1311 						  void *text,  void *text_end)
1312 {
1313 	struct smp_alt_module *smp;
1314 
1315 	mutex_lock(&text_mutex);
1316 	if (!uniproc_patched)
1317 		goto unlock;
1318 
1319 	if (num_possible_cpus() == 1)
1320 		/* Don't bother remembering, we'll never have to undo it. */
1321 		goto smp_unlock;
1322 
1323 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1324 	if (NULL == smp)
1325 		/* we'll run the (safe but slow) SMP code then ... */
1326 		goto unlock;
1327 
1328 	smp->mod	= mod;
1329 	smp->name	= name;
1330 	smp->locks	= locks;
1331 	smp->locks_end	= locks_end;
1332 	smp->text	= text;
1333 	smp->text_end	= text_end;
1334 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1335 		smp->locks, smp->locks_end,
1336 		smp->text, smp->text_end, smp->name);
1337 
1338 	list_add_tail(&smp->next, &smp_alt_modules);
1339 smp_unlock:
1340 	alternatives_smp_unlock(locks, locks_end, text, text_end);
1341 unlock:
1342 	mutex_unlock(&text_mutex);
1343 }
1344 
1345 void __init_or_module alternatives_smp_module_del(struct module *mod)
1346 {
1347 	struct smp_alt_module *item;
1348 
1349 	mutex_lock(&text_mutex);
1350 	list_for_each_entry(item, &smp_alt_modules, next) {
1351 		if (mod != item->mod)
1352 			continue;
1353 		list_del(&item->next);
1354 		kfree(item);
1355 		break;
1356 	}
1357 	mutex_unlock(&text_mutex);
1358 }
1359 
1360 void alternatives_enable_smp(void)
1361 {
1362 	struct smp_alt_module *mod;
1363 
1364 	/* Why bother if there are no other CPUs? */
1365 	BUG_ON(num_possible_cpus() == 1);
1366 
1367 	mutex_lock(&text_mutex);
1368 
1369 	if (uniproc_patched) {
1370 		pr_info("switching to SMP code\n");
1371 		BUG_ON(num_online_cpus() != 1);
1372 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1373 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1374 		list_for_each_entry(mod, &smp_alt_modules, next)
1375 			alternatives_smp_lock(mod->locks, mod->locks_end,
1376 					      mod->text, mod->text_end);
1377 		uniproc_patched = false;
1378 	}
1379 	mutex_unlock(&text_mutex);
1380 }
1381 
1382 /*
1383  * Return 1 if the address range is reserved for SMP-alternatives.
1384  * Must hold text_mutex.
1385  */
1386 int alternatives_text_reserved(void *start, void *end)
1387 {
1388 	struct smp_alt_module *mod;
1389 	const s32 *poff;
1390 	u8 *text_start = start;
1391 	u8 *text_end = end;
1392 
1393 	lockdep_assert_held(&text_mutex);
1394 
1395 	list_for_each_entry(mod, &smp_alt_modules, next) {
1396 		if (mod->text > text_end || mod->text_end < text_start)
1397 			continue;
1398 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1399 			const u8 *ptr = (const u8 *)poff + *poff;
1400 
1401 			if (text_start <= ptr && text_end > ptr)
1402 				return 1;
1403 		}
1404 	}
1405 
1406 	return 0;
1407 }
1408 #endif /* CONFIG_SMP */
1409 
1410 #ifdef CONFIG_PARAVIRT
1411 
1412 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
1413 static void __init_or_module add_nops(void *insns, unsigned int len)
1414 {
1415 	while (len > 0) {
1416 		unsigned int noplen = len;
1417 		if (noplen > ASM_NOP_MAX)
1418 			noplen = ASM_NOP_MAX;
1419 		memcpy(insns, x86_nops[noplen], noplen);
1420 		insns += noplen;
1421 		len -= noplen;
1422 	}
1423 }
1424 
1425 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
1426 				     struct paravirt_patch_site *end)
1427 {
1428 	struct paravirt_patch_site *p;
1429 	char insn_buff[MAX_PATCH_LEN];
1430 
1431 	for (p = start; p < end; p++) {
1432 		unsigned int used;
1433 
1434 		BUG_ON(p->len > MAX_PATCH_LEN);
1435 		/* prep the buffer with the original instructions */
1436 		memcpy(insn_buff, p->instr, p->len);
1437 		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
1438 
1439 		BUG_ON(used > p->len);
1440 
1441 		/* Pad the rest with nops */
1442 		add_nops(insn_buff + used, p->len - used);
1443 		text_poke_early(p->instr, insn_buff, p->len);
1444 	}
1445 }
1446 extern struct paravirt_patch_site __start_parainstructions[],
1447 	__stop_parainstructions[];
1448 #endif	/* CONFIG_PARAVIRT */
1449 
1450 /*
1451  * Self-test for the INT3 based CALL emulation code.
1452  *
1453  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1454  * properly and that there is a stack gap between the INT3 frame and the
1455  * previous context. Without this gap doing a virtual PUSH on the interrupted
1456  * stack would corrupt the INT3 IRET frame.
1457  *
1458  * See entry_{32,64}.S for more details.
1459  */
1460 
1461 /*
1462  * We define the int3_magic() function in assembly to control the calling
1463  * convention such that we can 'call' it from assembly.
1464  */
1465 
1466 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1467 
1468 asm (
1469 "	.pushsection	.init.text, \"ax\", @progbits\n"
1470 "	.type		int3_magic, @function\n"
1471 "int3_magic:\n"
1472 	ANNOTATE_NOENDBR
1473 "	movl	$1, (%" _ASM_ARG1 ")\n"
1474 	ASM_RET
1475 "	.size		int3_magic, .-int3_magic\n"
1476 "	.popsection\n"
1477 );
1478 
1479 extern void int3_selftest_ip(void); /* defined in asm below */
1480 
1481 static int __init
1482 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1483 {
1484 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1485 	struct die_args *args = data;
1486 	struct pt_regs *regs = args->regs;
1487 
1488 	OPTIMIZER_HIDE_VAR(selftest);
1489 
1490 	if (!regs || user_mode(regs))
1491 		return NOTIFY_DONE;
1492 
1493 	if (val != DIE_INT3)
1494 		return NOTIFY_DONE;
1495 
1496 	if (regs->ip - INT3_INSN_SIZE != selftest)
1497 		return NOTIFY_DONE;
1498 
1499 	int3_emulate_call(regs, (unsigned long)&int3_magic);
1500 	return NOTIFY_STOP;
1501 }
1502 
1503 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1504 static noinline void __init int3_selftest(void)
1505 {
1506 	static __initdata struct notifier_block int3_exception_nb = {
1507 		.notifier_call	= int3_exception_notify,
1508 		.priority	= INT_MAX-1, /* last */
1509 	};
1510 	unsigned int val = 0;
1511 
1512 	BUG_ON(register_die_notifier(&int3_exception_nb));
1513 
1514 	/*
1515 	 * Basically: int3_magic(&val); but really complicated :-)
1516 	 *
1517 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1518 	 * notifier above will emulate CALL for us.
1519 	 */
1520 	asm volatile ("int3_selftest_ip:\n\t"
1521 		      ANNOTATE_NOENDBR
1522 		      "    int3; nop; nop; nop; nop\n\t"
1523 		      : ASM_CALL_CONSTRAINT
1524 		      : __ASM_SEL_RAW(a, D) (&val)
1525 		      : "memory");
1526 
1527 	BUG_ON(val != 1);
1528 
1529 	unregister_die_notifier(&int3_exception_nb);
1530 }
1531 
1532 static __initdata int __alt_reloc_selftest_addr;
1533 
1534 __visible noinline void __init __alt_reloc_selftest(void *arg)
1535 {
1536 	WARN_ON(arg != &__alt_reloc_selftest_addr);
1537 }
1538 
1539 static noinline void __init alt_reloc_selftest(void)
1540 {
1541 	/*
1542 	 * Tests apply_relocation().
1543 	 *
1544 	 * This has a relative immediate (CALL) in a place other than the first
1545 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1546 	 *
1547 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1548 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1549 	 *
1550 	 * Getting this wrong will either crash and burn or tickle the WARN
1551 	 * above.
1552 	 */
1553 	asm_inline volatile (
1554 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1555 		: /* output */
1556 		: [mem] "m" (__alt_reloc_selftest_addr)
1557 		: _ASM_ARG1
1558 	);
1559 }
1560 
1561 void __init alternative_instructions(void)
1562 {
1563 	int3_selftest();
1564 
1565 	/*
1566 	 * The patching is not fully atomic, so try to avoid local
1567 	 * interruptions that might execute the to be patched code.
1568 	 * Other CPUs are not running.
1569 	 */
1570 	stop_nmi();
1571 
1572 	/*
1573 	 * Don't stop machine check exceptions while patching.
1574 	 * MCEs only happen when something got corrupted and in this
1575 	 * case we must do something about the corruption.
1576 	 * Ignoring it is worse than an unlikely patching race.
1577 	 * Also machine checks tend to be broadcast and if one CPU
1578 	 * goes into machine check the others follow quickly, so we don't
1579 	 * expect a machine check to cause undue problems during to code
1580 	 * patching.
1581 	 */
1582 
1583 	/*
1584 	 * Paravirt patching and alternative patching can be combined to
1585 	 * replace a function call with a short direct code sequence (e.g.
1586 	 * by setting a constant return value instead of doing that in an
1587 	 * external function).
1588 	 * In order to make this work the following sequence is required:
1589 	 * 1. set (artificial) features depending on used paravirt
1590 	 *    functions which can later influence alternative patching
1591 	 * 2. apply paravirt patching (generally replacing an indirect
1592 	 *    function call with a direct one)
1593 	 * 3. apply alternative patching (e.g. replacing a direct function
1594 	 *    call with a custom code sequence)
1595 	 * Doing paravirt patching after alternative patching would clobber
1596 	 * the optimization of the custom code with a function call again.
1597 	 */
1598 	paravirt_set_cap();
1599 
1600 	/*
1601 	 * First patch paravirt functions, such that we overwrite the indirect
1602 	 * call with the direct call.
1603 	 */
1604 	apply_paravirt(__parainstructions, __parainstructions_end);
1605 
1606 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1607 			__cfi_sites, __cfi_sites_end, true);
1608 
1609 	/*
1610 	 * Rewrite the retpolines, must be done before alternatives since
1611 	 * those can rewrite the retpoline thunks.
1612 	 */
1613 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1614 	apply_returns(__return_sites, __return_sites_end);
1615 
1616 	/*
1617 	 * Then patch alternatives, such that those paravirt calls that are in
1618 	 * alternatives can be overwritten by their immediate fragments.
1619 	 */
1620 	apply_alternatives(__alt_instructions, __alt_instructions_end);
1621 
1622 	/*
1623 	 * Now all calls are established. Apply the call thunks if
1624 	 * required.
1625 	 */
1626 	callthunks_patch_builtin_calls();
1627 
1628 	/*
1629 	 * Seal all functions that do not have their address taken.
1630 	 */
1631 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1632 
1633 #ifdef CONFIG_SMP
1634 	/* Patch to UP if other cpus not imminent. */
1635 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1636 		uniproc_patched = true;
1637 		alternatives_smp_module_add(NULL, "core kernel",
1638 					    __smp_locks, __smp_locks_end,
1639 					    _text, _etext);
1640 	}
1641 
1642 	if (!uniproc_patched || num_possible_cpus() == 1) {
1643 		free_init_pages("SMP alternatives",
1644 				(unsigned long)__smp_locks,
1645 				(unsigned long)__smp_locks_end);
1646 	}
1647 #endif
1648 
1649 	restart_nmi();
1650 	alternatives_patched = 1;
1651 
1652 	alt_reloc_selftest();
1653 }
1654 
1655 /**
1656  * text_poke_early - Update instructions on a live kernel at boot time
1657  * @addr: address to modify
1658  * @opcode: source of the copy
1659  * @len: length to copy
1660  *
1661  * When you use this code to patch more than one byte of an instruction
1662  * you need to make sure that other CPUs cannot execute this code in parallel.
1663  * Also no thread must be currently preempted in the middle of these
1664  * instructions. And on the local CPU you need to be protected against NMI or
1665  * MCE handlers seeing an inconsistent instruction while you patch.
1666  */
1667 void __init_or_module text_poke_early(void *addr, const void *opcode,
1668 				      size_t len)
1669 {
1670 	unsigned long flags;
1671 
1672 	if (boot_cpu_has(X86_FEATURE_NX) &&
1673 	    is_module_text_address((unsigned long)addr)) {
1674 		/*
1675 		 * Modules text is marked initially as non-executable, so the
1676 		 * code cannot be running and speculative code-fetches are
1677 		 * prevented. Just change the code.
1678 		 */
1679 		memcpy(addr, opcode, len);
1680 	} else {
1681 		local_irq_save(flags);
1682 		memcpy(addr, opcode, len);
1683 		local_irq_restore(flags);
1684 		sync_core();
1685 
1686 		/*
1687 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1688 		 * that causes hangs on some VIA CPUs.
1689 		 */
1690 	}
1691 }
1692 
1693 typedef struct {
1694 	struct mm_struct *mm;
1695 } temp_mm_state_t;
1696 
1697 /*
1698  * Using a temporary mm allows to set temporary mappings that are not accessible
1699  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1700  * that override the kernel memory protections (e.g., W^X), without exposing the
1701  * temporary page-table mappings that are required for these write operations to
1702  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1703  * mapping is torn down.
1704  *
1705  * Context: The temporary mm needs to be used exclusively by a single core. To
1706  *          harden security IRQs must be disabled while the temporary mm is
1707  *          loaded, thereby preventing interrupt handler bugs from overriding
1708  *          the kernel memory protection.
1709  */
1710 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1711 {
1712 	temp_mm_state_t temp_state;
1713 
1714 	lockdep_assert_irqs_disabled();
1715 
1716 	/*
1717 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1718 	 * with a stale address space WITHOUT being in lazy mode after
1719 	 * restoring the previous mm.
1720 	 */
1721 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1722 		leave_mm(smp_processor_id());
1723 
1724 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1725 	switch_mm_irqs_off(NULL, mm, current);
1726 
1727 	/*
1728 	 * If breakpoints are enabled, disable them while the temporary mm is
1729 	 * used. Userspace might set up watchpoints on addresses that are used
1730 	 * in the temporary mm, which would lead to wrong signals being sent or
1731 	 * crashes.
1732 	 *
1733 	 * Note that breakpoints are not disabled selectively, which also causes
1734 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1735 	 * undesirable, but still seems reasonable as the code that runs in the
1736 	 * temporary mm should be short.
1737 	 */
1738 	if (hw_breakpoint_active())
1739 		hw_breakpoint_disable();
1740 
1741 	return temp_state;
1742 }
1743 
1744 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1745 {
1746 	lockdep_assert_irqs_disabled();
1747 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1748 
1749 	/*
1750 	 * Restore the breakpoints if they were disabled before the temporary mm
1751 	 * was loaded.
1752 	 */
1753 	if (hw_breakpoint_active())
1754 		hw_breakpoint_restore();
1755 }
1756 
1757 __ro_after_init struct mm_struct *poking_mm;
1758 __ro_after_init unsigned long poking_addr;
1759 
1760 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1761 {
1762 	memcpy(dst, src, len);
1763 }
1764 
1765 static void text_poke_memset(void *dst, const void *src, size_t len)
1766 {
1767 	int c = *(const int *)src;
1768 
1769 	memset(dst, c, len);
1770 }
1771 
1772 typedef void text_poke_f(void *dst, const void *src, size_t len);
1773 
1774 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1775 {
1776 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1777 	struct page *pages[2] = {NULL};
1778 	temp_mm_state_t prev;
1779 	unsigned long flags;
1780 	pte_t pte, *ptep;
1781 	spinlock_t *ptl;
1782 	pgprot_t pgprot;
1783 
1784 	/*
1785 	 * While boot memory allocator is running we cannot use struct pages as
1786 	 * they are not yet initialized. There is no way to recover.
1787 	 */
1788 	BUG_ON(!after_bootmem);
1789 
1790 	if (!core_kernel_text((unsigned long)addr)) {
1791 		pages[0] = vmalloc_to_page(addr);
1792 		if (cross_page_boundary)
1793 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1794 	} else {
1795 		pages[0] = virt_to_page(addr);
1796 		WARN_ON(!PageReserved(pages[0]));
1797 		if (cross_page_boundary)
1798 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1799 	}
1800 	/*
1801 	 * If something went wrong, crash and burn since recovery paths are not
1802 	 * implemented.
1803 	 */
1804 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1805 
1806 	/*
1807 	 * Map the page without the global bit, as TLB flushing is done with
1808 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1809 	 */
1810 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1811 
1812 	/*
1813 	 * The lock is not really needed, but this allows to avoid open-coding.
1814 	 */
1815 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1816 
1817 	/*
1818 	 * This must not fail; preallocated in poking_init().
1819 	 */
1820 	VM_BUG_ON(!ptep);
1821 
1822 	local_irq_save(flags);
1823 
1824 	pte = mk_pte(pages[0], pgprot);
1825 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1826 
1827 	if (cross_page_boundary) {
1828 		pte = mk_pte(pages[1], pgprot);
1829 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1830 	}
1831 
1832 	/*
1833 	 * Loading the temporary mm behaves as a compiler barrier, which
1834 	 * guarantees that the PTE will be set at the time memcpy() is done.
1835 	 */
1836 	prev = use_temporary_mm(poking_mm);
1837 
1838 	kasan_disable_current();
1839 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1840 	kasan_enable_current();
1841 
1842 	/*
1843 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1844 	 * were issued by using a compiler barrier.
1845 	 */
1846 	barrier();
1847 
1848 	pte_clear(poking_mm, poking_addr, ptep);
1849 	if (cross_page_boundary)
1850 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1851 
1852 	/*
1853 	 * Loading the previous page-table hierarchy requires a serializing
1854 	 * instruction that already allows the core to see the updated version.
1855 	 * Xen-PV is assumed to serialize execution in a similar manner.
1856 	 */
1857 	unuse_temporary_mm(prev);
1858 
1859 	/*
1860 	 * Flushing the TLB might involve IPIs, which would require enabled
1861 	 * IRQs, but not if the mm is not used, as it is in this point.
1862 	 */
1863 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1864 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1865 			   PAGE_SHIFT, false);
1866 
1867 	if (func == text_poke_memcpy) {
1868 		/*
1869 		 * If the text does not match what we just wrote then something is
1870 		 * fundamentally screwy; there's nothing we can really do about that.
1871 		 */
1872 		BUG_ON(memcmp(addr, src, len));
1873 	}
1874 
1875 	local_irq_restore(flags);
1876 	pte_unmap_unlock(ptep, ptl);
1877 	return addr;
1878 }
1879 
1880 /**
1881  * text_poke - Update instructions on a live kernel
1882  * @addr: address to modify
1883  * @opcode: source of the copy
1884  * @len: length to copy
1885  *
1886  * Only atomic text poke/set should be allowed when not doing early patching.
1887  * It means the size must be writable atomically and the address must be aligned
1888  * in a way that permits an atomic write. It also makes sure we fit on a single
1889  * page.
1890  *
1891  * Note that the caller must ensure that if the modified code is part of a
1892  * module, the module would not be removed during poking. This can be achieved
1893  * by registering a module notifier, and ordering module removal and patching
1894  * trough a mutex.
1895  */
1896 void *text_poke(void *addr, const void *opcode, size_t len)
1897 {
1898 	lockdep_assert_held(&text_mutex);
1899 
1900 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1901 }
1902 
1903 /**
1904  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1905  * @addr: address to modify
1906  * @opcode: source of the copy
1907  * @len: length to copy
1908  *
1909  * Only atomic text poke/set should be allowed when not doing early patching.
1910  * It means the size must be writable atomically and the address must be aligned
1911  * in a way that permits an atomic write. It also makes sure we fit on a single
1912  * page.
1913  *
1914  * Context: should only be used by kgdb, which ensures no other core is running,
1915  *	    despite the fact it does not hold the text_mutex.
1916  */
1917 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1918 {
1919 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1920 }
1921 
1922 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
1923 			    bool core_ok)
1924 {
1925 	unsigned long start = (unsigned long)addr;
1926 	size_t patched = 0;
1927 
1928 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
1929 		return NULL;
1930 
1931 	while (patched < len) {
1932 		unsigned long ptr = start + patched;
1933 		size_t s;
1934 
1935 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1936 
1937 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1938 		patched += s;
1939 	}
1940 	return addr;
1941 }
1942 
1943 /**
1944  * text_poke_copy - Copy instructions into (an unused part of) RX memory
1945  * @addr: address to modify
1946  * @opcode: source of the copy
1947  * @len: length to copy, could be more than 2x PAGE_SIZE
1948  *
1949  * Not safe against concurrent execution; useful for JITs to dump
1950  * new code blocks into unused regions of RX memory. Can be used in
1951  * conjunction with synchronize_rcu_tasks() to wait for existing
1952  * execution to quiesce after having made sure no existing functions
1953  * pointers are live.
1954  */
1955 void *text_poke_copy(void *addr, const void *opcode, size_t len)
1956 {
1957 	mutex_lock(&text_mutex);
1958 	addr = text_poke_copy_locked(addr, opcode, len, false);
1959 	mutex_unlock(&text_mutex);
1960 	return addr;
1961 }
1962 
1963 /**
1964  * text_poke_set - memset into (an unused part of) RX memory
1965  * @addr: address to modify
1966  * @c: the byte to fill the area with
1967  * @len: length to copy, could be more than 2x PAGE_SIZE
1968  *
1969  * This is useful to overwrite unused regions of RX memory with illegal
1970  * instructions.
1971  */
1972 void *text_poke_set(void *addr, int c, size_t len)
1973 {
1974 	unsigned long start = (unsigned long)addr;
1975 	size_t patched = 0;
1976 
1977 	if (WARN_ON_ONCE(core_kernel_text(start)))
1978 		return NULL;
1979 
1980 	mutex_lock(&text_mutex);
1981 	while (patched < len) {
1982 		unsigned long ptr = start + patched;
1983 		size_t s;
1984 
1985 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1986 
1987 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
1988 		patched += s;
1989 	}
1990 	mutex_unlock(&text_mutex);
1991 	return addr;
1992 }
1993 
1994 static void do_sync_core(void *info)
1995 {
1996 	sync_core();
1997 }
1998 
1999 void text_poke_sync(void)
2000 {
2001 	on_each_cpu(do_sync_core, NULL, 1);
2002 }
2003 
2004 /*
2005  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2006  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2007  * opcode to Jcc.d8, using len to distinguish.
2008  */
2009 struct text_poke_loc {
2010 	/* addr := _stext + rel_addr */
2011 	s32 rel_addr;
2012 	s32 disp;
2013 	u8 len;
2014 	u8 opcode;
2015 	const u8 text[POKE_MAX_OPCODE_SIZE];
2016 	/* see text_poke_bp_batch() */
2017 	u8 old;
2018 };
2019 
2020 struct bp_patching_desc {
2021 	struct text_poke_loc *vec;
2022 	int nr_entries;
2023 	atomic_t refs;
2024 };
2025 
2026 static struct bp_patching_desc bp_desc;
2027 
2028 static __always_inline
2029 struct bp_patching_desc *try_get_desc(void)
2030 {
2031 	struct bp_patching_desc *desc = &bp_desc;
2032 
2033 	if (!raw_atomic_inc_not_zero(&desc->refs))
2034 		return NULL;
2035 
2036 	return desc;
2037 }
2038 
2039 static __always_inline void put_desc(void)
2040 {
2041 	struct bp_patching_desc *desc = &bp_desc;
2042 
2043 	smp_mb__before_atomic();
2044 	raw_atomic_dec(&desc->refs);
2045 }
2046 
2047 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2048 {
2049 	return _stext + tp->rel_addr;
2050 }
2051 
2052 static __always_inline int patch_cmp(const void *key, const void *elt)
2053 {
2054 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2055 
2056 	if (key < text_poke_addr(tp))
2057 		return -1;
2058 	if (key > text_poke_addr(tp))
2059 		return 1;
2060 	return 0;
2061 }
2062 
2063 noinstr int poke_int3_handler(struct pt_regs *regs)
2064 {
2065 	struct bp_patching_desc *desc;
2066 	struct text_poke_loc *tp;
2067 	int ret = 0;
2068 	void *ip;
2069 
2070 	if (user_mode(regs))
2071 		return 0;
2072 
2073 	/*
2074 	 * Having observed our INT3 instruction, we now must observe
2075 	 * bp_desc with non-zero refcount:
2076 	 *
2077 	 *	bp_desc.refs = 1		INT3
2078 	 *	WMB				RMB
2079 	 *	write INT3			if (bp_desc.refs != 0)
2080 	 */
2081 	smp_rmb();
2082 
2083 	desc = try_get_desc();
2084 	if (!desc)
2085 		return 0;
2086 
2087 	/*
2088 	 * Discount the INT3. See text_poke_bp_batch().
2089 	 */
2090 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2091 
2092 	/*
2093 	 * Skip the binary search if there is a single member in the vector.
2094 	 */
2095 	if (unlikely(desc->nr_entries > 1)) {
2096 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2097 				      sizeof(struct text_poke_loc),
2098 				      patch_cmp);
2099 		if (!tp)
2100 			goto out_put;
2101 	} else {
2102 		tp = desc->vec;
2103 		if (text_poke_addr(tp) != ip)
2104 			goto out_put;
2105 	}
2106 
2107 	ip += tp->len;
2108 
2109 	switch (tp->opcode) {
2110 	case INT3_INSN_OPCODE:
2111 		/*
2112 		 * Someone poked an explicit INT3, they'll want to handle it,
2113 		 * do not consume.
2114 		 */
2115 		goto out_put;
2116 
2117 	case RET_INSN_OPCODE:
2118 		int3_emulate_ret(regs);
2119 		break;
2120 
2121 	case CALL_INSN_OPCODE:
2122 		int3_emulate_call(regs, (long)ip + tp->disp);
2123 		break;
2124 
2125 	case JMP32_INSN_OPCODE:
2126 	case JMP8_INSN_OPCODE:
2127 		int3_emulate_jmp(regs, (long)ip + tp->disp);
2128 		break;
2129 
2130 	case 0x70 ... 0x7f: /* Jcc */
2131 		int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2132 		break;
2133 
2134 	default:
2135 		BUG();
2136 	}
2137 
2138 	ret = 1;
2139 
2140 out_put:
2141 	put_desc();
2142 	return ret;
2143 }
2144 
2145 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2146 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2147 static int tp_vec_nr;
2148 
2149 /**
2150  * text_poke_bp_batch() -- update instructions on live kernel on SMP
2151  * @tp:			vector of instructions to patch
2152  * @nr_entries:		number of entries in the vector
2153  *
2154  * Modify multi-byte instruction by using int3 breakpoint on SMP.
2155  * We completely avoid stop_machine() here, and achieve the
2156  * synchronization using int3 breakpoint.
2157  *
2158  * The way it is done:
2159  *	- For each entry in the vector:
2160  *		- add a int3 trap to the address that will be patched
2161  *	- sync cores
2162  *	- For each entry in the vector:
2163  *		- update all but the first byte of the patched range
2164  *	- sync cores
2165  *	- For each entry in the vector:
2166  *		- replace the first byte (int3) by the first byte of
2167  *		  replacing opcode
2168  *	- sync cores
2169  */
2170 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2171 {
2172 	unsigned char int3 = INT3_INSN_OPCODE;
2173 	unsigned int i;
2174 	int do_sync;
2175 
2176 	lockdep_assert_held(&text_mutex);
2177 
2178 	bp_desc.vec = tp;
2179 	bp_desc.nr_entries = nr_entries;
2180 
2181 	/*
2182 	 * Corresponds to the implicit memory barrier in try_get_desc() to
2183 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
2184 	 */
2185 	atomic_set_release(&bp_desc.refs, 1);
2186 
2187 	/*
2188 	 * Function tracing can enable thousands of places that need to be
2189 	 * updated. This can take quite some time, and with full kernel debugging
2190 	 * enabled, this could cause the softlockup watchdog to trigger.
2191 	 * This function gets called every 256 entries added to be patched.
2192 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2193 	 * while processing all the functions being patched.
2194 	 */
2195 	cond_resched();
2196 
2197 	/*
2198 	 * Corresponding read barrier in int3 notifier for making sure the
2199 	 * nr_entries and handler are correctly ordered wrt. patching.
2200 	 */
2201 	smp_wmb();
2202 
2203 	/*
2204 	 * First step: add a int3 trap to the address that will be patched.
2205 	 */
2206 	for (i = 0; i < nr_entries; i++) {
2207 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2208 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2209 	}
2210 
2211 	text_poke_sync();
2212 
2213 	/*
2214 	 * Second step: update all but the first byte of the patched range.
2215 	 */
2216 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2217 		u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2218 		u8 _new[POKE_MAX_OPCODE_SIZE+1];
2219 		const u8 *new = tp[i].text;
2220 		int len = tp[i].len;
2221 
2222 		if (len - INT3_INSN_SIZE > 0) {
2223 			memcpy(old + INT3_INSN_SIZE,
2224 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2225 			       len - INT3_INSN_SIZE);
2226 
2227 			if (len == 6) {
2228 				_new[0] = 0x0f;
2229 				memcpy(_new + 1, new, 5);
2230 				new = _new;
2231 			}
2232 
2233 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2234 				  new + INT3_INSN_SIZE,
2235 				  len - INT3_INSN_SIZE);
2236 
2237 			do_sync++;
2238 		}
2239 
2240 		/*
2241 		 * Emit a perf event to record the text poke, primarily to
2242 		 * support Intel PT decoding which must walk the executable code
2243 		 * to reconstruct the trace. The flow up to here is:
2244 		 *   - write INT3 byte
2245 		 *   - IPI-SYNC
2246 		 *   - write instruction tail
2247 		 * At this point the actual control flow will be through the
2248 		 * INT3 and handler and not hit the old or new instruction.
2249 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2250 		 * can still be decoded. Subsequently:
2251 		 *   - emit RECORD_TEXT_POKE with the new instruction
2252 		 *   - IPI-SYNC
2253 		 *   - write first byte
2254 		 *   - IPI-SYNC
2255 		 * So before the text poke event timestamp, the decoder will see
2256 		 * either the old instruction flow or FUP/TIP of INT3. After the
2257 		 * text poke event timestamp, the decoder will see either the
2258 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2259 		 * use the timestamp as the point at which to modify the
2260 		 * executable code.
2261 		 * The old instruction is recorded so that the event can be
2262 		 * processed forwards or backwards.
2263 		 */
2264 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2265 	}
2266 
2267 	if (do_sync) {
2268 		/*
2269 		 * According to Intel, this core syncing is very likely
2270 		 * not necessary and we'd be safe even without it. But
2271 		 * better safe than sorry (plus there's not only Intel).
2272 		 */
2273 		text_poke_sync();
2274 	}
2275 
2276 	/*
2277 	 * Third step: replace the first byte (int3) by the first byte of
2278 	 * replacing opcode.
2279 	 */
2280 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2281 		u8 byte = tp[i].text[0];
2282 
2283 		if (tp[i].len == 6)
2284 			byte = 0x0f;
2285 
2286 		if (byte == INT3_INSN_OPCODE)
2287 			continue;
2288 
2289 		text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2290 		do_sync++;
2291 	}
2292 
2293 	if (do_sync)
2294 		text_poke_sync();
2295 
2296 	/*
2297 	 * Remove and wait for refs to be zero.
2298 	 */
2299 	if (!atomic_dec_and_test(&bp_desc.refs))
2300 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2301 }
2302 
2303 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2304 			       const void *opcode, size_t len, const void *emulate)
2305 {
2306 	struct insn insn;
2307 	int ret, i = 0;
2308 
2309 	if (len == 6)
2310 		i = 1;
2311 	memcpy((void *)tp->text, opcode+i, len-i);
2312 	if (!emulate)
2313 		emulate = opcode;
2314 
2315 	ret = insn_decode_kernel(&insn, emulate);
2316 	BUG_ON(ret < 0);
2317 
2318 	tp->rel_addr = addr - (void *)_stext;
2319 	tp->len = len;
2320 	tp->opcode = insn.opcode.bytes[0];
2321 
2322 	if (is_jcc32(&insn)) {
2323 		/*
2324 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2325 		 */
2326 		tp->opcode = insn.opcode.bytes[1] - 0x10;
2327 	}
2328 
2329 	switch (tp->opcode) {
2330 	case RET_INSN_OPCODE:
2331 	case JMP32_INSN_OPCODE:
2332 	case JMP8_INSN_OPCODE:
2333 		/*
2334 		 * Control flow instructions without implied execution of the
2335 		 * next instruction can be padded with INT3.
2336 		 */
2337 		for (i = insn.length; i < len; i++)
2338 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2339 		break;
2340 
2341 	default:
2342 		BUG_ON(len != insn.length);
2343 	}
2344 
2345 	switch (tp->opcode) {
2346 	case INT3_INSN_OPCODE:
2347 	case RET_INSN_OPCODE:
2348 		break;
2349 
2350 	case CALL_INSN_OPCODE:
2351 	case JMP32_INSN_OPCODE:
2352 	case JMP8_INSN_OPCODE:
2353 	case 0x70 ... 0x7f: /* Jcc */
2354 		tp->disp = insn.immediate.value;
2355 		break;
2356 
2357 	default: /* assume NOP */
2358 		switch (len) {
2359 		case 2: /* NOP2 -- emulate as JMP8+0 */
2360 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2361 			tp->opcode = JMP8_INSN_OPCODE;
2362 			tp->disp = 0;
2363 			break;
2364 
2365 		case 5: /* NOP5 -- emulate as JMP32+0 */
2366 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2367 			tp->opcode = JMP32_INSN_OPCODE;
2368 			tp->disp = 0;
2369 			break;
2370 
2371 		default: /* unknown instruction */
2372 			BUG();
2373 		}
2374 		break;
2375 	}
2376 }
2377 
2378 /*
2379  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2380  * early if needed.
2381  */
2382 static bool tp_order_fail(void *addr)
2383 {
2384 	struct text_poke_loc *tp;
2385 
2386 	if (!tp_vec_nr)
2387 		return false;
2388 
2389 	if (!addr) /* force */
2390 		return true;
2391 
2392 	tp = &tp_vec[tp_vec_nr - 1];
2393 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2394 		return true;
2395 
2396 	return false;
2397 }
2398 
2399 static void text_poke_flush(void *addr)
2400 {
2401 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2402 		text_poke_bp_batch(tp_vec, tp_vec_nr);
2403 		tp_vec_nr = 0;
2404 	}
2405 }
2406 
2407 void text_poke_finish(void)
2408 {
2409 	text_poke_flush(NULL);
2410 }
2411 
2412 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2413 {
2414 	struct text_poke_loc *tp;
2415 
2416 	text_poke_flush(addr);
2417 
2418 	tp = &tp_vec[tp_vec_nr++];
2419 	text_poke_loc_init(tp, addr, opcode, len, emulate);
2420 }
2421 
2422 /**
2423  * text_poke_bp() -- update instructions on live kernel on SMP
2424  * @addr:	address to patch
2425  * @opcode:	opcode of new instruction
2426  * @len:	length to copy
2427  * @emulate:	instruction to be emulated
2428  *
2429  * Update a single instruction with the vector in the stack, avoiding
2430  * dynamically allocated memory. This function should be used when it is
2431  * not possible to allocate memory.
2432  */
2433 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2434 {
2435 	struct text_poke_loc tp;
2436 
2437 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2438 	text_poke_bp_batch(&tp, 1);
2439 }
2440