xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 2984f26a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 
34 int __read_mostly alternatives_patched;
35 
36 EXPORT_SYMBOL_GPL(alternatives_patched);
37 
38 #define MAX_PATCH_LEN (255-1)
39 
40 #define DA_ALL		(~0)
41 #define DA_ALT		0x01
42 #define DA_RET		0x02
43 #define DA_RETPOLINE	0x04
44 #define DA_ENDBR	0x08
45 #define DA_SMP		0x10
46 
47 static unsigned int __initdata_or_module debug_alternative;
48 
49 static int __init debug_alt(char *str)
50 {
51 	if (str && *str == '=')
52 		str++;
53 
54 	if (!str || kstrtouint(str, 0, &debug_alternative))
55 		debug_alternative = DA_ALL;
56 
57 	return 1;
58 }
59 __setup("debug-alternative", debug_alt);
60 
61 static int noreplace_smp;
62 
63 static int __init setup_noreplace_smp(char *str)
64 {
65 	noreplace_smp = 1;
66 	return 1;
67 }
68 __setup("noreplace-smp", setup_noreplace_smp);
69 
70 #define DPRINTK(type, fmt, args...)					\
71 do {									\
72 	if (debug_alternative & DA_##type)				\
73 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
74 } while (0)
75 
76 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
77 do {									\
78 	if (unlikely(debug_alternative & DA_##type)) {			\
79 		int j;							\
80 									\
81 		if (!(len))						\
82 			break;						\
83 									\
84 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
85 		for (j = 0; j < (len) - 1; j++)				\
86 			printk(KERN_CONT "%02hhx ", buf[j]);		\
87 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
88 	}								\
89 } while (0)
90 
91 static const unsigned char x86nops[] =
92 {
93 	BYTES_NOP1,
94 	BYTES_NOP2,
95 	BYTES_NOP3,
96 	BYTES_NOP4,
97 	BYTES_NOP5,
98 	BYTES_NOP6,
99 	BYTES_NOP7,
100 	BYTES_NOP8,
101 #ifdef CONFIG_64BIT
102 	BYTES_NOP9,
103 	BYTES_NOP10,
104 	BYTES_NOP11,
105 #endif
106 };
107 
108 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
109 {
110 	NULL,
111 	x86nops,
112 	x86nops + 1,
113 	x86nops + 1 + 2,
114 	x86nops + 1 + 2 + 3,
115 	x86nops + 1 + 2 + 3 + 4,
116 	x86nops + 1 + 2 + 3 + 4 + 5,
117 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
118 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
119 #ifdef CONFIG_64BIT
120 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
121 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
122 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
123 #endif
124 };
125 
126 /*
127  * Fill the buffer with a single effective instruction of size @len.
128  *
129  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
130  * for every single-byte NOP, try to generate the maximally available NOP of
131  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
132  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
133  * *jump* over instead of executing long and daft NOPs.
134  */
135 static void __init_or_module add_nop(u8 *instr, unsigned int len)
136 {
137 	u8 *target = instr + len;
138 
139 	if (!len)
140 		return;
141 
142 	if (len <= ASM_NOP_MAX) {
143 		memcpy(instr, x86_nops[len], len);
144 		return;
145 	}
146 
147 	if (len < 128) {
148 		__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
149 		instr += JMP8_INSN_SIZE;
150 	} else {
151 		__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
152 		instr += JMP32_INSN_SIZE;
153 	}
154 
155 	for (;instr < target; instr++)
156 		*instr = INT3_INSN_OPCODE;
157 }
158 
159 extern s32 __retpoline_sites[], __retpoline_sites_end[];
160 extern s32 __return_sites[], __return_sites_end[];
161 extern s32 __cfi_sites[], __cfi_sites_end[];
162 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
163 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
164 extern s32 __smp_locks[], __smp_locks_end[];
165 void text_poke_early(void *addr, const void *opcode, size_t len);
166 
167 /*
168  * Matches NOP and NOPL, not any of the other possible NOPs.
169  */
170 static bool insn_is_nop(struct insn *insn)
171 {
172 	/* Anything NOP, but no REP NOP */
173 	if (insn->opcode.bytes[0] == 0x90 &&
174 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
175 		return true;
176 
177 	/* NOPL */
178 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
179 		return true;
180 
181 	/* TODO: more nops */
182 
183 	return false;
184 }
185 
186 /*
187  * Find the offset of the first non-NOP instruction starting at @offset
188  * but no further than @len.
189  */
190 static int skip_nops(u8 *instr, int offset, int len)
191 {
192 	struct insn insn;
193 
194 	for (; offset < len; offset += insn.length) {
195 		if (insn_decode_kernel(&insn, &instr[offset]))
196 			break;
197 
198 		if (!insn_is_nop(&insn))
199 			break;
200 	}
201 
202 	return offset;
203 }
204 
205 /*
206  * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
207  * to the end of the NOP sequence into a single NOP.
208  */
209 static bool __init_or_module
210 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
211 {
212 	int i = *next - insn->length;
213 
214 	switch (insn->opcode.bytes[0]) {
215 	case JMP8_INSN_OPCODE:
216 	case JMP32_INSN_OPCODE:
217 		*prev = i;
218 		*target = *next + insn->immediate.value;
219 		return false;
220 	}
221 
222 	if (insn_is_nop(insn)) {
223 		int nop = i;
224 
225 		*next = skip_nops(instr, *next, len);
226 		if (*target && *next == *target)
227 			nop = *prev;
228 
229 		add_nop(instr + nop, *next - nop);
230 		DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
231 		return true;
232 	}
233 
234 	*target = 0;
235 	return false;
236 }
237 
238 /*
239  * "noinline" to cause control flow change and thus invalidate I$ and
240  * cause refetch after modification.
241  */
242 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
243 {
244 	int prev, target = 0;
245 
246 	for (int next, i = 0; i < len; i = next) {
247 		struct insn insn;
248 
249 		if (insn_decode_kernel(&insn, &instr[i]))
250 			return;
251 
252 		next = i + insn.length;
253 
254 		__optimize_nops(instr, len, &insn, &next, &prev, &target);
255 	}
256 }
257 
258 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
259 {
260 	unsigned long flags;
261 
262 	local_irq_save(flags);
263 	optimize_nops(instr, len);
264 	sync_core();
265 	local_irq_restore(flags);
266 }
267 
268 /*
269  * In this context, "source" is where the instructions are placed in the
270  * section .altinstr_replacement, for example during kernel build by the
271  * toolchain.
272  * "Destination" is where the instructions are being patched in by this
273  * machinery.
274  *
275  * The source offset is:
276  *
277  *   src_imm = target - src_next_ip                  (1)
278  *
279  * and the target offset is:
280  *
281  *   dst_imm = target - dst_next_ip                  (2)
282  *
283  * so rework (1) as an expression for target like:
284  *
285  *   target = src_imm + src_next_ip                  (1a)
286  *
287  * and substitute in (2) to get:
288  *
289  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
290  *
291  * Now, since the instruction stream is 'identical' at src and dst (it
292  * is being copied after all) it can be stated that:
293  *
294  *   src_next_ip = src + ip_offset
295  *   dst_next_ip = dst + ip_offset                   (4)
296  *
297  * Substitute (4) in (3) and observe ip_offset being cancelled out to
298  * obtain:
299  *
300  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
301  *           = src_imm + src - dst + ip_offset - ip_offset
302  *           = src_imm + src - dst                   (5)
303  *
304  * IOW, only the relative displacement of the code block matters.
305  */
306 
307 #define apply_reloc_n(n_, p_, d_)				\
308 	do {							\
309 		s32 v = *(s##n_ *)(p_);				\
310 		v += (d_);					\
311 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
312 		*(s##n_ *)(p_) = (s##n_)v;			\
313 	} while (0)
314 
315 
316 static __always_inline
317 void apply_reloc(int n, void *ptr, uintptr_t diff)
318 {
319 	switch (n) {
320 	case 1: apply_reloc_n(8, ptr, diff); break;
321 	case 2: apply_reloc_n(16, ptr, diff); break;
322 	case 4: apply_reloc_n(32, ptr, diff); break;
323 	default: BUG();
324 	}
325 }
326 
327 static __always_inline
328 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
329 {
330 	u8 *target = src + offset;
331 	/*
332 	 * If the target is inside the patched block, it's relative to the
333 	 * block itself and does not need relocation.
334 	 */
335 	return (target < src || target > src + src_len);
336 }
337 
338 static void __init_or_module noinline
339 apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
340 {
341 	int prev, target = 0;
342 
343 	for (int next, i = 0; i < len; i = next) {
344 		struct insn insn;
345 
346 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
347 			return;
348 
349 		next = i + insn.length;
350 
351 		if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
352 			continue;
353 
354 		switch (insn.opcode.bytes[0]) {
355 		case 0x0f:
356 			if (insn.opcode.bytes[1] < 0x80 ||
357 			    insn.opcode.bytes[1] > 0x8f)
358 				break;
359 
360 			fallthrough;	/* Jcc.d32 */
361 		case 0x70 ... 0x7f:	/* Jcc.d8 */
362 		case JMP8_INSN_OPCODE:
363 		case JMP32_INSN_OPCODE:
364 		case CALL_INSN_OPCODE:
365 			if (need_reloc(next + insn.immediate.value, src, src_len)) {
366 				apply_reloc(insn.immediate.nbytes,
367 					    buf + i + insn_offset_immediate(&insn),
368 					    src - dest);
369 			}
370 
371 			/*
372 			 * Where possible, convert JMP.d32 into JMP.d8.
373 			 */
374 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
375 				s32 imm = insn.immediate.value;
376 				imm += src - dest;
377 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
378 				if ((imm >> 31) == (imm >> 7)) {
379 					buf[i+0] = JMP8_INSN_OPCODE;
380 					buf[i+1] = (s8)imm;
381 
382 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
383 				}
384 			}
385 			break;
386 		}
387 
388 		if (insn_rip_relative(&insn)) {
389 			if (need_reloc(next + insn.displacement.value, src, src_len)) {
390 				apply_reloc(insn.displacement.nbytes,
391 					    buf + i + insn_offset_displacement(&insn),
392 					    src - dest);
393 			}
394 		}
395 	}
396 }
397 
398 /*
399  * Replace instructions with better alternatives for this CPU type. This runs
400  * before SMP is initialized to avoid SMP problems with self modifying code.
401  * This implies that asymmetric systems where APs have less capabilities than
402  * the boot processor are not handled. Tough. Make sure you disable such
403  * features by hand.
404  *
405  * Marked "noinline" to cause control flow change and thus insn cache
406  * to refetch changed I$ lines.
407  */
408 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
409 						  struct alt_instr *end)
410 {
411 	struct alt_instr *a;
412 	u8 *instr, *replacement;
413 	u8 insn_buff[MAX_PATCH_LEN];
414 
415 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
416 
417 	/*
418 	 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
419 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
420 	 * During the process, KASAN becomes confused seeing partial LA57
421 	 * conversion and triggers a false-positive out-of-bound report.
422 	 *
423 	 * Disable KASAN until the patching is complete.
424 	 */
425 	kasan_disable_current();
426 
427 	/*
428 	 * The scan order should be from start to end. A later scanned
429 	 * alternative code can overwrite previously scanned alternative code.
430 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
431 	 * patch code.
432 	 *
433 	 * So be careful if you want to change the scan order to any other
434 	 * order.
435 	 */
436 	for (a = start; a < end; a++) {
437 		int insn_buff_sz = 0;
438 
439 		instr = (u8 *)&a->instr_offset + a->instr_offset;
440 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
441 		BUG_ON(a->instrlen > sizeof(insn_buff));
442 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
443 
444 		/*
445 		 * Patch if either:
446 		 * - feature is present
447 		 * - feature not present but ALT_FLAG_NOT is set to mean,
448 		 *   patch if feature is *NOT* present.
449 		 */
450 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
451 			optimize_nops_inplace(instr, a->instrlen);
452 			continue;
453 		}
454 
455 		DPRINTK(ALT, "feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
456 			(a->flags & ALT_FLAG_NOT) ? "!" : "",
457 			a->cpuid >> 5,
458 			a->cpuid & 0x1f,
459 			instr, instr, a->instrlen,
460 			replacement, a->replacementlen);
461 
462 		memcpy(insn_buff, replacement, a->replacementlen);
463 		insn_buff_sz = a->replacementlen;
464 
465 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
466 			insn_buff[insn_buff_sz] = 0x90;
467 
468 		apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
469 
470 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
471 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
472 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
473 
474 		text_poke_early(instr, insn_buff, insn_buff_sz);
475 	}
476 
477 	kasan_enable_current();
478 }
479 
480 static inline bool is_jcc32(struct insn *insn)
481 {
482 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
483 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
484 }
485 
486 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
487 
488 /*
489  * CALL/JMP *%\reg
490  */
491 static int emit_indirect(int op, int reg, u8 *bytes)
492 {
493 	int i = 0;
494 	u8 modrm;
495 
496 	switch (op) {
497 	case CALL_INSN_OPCODE:
498 		modrm = 0x10; /* Reg = 2; CALL r/m */
499 		break;
500 
501 	case JMP32_INSN_OPCODE:
502 		modrm = 0x20; /* Reg = 4; JMP r/m */
503 		break;
504 
505 	default:
506 		WARN_ON_ONCE(1);
507 		return -1;
508 	}
509 
510 	if (reg >= 8) {
511 		bytes[i++] = 0x41; /* REX.B prefix */
512 		reg -= 8;
513 	}
514 
515 	modrm |= 0xc0; /* Mod = 3 */
516 	modrm += reg;
517 
518 	bytes[i++] = 0xff; /* opcode */
519 	bytes[i++] = modrm;
520 
521 	return i;
522 }
523 
524 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
525 {
526 	u8 op = insn->opcode.bytes[0];
527 	int i = 0;
528 
529 	/*
530 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
531 	 * tail-calls. Deal with them.
532 	 */
533 	if (is_jcc32(insn)) {
534 		bytes[i++] = op;
535 		op = insn->opcode.bytes[1];
536 		goto clang_jcc;
537 	}
538 
539 	if (insn->length == 6)
540 		bytes[i++] = 0x2e; /* CS-prefix */
541 
542 	switch (op) {
543 	case CALL_INSN_OPCODE:
544 		__text_gen_insn(bytes+i, op, addr+i,
545 				__x86_indirect_call_thunk_array[reg],
546 				CALL_INSN_SIZE);
547 		i += CALL_INSN_SIZE;
548 		break;
549 
550 	case JMP32_INSN_OPCODE:
551 clang_jcc:
552 		__text_gen_insn(bytes+i, op, addr+i,
553 				__x86_indirect_jump_thunk_array[reg],
554 				JMP32_INSN_SIZE);
555 		i += JMP32_INSN_SIZE;
556 		break;
557 
558 	default:
559 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
560 		return -1;
561 	}
562 
563 	WARN_ON_ONCE(i != insn->length);
564 
565 	return i;
566 }
567 
568 /*
569  * Rewrite the compiler generated retpoline thunk calls.
570  *
571  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
572  * indirect instructions, avoiding the extra indirection.
573  *
574  * For example, convert:
575  *
576  *   CALL __x86_indirect_thunk_\reg
577  *
578  * into:
579  *
580  *   CALL *%\reg
581  *
582  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
583  */
584 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
585 {
586 	retpoline_thunk_t *target;
587 	int reg, ret, i = 0;
588 	u8 op, cc;
589 
590 	target = addr + insn->length + insn->immediate.value;
591 	reg = target - __x86_indirect_thunk_array;
592 
593 	if (WARN_ON_ONCE(reg & ~0xf))
594 		return -1;
595 
596 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
597 	BUG_ON(reg == 4);
598 
599 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
600 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
601 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
602 			return emit_call_track_retpoline(addr, insn, reg, bytes);
603 
604 		return -1;
605 	}
606 
607 	op = insn->opcode.bytes[0];
608 
609 	/*
610 	 * Convert:
611 	 *
612 	 *   Jcc.d32 __x86_indirect_thunk_\reg
613 	 *
614 	 * into:
615 	 *
616 	 *   Jncc.d8 1f
617 	 *   [ LFENCE ]
618 	 *   JMP *%\reg
619 	 *   [ NOP ]
620 	 * 1:
621 	 */
622 	if (is_jcc32(insn)) {
623 		cc = insn->opcode.bytes[1] & 0xf;
624 		cc ^= 1; /* invert condition */
625 
626 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
627 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
628 
629 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
630 		op = JMP32_INSN_OPCODE;
631 	}
632 
633 	/*
634 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
635 	 */
636 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
637 		bytes[i++] = 0x0f;
638 		bytes[i++] = 0xae;
639 		bytes[i++] = 0xe8; /* LFENCE */
640 	}
641 
642 	ret = emit_indirect(op, reg, bytes + i);
643 	if (ret < 0)
644 		return ret;
645 	i += ret;
646 
647 	/*
648 	 * The compiler is supposed to EMIT an INT3 after every unconditional
649 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
650 	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
651 	 * even on Intel.
652 	 */
653 	if (op == JMP32_INSN_OPCODE && i < insn->length)
654 		bytes[i++] = INT3_INSN_OPCODE;
655 
656 	for (; i < insn->length;)
657 		bytes[i++] = BYTES_NOP1;
658 
659 	return i;
660 }
661 
662 /*
663  * Generated by 'objtool --retpoline'.
664  */
665 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
666 {
667 	s32 *s;
668 
669 	for (s = start; s < end; s++) {
670 		void *addr = (void *)s + *s;
671 		struct insn insn;
672 		int len, ret;
673 		u8 bytes[16];
674 		u8 op1, op2;
675 
676 		ret = insn_decode_kernel(&insn, addr);
677 		if (WARN_ON_ONCE(ret < 0))
678 			continue;
679 
680 		op1 = insn.opcode.bytes[0];
681 		op2 = insn.opcode.bytes[1];
682 
683 		switch (op1) {
684 		case CALL_INSN_OPCODE:
685 		case JMP32_INSN_OPCODE:
686 			break;
687 
688 		case 0x0f: /* escape */
689 			if (op2 >= 0x80 && op2 <= 0x8f)
690 				break;
691 			fallthrough;
692 		default:
693 			WARN_ON_ONCE(1);
694 			continue;
695 		}
696 
697 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
698 			addr, addr, insn.length,
699 			addr + insn.length + insn.immediate.value);
700 
701 		len = patch_retpoline(addr, &insn, bytes);
702 		if (len == insn.length) {
703 			optimize_nops(bytes, len);
704 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
705 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
706 			text_poke_early(addr, bytes, len);
707 		}
708 	}
709 }
710 
711 #ifdef CONFIG_RETHUNK
712 
713 /*
714  * Rewrite the compiler generated return thunk tail-calls.
715  *
716  * For example, convert:
717  *
718  *   JMP __x86_return_thunk
719  *
720  * into:
721  *
722  *   RET
723  */
724 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
725 {
726 	int i = 0;
727 
728 	/* Patch the custom return thunks... */
729 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
730 		i = JMP32_INSN_SIZE;
731 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
732 	} else {
733 		/* ... or patch them out if not needed. */
734 		bytes[i++] = RET_INSN_OPCODE;
735 	}
736 
737 	for (; i < insn->length;)
738 		bytes[i++] = INT3_INSN_OPCODE;
739 	return i;
740 }
741 
742 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
743 {
744 	s32 *s;
745 
746 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
747 		static_call_force_reinit();
748 
749 	for (s = start; s < end; s++) {
750 		void *dest = NULL, *addr = (void *)s + *s;
751 		struct insn insn;
752 		int len, ret;
753 		u8 bytes[16];
754 		u8 op;
755 
756 		ret = insn_decode_kernel(&insn, addr);
757 		if (WARN_ON_ONCE(ret < 0))
758 			continue;
759 
760 		op = insn.opcode.bytes[0];
761 		if (op == JMP32_INSN_OPCODE)
762 			dest = addr + insn.length + insn.immediate.value;
763 
764 		if (__static_call_fixup(addr, op, dest) ||
765 		    WARN_ONCE(dest != &__x86_return_thunk,
766 			      "missing return thunk: %pS-%pS: %*ph",
767 			      addr, dest, 5, addr))
768 			continue;
769 
770 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
771 			addr, addr, insn.length,
772 			addr + insn.length + insn.immediate.value);
773 
774 		len = patch_return(addr, &insn, bytes);
775 		if (len == insn.length) {
776 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
777 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
778 			text_poke_early(addr, bytes, len);
779 		}
780 	}
781 }
782 #else
783 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
784 #endif /* CONFIG_RETHUNK */
785 
786 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
787 
788 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
789 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
790 
791 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
792 
793 #ifdef CONFIG_X86_KERNEL_IBT
794 
795 static void poison_cfi(void *addr);
796 
797 static void __init_or_module poison_endbr(void *addr, bool warn)
798 {
799 	u32 endbr, poison = gen_endbr_poison();
800 
801 	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
802 		return;
803 
804 	if (!is_endbr(endbr)) {
805 		WARN_ON_ONCE(warn);
806 		return;
807 	}
808 
809 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
810 
811 	/*
812 	 * When we have IBT, the lack of ENDBR will trigger #CP
813 	 */
814 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
815 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
816 	text_poke_early(addr, &poison, 4);
817 }
818 
819 /*
820  * Generated by: objtool --ibt
821  *
822  * Seal the functions for indirect calls by clobbering the ENDBR instructions
823  * and the kCFI hash value.
824  */
825 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
826 {
827 	s32 *s;
828 
829 	for (s = start; s < end; s++) {
830 		void *addr = (void *)s + *s;
831 
832 		poison_endbr(addr, true);
833 		if (IS_ENABLED(CONFIG_FINEIBT))
834 			poison_cfi(addr - 16);
835 	}
836 }
837 
838 #else
839 
840 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
841 
842 #endif /* CONFIG_X86_KERNEL_IBT */
843 
844 #ifdef CONFIG_FINEIBT
845 
846 enum cfi_mode {
847 	CFI_DEFAULT,
848 	CFI_OFF,
849 	CFI_KCFI,
850 	CFI_FINEIBT,
851 };
852 
853 static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
854 static bool cfi_rand __ro_after_init = true;
855 static u32  cfi_seed __ro_after_init;
856 
857 /*
858  * Re-hash the CFI hash with a boot-time seed while making sure the result is
859  * not a valid ENDBR instruction.
860  */
861 static u32 cfi_rehash(u32 hash)
862 {
863 	hash ^= cfi_seed;
864 	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
865 		bool lsb = hash & 1;
866 		hash >>= 1;
867 		if (lsb)
868 			hash ^= 0x80200003;
869 	}
870 	return hash;
871 }
872 
873 static __init int cfi_parse_cmdline(char *str)
874 {
875 	if (!str)
876 		return -EINVAL;
877 
878 	while (str) {
879 		char *next = strchr(str, ',');
880 		if (next) {
881 			*next = 0;
882 			next++;
883 		}
884 
885 		if (!strcmp(str, "auto")) {
886 			cfi_mode = CFI_DEFAULT;
887 		} else if (!strcmp(str, "off")) {
888 			cfi_mode = CFI_OFF;
889 			cfi_rand = false;
890 		} else if (!strcmp(str, "kcfi")) {
891 			cfi_mode = CFI_KCFI;
892 		} else if (!strcmp(str, "fineibt")) {
893 			cfi_mode = CFI_FINEIBT;
894 		} else if (!strcmp(str, "norand")) {
895 			cfi_rand = false;
896 		} else {
897 			pr_err("Ignoring unknown cfi option (%s).", str);
898 		}
899 
900 		str = next;
901 	}
902 
903 	return 0;
904 }
905 early_param("cfi", cfi_parse_cmdline);
906 
907 /*
908  * kCFI						FineIBT
909  *
910  * __cfi_\func:					__cfi_\func:
911  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
912  *	nop					     subl   $0x12345678,%r10d   // 7
913  *	nop					     jz     1f			// 2
914  *	nop					     ud2			// 2
915  *	nop					1:   nop			// 1
916  *	nop
917  *	nop
918  *	nop
919  *	nop
920  *	nop
921  *	nop
922  *	nop
923  *
924  *
925  * caller:					caller:
926  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
927  *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
928  *	je	1f			 // 2	     nop4			// 4
929  *	ud2				 // 2
930  * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
931  *
932  */
933 
934 asm(	".pushsection .rodata			\n"
935 	"fineibt_preamble_start:		\n"
936 	"	endbr64				\n"
937 	"	subl	$0x12345678, %r10d	\n"
938 	"	je	fineibt_preamble_end	\n"
939 	"	ud2				\n"
940 	"	nop				\n"
941 	"fineibt_preamble_end:			\n"
942 	".popsection\n"
943 );
944 
945 extern u8 fineibt_preamble_start[];
946 extern u8 fineibt_preamble_end[];
947 
948 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
949 #define fineibt_preamble_hash 7
950 
951 asm(	".pushsection .rodata			\n"
952 	"fineibt_caller_start:			\n"
953 	"	movl	$0x12345678, %r10d	\n"
954 	"	sub	$16, %r11		\n"
955 	ASM_NOP4
956 	"fineibt_caller_end:			\n"
957 	".popsection				\n"
958 );
959 
960 extern u8 fineibt_caller_start[];
961 extern u8 fineibt_caller_end[];
962 
963 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
964 #define fineibt_caller_hash 2
965 
966 #define fineibt_caller_jmp (fineibt_caller_size - 2)
967 
968 static u32 decode_preamble_hash(void *addr)
969 {
970 	u8 *p = addr;
971 
972 	/* b8 78 56 34 12          mov    $0x12345678,%eax */
973 	if (p[0] == 0xb8)
974 		return *(u32 *)(addr + 1);
975 
976 	return 0; /* invalid hash value */
977 }
978 
979 static u32 decode_caller_hash(void *addr)
980 {
981 	u8 *p = addr;
982 
983 	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
984 	if (p[0] == 0x41 && p[1] == 0xba)
985 		return -*(u32 *)(addr + 2);
986 
987 	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
988 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
989 		return -*(u32 *)(addr + 2);
990 
991 	return 0; /* invalid hash value */
992 }
993 
994 /* .retpoline_sites */
995 static int cfi_disable_callers(s32 *start, s32 *end)
996 {
997 	/*
998 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
999 	 * in tact for later usage. Also see decode_caller_hash() and
1000 	 * cfi_rewrite_callers().
1001 	 */
1002 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1003 	s32 *s;
1004 
1005 	for (s = start; s < end; s++) {
1006 		void *addr = (void *)s + *s;
1007 		u32 hash;
1008 
1009 		addr -= fineibt_caller_size;
1010 		hash = decode_caller_hash(addr);
1011 		if (!hash) /* nocfi callers */
1012 			continue;
1013 
1014 		text_poke_early(addr, jmp, 2);
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 static int cfi_enable_callers(s32 *start, s32 *end)
1021 {
1022 	/*
1023 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1024 	 */
1025 	const u8 mov[] = { 0x41, 0xba };
1026 	s32 *s;
1027 
1028 	for (s = start; s < end; s++) {
1029 		void *addr = (void *)s + *s;
1030 		u32 hash;
1031 
1032 		addr -= fineibt_caller_size;
1033 		hash = decode_caller_hash(addr);
1034 		if (!hash) /* nocfi callers */
1035 			continue;
1036 
1037 		text_poke_early(addr, mov, 2);
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /* .cfi_sites */
1044 static int cfi_rand_preamble(s32 *start, s32 *end)
1045 {
1046 	s32 *s;
1047 
1048 	for (s = start; s < end; s++) {
1049 		void *addr = (void *)s + *s;
1050 		u32 hash;
1051 
1052 		hash = decode_preamble_hash(addr);
1053 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1054 			 addr, addr, 5, addr))
1055 			return -EINVAL;
1056 
1057 		hash = cfi_rehash(hash);
1058 		text_poke_early(addr + 1, &hash, 4);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1065 {
1066 	s32 *s;
1067 
1068 	for (s = start; s < end; s++) {
1069 		void *addr = (void *)s + *s;
1070 		u32 hash;
1071 
1072 		hash = decode_preamble_hash(addr);
1073 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1074 			 addr, addr, 5, addr))
1075 			return -EINVAL;
1076 
1077 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1078 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1079 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1086 {
1087 	s32 *s;
1088 
1089 	for (s = start; s < end; s++) {
1090 		void *addr = (void *)s + *s;
1091 
1092 		poison_endbr(addr+16, false);
1093 	}
1094 }
1095 
1096 /* .retpoline_sites */
1097 static int cfi_rand_callers(s32 *start, s32 *end)
1098 {
1099 	s32 *s;
1100 
1101 	for (s = start; s < end; s++) {
1102 		void *addr = (void *)s + *s;
1103 		u32 hash;
1104 
1105 		addr -= fineibt_caller_size;
1106 		hash = decode_caller_hash(addr);
1107 		if (hash) {
1108 			hash = -cfi_rehash(hash);
1109 			text_poke_early(addr + 2, &hash, 4);
1110 		}
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static int cfi_rewrite_callers(s32 *start, s32 *end)
1117 {
1118 	s32 *s;
1119 
1120 	for (s = start; s < end; s++) {
1121 		void *addr = (void *)s + *s;
1122 		u32 hash;
1123 
1124 		addr -= fineibt_caller_size;
1125 		hash = decode_caller_hash(addr);
1126 		if (hash) {
1127 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1128 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1129 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1130 		}
1131 		/* rely on apply_retpolines() */
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1138 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1139 {
1140 	int ret;
1141 
1142 	if (WARN_ONCE(fineibt_preamble_size != 16,
1143 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1144 		return;
1145 
1146 	if (cfi_mode == CFI_DEFAULT) {
1147 		cfi_mode = CFI_KCFI;
1148 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1149 			cfi_mode = CFI_FINEIBT;
1150 	}
1151 
1152 	/*
1153 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1154 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1155 	 * later stages fails, we're without CFI.
1156 	 */
1157 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1158 	if (ret)
1159 		goto err;
1160 
1161 	if (cfi_rand) {
1162 		if (builtin)
1163 			cfi_seed = get_random_u32();
1164 
1165 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1166 		if (ret)
1167 			goto err;
1168 
1169 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1170 		if (ret)
1171 			goto err;
1172 	}
1173 
1174 	switch (cfi_mode) {
1175 	case CFI_OFF:
1176 		if (builtin)
1177 			pr_info("Disabling CFI\n");
1178 		return;
1179 
1180 	case CFI_KCFI:
1181 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1182 		if (ret)
1183 			goto err;
1184 
1185 		if (builtin)
1186 			pr_info("Using kCFI\n");
1187 		return;
1188 
1189 	case CFI_FINEIBT:
1190 		/* place the FineIBT preamble at func()-16 */
1191 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1192 		if (ret)
1193 			goto err;
1194 
1195 		/* rewrite the callers to target func()-16 */
1196 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1197 		if (ret)
1198 			goto err;
1199 
1200 		/* now that nobody targets func()+0, remove ENDBR there */
1201 		cfi_rewrite_endbr(start_cfi, end_cfi);
1202 
1203 		if (builtin)
1204 			pr_info("Using FineIBT CFI\n");
1205 		return;
1206 
1207 	default:
1208 		break;
1209 	}
1210 
1211 err:
1212 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1213 }
1214 
1215 static inline void poison_hash(void *addr)
1216 {
1217 	*(u32 *)addr = 0;
1218 }
1219 
1220 static void poison_cfi(void *addr)
1221 {
1222 	switch (cfi_mode) {
1223 	case CFI_FINEIBT:
1224 		/*
1225 		 * __cfi_\func:
1226 		 *	osp nopl (%rax)
1227 		 *	subl	$0, %r10d
1228 		 *	jz	1f
1229 		 *	ud2
1230 		 * 1:	nop
1231 		 */
1232 		poison_endbr(addr, false);
1233 		poison_hash(addr + fineibt_preamble_hash);
1234 		break;
1235 
1236 	case CFI_KCFI:
1237 		/*
1238 		 * __cfi_\func:
1239 		 *	movl	$0, %eax
1240 		 *	.skip	11, 0x90
1241 		 */
1242 		poison_hash(addr + 1);
1243 		break;
1244 
1245 	default:
1246 		break;
1247 	}
1248 }
1249 
1250 #else
1251 
1252 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1253 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1254 {
1255 }
1256 
1257 #ifdef CONFIG_X86_KERNEL_IBT
1258 static void poison_cfi(void *addr) { }
1259 #endif
1260 
1261 #endif
1262 
1263 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1264 		   s32 *start_cfi, s32 *end_cfi)
1265 {
1266 	return __apply_fineibt(start_retpoline, end_retpoline,
1267 			       start_cfi, end_cfi,
1268 			       /* .builtin = */ false);
1269 }
1270 
1271 #ifdef CONFIG_SMP
1272 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1273 				  u8 *text, u8 *text_end)
1274 {
1275 	const s32 *poff;
1276 
1277 	for (poff = start; poff < end; poff++) {
1278 		u8 *ptr = (u8 *)poff + *poff;
1279 
1280 		if (!*poff || ptr < text || ptr >= text_end)
1281 			continue;
1282 		/* turn DS segment override prefix into lock prefix */
1283 		if (*ptr == 0x3e)
1284 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1285 	}
1286 }
1287 
1288 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1289 				    u8 *text, u8 *text_end)
1290 {
1291 	const s32 *poff;
1292 
1293 	for (poff = start; poff < end; poff++) {
1294 		u8 *ptr = (u8 *)poff + *poff;
1295 
1296 		if (!*poff || ptr < text || ptr >= text_end)
1297 			continue;
1298 		/* turn lock prefix into DS segment override prefix */
1299 		if (*ptr == 0xf0)
1300 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1301 	}
1302 }
1303 
1304 struct smp_alt_module {
1305 	/* what is this ??? */
1306 	struct module	*mod;
1307 	char		*name;
1308 
1309 	/* ptrs to lock prefixes */
1310 	const s32	*locks;
1311 	const s32	*locks_end;
1312 
1313 	/* .text segment, needed to avoid patching init code ;) */
1314 	u8		*text;
1315 	u8		*text_end;
1316 
1317 	struct list_head next;
1318 };
1319 static LIST_HEAD(smp_alt_modules);
1320 static bool uniproc_patched = false;	/* protected by text_mutex */
1321 
1322 void __init_or_module alternatives_smp_module_add(struct module *mod,
1323 						  char *name,
1324 						  void *locks, void *locks_end,
1325 						  void *text,  void *text_end)
1326 {
1327 	struct smp_alt_module *smp;
1328 
1329 	mutex_lock(&text_mutex);
1330 	if (!uniproc_patched)
1331 		goto unlock;
1332 
1333 	if (num_possible_cpus() == 1)
1334 		/* Don't bother remembering, we'll never have to undo it. */
1335 		goto smp_unlock;
1336 
1337 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1338 	if (NULL == smp)
1339 		/* we'll run the (safe but slow) SMP code then ... */
1340 		goto unlock;
1341 
1342 	smp->mod	= mod;
1343 	smp->name	= name;
1344 	smp->locks	= locks;
1345 	smp->locks_end	= locks_end;
1346 	smp->text	= text;
1347 	smp->text_end	= text_end;
1348 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1349 		smp->locks, smp->locks_end,
1350 		smp->text, smp->text_end, smp->name);
1351 
1352 	list_add_tail(&smp->next, &smp_alt_modules);
1353 smp_unlock:
1354 	alternatives_smp_unlock(locks, locks_end, text, text_end);
1355 unlock:
1356 	mutex_unlock(&text_mutex);
1357 }
1358 
1359 void __init_or_module alternatives_smp_module_del(struct module *mod)
1360 {
1361 	struct smp_alt_module *item;
1362 
1363 	mutex_lock(&text_mutex);
1364 	list_for_each_entry(item, &smp_alt_modules, next) {
1365 		if (mod != item->mod)
1366 			continue;
1367 		list_del(&item->next);
1368 		kfree(item);
1369 		break;
1370 	}
1371 	mutex_unlock(&text_mutex);
1372 }
1373 
1374 void alternatives_enable_smp(void)
1375 {
1376 	struct smp_alt_module *mod;
1377 
1378 	/* Why bother if there are no other CPUs? */
1379 	BUG_ON(num_possible_cpus() == 1);
1380 
1381 	mutex_lock(&text_mutex);
1382 
1383 	if (uniproc_patched) {
1384 		pr_info("switching to SMP code\n");
1385 		BUG_ON(num_online_cpus() != 1);
1386 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1387 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1388 		list_for_each_entry(mod, &smp_alt_modules, next)
1389 			alternatives_smp_lock(mod->locks, mod->locks_end,
1390 					      mod->text, mod->text_end);
1391 		uniproc_patched = false;
1392 	}
1393 	mutex_unlock(&text_mutex);
1394 }
1395 
1396 /*
1397  * Return 1 if the address range is reserved for SMP-alternatives.
1398  * Must hold text_mutex.
1399  */
1400 int alternatives_text_reserved(void *start, void *end)
1401 {
1402 	struct smp_alt_module *mod;
1403 	const s32 *poff;
1404 	u8 *text_start = start;
1405 	u8 *text_end = end;
1406 
1407 	lockdep_assert_held(&text_mutex);
1408 
1409 	list_for_each_entry(mod, &smp_alt_modules, next) {
1410 		if (mod->text > text_end || mod->text_end < text_start)
1411 			continue;
1412 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1413 			const u8 *ptr = (const u8 *)poff + *poff;
1414 
1415 			if (text_start <= ptr && text_end > ptr)
1416 				return 1;
1417 		}
1418 	}
1419 
1420 	return 0;
1421 }
1422 #endif /* CONFIG_SMP */
1423 
1424 #ifdef CONFIG_PARAVIRT
1425 
1426 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
1427 static void __init_or_module add_nops(void *insns, unsigned int len)
1428 {
1429 	while (len > 0) {
1430 		unsigned int noplen = len;
1431 		if (noplen > ASM_NOP_MAX)
1432 			noplen = ASM_NOP_MAX;
1433 		memcpy(insns, x86_nops[noplen], noplen);
1434 		insns += noplen;
1435 		len -= noplen;
1436 	}
1437 }
1438 
1439 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
1440 				     struct paravirt_patch_site *end)
1441 {
1442 	struct paravirt_patch_site *p;
1443 	char insn_buff[MAX_PATCH_LEN];
1444 
1445 	for (p = start; p < end; p++) {
1446 		unsigned int used;
1447 
1448 		BUG_ON(p->len > MAX_PATCH_LEN);
1449 		/* prep the buffer with the original instructions */
1450 		memcpy(insn_buff, p->instr, p->len);
1451 		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
1452 
1453 		BUG_ON(used > p->len);
1454 
1455 		/* Pad the rest with nops */
1456 		add_nops(insn_buff + used, p->len - used);
1457 		text_poke_early(p->instr, insn_buff, p->len);
1458 	}
1459 }
1460 extern struct paravirt_patch_site __start_parainstructions[],
1461 	__stop_parainstructions[];
1462 #endif	/* CONFIG_PARAVIRT */
1463 
1464 /*
1465  * Self-test for the INT3 based CALL emulation code.
1466  *
1467  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1468  * properly and that there is a stack gap between the INT3 frame and the
1469  * previous context. Without this gap doing a virtual PUSH on the interrupted
1470  * stack would corrupt the INT3 IRET frame.
1471  *
1472  * See entry_{32,64}.S for more details.
1473  */
1474 
1475 /*
1476  * We define the int3_magic() function in assembly to control the calling
1477  * convention such that we can 'call' it from assembly.
1478  */
1479 
1480 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1481 
1482 asm (
1483 "	.pushsection	.init.text, \"ax\", @progbits\n"
1484 "	.type		int3_magic, @function\n"
1485 "int3_magic:\n"
1486 	ANNOTATE_NOENDBR
1487 "	movl	$1, (%" _ASM_ARG1 ")\n"
1488 	ASM_RET
1489 "	.size		int3_magic, .-int3_magic\n"
1490 "	.popsection\n"
1491 );
1492 
1493 extern void int3_selftest_ip(void); /* defined in asm below */
1494 
1495 static int __init
1496 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1497 {
1498 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1499 	struct die_args *args = data;
1500 	struct pt_regs *regs = args->regs;
1501 
1502 	OPTIMIZER_HIDE_VAR(selftest);
1503 
1504 	if (!regs || user_mode(regs))
1505 		return NOTIFY_DONE;
1506 
1507 	if (val != DIE_INT3)
1508 		return NOTIFY_DONE;
1509 
1510 	if (regs->ip - INT3_INSN_SIZE != selftest)
1511 		return NOTIFY_DONE;
1512 
1513 	int3_emulate_call(regs, (unsigned long)&int3_magic);
1514 	return NOTIFY_STOP;
1515 }
1516 
1517 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1518 static noinline void __init int3_selftest(void)
1519 {
1520 	static __initdata struct notifier_block int3_exception_nb = {
1521 		.notifier_call	= int3_exception_notify,
1522 		.priority	= INT_MAX-1, /* last */
1523 	};
1524 	unsigned int val = 0;
1525 
1526 	BUG_ON(register_die_notifier(&int3_exception_nb));
1527 
1528 	/*
1529 	 * Basically: int3_magic(&val); but really complicated :-)
1530 	 *
1531 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1532 	 * notifier above will emulate CALL for us.
1533 	 */
1534 	asm volatile ("int3_selftest_ip:\n\t"
1535 		      ANNOTATE_NOENDBR
1536 		      "    int3; nop; nop; nop; nop\n\t"
1537 		      : ASM_CALL_CONSTRAINT
1538 		      : __ASM_SEL_RAW(a, D) (&val)
1539 		      : "memory");
1540 
1541 	BUG_ON(val != 1);
1542 
1543 	unregister_die_notifier(&int3_exception_nb);
1544 }
1545 
1546 static __initdata int __alt_reloc_selftest_addr;
1547 
1548 extern void __init __alt_reloc_selftest(void *arg);
1549 __visible noinline void __init __alt_reloc_selftest(void *arg)
1550 {
1551 	WARN_ON(arg != &__alt_reloc_selftest_addr);
1552 }
1553 
1554 static noinline void __init alt_reloc_selftest(void)
1555 {
1556 	/*
1557 	 * Tests apply_relocation().
1558 	 *
1559 	 * This has a relative immediate (CALL) in a place other than the first
1560 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1561 	 *
1562 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1563 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1564 	 *
1565 	 * Getting this wrong will either crash and burn or tickle the WARN
1566 	 * above.
1567 	 */
1568 	asm_inline volatile (
1569 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1570 		: /* output */
1571 		: [mem] "m" (__alt_reloc_selftest_addr)
1572 		: _ASM_ARG1
1573 	);
1574 }
1575 
1576 void __init alternative_instructions(void)
1577 {
1578 	int3_selftest();
1579 
1580 	/*
1581 	 * The patching is not fully atomic, so try to avoid local
1582 	 * interruptions that might execute the to be patched code.
1583 	 * Other CPUs are not running.
1584 	 */
1585 	stop_nmi();
1586 
1587 	/*
1588 	 * Don't stop machine check exceptions while patching.
1589 	 * MCEs only happen when something got corrupted and in this
1590 	 * case we must do something about the corruption.
1591 	 * Ignoring it is worse than an unlikely patching race.
1592 	 * Also machine checks tend to be broadcast and if one CPU
1593 	 * goes into machine check the others follow quickly, so we don't
1594 	 * expect a machine check to cause undue problems during to code
1595 	 * patching.
1596 	 */
1597 
1598 	/*
1599 	 * Paravirt patching and alternative patching can be combined to
1600 	 * replace a function call with a short direct code sequence (e.g.
1601 	 * by setting a constant return value instead of doing that in an
1602 	 * external function).
1603 	 * In order to make this work the following sequence is required:
1604 	 * 1. set (artificial) features depending on used paravirt
1605 	 *    functions which can later influence alternative patching
1606 	 * 2. apply paravirt patching (generally replacing an indirect
1607 	 *    function call with a direct one)
1608 	 * 3. apply alternative patching (e.g. replacing a direct function
1609 	 *    call with a custom code sequence)
1610 	 * Doing paravirt patching after alternative patching would clobber
1611 	 * the optimization of the custom code with a function call again.
1612 	 */
1613 	paravirt_set_cap();
1614 
1615 	/*
1616 	 * First patch paravirt functions, such that we overwrite the indirect
1617 	 * call with the direct call.
1618 	 */
1619 	apply_paravirt(__parainstructions, __parainstructions_end);
1620 
1621 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1622 			__cfi_sites, __cfi_sites_end, true);
1623 
1624 	/*
1625 	 * Rewrite the retpolines, must be done before alternatives since
1626 	 * those can rewrite the retpoline thunks.
1627 	 */
1628 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1629 	apply_returns(__return_sites, __return_sites_end);
1630 
1631 	/*
1632 	 * Then patch alternatives, such that those paravirt calls that are in
1633 	 * alternatives can be overwritten by their immediate fragments.
1634 	 */
1635 	apply_alternatives(__alt_instructions, __alt_instructions_end);
1636 
1637 	/*
1638 	 * Now all calls are established. Apply the call thunks if
1639 	 * required.
1640 	 */
1641 	callthunks_patch_builtin_calls();
1642 
1643 	/*
1644 	 * Seal all functions that do not have their address taken.
1645 	 */
1646 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1647 
1648 #ifdef CONFIG_SMP
1649 	/* Patch to UP if other cpus not imminent. */
1650 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1651 		uniproc_patched = true;
1652 		alternatives_smp_module_add(NULL, "core kernel",
1653 					    __smp_locks, __smp_locks_end,
1654 					    _text, _etext);
1655 	}
1656 
1657 	if (!uniproc_patched || num_possible_cpus() == 1) {
1658 		free_init_pages("SMP alternatives",
1659 				(unsigned long)__smp_locks,
1660 				(unsigned long)__smp_locks_end);
1661 	}
1662 #endif
1663 
1664 	restart_nmi();
1665 	alternatives_patched = 1;
1666 
1667 	alt_reloc_selftest();
1668 }
1669 
1670 /**
1671  * text_poke_early - Update instructions on a live kernel at boot time
1672  * @addr: address to modify
1673  * @opcode: source of the copy
1674  * @len: length to copy
1675  *
1676  * When you use this code to patch more than one byte of an instruction
1677  * you need to make sure that other CPUs cannot execute this code in parallel.
1678  * Also no thread must be currently preempted in the middle of these
1679  * instructions. And on the local CPU you need to be protected against NMI or
1680  * MCE handlers seeing an inconsistent instruction while you patch.
1681  */
1682 void __init_or_module text_poke_early(void *addr, const void *opcode,
1683 				      size_t len)
1684 {
1685 	unsigned long flags;
1686 
1687 	if (boot_cpu_has(X86_FEATURE_NX) &&
1688 	    is_module_text_address((unsigned long)addr)) {
1689 		/*
1690 		 * Modules text is marked initially as non-executable, so the
1691 		 * code cannot be running and speculative code-fetches are
1692 		 * prevented. Just change the code.
1693 		 */
1694 		memcpy(addr, opcode, len);
1695 	} else {
1696 		local_irq_save(flags);
1697 		memcpy(addr, opcode, len);
1698 		sync_core();
1699 		local_irq_restore(flags);
1700 
1701 		/*
1702 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1703 		 * that causes hangs on some VIA CPUs.
1704 		 */
1705 	}
1706 }
1707 
1708 typedef struct {
1709 	struct mm_struct *mm;
1710 } temp_mm_state_t;
1711 
1712 /*
1713  * Using a temporary mm allows to set temporary mappings that are not accessible
1714  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1715  * that override the kernel memory protections (e.g., W^X), without exposing the
1716  * temporary page-table mappings that are required for these write operations to
1717  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1718  * mapping is torn down.
1719  *
1720  * Context: The temporary mm needs to be used exclusively by a single core. To
1721  *          harden security IRQs must be disabled while the temporary mm is
1722  *          loaded, thereby preventing interrupt handler bugs from overriding
1723  *          the kernel memory protection.
1724  */
1725 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1726 {
1727 	temp_mm_state_t temp_state;
1728 
1729 	lockdep_assert_irqs_disabled();
1730 
1731 	/*
1732 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1733 	 * with a stale address space WITHOUT being in lazy mode after
1734 	 * restoring the previous mm.
1735 	 */
1736 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1737 		leave_mm(smp_processor_id());
1738 
1739 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1740 	switch_mm_irqs_off(NULL, mm, current);
1741 
1742 	/*
1743 	 * If breakpoints are enabled, disable them while the temporary mm is
1744 	 * used. Userspace might set up watchpoints on addresses that are used
1745 	 * in the temporary mm, which would lead to wrong signals being sent or
1746 	 * crashes.
1747 	 *
1748 	 * Note that breakpoints are not disabled selectively, which also causes
1749 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1750 	 * undesirable, but still seems reasonable as the code that runs in the
1751 	 * temporary mm should be short.
1752 	 */
1753 	if (hw_breakpoint_active())
1754 		hw_breakpoint_disable();
1755 
1756 	return temp_state;
1757 }
1758 
1759 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1760 {
1761 	lockdep_assert_irqs_disabled();
1762 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1763 
1764 	/*
1765 	 * Restore the breakpoints if they were disabled before the temporary mm
1766 	 * was loaded.
1767 	 */
1768 	if (hw_breakpoint_active())
1769 		hw_breakpoint_restore();
1770 }
1771 
1772 __ro_after_init struct mm_struct *poking_mm;
1773 __ro_after_init unsigned long poking_addr;
1774 
1775 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1776 {
1777 	memcpy(dst, src, len);
1778 }
1779 
1780 static void text_poke_memset(void *dst, const void *src, size_t len)
1781 {
1782 	int c = *(const int *)src;
1783 
1784 	memset(dst, c, len);
1785 }
1786 
1787 typedef void text_poke_f(void *dst, const void *src, size_t len);
1788 
1789 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1790 {
1791 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1792 	struct page *pages[2] = {NULL};
1793 	temp_mm_state_t prev;
1794 	unsigned long flags;
1795 	pte_t pte, *ptep;
1796 	spinlock_t *ptl;
1797 	pgprot_t pgprot;
1798 
1799 	/*
1800 	 * While boot memory allocator is running we cannot use struct pages as
1801 	 * they are not yet initialized. There is no way to recover.
1802 	 */
1803 	BUG_ON(!after_bootmem);
1804 
1805 	if (!core_kernel_text((unsigned long)addr)) {
1806 		pages[0] = vmalloc_to_page(addr);
1807 		if (cross_page_boundary)
1808 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1809 	} else {
1810 		pages[0] = virt_to_page(addr);
1811 		WARN_ON(!PageReserved(pages[0]));
1812 		if (cross_page_boundary)
1813 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1814 	}
1815 	/*
1816 	 * If something went wrong, crash and burn since recovery paths are not
1817 	 * implemented.
1818 	 */
1819 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1820 
1821 	/*
1822 	 * Map the page without the global bit, as TLB flushing is done with
1823 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1824 	 */
1825 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1826 
1827 	/*
1828 	 * The lock is not really needed, but this allows to avoid open-coding.
1829 	 */
1830 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1831 
1832 	/*
1833 	 * This must not fail; preallocated in poking_init().
1834 	 */
1835 	VM_BUG_ON(!ptep);
1836 
1837 	local_irq_save(flags);
1838 
1839 	pte = mk_pte(pages[0], pgprot);
1840 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1841 
1842 	if (cross_page_boundary) {
1843 		pte = mk_pte(pages[1], pgprot);
1844 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1845 	}
1846 
1847 	/*
1848 	 * Loading the temporary mm behaves as a compiler barrier, which
1849 	 * guarantees that the PTE will be set at the time memcpy() is done.
1850 	 */
1851 	prev = use_temporary_mm(poking_mm);
1852 
1853 	kasan_disable_current();
1854 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1855 	kasan_enable_current();
1856 
1857 	/*
1858 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1859 	 * were issued by using a compiler barrier.
1860 	 */
1861 	barrier();
1862 
1863 	pte_clear(poking_mm, poking_addr, ptep);
1864 	if (cross_page_boundary)
1865 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1866 
1867 	/*
1868 	 * Loading the previous page-table hierarchy requires a serializing
1869 	 * instruction that already allows the core to see the updated version.
1870 	 * Xen-PV is assumed to serialize execution in a similar manner.
1871 	 */
1872 	unuse_temporary_mm(prev);
1873 
1874 	/*
1875 	 * Flushing the TLB might involve IPIs, which would require enabled
1876 	 * IRQs, but not if the mm is not used, as it is in this point.
1877 	 */
1878 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1879 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1880 			   PAGE_SHIFT, false);
1881 
1882 	if (func == text_poke_memcpy) {
1883 		/*
1884 		 * If the text does not match what we just wrote then something is
1885 		 * fundamentally screwy; there's nothing we can really do about that.
1886 		 */
1887 		BUG_ON(memcmp(addr, src, len));
1888 	}
1889 
1890 	local_irq_restore(flags);
1891 	pte_unmap_unlock(ptep, ptl);
1892 	return addr;
1893 }
1894 
1895 /**
1896  * text_poke - Update instructions on a live kernel
1897  * @addr: address to modify
1898  * @opcode: source of the copy
1899  * @len: length to copy
1900  *
1901  * Only atomic text poke/set should be allowed when not doing early patching.
1902  * It means the size must be writable atomically and the address must be aligned
1903  * in a way that permits an atomic write. It also makes sure we fit on a single
1904  * page.
1905  *
1906  * Note that the caller must ensure that if the modified code is part of a
1907  * module, the module would not be removed during poking. This can be achieved
1908  * by registering a module notifier, and ordering module removal and patching
1909  * trough a mutex.
1910  */
1911 void *text_poke(void *addr, const void *opcode, size_t len)
1912 {
1913 	lockdep_assert_held(&text_mutex);
1914 
1915 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1916 }
1917 
1918 /**
1919  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1920  * @addr: address to modify
1921  * @opcode: source of the copy
1922  * @len: length to copy
1923  *
1924  * Only atomic text poke/set should be allowed when not doing early patching.
1925  * It means the size must be writable atomically and the address must be aligned
1926  * in a way that permits an atomic write. It also makes sure we fit on a single
1927  * page.
1928  *
1929  * Context: should only be used by kgdb, which ensures no other core is running,
1930  *	    despite the fact it does not hold the text_mutex.
1931  */
1932 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1933 {
1934 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1935 }
1936 
1937 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
1938 			    bool core_ok)
1939 {
1940 	unsigned long start = (unsigned long)addr;
1941 	size_t patched = 0;
1942 
1943 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
1944 		return NULL;
1945 
1946 	while (patched < len) {
1947 		unsigned long ptr = start + patched;
1948 		size_t s;
1949 
1950 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1951 
1952 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1953 		patched += s;
1954 	}
1955 	return addr;
1956 }
1957 
1958 /**
1959  * text_poke_copy - Copy instructions into (an unused part of) RX memory
1960  * @addr: address to modify
1961  * @opcode: source of the copy
1962  * @len: length to copy, could be more than 2x PAGE_SIZE
1963  *
1964  * Not safe against concurrent execution; useful for JITs to dump
1965  * new code blocks into unused regions of RX memory. Can be used in
1966  * conjunction with synchronize_rcu_tasks() to wait for existing
1967  * execution to quiesce after having made sure no existing functions
1968  * pointers are live.
1969  */
1970 void *text_poke_copy(void *addr, const void *opcode, size_t len)
1971 {
1972 	mutex_lock(&text_mutex);
1973 	addr = text_poke_copy_locked(addr, opcode, len, false);
1974 	mutex_unlock(&text_mutex);
1975 	return addr;
1976 }
1977 
1978 /**
1979  * text_poke_set - memset into (an unused part of) RX memory
1980  * @addr: address to modify
1981  * @c: the byte to fill the area with
1982  * @len: length to copy, could be more than 2x PAGE_SIZE
1983  *
1984  * This is useful to overwrite unused regions of RX memory with illegal
1985  * instructions.
1986  */
1987 void *text_poke_set(void *addr, int c, size_t len)
1988 {
1989 	unsigned long start = (unsigned long)addr;
1990 	size_t patched = 0;
1991 
1992 	if (WARN_ON_ONCE(core_kernel_text(start)))
1993 		return NULL;
1994 
1995 	mutex_lock(&text_mutex);
1996 	while (patched < len) {
1997 		unsigned long ptr = start + patched;
1998 		size_t s;
1999 
2000 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2001 
2002 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2003 		patched += s;
2004 	}
2005 	mutex_unlock(&text_mutex);
2006 	return addr;
2007 }
2008 
2009 static void do_sync_core(void *info)
2010 {
2011 	sync_core();
2012 }
2013 
2014 void text_poke_sync(void)
2015 {
2016 	on_each_cpu(do_sync_core, NULL, 1);
2017 }
2018 
2019 /*
2020  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2021  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2022  * opcode to Jcc.d8, using len to distinguish.
2023  */
2024 struct text_poke_loc {
2025 	/* addr := _stext + rel_addr */
2026 	s32 rel_addr;
2027 	s32 disp;
2028 	u8 len;
2029 	u8 opcode;
2030 	const u8 text[POKE_MAX_OPCODE_SIZE];
2031 	/* see text_poke_bp_batch() */
2032 	u8 old;
2033 };
2034 
2035 struct bp_patching_desc {
2036 	struct text_poke_loc *vec;
2037 	int nr_entries;
2038 	atomic_t refs;
2039 };
2040 
2041 static struct bp_patching_desc bp_desc;
2042 
2043 static __always_inline
2044 struct bp_patching_desc *try_get_desc(void)
2045 {
2046 	struct bp_patching_desc *desc = &bp_desc;
2047 
2048 	if (!raw_atomic_inc_not_zero(&desc->refs))
2049 		return NULL;
2050 
2051 	return desc;
2052 }
2053 
2054 static __always_inline void put_desc(void)
2055 {
2056 	struct bp_patching_desc *desc = &bp_desc;
2057 
2058 	smp_mb__before_atomic();
2059 	raw_atomic_dec(&desc->refs);
2060 }
2061 
2062 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2063 {
2064 	return _stext + tp->rel_addr;
2065 }
2066 
2067 static __always_inline int patch_cmp(const void *key, const void *elt)
2068 {
2069 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2070 
2071 	if (key < text_poke_addr(tp))
2072 		return -1;
2073 	if (key > text_poke_addr(tp))
2074 		return 1;
2075 	return 0;
2076 }
2077 
2078 noinstr int poke_int3_handler(struct pt_regs *regs)
2079 {
2080 	struct bp_patching_desc *desc;
2081 	struct text_poke_loc *tp;
2082 	int ret = 0;
2083 	void *ip;
2084 
2085 	if (user_mode(regs))
2086 		return 0;
2087 
2088 	/*
2089 	 * Having observed our INT3 instruction, we now must observe
2090 	 * bp_desc with non-zero refcount:
2091 	 *
2092 	 *	bp_desc.refs = 1		INT3
2093 	 *	WMB				RMB
2094 	 *	write INT3			if (bp_desc.refs != 0)
2095 	 */
2096 	smp_rmb();
2097 
2098 	desc = try_get_desc();
2099 	if (!desc)
2100 		return 0;
2101 
2102 	/*
2103 	 * Discount the INT3. See text_poke_bp_batch().
2104 	 */
2105 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2106 
2107 	/*
2108 	 * Skip the binary search if there is a single member in the vector.
2109 	 */
2110 	if (unlikely(desc->nr_entries > 1)) {
2111 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2112 				      sizeof(struct text_poke_loc),
2113 				      patch_cmp);
2114 		if (!tp)
2115 			goto out_put;
2116 	} else {
2117 		tp = desc->vec;
2118 		if (text_poke_addr(tp) != ip)
2119 			goto out_put;
2120 	}
2121 
2122 	ip += tp->len;
2123 
2124 	switch (tp->opcode) {
2125 	case INT3_INSN_OPCODE:
2126 		/*
2127 		 * Someone poked an explicit INT3, they'll want to handle it,
2128 		 * do not consume.
2129 		 */
2130 		goto out_put;
2131 
2132 	case RET_INSN_OPCODE:
2133 		int3_emulate_ret(regs);
2134 		break;
2135 
2136 	case CALL_INSN_OPCODE:
2137 		int3_emulate_call(regs, (long)ip + tp->disp);
2138 		break;
2139 
2140 	case JMP32_INSN_OPCODE:
2141 	case JMP8_INSN_OPCODE:
2142 		int3_emulate_jmp(regs, (long)ip + tp->disp);
2143 		break;
2144 
2145 	case 0x70 ... 0x7f: /* Jcc */
2146 		int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2147 		break;
2148 
2149 	default:
2150 		BUG();
2151 	}
2152 
2153 	ret = 1;
2154 
2155 out_put:
2156 	put_desc();
2157 	return ret;
2158 }
2159 
2160 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2161 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2162 static int tp_vec_nr;
2163 
2164 /**
2165  * text_poke_bp_batch() -- update instructions on live kernel on SMP
2166  * @tp:			vector of instructions to patch
2167  * @nr_entries:		number of entries in the vector
2168  *
2169  * Modify multi-byte instruction by using int3 breakpoint on SMP.
2170  * We completely avoid stop_machine() here, and achieve the
2171  * synchronization using int3 breakpoint.
2172  *
2173  * The way it is done:
2174  *	- For each entry in the vector:
2175  *		- add a int3 trap to the address that will be patched
2176  *	- sync cores
2177  *	- For each entry in the vector:
2178  *		- update all but the first byte of the patched range
2179  *	- sync cores
2180  *	- For each entry in the vector:
2181  *		- replace the first byte (int3) by the first byte of
2182  *		  replacing opcode
2183  *	- sync cores
2184  */
2185 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2186 {
2187 	unsigned char int3 = INT3_INSN_OPCODE;
2188 	unsigned int i;
2189 	int do_sync;
2190 
2191 	lockdep_assert_held(&text_mutex);
2192 
2193 	bp_desc.vec = tp;
2194 	bp_desc.nr_entries = nr_entries;
2195 
2196 	/*
2197 	 * Corresponds to the implicit memory barrier in try_get_desc() to
2198 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
2199 	 */
2200 	atomic_set_release(&bp_desc.refs, 1);
2201 
2202 	/*
2203 	 * Function tracing can enable thousands of places that need to be
2204 	 * updated. This can take quite some time, and with full kernel debugging
2205 	 * enabled, this could cause the softlockup watchdog to trigger.
2206 	 * This function gets called every 256 entries added to be patched.
2207 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2208 	 * while processing all the functions being patched.
2209 	 */
2210 	cond_resched();
2211 
2212 	/*
2213 	 * Corresponding read barrier in int3 notifier for making sure the
2214 	 * nr_entries and handler are correctly ordered wrt. patching.
2215 	 */
2216 	smp_wmb();
2217 
2218 	/*
2219 	 * First step: add a int3 trap to the address that will be patched.
2220 	 */
2221 	for (i = 0; i < nr_entries; i++) {
2222 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2223 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2224 	}
2225 
2226 	text_poke_sync();
2227 
2228 	/*
2229 	 * Second step: update all but the first byte of the patched range.
2230 	 */
2231 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2232 		u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2233 		u8 _new[POKE_MAX_OPCODE_SIZE+1];
2234 		const u8 *new = tp[i].text;
2235 		int len = tp[i].len;
2236 
2237 		if (len - INT3_INSN_SIZE > 0) {
2238 			memcpy(old + INT3_INSN_SIZE,
2239 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2240 			       len - INT3_INSN_SIZE);
2241 
2242 			if (len == 6) {
2243 				_new[0] = 0x0f;
2244 				memcpy(_new + 1, new, 5);
2245 				new = _new;
2246 			}
2247 
2248 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2249 				  new + INT3_INSN_SIZE,
2250 				  len - INT3_INSN_SIZE);
2251 
2252 			do_sync++;
2253 		}
2254 
2255 		/*
2256 		 * Emit a perf event to record the text poke, primarily to
2257 		 * support Intel PT decoding which must walk the executable code
2258 		 * to reconstruct the trace. The flow up to here is:
2259 		 *   - write INT3 byte
2260 		 *   - IPI-SYNC
2261 		 *   - write instruction tail
2262 		 * At this point the actual control flow will be through the
2263 		 * INT3 and handler and not hit the old or new instruction.
2264 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2265 		 * can still be decoded. Subsequently:
2266 		 *   - emit RECORD_TEXT_POKE with the new instruction
2267 		 *   - IPI-SYNC
2268 		 *   - write first byte
2269 		 *   - IPI-SYNC
2270 		 * So before the text poke event timestamp, the decoder will see
2271 		 * either the old instruction flow or FUP/TIP of INT3. After the
2272 		 * text poke event timestamp, the decoder will see either the
2273 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2274 		 * use the timestamp as the point at which to modify the
2275 		 * executable code.
2276 		 * The old instruction is recorded so that the event can be
2277 		 * processed forwards or backwards.
2278 		 */
2279 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2280 	}
2281 
2282 	if (do_sync) {
2283 		/*
2284 		 * According to Intel, this core syncing is very likely
2285 		 * not necessary and we'd be safe even without it. But
2286 		 * better safe than sorry (plus there's not only Intel).
2287 		 */
2288 		text_poke_sync();
2289 	}
2290 
2291 	/*
2292 	 * Third step: replace the first byte (int3) by the first byte of
2293 	 * replacing opcode.
2294 	 */
2295 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2296 		u8 byte = tp[i].text[0];
2297 
2298 		if (tp[i].len == 6)
2299 			byte = 0x0f;
2300 
2301 		if (byte == INT3_INSN_OPCODE)
2302 			continue;
2303 
2304 		text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2305 		do_sync++;
2306 	}
2307 
2308 	if (do_sync)
2309 		text_poke_sync();
2310 
2311 	/*
2312 	 * Remove and wait for refs to be zero.
2313 	 */
2314 	if (!atomic_dec_and_test(&bp_desc.refs))
2315 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2316 }
2317 
2318 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2319 			       const void *opcode, size_t len, const void *emulate)
2320 {
2321 	struct insn insn;
2322 	int ret, i = 0;
2323 
2324 	if (len == 6)
2325 		i = 1;
2326 	memcpy((void *)tp->text, opcode+i, len-i);
2327 	if (!emulate)
2328 		emulate = opcode;
2329 
2330 	ret = insn_decode_kernel(&insn, emulate);
2331 	BUG_ON(ret < 0);
2332 
2333 	tp->rel_addr = addr - (void *)_stext;
2334 	tp->len = len;
2335 	tp->opcode = insn.opcode.bytes[0];
2336 
2337 	if (is_jcc32(&insn)) {
2338 		/*
2339 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2340 		 */
2341 		tp->opcode = insn.opcode.bytes[1] - 0x10;
2342 	}
2343 
2344 	switch (tp->opcode) {
2345 	case RET_INSN_OPCODE:
2346 	case JMP32_INSN_OPCODE:
2347 	case JMP8_INSN_OPCODE:
2348 		/*
2349 		 * Control flow instructions without implied execution of the
2350 		 * next instruction can be padded with INT3.
2351 		 */
2352 		for (i = insn.length; i < len; i++)
2353 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2354 		break;
2355 
2356 	default:
2357 		BUG_ON(len != insn.length);
2358 	}
2359 
2360 	switch (tp->opcode) {
2361 	case INT3_INSN_OPCODE:
2362 	case RET_INSN_OPCODE:
2363 		break;
2364 
2365 	case CALL_INSN_OPCODE:
2366 	case JMP32_INSN_OPCODE:
2367 	case JMP8_INSN_OPCODE:
2368 	case 0x70 ... 0x7f: /* Jcc */
2369 		tp->disp = insn.immediate.value;
2370 		break;
2371 
2372 	default: /* assume NOP */
2373 		switch (len) {
2374 		case 2: /* NOP2 -- emulate as JMP8+0 */
2375 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2376 			tp->opcode = JMP8_INSN_OPCODE;
2377 			tp->disp = 0;
2378 			break;
2379 
2380 		case 5: /* NOP5 -- emulate as JMP32+0 */
2381 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2382 			tp->opcode = JMP32_INSN_OPCODE;
2383 			tp->disp = 0;
2384 			break;
2385 
2386 		default: /* unknown instruction */
2387 			BUG();
2388 		}
2389 		break;
2390 	}
2391 }
2392 
2393 /*
2394  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2395  * early if needed.
2396  */
2397 static bool tp_order_fail(void *addr)
2398 {
2399 	struct text_poke_loc *tp;
2400 
2401 	if (!tp_vec_nr)
2402 		return false;
2403 
2404 	if (!addr) /* force */
2405 		return true;
2406 
2407 	tp = &tp_vec[tp_vec_nr - 1];
2408 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2409 		return true;
2410 
2411 	return false;
2412 }
2413 
2414 static void text_poke_flush(void *addr)
2415 {
2416 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2417 		text_poke_bp_batch(tp_vec, tp_vec_nr);
2418 		tp_vec_nr = 0;
2419 	}
2420 }
2421 
2422 void text_poke_finish(void)
2423 {
2424 	text_poke_flush(NULL);
2425 }
2426 
2427 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2428 {
2429 	struct text_poke_loc *tp;
2430 
2431 	text_poke_flush(addr);
2432 
2433 	tp = &tp_vec[tp_vec_nr++];
2434 	text_poke_loc_init(tp, addr, opcode, len, emulate);
2435 }
2436 
2437 /**
2438  * text_poke_bp() -- update instructions on live kernel on SMP
2439  * @addr:	address to patch
2440  * @opcode:	opcode of new instruction
2441  * @len:	length to copy
2442  * @emulate:	instruction to be emulated
2443  *
2444  * Update a single instruction with the vector in the stack, avoiding
2445  * dynamically allocated memory. This function should be used when it is
2446  * not possible to allocate memory.
2447  */
2448 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2449 {
2450 	struct text_poke_loc tp;
2451 
2452 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2453 	text_poke_bp_batch(&tp, 1);
2454 }
2455