xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 1fa0a7dc)
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2 
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <linux/kprobes.h>
15 #include <linux/mmu_context.h>
16 #include <asm/text-patching.h>
17 #include <asm/alternative.h>
18 #include <asm/sections.h>
19 #include <asm/pgtable.h>
20 #include <asm/mce.h>
21 #include <asm/nmi.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <asm/io.h>
25 #include <asm/fixmap.h>
26 
27 int __read_mostly alternatives_patched;
28 
29 EXPORT_SYMBOL_GPL(alternatives_patched);
30 
31 #define MAX_PATCH_LEN (255-1)
32 
33 static int __initdata_or_module debug_alternative;
34 
35 static int __init debug_alt(char *str)
36 {
37 	debug_alternative = 1;
38 	return 1;
39 }
40 __setup("debug-alternative", debug_alt);
41 
42 static int noreplace_smp;
43 
44 static int __init setup_noreplace_smp(char *str)
45 {
46 	noreplace_smp = 1;
47 	return 1;
48 }
49 __setup("noreplace-smp", setup_noreplace_smp);
50 
51 #define DPRINTK(fmt, args...)						\
52 do {									\
53 	if (debug_alternative)						\
54 		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
55 } while (0)
56 
57 #define DUMP_BYTES(buf, len, fmt, args...)				\
58 do {									\
59 	if (unlikely(debug_alternative)) {				\
60 		int j;							\
61 									\
62 		if (!(len))						\
63 			break;						\
64 									\
65 		printk(KERN_DEBUG fmt, ##args);				\
66 		for (j = 0; j < (len) - 1; j++)				\
67 			printk(KERN_CONT "%02hhx ", buf[j]);		\
68 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
69 	}								\
70 } while (0)
71 
72 /*
73  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
74  * that correspond to that nop. Getting from one nop to the next, we
75  * add to the array the offset that is equal to the sum of all sizes of
76  * nops preceding the one we are after.
77  *
78  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
79  * nice symmetry of sizes of the previous nops.
80  */
81 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
82 static const unsigned char intelnops[] =
83 {
84 	GENERIC_NOP1,
85 	GENERIC_NOP2,
86 	GENERIC_NOP3,
87 	GENERIC_NOP4,
88 	GENERIC_NOP5,
89 	GENERIC_NOP6,
90 	GENERIC_NOP7,
91 	GENERIC_NOP8,
92 	GENERIC_NOP5_ATOMIC
93 };
94 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
95 {
96 	NULL,
97 	intelnops,
98 	intelnops + 1,
99 	intelnops + 1 + 2,
100 	intelnops + 1 + 2 + 3,
101 	intelnops + 1 + 2 + 3 + 4,
102 	intelnops + 1 + 2 + 3 + 4 + 5,
103 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
104 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
105 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
106 };
107 #endif
108 
109 #ifdef K8_NOP1
110 static const unsigned char k8nops[] =
111 {
112 	K8_NOP1,
113 	K8_NOP2,
114 	K8_NOP3,
115 	K8_NOP4,
116 	K8_NOP5,
117 	K8_NOP6,
118 	K8_NOP7,
119 	K8_NOP8,
120 	K8_NOP5_ATOMIC
121 };
122 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
123 {
124 	NULL,
125 	k8nops,
126 	k8nops + 1,
127 	k8nops + 1 + 2,
128 	k8nops + 1 + 2 + 3,
129 	k8nops + 1 + 2 + 3 + 4,
130 	k8nops + 1 + 2 + 3 + 4 + 5,
131 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
132 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
133 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
134 };
135 #endif
136 
137 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
138 static const unsigned char k7nops[] =
139 {
140 	K7_NOP1,
141 	K7_NOP2,
142 	K7_NOP3,
143 	K7_NOP4,
144 	K7_NOP5,
145 	K7_NOP6,
146 	K7_NOP7,
147 	K7_NOP8,
148 	K7_NOP5_ATOMIC
149 };
150 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
151 {
152 	NULL,
153 	k7nops,
154 	k7nops + 1,
155 	k7nops + 1 + 2,
156 	k7nops + 1 + 2 + 3,
157 	k7nops + 1 + 2 + 3 + 4,
158 	k7nops + 1 + 2 + 3 + 4 + 5,
159 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
160 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
161 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
162 };
163 #endif
164 
165 #ifdef P6_NOP1
166 static const unsigned char p6nops[] =
167 {
168 	P6_NOP1,
169 	P6_NOP2,
170 	P6_NOP3,
171 	P6_NOP4,
172 	P6_NOP5,
173 	P6_NOP6,
174 	P6_NOP7,
175 	P6_NOP8,
176 	P6_NOP5_ATOMIC
177 };
178 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
179 {
180 	NULL,
181 	p6nops,
182 	p6nops + 1,
183 	p6nops + 1 + 2,
184 	p6nops + 1 + 2 + 3,
185 	p6nops + 1 + 2 + 3 + 4,
186 	p6nops + 1 + 2 + 3 + 4 + 5,
187 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
188 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
189 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
190 };
191 #endif
192 
193 /* Initialize these to a safe default */
194 #ifdef CONFIG_X86_64
195 const unsigned char * const *ideal_nops = p6_nops;
196 #else
197 const unsigned char * const *ideal_nops = intel_nops;
198 #endif
199 
200 void __init arch_init_ideal_nops(void)
201 {
202 	switch (boot_cpu_data.x86_vendor) {
203 	case X86_VENDOR_INTEL:
204 		/*
205 		 * Due to a decoder implementation quirk, some
206 		 * specific Intel CPUs actually perform better with
207 		 * the "k8_nops" than with the SDM-recommended NOPs.
208 		 */
209 		if (boot_cpu_data.x86 == 6 &&
210 		    boot_cpu_data.x86_model >= 0x0f &&
211 		    boot_cpu_data.x86_model != 0x1c &&
212 		    boot_cpu_data.x86_model != 0x26 &&
213 		    boot_cpu_data.x86_model != 0x27 &&
214 		    boot_cpu_data.x86_model < 0x30) {
215 			ideal_nops = k8_nops;
216 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
217 			   ideal_nops = p6_nops;
218 		} else {
219 #ifdef CONFIG_X86_64
220 			ideal_nops = k8_nops;
221 #else
222 			ideal_nops = intel_nops;
223 #endif
224 		}
225 		break;
226 
227 	case X86_VENDOR_HYGON:
228 		ideal_nops = p6_nops;
229 		return;
230 
231 	case X86_VENDOR_AMD:
232 		if (boot_cpu_data.x86 > 0xf) {
233 			ideal_nops = p6_nops;
234 			return;
235 		}
236 
237 		/* fall through */
238 
239 	default:
240 #ifdef CONFIG_X86_64
241 		ideal_nops = k8_nops;
242 #else
243 		if (boot_cpu_has(X86_FEATURE_K8))
244 			ideal_nops = k8_nops;
245 		else if (boot_cpu_has(X86_FEATURE_K7))
246 			ideal_nops = k7_nops;
247 		else
248 			ideal_nops = intel_nops;
249 #endif
250 	}
251 }
252 
253 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
254 static void __init_or_module add_nops(void *insns, unsigned int len)
255 {
256 	while (len > 0) {
257 		unsigned int noplen = len;
258 		if (noplen > ASM_NOP_MAX)
259 			noplen = ASM_NOP_MAX;
260 		memcpy(insns, ideal_nops[noplen], noplen);
261 		insns += noplen;
262 		len -= noplen;
263 	}
264 }
265 
266 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
267 extern s32 __smp_locks[], __smp_locks_end[];
268 void text_poke_early(void *addr, const void *opcode, size_t len);
269 
270 /*
271  * Are we looking at a near JMP with a 1 or 4-byte displacement.
272  */
273 static inline bool is_jmp(const u8 opcode)
274 {
275 	return opcode == 0xeb || opcode == 0xe9;
276 }
277 
278 static void __init_or_module
279 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
280 {
281 	u8 *next_rip, *tgt_rip;
282 	s32 n_dspl, o_dspl;
283 	int repl_len;
284 
285 	if (a->replacementlen != 5)
286 		return;
287 
288 	o_dspl = *(s32 *)(insnbuf + 1);
289 
290 	/* next_rip of the replacement JMP */
291 	next_rip = repl_insn + a->replacementlen;
292 	/* target rip of the replacement JMP */
293 	tgt_rip  = next_rip + o_dspl;
294 	n_dspl = tgt_rip - orig_insn;
295 
296 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
297 
298 	if (tgt_rip - orig_insn >= 0) {
299 		if (n_dspl - 2 <= 127)
300 			goto two_byte_jmp;
301 		else
302 			goto five_byte_jmp;
303 	/* negative offset */
304 	} else {
305 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
306 			goto two_byte_jmp;
307 		else
308 			goto five_byte_jmp;
309 	}
310 
311 two_byte_jmp:
312 	n_dspl -= 2;
313 
314 	insnbuf[0] = 0xeb;
315 	insnbuf[1] = (s8)n_dspl;
316 	add_nops(insnbuf + 2, 3);
317 
318 	repl_len = 2;
319 	goto done;
320 
321 five_byte_jmp:
322 	n_dspl -= 5;
323 
324 	insnbuf[0] = 0xe9;
325 	*(s32 *)&insnbuf[1] = n_dspl;
326 
327 	repl_len = 5;
328 
329 done:
330 
331 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
332 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
333 }
334 
335 /*
336  * "noinline" to cause control flow change and thus invalidate I$ and
337  * cause refetch after modification.
338  */
339 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
340 {
341 	unsigned long flags;
342 	int i;
343 
344 	for (i = 0; i < a->padlen; i++) {
345 		if (instr[i] != 0x90)
346 			return;
347 	}
348 
349 	local_irq_save(flags);
350 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
351 	local_irq_restore(flags);
352 
353 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
354 		   instr, a->instrlen - a->padlen, a->padlen);
355 }
356 
357 /*
358  * Replace instructions with better alternatives for this CPU type. This runs
359  * before SMP is initialized to avoid SMP problems with self modifying code.
360  * This implies that asymmetric systems where APs have less capabilities than
361  * the boot processor are not handled. Tough. Make sure you disable such
362  * features by hand.
363  *
364  * Marked "noinline" to cause control flow change and thus insn cache
365  * to refetch changed I$ lines.
366  */
367 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
368 						  struct alt_instr *end)
369 {
370 	struct alt_instr *a;
371 	u8 *instr, *replacement;
372 	u8 insnbuf[MAX_PATCH_LEN];
373 
374 	DPRINTK("alt table %px, -> %px", start, end);
375 	/*
376 	 * The scan order should be from start to end. A later scanned
377 	 * alternative code can overwrite previously scanned alternative code.
378 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
379 	 * patch code.
380 	 *
381 	 * So be careful if you want to change the scan order to any other
382 	 * order.
383 	 */
384 	for (a = start; a < end; a++) {
385 		int insnbuf_sz = 0;
386 
387 		instr = (u8 *)&a->instr_offset + a->instr_offset;
388 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
389 		BUG_ON(a->instrlen > sizeof(insnbuf));
390 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
391 		if (!boot_cpu_has(a->cpuid)) {
392 			if (a->padlen > 1)
393 				optimize_nops(a, instr);
394 
395 			continue;
396 		}
397 
398 		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
399 			a->cpuid >> 5,
400 			a->cpuid & 0x1f,
401 			instr, instr, a->instrlen,
402 			replacement, a->replacementlen, a->padlen);
403 
404 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
405 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
406 
407 		memcpy(insnbuf, replacement, a->replacementlen);
408 		insnbuf_sz = a->replacementlen;
409 
410 		/*
411 		 * 0xe8 is a relative jump; fix the offset.
412 		 *
413 		 * Instruction length is checked before the opcode to avoid
414 		 * accessing uninitialized bytes for zero-length replacements.
415 		 */
416 		if (a->replacementlen == 5 && *insnbuf == 0xe8) {
417 			*(s32 *)(insnbuf + 1) += replacement - instr;
418 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
419 				*(s32 *)(insnbuf + 1),
420 				(unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
421 		}
422 
423 		if (a->replacementlen && is_jmp(replacement[0]))
424 			recompute_jump(a, instr, replacement, insnbuf);
425 
426 		if (a->instrlen > a->replacementlen) {
427 			add_nops(insnbuf + a->replacementlen,
428 				 a->instrlen - a->replacementlen);
429 			insnbuf_sz += a->instrlen - a->replacementlen;
430 		}
431 		DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
432 
433 		text_poke_early(instr, insnbuf, insnbuf_sz);
434 	}
435 }
436 
437 #ifdef CONFIG_SMP
438 static void alternatives_smp_lock(const s32 *start, const s32 *end,
439 				  u8 *text, u8 *text_end)
440 {
441 	const s32 *poff;
442 
443 	for (poff = start; poff < end; poff++) {
444 		u8 *ptr = (u8 *)poff + *poff;
445 
446 		if (!*poff || ptr < text || ptr >= text_end)
447 			continue;
448 		/* turn DS segment override prefix into lock prefix */
449 		if (*ptr == 0x3e)
450 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
451 	}
452 }
453 
454 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
455 				    u8 *text, u8 *text_end)
456 {
457 	const s32 *poff;
458 
459 	for (poff = start; poff < end; poff++) {
460 		u8 *ptr = (u8 *)poff + *poff;
461 
462 		if (!*poff || ptr < text || ptr >= text_end)
463 			continue;
464 		/* turn lock prefix into DS segment override prefix */
465 		if (*ptr == 0xf0)
466 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
467 	}
468 }
469 
470 struct smp_alt_module {
471 	/* what is this ??? */
472 	struct module	*mod;
473 	char		*name;
474 
475 	/* ptrs to lock prefixes */
476 	const s32	*locks;
477 	const s32	*locks_end;
478 
479 	/* .text segment, needed to avoid patching init code ;) */
480 	u8		*text;
481 	u8		*text_end;
482 
483 	struct list_head next;
484 };
485 static LIST_HEAD(smp_alt_modules);
486 static bool uniproc_patched = false;	/* protected by text_mutex */
487 
488 void __init_or_module alternatives_smp_module_add(struct module *mod,
489 						  char *name,
490 						  void *locks, void *locks_end,
491 						  void *text,  void *text_end)
492 {
493 	struct smp_alt_module *smp;
494 
495 	mutex_lock(&text_mutex);
496 	if (!uniproc_patched)
497 		goto unlock;
498 
499 	if (num_possible_cpus() == 1)
500 		/* Don't bother remembering, we'll never have to undo it. */
501 		goto smp_unlock;
502 
503 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
504 	if (NULL == smp)
505 		/* we'll run the (safe but slow) SMP code then ... */
506 		goto unlock;
507 
508 	smp->mod	= mod;
509 	smp->name	= name;
510 	smp->locks	= locks;
511 	smp->locks_end	= locks_end;
512 	smp->text	= text;
513 	smp->text_end	= text_end;
514 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
515 		smp->locks, smp->locks_end,
516 		smp->text, smp->text_end, smp->name);
517 
518 	list_add_tail(&smp->next, &smp_alt_modules);
519 smp_unlock:
520 	alternatives_smp_unlock(locks, locks_end, text, text_end);
521 unlock:
522 	mutex_unlock(&text_mutex);
523 }
524 
525 void __init_or_module alternatives_smp_module_del(struct module *mod)
526 {
527 	struct smp_alt_module *item;
528 
529 	mutex_lock(&text_mutex);
530 	list_for_each_entry(item, &smp_alt_modules, next) {
531 		if (mod != item->mod)
532 			continue;
533 		list_del(&item->next);
534 		kfree(item);
535 		break;
536 	}
537 	mutex_unlock(&text_mutex);
538 }
539 
540 void alternatives_enable_smp(void)
541 {
542 	struct smp_alt_module *mod;
543 
544 	/* Why bother if there are no other CPUs? */
545 	BUG_ON(num_possible_cpus() == 1);
546 
547 	mutex_lock(&text_mutex);
548 
549 	if (uniproc_patched) {
550 		pr_info("switching to SMP code\n");
551 		BUG_ON(num_online_cpus() != 1);
552 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
553 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
554 		list_for_each_entry(mod, &smp_alt_modules, next)
555 			alternatives_smp_lock(mod->locks, mod->locks_end,
556 					      mod->text, mod->text_end);
557 		uniproc_patched = false;
558 	}
559 	mutex_unlock(&text_mutex);
560 }
561 
562 /*
563  * Return 1 if the address range is reserved for SMP-alternatives.
564  * Must hold text_mutex.
565  */
566 int alternatives_text_reserved(void *start, void *end)
567 {
568 	struct smp_alt_module *mod;
569 	const s32 *poff;
570 	u8 *text_start = start;
571 	u8 *text_end = end;
572 
573 	lockdep_assert_held(&text_mutex);
574 
575 	list_for_each_entry(mod, &smp_alt_modules, next) {
576 		if (mod->text > text_end || mod->text_end < text_start)
577 			continue;
578 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
579 			const u8 *ptr = (const u8 *)poff + *poff;
580 
581 			if (text_start <= ptr && text_end > ptr)
582 				return 1;
583 		}
584 	}
585 
586 	return 0;
587 }
588 #endif /* CONFIG_SMP */
589 
590 #ifdef CONFIG_PARAVIRT
591 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
592 				     struct paravirt_patch_site *end)
593 {
594 	struct paravirt_patch_site *p;
595 	char insnbuf[MAX_PATCH_LEN];
596 
597 	for (p = start; p < end; p++) {
598 		unsigned int used;
599 
600 		BUG_ON(p->len > MAX_PATCH_LEN);
601 		/* prep the buffer with the original instructions */
602 		memcpy(insnbuf, p->instr, p->len);
603 		used = pv_ops.init.patch(p->instrtype, insnbuf,
604 					 (unsigned long)p->instr, p->len);
605 
606 		BUG_ON(used > p->len);
607 
608 		/* Pad the rest with nops */
609 		add_nops(insnbuf + used, p->len - used);
610 		text_poke_early(p->instr, insnbuf, p->len);
611 	}
612 }
613 extern struct paravirt_patch_site __start_parainstructions[],
614 	__stop_parainstructions[];
615 #endif	/* CONFIG_PARAVIRT */
616 
617 void __init alternative_instructions(void)
618 {
619 	/* The patching is not fully atomic, so try to avoid local interruptions
620 	   that might execute the to be patched code.
621 	   Other CPUs are not running. */
622 	stop_nmi();
623 
624 	/*
625 	 * Don't stop machine check exceptions while patching.
626 	 * MCEs only happen when something got corrupted and in this
627 	 * case we must do something about the corruption.
628 	 * Ignoring it is worse than a unlikely patching race.
629 	 * Also machine checks tend to be broadcast and if one CPU
630 	 * goes into machine check the others follow quickly, so we don't
631 	 * expect a machine check to cause undue problems during to code
632 	 * patching.
633 	 */
634 
635 	apply_alternatives(__alt_instructions, __alt_instructions_end);
636 
637 #ifdef CONFIG_SMP
638 	/* Patch to UP if other cpus not imminent. */
639 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
640 		uniproc_patched = true;
641 		alternatives_smp_module_add(NULL, "core kernel",
642 					    __smp_locks, __smp_locks_end,
643 					    _text, _etext);
644 	}
645 
646 	if (!uniproc_patched || num_possible_cpus() == 1)
647 		free_init_pages("SMP alternatives",
648 				(unsigned long)__smp_locks,
649 				(unsigned long)__smp_locks_end);
650 #endif
651 
652 	apply_paravirt(__parainstructions, __parainstructions_end);
653 
654 	restart_nmi();
655 	alternatives_patched = 1;
656 }
657 
658 /**
659  * text_poke_early - Update instructions on a live kernel at boot time
660  * @addr: address to modify
661  * @opcode: source of the copy
662  * @len: length to copy
663  *
664  * When you use this code to patch more than one byte of an instruction
665  * you need to make sure that other CPUs cannot execute this code in parallel.
666  * Also no thread must be currently preempted in the middle of these
667  * instructions. And on the local CPU you need to be protected again NMI or MCE
668  * handlers seeing an inconsistent instruction while you patch.
669  */
670 void __init_or_module text_poke_early(void *addr, const void *opcode,
671 				      size_t len)
672 {
673 	unsigned long flags;
674 
675 	if (boot_cpu_has(X86_FEATURE_NX) &&
676 	    is_module_text_address((unsigned long)addr)) {
677 		/*
678 		 * Modules text is marked initially as non-executable, so the
679 		 * code cannot be running and speculative code-fetches are
680 		 * prevented. Just change the code.
681 		 */
682 		memcpy(addr, opcode, len);
683 	} else {
684 		local_irq_save(flags);
685 		memcpy(addr, opcode, len);
686 		local_irq_restore(flags);
687 		sync_core();
688 
689 		/*
690 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
691 		 * that causes hangs on some VIA CPUs.
692 		 */
693 	}
694 }
695 
696 __ro_after_init struct mm_struct *poking_mm;
697 __ro_after_init unsigned long poking_addr;
698 
699 static void *__text_poke(void *addr, const void *opcode, size_t len)
700 {
701 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
702 	struct page *pages[2] = {NULL};
703 	temp_mm_state_t prev;
704 	unsigned long flags;
705 	pte_t pte, *ptep;
706 	spinlock_t *ptl;
707 	pgprot_t pgprot;
708 
709 	/*
710 	 * While boot memory allocator is running we cannot use struct pages as
711 	 * they are not yet initialized. There is no way to recover.
712 	 */
713 	BUG_ON(!after_bootmem);
714 
715 	if (!core_kernel_text((unsigned long)addr)) {
716 		pages[0] = vmalloc_to_page(addr);
717 		if (cross_page_boundary)
718 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
719 	} else {
720 		pages[0] = virt_to_page(addr);
721 		WARN_ON(!PageReserved(pages[0]));
722 		if (cross_page_boundary)
723 			pages[1] = virt_to_page(addr + PAGE_SIZE);
724 	}
725 	/*
726 	 * If something went wrong, crash and burn since recovery paths are not
727 	 * implemented.
728 	 */
729 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
730 
731 	local_irq_save(flags);
732 
733 	/*
734 	 * Map the page without the global bit, as TLB flushing is done with
735 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
736 	 */
737 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
738 
739 	/*
740 	 * The lock is not really needed, but this allows to avoid open-coding.
741 	 */
742 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
743 
744 	/*
745 	 * This must not fail; preallocated in poking_init().
746 	 */
747 	VM_BUG_ON(!ptep);
748 
749 	pte = mk_pte(pages[0], pgprot);
750 	set_pte_at(poking_mm, poking_addr, ptep, pte);
751 
752 	if (cross_page_boundary) {
753 		pte = mk_pte(pages[1], pgprot);
754 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
755 	}
756 
757 	/*
758 	 * Loading the temporary mm behaves as a compiler barrier, which
759 	 * guarantees that the PTE will be set at the time memcpy() is done.
760 	 */
761 	prev = use_temporary_mm(poking_mm);
762 
763 	kasan_disable_current();
764 	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
765 	kasan_enable_current();
766 
767 	/*
768 	 * Ensure that the PTE is only cleared after the instructions of memcpy
769 	 * were issued by using a compiler barrier.
770 	 */
771 	barrier();
772 
773 	pte_clear(poking_mm, poking_addr, ptep);
774 	if (cross_page_boundary)
775 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
776 
777 	/*
778 	 * Loading the previous page-table hierarchy requires a serializing
779 	 * instruction that already allows the core to see the updated version.
780 	 * Xen-PV is assumed to serialize execution in a similar manner.
781 	 */
782 	unuse_temporary_mm(prev);
783 
784 	/*
785 	 * Flushing the TLB might involve IPIs, which would require enabled
786 	 * IRQs, but not if the mm is not used, as it is in this point.
787 	 */
788 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
789 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
790 			   PAGE_SHIFT, false);
791 
792 	/*
793 	 * If the text does not match what we just wrote then something is
794 	 * fundamentally screwy; there's nothing we can really do about that.
795 	 */
796 	BUG_ON(memcmp(addr, opcode, len));
797 
798 	pte_unmap_unlock(ptep, ptl);
799 	local_irq_restore(flags);
800 	return addr;
801 }
802 
803 /**
804  * text_poke - Update instructions on a live kernel
805  * @addr: address to modify
806  * @opcode: source of the copy
807  * @len: length to copy
808  *
809  * Only atomic text poke/set should be allowed when not doing early patching.
810  * It means the size must be writable atomically and the address must be aligned
811  * in a way that permits an atomic write. It also makes sure we fit on a single
812  * page.
813  *
814  * Note that the caller must ensure that if the modified code is part of a
815  * module, the module would not be removed during poking. This can be achieved
816  * by registering a module notifier, and ordering module removal and patching
817  * trough a mutex.
818  */
819 void *text_poke(void *addr, const void *opcode, size_t len)
820 {
821 	lockdep_assert_held(&text_mutex);
822 
823 	return __text_poke(addr, opcode, len);
824 }
825 
826 /**
827  * text_poke_kgdb - Update instructions on a live kernel by kgdb
828  * @addr: address to modify
829  * @opcode: source of the copy
830  * @len: length to copy
831  *
832  * Only atomic text poke/set should be allowed when not doing early patching.
833  * It means the size must be writable atomically and the address must be aligned
834  * in a way that permits an atomic write. It also makes sure we fit on a single
835  * page.
836  *
837  * Context: should only be used by kgdb, which ensures no other core is running,
838  *	    despite the fact it does not hold the text_mutex.
839  */
840 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
841 {
842 	return __text_poke(addr, opcode, len);
843 }
844 
845 static void do_sync_core(void *info)
846 {
847 	sync_core();
848 }
849 
850 static bool bp_patching_in_progress;
851 static void *bp_int3_handler, *bp_int3_addr;
852 
853 int poke_int3_handler(struct pt_regs *regs)
854 {
855 	/*
856 	 * Having observed our INT3 instruction, we now must observe
857 	 * bp_patching_in_progress.
858 	 *
859 	 * 	in_progress = TRUE		INT3
860 	 * 	WMB				RMB
861 	 * 	write INT3			if (in_progress)
862 	 *
863 	 * Idem for bp_int3_handler.
864 	 */
865 	smp_rmb();
866 
867 	if (likely(!bp_patching_in_progress))
868 		return 0;
869 
870 	if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
871 		return 0;
872 
873 	/* set up the specified breakpoint handler */
874 	regs->ip = (unsigned long) bp_int3_handler;
875 
876 	return 1;
877 }
878 NOKPROBE_SYMBOL(poke_int3_handler);
879 
880 /**
881  * text_poke_bp() -- update instructions on live kernel on SMP
882  * @addr:	address to patch
883  * @opcode:	opcode of new instruction
884  * @len:	length to copy
885  * @handler:	address to jump to when the temporary breakpoint is hit
886  *
887  * Modify multi-byte instruction by using int3 breakpoint on SMP.
888  * We completely avoid stop_machine() here, and achieve the
889  * synchronization using int3 breakpoint.
890  *
891  * The way it is done:
892  *	- add a int3 trap to the address that will be patched
893  *	- sync cores
894  *	- update all but the first byte of the patched range
895  *	- sync cores
896  *	- replace the first byte (int3) by the first byte of
897  *	  replacing opcode
898  *	- sync cores
899  */
900 void text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
901 {
902 	unsigned char int3 = 0xcc;
903 
904 	bp_int3_handler = handler;
905 	bp_int3_addr = (u8 *)addr + sizeof(int3);
906 	bp_patching_in_progress = true;
907 
908 	lockdep_assert_held(&text_mutex);
909 
910 	/*
911 	 * Corresponding read barrier in int3 notifier for making sure the
912 	 * in_progress and handler are correctly ordered wrt. patching.
913 	 */
914 	smp_wmb();
915 
916 	text_poke(addr, &int3, sizeof(int3));
917 
918 	on_each_cpu(do_sync_core, NULL, 1);
919 
920 	if (len - sizeof(int3) > 0) {
921 		/* patch all but the first byte */
922 		text_poke((char *)addr + sizeof(int3),
923 			  (const char *) opcode + sizeof(int3),
924 			  len - sizeof(int3));
925 		/*
926 		 * According to Intel, this core syncing is very likely
927 		 * not necessary and we'd be safe even without it. But
928 		 * better safe than sorry (plus there's not only Intel).
929 		 */
930 		on_each_cpu(do_sync_core, NULL, 1);
931 	}
932 
933 	/* patch the first byte */
934 	text_poke(addr, opcode, sizeof(int3));
935 
936 	on_each_cpu(do_sync_core, NULL, 1);
937 	/*
938 	 * sync_core() implies an smp_mb() and orders this store against
939 	 * the writing of the new instruction.
940 	 */
941 	bp_patching_in_progress = false;
942 }
943 
944