1 #define pr_fmt(fmt) "SMP alternatives: " fmt 2 3 #include <linux/module.h> 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 #include <linux/list.h> 7 #include <linux/stringify.h> 8 #include <linux/mm.h> 9 #include <linux/vmalloc.h> 10 #include <linux/memory.h> 11 #include <linux/stop_machine.h> 12 #include <linux/slab.h> 13 #include <linux/kdebug.h> 14 #include <linux/kprobes.h> 15 #include <linux/mmu_context.h> 16 #include <asm/text-patching.h> 17 #include <asm/alternative.h> 18 #include <asm/sections.h> 19 #include <asm/pgtable.h> 20 #include <asm/mce.h> 21 #include <asm/nmi.h> 22 #include <asm/cacheflush.h> 23 #include <asm/tlbflush.h> 24 #include <asm/io.h> 25 #include <asm/fixmap.h> 26 27 int __read_mostly alternatives_patched; 28 29 EXPORT_SYMBOL_GPL(alternatives_patched); 30 31 #define MAX_PATCH_LEN (255-1) 32 33 static int __initdata_or_module debug_alternative; 34 35 static int __init debug_alt(char *str) 36 { 37 debug_alternative = 1; 38 return 1; 39 } 40 __setup("debug-alternative", debug_alt); 41 42 static int noreplace_smp; 43 44 static int __init setup_noreplace_smp(char *str) 45 { 46 noreplace_smp = 1; 47 return 1; 48 } 49 __setup("noreplace-smp", setup_noreplace_smp); 50 51 #define DPRINTK(fmt, args...) \ 52 do { \ 53 if (debug_alternative) \ 54 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \ 55 } while (0) 56 57 #define DUMP_BYTES(buf, len, fmt, args...) \ 58 do { \ 59 if (unlikely(debug_alternative)) { \ 60 int j; \ 61 \ 62 if (!(len)) \ 63 break; \ 64 \ 65 printk(KERN_DEBUG fmt, ##args); \ 66 for (j = 0; j < (len) - 1; j++) \ 67 printk(KERN_CONT "%02hhx ", buf[j]); \ 68 printk(KERN_CONT "%02hhx\n", buf[j]); \ 69 } \ 70 } while (0) 71 72 /* 73 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes 74 * that correspond to that nop. Getting from one nop to the next, we 75 * add to the array the offset that is equal to the sum of all sizes of 76 * nops preceding the one we are after. 77 * 78 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the 79 * nice symmetry of sizes of the previous nops. 80 */ 81 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64) 82 static const unsigned char intelnops[] = 83 { 84 GENERIC_NOP1, 85 GENERIC_NOP2, 86 GENERIC_NOP3, 87 GENERIC_NOP4, 88 GENERIC_NOP5, 89 GENERIC_NOP6, 90 GENERIC_NOP7, 91 GENERIC_NOP8, 92 GENERIC_NOP5_ATOMIC 93 }; 94 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] = 95 { 96 NULL, 97 intelnops, 98 intelnops + 1, 99 intelnops + 1 + 2, 100 intelnops + 1 + 2 + 3, 101 intelnops + 1 + 2 + 3 + 4, 102 intelnops + 1 + 2 + 3 + 4 + 5, 103 intelnops + 1 + 2 + 3 + 4 + 5 + 6, 104 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 105 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 106 }; 107 #endif 108 109 #ifdef K8_NOP1 110 static const unsigned char k8nops[] = 111 { 112 K8_NOP1, 113 K8_NOP2, 114 K8_NOP3, 115 K8_NOP4, 116 K8_NOP5, 117 K8_NOP6, 118 K8_NOP7, 119 K8_NOP8, 120 K8_NOP5_ATOMIC 121 }; 122 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] = 123 { 124 NULL, 125 k8nops, 126 k8nops + 1, 127 k8nops + 1 + 2, 128 k8nops + 1 + 2 + 3, 129 k8nops + 1 + 2 + 3 + 4, 130 k8nops + 1 + 2 + 3 + 4 + 5, 131 k8nops + 1 + 2 + 3 + 4 + 5 + 6, 132 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 133 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 134 }; 135 #endif 136 137 #if defined(K7_NOP1) && !defined(CONFIG_X86_64) 138 static const unsigned char k7nops[] = 139 { 140 K7_NOP1, 141 K7_NOP2, 142 K7_NOP3, 143 K7_NOP4, 144 K7_NOP5, 145 K7_NOP6, 146 K7_NOP7, 147 K7_NOP8, 148 K7_NOP5_ATOMIC 149 }; 150 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] = 151 { 152 NULL, 153 k7nops, 154 k7nops + 1, 155 k7nops + 1 + 2, 156 k7nops + 1 + 2 + 3, 157 k7nops + 1 + 2 + 3 + 4, 158 k7nops + 1 + 2 + 3 + 4 + 5, 159 k7nops + 1 + 2 + 3 + 4 + 5 + 6, 160 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 161 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 162 }; 163 #endif 164 165 #ifdef P6_NOP1 166 static const unsigned char p6nops[] = 167 { 168 P6_NOP1, 169 P6_NOP2, 170 P6_NOP3, 171 P6_NOP4, 172 P6_NOP5, 173 P6_NOP6, 174 P6_NOP7, 175 P6_NOP8, 176 P6_NOP5_ATOMIC 177 }; 178 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] = 179 { 180 NULL, 181 p6nops, 182 p6nops + 1, 183 p6nops + 1 + 2, 184 p6nops + 1 + 2 + 3, 185 p6nops + 1 + 2 + 3 + 4, 186 p6nops + 1 + 2 + 3 + 4 + 5, 187 p6nops + 1 + 2 + 3 + 4 + 5 + 6, 188 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 189 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 190 }; 191 #endif 192 193 /* Initialize these to a safe default */ 194 #ifdef CONFIG_X86_64 195 const unsigned char * const *ideal_nops = p6_nops; 196 #else 197 const unsigned char * const *ideal_nops = intel_nops; 198 #endif 199 200 void __init arch_init_ideal_nops(void) 201 { 202 switch (boot_cpu_data.x86_vendor) { 203 case X86_VENDOR_INTEL: 204 /* 205 * Due to a decoder implementation quirk, some 206 * specific Intel CPUs actually perform better with 207 * the "k8_nops" than with the SDM-recommended NOPs. 208 */ 209 if (boot_cpu_data.x86 == 6 && 210 boot_cpu_data.x86_model >= 0x0f && 211 boot_cpu_data.x86_model != 0x1c && 212 boot_cpu_data.x86_model != 0x26 && 213 boot_cpu_data.x86_model != 0x27 && 214 boot_cpu_data.x86_model < 0x30) { 215 ideal_nops = k8_nops; 216 } else if (boot_cpu_has(X86_FEATURE_NOPL)) { 217 ideal_nops = p6_nops; 218 } else { 219 #ifdef CONFIG_X86_64 220 ideal_nops = k8_nops; 221 #else 222 ideal_nops = intel_nops; 223 #endif 224 } 225 break; 226 227 case X86_VENDOR_HYGON: 228 ideal_nops = p6_nops; 229 return; 230 231 case X86_VENDOR_AMD: 232 if (boot_cpu_data.x86 > 0xf) { 233 ideal_nops = p6_nops; 234 return; 235 } 236 237 /* fall through */ 238 239 default: 240 #ifdef CONFIG_X86_64 241 ideal_nops = k8_nops; 242 #else 243 if (boot_cpu_has(X86_FEATURE_K8)) 244 ideal_nops = k8_nops; 245 else if (boot_cpu_has(X86_FEATURE_K7)) 246 ideal_nops = k7_nops; 247 else 248 ideal_nops = intel_nops; 249 #endif 250 } 251 } 252 253 /* Use this to add nops to a buffer, then text_poke the whole buffer. */ 254 static void __init_or_module add_nops(void *insns, unsigned int len) 255 { 256 while (len > 0) { 257 unsigned int noplen = len; 258 if (noplen > ASM_NOP_MAX) 259 noplen = ASM_NOP_MAX; 260 memcpy(insns, ideal_nops[noplen], noplen); 261 insns += noplen; 262 len -= noplen; 263 } 264 } 265 266 extern struct alt_instr __alt_instructions[], __alt_instructions_end[]; 267 extern s32 __smp_locks[], __smp_locks_end[]; 268 void text_poke_early(void *addr, const void *opcode, size_t len); 269 270 /* 271 * Are we looking at a near JMP with a 1 or 4-byte displacement. 272 */ 273 static inline bool is_jmp(const u8 opcode) 274 { 275 return opcode == 0xeb || opcode == 0xe9; 276 } 277 278 static void __init_or_module 279 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf) 280 { 281 u8 *next_rip, *tgt_rip; 282 s32 n_dspl, o_dspl; 283 int repl_len; 284 285 if (a->replacementlen != 5) 286 return; 287 288 o_dspl = *(s32 *)(insnbuf + 1); 289 290 /* next_rip of the replacement JMP */ 291 next_rip = repl_insn + a->replacementlen; 292 /* target rip of the replacement JMP */ 293 tgt_rip = next_rip + o_dspl; 294 n_dspl = tgt_rip - orig_insn; 295 296 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl); 297 298 if (tgt_rip - orig_insn >= 0) { 299 if (n_dspl - 2 <= 127) 300 goto two_byte_jmp; 301 else 302 goto five_byte_jmp; 303 /* negative offset */ 304 } else { 305 if (((n_dspl - 2) & 0xff) == (n_dspl - 2)) 306 goto two_byte_jmp; 307 else 308 goto five_byte_jmp; 309 } 310 311 two_byte_jmp: 312 n_dspl -= 2; 313 314 insnbuf[0] = 0xeb; 315 insnbuf[1] = (s8)n_dspl; 316 add_nops(insnbuf + 2, 3); 317 318 repl_len = 2; 319 goto done; 320 321 five_byte_jmp: 322 n_dspl -= 5; 323 324 insnbuf[0] = 0xe9; 325 *(s32 *)&insnbuf[1] = n_dspl; 326 327 repl_len = 5; 328 329 done: 330 331 DPRINTK("final displ: 0x%08x, JMP 0x%lx", 332 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len); 333 } 334 335 /* 336 * "noinline" to cause control flow change and thus invalidate I$ and 337 * cause refetch after modification. 338 */ 339 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr) 340 { 341 unsigned long flags; 342 int i; 343 344 for (i = 0; i < a->padlen; i++) { 345 if (instr[i] != 0x90) 346 return; 347 } 348 349 local_irq_save(flags); 350 add_nops(instr + (a->instrlen - a->padlen), a->padlen); 351 local_irq_restore(flags); 352 353 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ", 354 instr, a->instrlen - a->padlen, a->padlen); 355 } 356 357 /* 358 * Replace instructions with better alternatives for this CPU type. This runs 359 * before SMP is initialized to avoid SMP problems with self modifying code. 360 * This implies that asymmetric systems where APs have less capabilities than 361 * the boot processor are not handled. Tough. Make sure you disable such 362 * features by hand. 363 * 364 * Marked "noinline" to cause control flow change and thus insn cache 365 * to refetch changed I$ lines. 366 */ 367 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 368 struct alt_instr *end) 369 { 370 struct alt_instr *a; 371 u8 *instr, *replacement; 372 u8 insnbuf[MAX_PATCH_LEN]; 373 374 DPRINTK("alt table %px, -> %px", start, end); 375 /* 376 * The scan order should be from start to end. A later scanned 377 * alternative code can overwrite previously scanned alternative code. 378 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 379 * patch code. 380 * 381 * So be careful if you want to change the scan order to any other 382 * order. 383 */ 384 for (a = start; a < end; a++) { 385 int insnbuf_sz = 0; 386 387 instr = (u8 *)&a->instr_offset + a->instr_offset; 388 replacement = (u8 *)&a->repl_offset + a->repl_offset; 389 BUG_ON(a->instrlen > sizeof(insnbuf)); 390 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 391 if (!boot_cpu_has(a->cpuid)) { 392 if (a->padlen > 1) 393 optimize_nops(a, instr); 394 395 continue; 396 } 397 398 DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d", 399 a->cpuid >> 5, 400 a->cpuid & 0x1f, 401 instr, instr, a->instrlen, 402 replacement, a->replacementlen, a->padlen); 403 404 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr); 405 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 406 407 memcpy(insnbuf, replacement, a->replacementlen); 408 insnbuf_sz = a->replacementlen; 409 410 /* 411 * 0xe8 is a relative jump; fix the offset. 412 * 413 * Instruction length is checked before the opcode to avoid 414 * accessing uninitialized bytes for zero-length replacements. 415 */ 416 if (a->replacementlen == 5 && *insnbuf == 0xe8) { 417 *(s32 *)(insnbuf + 1) += replacement - instr; 418 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx", 419 *(s32 *)(insnbuf + 1), 420 (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5); 421 } 422 423 if (a->replacementlen && is_jmp(replacement[0])) 424 recompute_jump(a, instr, replacement, insnbuf); 425 426 if (a->instrlen > a->replacementlen) { 427 add_nops(insnbuf + a->replacementlen, 428 a->instrlen - a->replacementlen); 429 insnbuf_sz += a->instrlen - a->replacementlen; 430 } 431 DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr); 432 433 text_poke_early(instr, insnbuf, insnbuf_sz); 434 } 435 } 436 437 #ifdef CONFIG_SMP 438 static void alternatives_smp_lock(const s32 *start, const s32 *end, 439 u8 *text, u8 *text_end) 440 { 441 const s32 *poff; 442 443 for (poff = start; poff < end; poff++) { 444 u8 *ptr = (u8 *)poff + *poff; 445 446 if (!*poff || ptr < text || ptr >= text_end) 447 continue; 448 /* turn DS segment override prefix into lock prefix */ 449 if (*ptr == 0x3e) 450 text_poke(ptr, ((unsigned char []){0xf0}), 1); 451 } 452 } 453 454 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 455 u8 *text, u8 *text_end) 456 { 457 const s32 *poff; 458 459 for (poff = start; poff < end; poff++) { 460 u8 *ptr = (u8 *)poff + *poff; 461 462 if (!*poff || ptr < text || ptr >= text_end) 463 continue; 464 /* turn lock prefix into DS segment override prefix */ 465 if (*ptr == 0xf0) 466 text_poke(ptr, ((unsigned char []){0x3E}), 1); 467 } 468 } 469 470 struct smp_alt_module { 471 /* what is this ??? */ 472 struct module *mod; 473 char *name; 474 475 /* ptrs to lock prefixes */ 476 const s32 *locks; 477 const s32 *locks_end; 478 479 /* .text segment, needed to avoid patching init code ;) */ 480 u8 *text; 481 u8 *text_end; 482 483 struct list_head next; 484 }; 485 static LIST_HEAD(smp_alt_modules); 486 static bool uniproc_patched = false; /* protected by text_mutex */ 487 488 void __init_or_module alternatives_smp_module_add(struct module *mod, 489 char *name, 490 void *locks, void *locks_end, 491 void *text, void *text_end) 492 { 493 struct smp_alt_module *smp; 494 495 mutex_lock(&text_mutex); 496 if (!uniproc_patched) 497 goto unlock; 498 499 if (num_possible_cpus() == 1) 500 /* Don't bother remembering, we'll never have to undo it. */ 501 goto smp_unlock; 502 503 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 504 if (NULL == smp) 505 /* we'll run the (safe but slow) SMP code then ... */ 506 goto unlock; 507 508 smp->mod = mod; 509 smp->name = name; 510 smp->locks = locks; 511 smp->locks_end = locks_end; 512 smp->text = text; 513 smp->text_end = text_end; 514 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n", 515 smp->locks, smp->locks_end, 516 smp->text, smp->text_end, smp->name); 517 518 list_add_tail(&smp->next, &smp_alt_modules); 519 smp_unlock: 520 alternatives_smp_unlock(locks, locks_end, text, text_end); 521 unlock: 522 mutex_unlock(&text_mutex); 523 } 524 525 void __init_or_module alternatives_smp_module_del(struct module *mod) 526 { 527 struct smp_alt_module *item; 528 529 mutex_lock(&text_mutex); 530 list_for_each_entry(item, &smp_alt_modules, next) { 531 if (mod != item->mod) 532 continue; 533 list_del(&item->next); 534 kfree(item); 535 break; 536 } 537 mutex_unlock(&text_mutex); 538 } 539 540 void alternatives_enable_smp(void) 541 { 542 struct smp_alt_module *mod; 543 544 /* Why bother if there are no other CPUs? */ 545 BUG_ON(num_possible_cpus() == 1); 546 547 mutex_lock(&text_mutex); 548 549 if (uniproc_patched) { 550 pr_info("switching to SMP code\n"); 551 BUG_ON(num_online_cpus() != 1); 552 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 553 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 554 list_for_each_entry(mod, &smp_alt_modules, next) 555 alternatives_smp_lock(mod->locks, mod->locks_end, 556 mod->text, mod->text_end); 557 uniproc_patched = false; 558 } 559 mutex_unlock(&text_mutex); 560 } 561 562 /* 563 * Return 1 if the address range is reserved for SMP-alternatives. 564 * Must hold text_mutex. 565 */ 566 int alternatives_text_reserved(void *start, void *end) 567 { 568 struct smp_alt_module *mod; 569 const s32 *poff; 570 u8 *text_start = start; 571 u8 *text_end = end; 572 573 lockdep_assert_held(&text_mutex); 574 575 list_for_each_entry(mod, &smp_alt_modules, next) { 576 if (mod->text > text_end || mod->text_end < text_start) 577 continue; 578 for (poff = mod->locks; poff < mod->locks_end; poff++) { 579 const u8 *ptr = (const u8 *)poff + *poff; 580 581 if (text_start <= ptr && text_end > ptr) 582 return 1; 583 } 584 } 585 586 return 0; 587 } 588 #endif /* CONFIG_SMP */ 589 590 #ifdef CONFIG_PARAVIRT 591 void __init_or_module apply_paravirt(struct paravirt_patch_site *start, 592 struct paravirt_patch_site *end) 593 { 594 struct paravirt_patch_site *p; 595 char insnbuf[MAX_PATCH_LEN]; 596 597 for (p = start; p < end; p++) { 598 unsigned int used; 599 600 BUG_ON(p->len > MAX_PATCH_LEN); 601 /* prep the buffer with the original instructions */ 602 memcpy(insnbuf, p->instr, p->len); 603 used = pv_ops.init.patch(p->instrtype, insnbuf, 604 (unsigned long)p->instr, p->len); 605 606 BUG_ON(used > p->len); 607 608 /* Pad the rest with nops */ 609 add_nops(insnbuf + used, p->len - used); 610 text_poke_early(p->instr, insnbuf, p->len); 611 } 612 } 613 extern struct paravirt_patch_site __start_parainstructions[], 614 __stop_parainstructions[]; 615 #endif /* CONFIG_PARAVIRT */ 616 617 void __init alternative_instructions(void) 618 { 619 /* The patching is not fully atomic, so try to avoid local interruptions 620 that might execute the to be patched code. 621 Other CPUs are not running. */ 622 stop_nmi(); 623 624 /* 625 * Don't stop machine check exceptions while patching. 626 * MCEs only happen when something got corrupted and in this 627 * case we must do something about the corruption. 628 * Ignoring it is worse than a unlikely patching race. 629 * Also machine checks tend to be broadcast and if one CPU 630 * goes into machine check the others follow quickly, so we don't 631 * expect a machine check to cause undue problems during to code 632 * patching. 633 */ 634 635 apply_alternatives(__alt_instructions, __alt_instructions_end); 636 637 #ifdef CONFIG_SMP 638 /* Patch to UP if other cpus not imminent. */ 639 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 640 uniproc_patched = true; 641 alternatives_smp_module_add(NULL, "core kernel", 642 __smp_locks, __smp_locks_end, 643 _text, _etext); 644 } 645 646 if (!uniproc_patched || num_possible_cpus() == 1) 647 free_init_pages("SMP alternatives", 648 (unsigned long)__smp_locks, 649 (unsigned long)__smp_locks_end); 650 #endif 651 652 apply_paravirt(__parainstructions, __parainstructions_end); 653 654 restart_nmi(); 655 alternatives_patched = 1; 656 } 657 658 /** 659 * text_poke_early - Update instructions on a live kernel at boot time 660 * @addr: address to modify 661 * @opcode: source of the copy 662 * @len: length to copy 663 * 664 * When you use this code to patch more than one byte of an instruction 665 * you need to make sure that other CPUs cannot execute this code in parallel. 666 * Also no thread must be currently preempted in the middle of these 667 * instructions. And on the local CPU you need to be protected again NMI or MCE 668 * handlers seeing an inconsistent instruction while you patch. 669 */ 670 void __init_or_module text_poke_early(void *addr, const void *opcode, 671 size_t len) 672 { 673 unsigned long flags; 674 675 if (boot_cpu_has(X86_FEATURE_NX) && 676 is_module_text_address((unsigned long)addr)) { 677 /* 678 * Modules text is marked initially as non-executable, so the 679 * code cannot be running and speculative code-fetches are 680 * prevented. Just change the code. 681 */ 682 memcpy(addr, opcode, len); 683 } else { 684 local_irq_save(flags); 685 memcpy(addr, opcode, len); 686 local_irq_restore(flags); 687 sync_core(); 688 689 /* 690 * Could also do a CLFLUSH here to speed up CPU recovery; but 691 * that causes hangs on some VIA CPUs. 692 */ 693 } 694 } 695 696 __ro_after_init struct mm_struct *poking_mm; 697 __ro_after_init unsigned long poking_addr; 698 699 static void *__text_poke(void *addr, const void *opcode, size_t len) 700 { 701 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 702 struct page *pages[2] = {NULL}; 703 temp_mm_state_t prev; 704 unsigned long flags; 705 pte_t pte, *ptep; 706 spinlock_t *ptl; 707 pgprot_t pgprot; 708 709 /* 710 * While boot memory allocator is running we cannot use struct pages as 711 * they are not yet initialized. There is no way to recover. 712 */ 713 BUG_ON(!after_bootmem); 714 715 if (!core_kernel_text((unsigned long)addr)) { 716 pages[0] = vmalloc_to_page(addr); 717 if (cross_page_boundary) 718 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 719 } else { 720 pages[0] = virt_to_page(addr); 721 WARN_ON(!PageReserved(pages[0])); 722 if (cross_page_boundary) 723 pages[1] = virt_to_page(addr + PAGE_SIZE); 724 } 725 /* 726 * If something went wrong, crash and burn since recovery paths are not 727 * implemented. 728 */ 729 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 730 731 local_irq_save(flags); 732 733 /* 734 * Map the page without the global bit, as TLB flushing is done with 735 * flush_tlb_mm_range(), which is intended for non-global PTEs. 736 */ 737 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 738 739 /* 740 * The lock is not really needed, but this allows to avoid open-coding. 741 */ 742 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 743 744 /* 745 * This must not fail; preallocated in poking_init(). 746 */ 747 VM_BUG_ON(!ptep); 748 749 pte = mk_pte(pages[0], pgprot); 750 set_pte_at(poking_mm, poking_addr, ptep, pte); 751 752 if (cross_page_boundary) { 753 pte = mk_pte(pages[1], pgprot); 754 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); 755 } 756 757 /* 758 * Loading the temporary mm behaves as a compiler barrier, which 759 * guarantees that the PTE will be set at the time memcpy() is done. 760 */ 761 prev = use_temporary_mm(poking_mm); 762 763 kasan_disable_current(); 764 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len); 765 kasan_enable_current(); 766 767 /* 768 * Ensure that the PTE is only cleared after the instructions of memcpy 769 * were issued by using a compiler barrier. 770 */ 771 barrier(); 772 773 pte_clear(poking_mm, poking_addr, ptep); 774 if (cross_page_boundary) 775 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1); 776 777 /* 778 * Loading the previous page-table hierarchy requires a serializing 779 * instruction that already allows the core to see the updated version. 780 * Xen-PV is assumed to serialize execution in a similar manner. 781 */ 782 unuse_temporary_mm(prev); 783 784 /* 785 * Flushing the TLB might involve IPIs, which would require enabled 786 * IRQs, but not if the mm is not used, as it is in this point. 787 */ 788 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr + 789 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 790 PAGE_SHIFT, false); 791 792 /* 793 * If the text does not match what we just wrote then something is 794 * fundamentally screwy; there's nothing we can really do about that. 795 */ 796 BUG_ON(memcmp(addr, opcode, len)); 797 798 pte_unmap_unlock(ptep, ptl); 799 local_irq_restore(flags); 800 return addr; 801 } 802 803 /** 804 * text_poke - Update instructions on a live kernel 805 * @addr: address to modify 806 * @opcode: source of the copy 807 * @len: length to copy 808 * 809 * Only atomic text poke/set should be allowed when not doing early patching. 810 * It means the size must be writable atomically and the address must be aligned 811 * in a way that permits an atomic write. It also makes sure we fit on a single 812 * page. 813 * 814 * Note that the caller must ensure that if the modified code is part of a 815 * module, the module would not be removed during poking. This can be achieved 816 * by registering a module notifier, and ordering module removal and patching 817 * trough a mutex. 818 */ 819 void *text_poke(void *addr, const void *opcode, size_t len) 820 { 821 lockdep_assert_held(&text_mutex); 822 823 return __text_poke(addr, opcode, len); 824 } 825 826 /** 827 * text_poke_kgdb - Update instructions on a live kernel by kgdb 828 * @addr: address to modify 829 * @opcode: source of the copy 830 * @len: length to copy 831 * 832 * Only atomic text poke/set should be allowed when not doing early patching. 833 * It means the size must be writable atomically and the address must be aligned 834 * in a way that permits an atomic write. It also makes sure we fit on a single 835 * page. 836 * 837 * Context: should only be used by kgdb, which ensures no other core is running, 838 * despite the fact it does not hold the text_mutex. 839 */ 840 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 841 { 842 return __text_poke(addr, opcode, len); 843 } 844 845 static void do_sync_core(void *info) 846 { 847 sync_core(); 848 } 849 850 static bool bp_patching_in_progress; 851 static void *bp_int3_handler, *bp_int3_addr; 852 853 int poke_int3_handler(struct pt_regs *regs) 854 { 855 /* 856 * Having observed our INT3 instruction, we now must observe 857 * bp_patching_in_progress. 858 * 859 * in_progress = TRUE INT3 860 * WMB RMB 861 * write INT3 if (in_progress) 862 * 863 * Idem for bp_int3_handler. 864 */ 865 smp_rmb(); 866 867 if (likely(!bp_patching_in_progress)) 868 return 0; 869 870 if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr) 871 return 0; 872 873 /* set up the specified breakpoint handler */ 874 regs->ip = (unsigned long) bp_int3_handler; 875 876 return 1; 877 } 878 NOKPROBE_SYMBOL(poke_int3_handler); 879 880 /** 881 * text_poke_bp() -- update instructions on live kernel on SMP 882 * @addr: address to patch 883 * @opcode: opcode of new instruction 884 * @len: length to copy 885 * @handler: address to jump to when the temporary breakpoint is hit 886 * 887 * Modify multi-byte instruction by using int3 breakpoint on SMP. 888 * We completely avoid stop_machine() here, and achieve the 889 * synchronization using int3 breakpoint. 890 * 891 * The way it is done: 892 * - add a int3 trap to the address that will be patched 893 * - sync cores 894 * - update all but the first byte of the patched range 895 * - sync cores 896 * - replace the first byte (int3) by the first byte of 897 * replacing opcode 898 * - sync cores 899 */ 900 void text_poke_bp(void *addr, const void *opcode, size_t len, void *handler) 901 { 902 unsigned char int3 = 0xcc; 903 904 bp_int3_handler = handler; 905 bp_int3_addr = (u8 *)addr + sizeof(int3); 906 bp_patching_in_progress = true; 907 908 lockdep_assert_held(&text_mutex); 909 910 /* 911 * Corresponding read barrier in int3 notifier for making sure the 912 * in_progress and handler are correctly ordered wrt. patching. 913 */ 914 smp_wmb(); 915 916 text_poke(addr, &int3, sizeof(int3)); 917 918 on_each_cpu(do_sync_core, NULL, 1); 919 920 if (len - sizeof(int3) > 0) { 921 /* patch all but the first byte */ 922 text_poke((char *)addr + sizeof(int3), 923 (const char *) opcode + sizeof(int3), 924 len - sizeof(int3)); 925 /* 926 * According to Intel, this core syncing is very likely 927 * not necessary and we'd be safe even without it. But 928 * better safe than sorry (plus there's not only Intel). 929 */ 930 on_each_cpu(do_sync_core, NULL, 1); 931 } 932 933 /* patch the first byte */ 934 text_poke(addr, opcode, sizeof(int3)); 935 936 on_each_cpu(do_sync_core, NULL, 1); 937 /* 938 * sync_core() implies an smp_mb() and orders this store against 939 * the writing of the new instruction. 940 */ 941 bp_patching_in_progress = false; 942 } 943 944